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Abstract. Abdominal organ segmentation in MRI scans poses signifi-
cant challenges due to the scarcity of annotated data and the substantial
domain shift between MRI and more readily available CT scans. In re-
sponse to these challenges, we propose a novel approach leveraging Organ
Attention CycleGAN for unsupervised domain adaptation (UDA) in ab-
dominal organ segmentation. Our method begins by translating labeled
CT images into corresponding MRI modalities using an enhanced Cycle-
GAN model that incorporates an organ attention mechanism. This mech-
anism ensures the preservation of critical anatomical structures during
the translation process. Following the image translation, we employ the
nnU-Net V2 framework, enhanced with Residual Encoder Presets, to
perform fully supervised segmentation training on the translated MRI
images. This combination allows our model to leverage the extensive
labeled CT datasets effectively and adapt them to the MRI domain,
achieving robust segmentation performance without requiring annotated
MRI data. To further refine the model’s performance, we introduce a
self-training process using a prediction consistency algorithm. By gen-
erating multiple predictions via 5-fold cross-validation and evaluating
their consistency using the Dice coefficient, we select the most reliable
pseudo labels for additional training. This approach enables our model to
improve segmentation accuracy on real MRI scans. Our method was eval-
uated on the official validation set of the MICCAI FLARE 2024 TASK3,
achieving promising results with an Organ DSC of 0.77 and an Organ
NSD of 0.83, further highlighting the effectiveness of our approach in
addressing the challenges of UDA for abdominal organ segmentation.

Keywords: Unsupervised domain adaptation · abdominal organ seg-
mentation · organ attention cycleGAN
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1 Introduction

Abdominal organ segmentation in medical images is essential for various clin-
ical applications, including computer-aided diagnosis, surgical planning, and
radiotherapy [36]. Significant advancements have been made in this field over
the past decade, particularly with the use of convolutional neural networks
(CNNs)[22,13]. However, most progress has focused on segmentation in com-
puted tomography (CT) images. While magnetic resonance imaging (MRI) is
gaining attention due to its superior soft tissue contrast and the absence of ion-
izing radiation, abdominal organ segmentation in MRI remains under-explored.
This is primarily due to the scarcity of annotated MRI scans, which presents a
significant challenge for training fully supervised models[5].

The shortage of annotated MRI datasets stands in stark contrast to the
abundance of labeled CT scans [3]. For example, the MICCAI AMOS chal-
lenge includes only 40 labeled MRI scans in its training set, while annotated CT
datasets are far more available [12]. This disparity raises a crucial question: how
can effective abdominal MRI segmentation models be developed without relying
on MRI annotations [18]? This challenge is particularly important given MRI’s
clinical relevance in diagnosing and treating abdominal diseases [24]. Addressing
this question is challenging, as models trained on CT data often perform poorly
on MRI datasets due to the significant domain gap between CT and MRI, where
their data distributions differ substantially [32].

Unsupervised domain adaptation (UDA) has shown promise in addressing
domain shifts in medical image segmentation by transferring knowledge from la-
beled CT scans (source domain) to unlabeled MRI scans (target domain) with-
out requiring MRI annotations [33,31]. UDA methods typically align source and
target domains through image appearance, feature distribution, or output struc-
ture [26,14]. Image translation techniques, such as CycleGAN [39] and Con-
trastive Unpaired Translation (CUT)[23], align image appearances but often
distort anatomical structures, reducing segmentation accuracy[34]. To improve
alignment, Dou et al.[4] introduced adversarial loss to align feature spaces, while
Wu et al.[30] used characteristic function distance to reduce distribution discrep-
ancies. Output alignment methods further ensure structural consistency between
predictions in the two domains, which is essential for medical segmentation where
anatomical structures vary [27]. Despite progress, most UDA methods focus on
2D images and struggle with 3D medical segmentation. DAR-Net [38] combines
2D style transfer with 3D segmentation but still faces domain gaps and limited
performance due to unrealistic style transfer and insufficient training data.

In this work, we propose a novel approach leveraging the Organ Attention Cy-
cleGAN to tackle the challenges of unsupervised domain adaptation (UDA) for
abdominal organ segmentation in MRI scans. Our method consists of three key
stages: First, we preprocess annotated CT images by extracting 2D slices and
categorizing them into eight distinct MRI modalities, including DWI, T2WI,
contrast-enhanced (C+A), InPhase, OutPhase, C+pre, C+V, and C+Delay.
These modalities are derived from the LLD-MMRI dataset [15], with 50 sam-
ples from each modality used for image generation and conversion. Next, we
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employ CycleGAN, enhanced with an organ attention mechanism, to translate
the CT images into multi-modal MRI-like images, ensuring the preservation of
anatomical structures and improving segmentation accuracy. These translated
images are then used to train a nnU-Net V2 segmentation network, incorporat-
ing Residual Encoder Presets for robust organ segmentation in the MRI domain.
Finally, inspired by [35], we introduce a self-training process where the trained
nnU-Net models generate predictions on real MRI scans. A novel prediction
consistency algorithm refines these predictions by selecting high-quality pseudo
labels for further training, ultimately enhancing segmentation performance. This
approach effectively utilizes the rich, labeled CT datasets to adapt to the MRI
domain, overcoming the scarcity of MRI annotations and achieving significant
improvements in multi-organ segmentation without relying on MRI labels.

The main contributions of this work are as follows:

– We propose a novel Organ Attention CycleGAN framework for cross-modality
image translation, which effectively preserves anatomical structures during
the translation from CT to multiple MRI modalities.

– We demonstrate the effectiveness of using a carefully curated subset of MRI
modalities from the LLD-MMRI dataset, highlighting the importance of
modality-specific training in UDA for medical image segmentation.

– We introduce a prediction consistency algorithm for selecting high-quality
pseudo labels during the self-training process, leading to significant improve-
ments in segmentation accuracy on real MRI data.

2 Method

In this section, we detail our proposed approach for unsupervised domain adap-
tation (UDA) in abdominal organ segmentation using the Organ Attention Cy-
cleGAN. As shown in Fig. 1, our method is designed to bridge the gap between
labeled CT images and unlabeled MRI images by leveraging a novel image trans-
lation and segmentation framework. The process is divided into three key stages:
(1) Data preprocessing and modality selection, where annotated CT images are
converted into various MRI modalities; (2) Cross-modality image translation us-
ing the Organ Attention CycleGAN, which preserves critical anatomical struc-
tures during the conversion from CT to MRI; and (3) Segmentation and self-
training, where the translated images are used to train a nnU-Net V2 segmenta-
tion network, followed by a consistency-based pseudo label refinement process to
further enhance the segmentation performance on real MRI scans. Each of these
stages is crucial in achieving accurate and robust organ segmentation across
different MRI modalities without relying on labeled MRI data.

2.1 Organ Attention CycleGAN

Let Ds and Dt denote a set of labeled source-domain images and a set of un-
labeled target-domain images, respectively. Let X s

i and X t
j represent the i-th
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Fig. 1. The proposed pipeline. (a) Organ Attention CycleGAN, which enhances the
accuracy of CT-to-MRI translation by focusing on organ-specific features during the
image generation process. (b) Fully Supervised Training with nnU-Net V2, where syn-
thetic MRI images and real CT labels are used to jointly train a segmentation network.
(c) Self-Training with Consistency-Based Pseudo Labels, where real MRI images and
their corresponding pseudo labels are used to further fine-tune the segmentation net-
work for improved performance on real MRI data.
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image from Ds and the j-th image from Dt, where the label of X s
i is Y s

i . Since
the source domain and target domain images are from different patient groups,
X s

i and X t
j are unpaired, i.e., they come from different patients. Due to the

significant domain shift between Ds and Dt, directly training a model on Ds

and applying it to generate pseudo labels for Dt would likely result in poor
performance [31].

To address this issue, CycleGAN [39] has been widely adopted as a solution
for cross-domain image translation. CycleGAN employs two image style trans-
lators, Gt and Gs, to translate images from the source domain to the target
domain and vice versa. Specifically, given a labeled source-domain image Xs

i , Gt

translates it into a pseudo target-domain image Xs→t
i = Gt(X

s
i ), and Gs then

translates Xs→t
i back to the source domain, producing a pseudo source-domain

image Xs′

i = Gs(X
s→t
i ). These translators are trained jointly using unpaired

datasets, optimizing for both adversarial losses Lt
gan, Ls

gan, and cycle consis-
tency losses Lcyc. The adversarial losses ensure that the translated images are
indistinguishable from real images in the target or source domains:

Lt
gan(Gt, Dt) =EXt

j∼Dt
[logDt(X

t
j)]

+EXs
i ∼Ds

[log(1−Dt(X
s→t
i ))],

(1)

Ls
gan(Gs, Ds) =EXs

i ∼Ds
[logDs(X

s
i )]

+EXs→t
i ∼Dt

[log(1−Ds(X
s′

i ))],
(2)

while the cycle consistency losses ensure that the translated images can be con-
verted back to the original domain without significant alterations:

Lcyc(Gs, Gt) =EXs
i ∼Ds

[∥Gs(Gt(X
s
i ))−Xs

i ∥1]
+EXt

j∼Dt
[∥Gt(Gs(X

t
j))−Xt

j∥1].
(3)

However, CycleGAN has inherent limitations when applied to medical im-
age translation, particularly for tasks like abdominal organ segmentation. Since
the training sets are unpaired, achieving an exact match between the trans-
lated images and their ground truth counterparts is challenging. This can lead
to structural distortions in the translated images, such as artifacts or inaccu-
racies in the anatomical regions of interest. These distortions can significantly
affect downstream tasks like segmentation, where precise anatomical structure is
crucial. Moreover, CycleGAN primarily focuses on appearance translation with-
out explicitly preserving the critical anatomical features necessary for accurate
medical image analysis.

To overcome these limitations, we propose the Organ Attention CycleGAN,
which integrates an organ attention mechanism directly into the CycleGAN
framework. This mechanism is designed to focus on the regions of interest cor-
responding to specific organs, ensuring that these areas are highlighted and pre-
served during the translation from the source domain to the target domain.

Given a source domain image Xs
i , the generator Gt first produces a translated

image Xs→t
i = Gt(X

s
i ). To focus on the critical anatomical regions during the
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translation process, we incorporate an organ attention mechanism that leverages
the segmentation predictions from a pre-trained segmentation network S.

Specifically, the segmentation network S generates a segmentation prediction
S(Xs

i ) for the translated image Xs→t
i . This prediction includes multiple channels,

each representing a different organ or background. To create an attention map
that highlights the organs of interest, we apply a softmax activation function to
the segmentation output, normalizing the predictions across the channels:

att_map(Xs
i ) = softmax(S(Xs

i )). (4)

The first channel of this prediction typically corresponds to the background,
so the organ attention map A(Xs

i ) is computed by subtracting the first channel
from 1:

A(Xs
i ) = 1− att_map(Xs

i )[:, 0, :, :], (5)

where att_map(Xs
i )[:, 0, :, :] represents the background channel. This attention

map A(Xs
i ) effectively highlights the regions corresponding to the organs of

interest.
The attention map is then applied to the translated image Xs→t

i to enhance
the focus on these critical regions. Depending on the chosen fusion method, we
combine the attention map with the translated image in additive, the attention-
enhanced image X̂s→t

i is computed as:

X̂s→t
i = Xs→t

i +A(Xs
i ). (6)

The attention-enhanced image X̂s→t
i is then passed through the local dis-

criminator Dlocal
t to ensure that it is indistinguishable from real target domain

images while preserving the anatomical structures:

Lt
gan(Gt, D

local
t ) =EXt

j∼Dt
[logDlocal

t (Xt
j)]

+EXs
i ∼Ds [log(1−Dlocal

t (X̂s→t
i ))].

(7)

By incorporating the organ attention mechanism, our Organ Attention Cy-
cleGAN ensures that the translated images retain critical anatomical structures,
leading to more accurate and reliable segmentation results in the target domain.

2.2 Fully Supervised Training with nnU-Net V2

After translating the labeled CT images into corresponding MRI modalities using
the Organ Attention CycleGAN, the next step involves training a segmentation
network in a fully supervised manner. For this purpose, we employ the nnU-
Net V2 framework, which has established itself as a state-of-the-art solution in
3D medical image segmentation. nnU-Net V2 is particularly effective because it
provides a highly configurable U-Net architecture that can be adapted to a wide
range of medical imaging tasks, ensuring robust performance across different
datasets.
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In our approach, we specifically utilize the Residual Encoder Presets within
the nnU-Net framework. This choice is motivated by the findings of recent stud-
ies, which have demonstrated that many claims of superior performance by novel
architectures often fail to hold when subjected to rigorous validation. Instead,
employing well-established CNN-based U-Net models, such as those incorporat-
ing ResNet or ConvNeXt variants, within the nnU-Net framework has proven
to yield state-of-the-art results. Furthermore, scaling these models to modern
hardware resources further enhances their performance, making them a reliable
choice for our segmentation task.

The translated MRI images from the 8 sequences, including DWI, T2WI,
C+A, InPhase, OutPhase, C+pre, C+V, and C+Delay, are used as input to
train the nnU-Net V2 model. During training, the model learns to accurately
segment multiple abdominal organs by leveraging the rich and diverse informa-
tion provided by these different MRI modalities. By using the Residual Encoder
Presets, the model benefits from improved feature representation and network
depth, allowing it to capture complex anatomical structures with greater preci-
sion.

Overall, the integration of the Organ Attention CycleGAN for image trans-
lation and the nnU-Net V2 for segmentation provides a powerful framework for
achieving high-quality abdominal organ segmentation in MRI, even in the ab-
sence of annotated MRI data. This approach not only addresses the challenge
of domain adaptation but also ensures that the segmentation network is trained
in a fully supervised manner, leveraging the strengths of both advanced image
translation and robust segmentation methodologies.

2.3 Self-Training with Consistency-Based Pseudo Labels

In the third stage of our approach, we implement a self-training process to further
refine the segmentation performance on real MRI images. After training the nnU-
Net V2 model on the translated MRI images, we perform inference on all real
MRI scans using a 5-fold cross-validation strategy. This process generates five
different segmentation predictions for each MRI scan.

To filter out noisy predictions and improve the overall segmentation accuracy,
we introduce a prediction consistency algorithm. This algorithm evaluates the
consistency of each prediction by calculating the Dice coefficient between pairs
of predictions across the five folds. For each organ class, we compute the average
consistency score, which serves as a measure of the reliability of the predictions
for that class.

The consistency score for each organ class is computed as follows:

Consistency(c) =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

Dice(P c
i , P

c
j ) (8)

where N is the number of models (in our case, N = 5), c represents the organ
class, P c

i and P c
j are the predictions for class c from models i and j, Dice(P c

i , P
c
j )

is the Dice coefficient between predictions P c
i and P c

j for class c.
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After calculating the consistency scores for each organ class, we rank the real
MRI samples based on these scores. For each MRI modality, we select the top 50
samples with the highest consistency scores and use their predictions as pseudo
labels for further training.

To generate the final pseudo labels, we average the five predictions for each
pixel across the folds and assign the most consistent label to each pixel. The
final pseudo label for each pixel is determined as follows:

Final Label(x, y) = argmax
c

(
1

N

N∑
i=1

P c
i (x, y)

)
(9)

where (x, y) denotes the coordinates of the pixel, P c
i (x, y) is the probability that

pixel (x, y) belongs to class c in the i-th model’s prediction, argmaxc selects the
class c with the highest average probability.

By utilizing the most consistent predictions as pseudo labels, we perform
additional supervised training on these selected samples, effectively refining the
model’s segmentation performance on real MRI scans. This self-training process
leverages the strength of consensus among predictions to improve the robust-
ness and accuracy of the segmentation network, particularly in challenging cases
where annotated MRI data is not available.

2.4 Resource usage and inference speed

In our approach, we utilized unannotated MRI images and generated high-
quality pseudo labels for the next stage of training.

However, for the core training process, we relied exclusively on real anno-
tated CT data and did not employ pseudo labels generated by other methods.
Specifically, we did not incorporate the pseudo labels produced by the FLARE22
winning algorithm [10] or the best-accuracy algorithm [28]. Our method is cen-
tered on leveraging the true CT annotations for unsupervised domain adaptation
to MRI, ensuring that the segmentation results are purely based on real labeled
data, without the use of external pseudo label generation techniques.

To accelerate inference speed, we transferred the data preprocessing opera-
tions to the GPU, which provides a significant boost in processing time compared
to CPU-based operations. This allows for more efficient handling of data during
inference. Furthermore, to minimize resource consumption, we adopted mod-
els of standard sizes, ensuring optimal memory usage while maintaining strong
performance. These optimizations are fully integrated within the nnU-Net V2
framework, which facilitates both faster inference and resource-efficient opera-
tion.

3 Experiments

3.1 Dataset and Evaluation Measures

The dataset for the challenge is curated from over 30 medical centers, licensed
for research use, and includes a combination of CT and MRI scans from well-
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known datasets such as TCIA [2], LiTS [1], MSD [25], KiTS [8,9], autoPET [7,6],
AMOS [11], LLD-MMRI [16], TotalSegmentator [29], AbdomenCT-1K [21], and
past FLARE Challenges [17,19,20]. This broad collection provides extensive data
for training, validation, and testing across various medical centers and modali-
ties.

For Task 3 of this challenge, we specifically focused on the following datasets:
CT Scans: We used 2,300 CT scans, of which 50 cases are labeled with

ground-truth annotations. The remaining CT cases were annotated using pseudo
labels generated by the FLARE22 winning algorithm [10], achieving an approx-
imate Dice score (DSC) of 90%.

MRI Scans: The MRI dataset consists of unlabeled scans from two primary
sources:

The AMOS dataset, which provides a significant portion of the MRI scans.
The LLD-MMRI dataset, which includes MRI images across 8 different modali-
ties (DWI, T2WI, C+A, InPhase, OutPhase, C+pre, C+V, and C+Delay), en-
hancing the diversity of contrasts and anatomical information used for training.
The segmentation task focuses on identifying and segmenting 13 organ classes,
such as the liver, kidneys, spleen, and pancreas.

Validation and Testing Sets: The validation set includes 110 MRI scans,
with 60 cases from the AMOS dataset and 50 from U-Mamba experiments.
The testing set comprises 300 MRI scans, covering various MRI sequences from
centers that were not included in the training or validation sets.

Evaluation Measures: We use Dice Similarity Coefficient (DSC) and Nor-
malized Surface Dice (NSD) to assess accuracy, alongside running time and area
under the GPU memory-time curve for efficiency. The tolerance for running time
is 60 seconds.

3.2 Implementation details

Pre-processing: Before training the models, we applied a series of preprocessing
steps to the 3D medical images. For CT images, we performed clipping using
a window of [-600, 600], while for MRI images, we clipped the intensity values
between the 1st and 99th percentiles. Following this, all images were linearly
normalized to a range of [-1, 1].

GAN Training: To train our Organ Attention CycleGAN, we first converted
the 3D images into 2D slices by slicing along the Z-axis. At this stage, all 2D
slices were retained without any filtering. We trained the CycleGAN for 100
epochs, with each epoch consisting of 2,400 iterations. Due to GPU memory
constraints, the batch size was set to 2.

Upon completion of the training, we used the trained CycleGAN to translate
the CT images into corresponding MRI modalities. These translated images were
then reassembled into 3D volumes based on the original slice information. Given
the large volume of MRI samples, we randomly selected 50 MRI samples to train
the Organ Attention CycleGAN, ensuring computational feasibility.

We adopted the standard CycleGAN architecture, where both the generators
and discriminators follow the original ResNet-based encoder-decoder design [40].
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The organ attention mechanism was integrated into this baseline without alter-
ing the core generator or discriminator structures. This design choice ensures
compatibility with existing training pipelines and maintains architectural sim-
plicity.

nnU-Net V2 Training: For the nnU-Net V2 framework, as shown in Ta-
ble 1, we adhered strictly to the default pipeline and dataset partitioning pro-
vided by nnU-Net, specifically utilizing the ‘nnUNetResEncUNetMPlans’ con-
figuration. The 3D full-resolution configuration was used with a data identifier
‘nnUNetPlans 3d fullres’ and a default preprocessor (‘DefaultPreprocessor’). The
batch size was limited to 2 due to GPU memory constraints. Each input image
was preprocessed into patches of size [48, 160, 224], with a median voxel size
of [72.0, 232.0, 292.0] and a spatial resolution of [3.0, 1.3, 1.3] mm. CT images
were normalized using a ‘CTNormalization‘ scheme. No manual modifications
were made to the planning or dataset configuration. We apply data augmenta-
tion on the fly during training, including additive brightness, gamma correction,
rotation, scaling, elastic deformation, and non-linear transformations.

Table 1. Training protocols.

Network initialization "he" normal initialization
Batch size 2
Patch size 48×160×224
Total epochs 200
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy: (1 - epoch/200)0.9

Training time 8 hours
Loss function Dice loss and cross entropy loss
Number of model parameters 88.02M
Number of flops 187G

Initially, we combined the CT-to-MRI translated images across the 8 MRI
modalities with their corresponding CT labels to train a nnU-Net model. This
model was trained using a 5-fold cross-validation strategy, with each fold under-
going 200 epochs of training.

After completing the training, we used the model from the final epoch of
the cross-validation to perform inference on the real MRI scans. From these
inferences, we selected the top 50 MRI samples with the highest consistency in
their predictions. These high-consistency predictions were then used as pseudo
labels for a subsequent round of training. The final segmentation network was
trained once more using 5-fold cross-validation, each fold again trained for 200
epochs.
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Post-processing: We implemented a post-processing pipeline for MRI im-
age segmentation to improve the accuracy of the segmented structures. The
process involves identifying and adjusting the bounding boxes of segmented re-
gions, applying organ-specific rules such as filling small holes, and retaining only
the largest connected components to reduce noise. Additionally, we remove re-
gions below a certain volume threshold for organs like the gallbladder and spleen,
ensuring that only the most relevant anatomical structures are preserved.

Environment settings: The development environments and requirements
are presented in Table 2.

Table 2. Development environments and requirements.

Operating System Ubuntu 20.04.3 LTS
CPU Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz
RAM 125GiB
GPU NVIDIA GeForce RTX 2080 Ti (11GB)
CUDA version 12.5
Programming language Python 3.12.4
Deep learning framework PyTorch 2.4.0+cu121
Code https://github.com/JianghaoWu/FLARE24-Task3

4 Results

4.1 Quantitative results on validation set

Table 4 presents the Dice Similarity Coefficient (DSC) and Normalized Surface
Dice (NSD) values for 13 organs on the validation dataset. Segmentation perfor-
mance varies across organs, with the highest DSC values for the liver (0.9426),
right kidney (0.9345), and spleen (0.9395), reflecting their simpler structures and
strong representation in the training data.

Lower performance is observed for challenging structures like the duodenum
(DSC 0.5752) and right adrenal gland (DSC 0.5811) due to their smaller, ir-
regular shapes and complex anatomical locations. NSD values follow a similar
trend, with the spleen achieving 0.9584, while the inferior vena cava (IVC) and
gallbladder have lower scores of 0.7077 and 0.6242, respectively. The overall av-
erage DSC is 0.7674, with an NSD of 0.8319, highlighting solid performance but
leaving room for improvement in smaller, more complex organs.

Unlabelled MRI cases with pseudo-labeling improved segmentation, partic-
ularly for the liver and kidneys, where pseudo labels offered strong guidance.
However, this effect was less pronounced for smaller, less distinct structures like
the duodenum due to labeling ambiguities.

The method performs well on larger organs with clear boundaries, such as
the liver, right kidney, and spleen, which are less affected by image artifacts or
adjacent structures. In contrast, segmentation struggles with smaller, complex

https://github.com/JianghaoWu/FLARE24-Task3
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organs like the adrenal glands and duodenum, likely due to shape variability and
limited high-quality training data.

In this ablation study, stage 1 results are obtained by training the model
on MRI images generated from real CT scans. As shown in Table 5, the model
achieves a DSC of 92.87% and an NSD of 91.87% for the liver, as well as a DSC
of 86.17% and an NSD of 86.08% for the right kidney.

In stage 2, the model is further trained with pseudo-labels generated from
MRI data. This second stage shows an improvement in most organs, with the
liver achieving a DSC of 94.26% and an NSD of 83.96%, and the right kidney
showing a DSC of 93.45% and an NSD of 93.53%. The overall average perfor-
mance also improves from 68.49% to 76.74% in DSC and from 74.22% to 83.19%
in NSD, demonstrating the effectiveness of using pseudo-labels for further train-
ing.

All images complete preprocessing, inference, and post-processing within one
minute, with GPU memory usage for inference kept under 10GB per image, as
shown in Table 3.

Table 3. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption.

Case ID Image Size Fold-level Running Time (s) Max GPU (MB)
amos 0588 (512, 512, 168) 5.20 2003
amos 0507 (320, 290, 72) 5.50 1921
amos 7789 (1024, 2024, 32) 4.01 1799

Table 4. Quantitative evaluation of segmentation performance on the validation
dataset.

Target Validation
DSC(%) NSD(%)

Liver 94.26 83.96
Right kidney 93.45 93.53
Spleen 93.95 95.84
Pancreas 76.55 88.22
Aorta 87.16 90.99
Inferior vena cava 68.98 70.77
Right adrenal gland 58.11 75.48
Left adrenal gland 65.60 79.92
Gallbladder 65.29 62.42
Esophagus 64.62 80.82
Stomach 80.21 84.79
Duodenum 57.52 80.89
Left kidney 91.97 93.82
Average 76.74 83.19
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Table 5. Quantitative evaluation results of ablation on stage 1 and 2.

Target First stage Second stage
DSC(%) NSD(%) DSC(%) NSD (%)

Liver 92.87 91.87 94.26 83.96
Right kidney 86.17 86.08 93.45 93.53
Spleen 85.33 85.44 93.95 95.84
Pancreas 68.02 79.78 76.55 88.22
Aorta 78.93 81.03 87.16 90.99
Inferior vena cava 64.13 64.88 68.98 70.77
Right adrenal gland 55.53 71.22 58.11 75.48
Left adrenal gland 57.03 68.29 65.60 79.92
Gallbladder 52.20 49.54 65.29 62.42
Esophagus 49.66 60.42 64.62 80.82
Stomach 65.32 69.97 80.21 84.79
Duodenum 47.64 67.72 57.52 80.89
Left kidney 87.51 88.58 91.97 93.82
Average 68.49 74.22 76.74 83.19

4.2 Qualitative results

The qualitative results shown in Fig. 2 display four representative segmentation
outcomes from our model. In column (a), the original MRI images are pre-
sented, while column (b) shows the ground truth annotations. Columns (c) and
(d) illustrate the segmentation results from the first stage and second stage, re-
spectively. The results from the second stage (d), which incorporate self-training
with consistency-based pseudo labels, demonstrate improved segmentation per-
formance, particularly in the more complex anatomical regions, compared to the
first stage (c).

As shown in Fig. 3, the CT images are translated into eight different MRI
modalities, each providing unique contrast and anatomical details. These modali-
ties include DWI, T2WI, C+A, InPhase, OutPhase, C+pre, C+V, and C+Delay.
The variety of MRI sequences enables the model to capture diverse tissue char-
acteristics and improves the robustness of the segmentation across different
anatomical structures.

4.3 Results on final testing set

As shown in Tab. 6, our method achieved a mean Dice Similarity Coefficient
(DSC) of 65.7% and a mean Normalized Surface Dice (NSD) of 68.7% on the final
testing set. The median DSC and NSD further indicate consistent performance,
with values of 73.6% and 79.1%, respectively. The average inference time per case
was 64.1 seconds, demonstrating practical efficiency. In terms of computational
resources, the average GPU memory usage was approximately 4.1 million bytes,
reflecting a lightweight model suitable for deployment.
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(a) Image (b) Ground Truth (c) First Stage (d) Second Stage

Case # Amos 0541 

Case # Amos 0538 

Case # Amos 0532 

Case # Amos 0540 

Fig. 2. Qualitative results of our nnU-Net model. (c) shows the results from the first
stage: fully supervised training with nnU-Net V2 using synthetic MRI images and real
CT labels. (d) presents the results from the second stage: self-training with consistency-
based pseudo labels generated from real MRI images.

DWI T2WI

C+A InPhase

OutPhase C+pre

C+DelayC+V

CT Label

(a) (b)

Fig. 3. Qualitative results of image translation. (a) CT image and its corresponding
labeled segmentation. (b) The same CT image translated into eight MRI-like modali-
ties—DWI, T2WI, C+A, InPhase, OutPhase, C+pre, C+V, and C+Delay—using our
Organ Attention CycleGAN. These synthetic images demonstrate the model’s ability
to preserve anatomical structure across diverse MRI contrasts under an unpaired set-
ting.
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Table 6. Quantitative evaluation results on the test set.

Metric Ours
DSC mean 65.7 ± 20.1
DSC median 73.6 (50.1, 83.2)
NSD mean 68.7 ± 23.2
NSD median 79.1 (49.8, 89.2)
Time mean (s) 64.1 ± 30.4
Time median (s) 55.7 (47.2, 70.8)
GPU mean (bytes) 4,127,758.4 ± 2,106,414.8
GPU median (bytes) 3,516,795.2 (2,931,383.9, 4,624,098.1)

4.4 Limitation and Future Work

Our core approach primarily focuses on image generation and conversion, as
well as the selection and filtering of pseudo labels, without introducing any im-
provements to the fully supervised methods. Currently, we have relied solely on
nnU-Net V2 as our primary framework. Additionally, the current approach in-
volves training separate CycleGAN models for each MRI modality to preserve
modality-specific anatomical features. While effective, this design introduces ad-
ditional computational cost and may limit scalability. Future work will explore
unified or multi-modal image translation frameworks to reduce redundancy and
improve efficiency. Moreover, although our method demonstrates strong perfor-
mance within the FLARE24 framework, we did not include comparisons with
existing UDA baselines such as AdaptSegNet or SIFA. Incorporating such bench-
marks will be a key focus in future extensions to further validate the effectiveness
and generalizability of our approach.

In the future, we plan to explore a range of fully supervised enhancements
specifically tailored for multi-modal MRI, aiming to achieve further advance-
ments in segmentation performance.
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