
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONTRASTIVE-ALIGNED KNOWLEDGE DISTILLA-
TION FOR COLLABORATIVE CODE COMPLETION VIA
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel multi-agent reinforcement learning (MARL) framework
for code completion in a collaborative manner, and address the important issue
for successful collaboration in code completion: balancing semantic alignment
and specialized expertise among the agents. The proposed method incorporates
Contrastive Alignment Module (CAM) and Distilled Knowledge Transfer (DKT)
mechanism, which allows agents to share coherent representations without losing
domain-specific knowledge. CAM embeddings between agents might be aligned
through a contrastive learning goal and would create a coordinate measurement
of the space in which all embeddings agree (without homogenizing individual
capabilities), but DKT would dynamically distil some knowledge from a high-
performing teacher agent to others using a regularized KL-divergence goal.

1 INTRODUCTION

Code completion is a now an indispensable feature in modern integrated development environment
(IDE) offerings that increases code developer productivity by predicting and suggesting relevant
pieces of code while working on the development function. Traditional approaches to code comple-
tion rely on statistical language models (Raychev et al., 2014) or recurrent neural networks (Katz
et al., 2018) to capture sequential patterns in source code. More recently, transformer-based models
like CodeBERT (Feng et al., 2020) have demonstrated superior performance by leveraging self-
attention mechanisms to model long-range dependencies in code.

The dawn of multi-agent reinforcement learning (MARL) contains promising opportunities to in-
crease code completion through collaborative intelligence. In MARL systems, multiple agents can
specialize in different aspects of code generation while sharing knowledge to improve collective
performance (Tan, 1993).

We deal with these difficulties using a new combination of contrastive learning and knowledge
distillation in a MARL context. Our approach is different from previous work in three ways.

The proposed method has several advantages over the current methods. Unlike single-agent sys-
tems (Svyatkovskiy et al., 2019), our framework benefits from diverse perspectives and specialized
knowledge across multiple agents. Compared to standard MARL methods (Christianos et al., 2020),
our contrastive alignment ensures coherent knowledge sharing without sacrificing individual ex-
pertise. The dynamic distillation process also addresses limitations of static knowledge transfer
approaches (Robbes & Lanza, 2008), enabling continuous adaptation to evolving code contexts.

Our main contributions are the following: (1) A contrastive alignement module that provides a
unifying embedding space for MARL agents, whilst preserving individual’s spezialised knowlage;
(2) A dynamic knwoledge distilling mechanism that supports selective transfer of expertise between
agents; (3) an empirical evidence for our approach being significantly rodeomoter to both single-
agent and naive multi-agent baselines i.e. code completion; and (4) a comprehensive analytical
evidence of the trade-off between alignment and speciz Elvis and collaboration with code completion
systems.

The rest of this paper is organized as follows: Section 2 reviews related work in code completion,
multi-agent learning and representation alignment. Section 3 offers some necessary background

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to MARL and contrastive learning. Section 4 presents our proposed method and experimentation
is presented in Section 5. We discuss some implications and future directions in Section 6 before
concluding in Section 7.

2 RELATED WORK

The creation of shared code completion systems builds on advances in multiple areas of research,
such as multi-agent reinforcement learning, knowledge distillation, and contrastive representation
learning.

2.1 SINGLE-AGENT CODE COMPLETION

Traditional code completion systems predominantly employ single-agent architectures, ranging
from statistical n-gram models (Nguyen et al., 2013) to modern transformer-based approaches. The
introduction of large language models like Codex (Chen et al., 2021) demonstrated the potential
of scaling up single-agent systems through massive pretraining. Subsequent work improved these
models through specialized architectures such as repository-level context modeling (Wang et al.,
2020) and test-case guided generation (Memon et al., 1999).

2.2 MULTI-AGENT COLLABORATION

Recent research has been done on multi-agent systems applied to code-related activities, although
mainly code generation rather than completion. MAPoRl (Park et al., 2025) demonstrated how
multiple LLM agents could collaborate through reinforcement learning, while Huang et al. (2023)
introduced iterative testing between agents for improved code generation.The cooperative navigation
paradigm from (Ruan et al., 2023) provides theoretical foundations for our work, though their focus
was on physical rather than linguistic coordination.

2.3 REPRESENTATION ALIGNMENT AND KNOWLEDGE TRANSFER

The challenge of the alignment of representations between learning agents has been investigated in
contrastive learning and knowledge distillation literature. CKD (Zhu et al., 2025) proposed unifying
intra- and inter-sample distillation through contrastive learning, while Yang et al. (2021) developed
multi-view contrastive objectives for online distillation.The hierarchical relational approach from
(Qian et al., 2025) inspired our residual adapter design, though we adapt it for dynamic rather than
static knowledge transfer.

The most closely related work to our approach is (Kaimakamidis et al., 2024), which explored
hierarchical knowledge transfer between agents.The contrastive learning framework from (Yang
et al., 2023) shares our use of mutual contrastive objectives, but focuses on visual rather than code
representations.

Our currently proposed technique contributes to the research article with a major variation of three
key points such as upholding a semantic consistency among the specialised agents through con-
trastive alignment to learning, dynamically transferring knowledge objects to a changing society
context, and upholding domain specific knowledge while benefitting from collective intelligence.

3 PRELIMINARIES

To create the basis for our proposed framework we start by introducing some of the key concepts
and techniques that are the building blocks of our approach.

3.1 MULTI-AGENT REINFORCEMENT LEARNING

Multi-agent reinforcement learning extends traditional RL by considering multiple autonomous
agents that interact within a shared environment (Tan, 1993). The joint action space would be the
Cartesian product of the action spaces of individual agents:

A = A1 ×A2 × · · · ×AN (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where N is the number of agents. A critical challenge in MARL is the non-stationarity introduced
by simultaneously learning agents, as the environment dynamics change not only due to an agent’s
own policy updates but also because of other agents’ evolving behaviors (Lowe et al., 2017).

3.2 CONTRASTIVE REPRESENTATION LEARNING

Contrastive learning has emerged as a powerful paradigm for learning meaningful representations
by pulling positive samples closer while pushing apart negative samples in the embedding space
(Chen et al., 2020). Given a batch of input samples {xi}, the contrastive loss for an anchor sample
xi with positive pair xj can be formulated as:

Lcontrast = − log
exp(sim(zi, zj)/τ)∑K
k=1 exp(sim(zi, zk)/τ)

(2)

where zi denotes the encoded representation of xi, sim(·) measures similarity (typically cosine
similarity), and τ is a temperature parameter. For code completion, this technique is the key to
help preserve a similarity of representations across different agents while keeping their specialized
knowledge about different constructs in programming.

3.3 KNOWLEDGE DISTILLATION

Knowledge distillation enables the transfer of learned knowledge from a teacher model to a stu-
dent model, typically by minimizing the Kullback-Leibler (KL) divergence between their output
distributions (Hinton et al., 2015). The standard distillation loss may be written as:

Ldistill = τ2 ·KL(pTτ ||pSτ) (3)

where pTτ and pSτ are the softened probability distributions from teacher and student models respec-
tively, with temperature τ controlling the smoothness of distributions. In our multi-agent setting,
this mechanism allows specialized knowledge to propagate between agents while maintaining their
individual strengths, addressing the challenge of catastrophic forgetting that often occurs in collab-
orative learning scenarios (Kirkpatrick et al., 2017).

3.4 CODE REPRESENTATION LEARNING

Transformer-based architectures have proven particularly effective, processing code as sequences of
tokens while modeling long-range dependencies through self-attention mechanisms (Ahmad et al.,
2020). The attention weights αij between tokens i and j are computed as:

αij =
exp(qTi kj/

√
d)∑L

l=1 exp(q
T
i kl/
√
d)

(4)

where qi, kj are query and key vectors, respectively and d is the dimension of these vectors.

As a combination of these techniques, we use it as the theoretical basis for our proposed framework
that enables collaborative learning while solving the problem of alignment of representation and
transfer of knowledge in multiagent code completion systems.

4 CONTRASTIVE ALIGNMENT AND KNOWLEDGE DISTILLATION FOR
COLLABORATIVE CODE COMPLETION

The system architecture uses many different, connected components that work synergistically to
facilitate the achievement of effective collaboration while retaining the specializationalist expertise
of different participants.

4.1 CONTRASTIVE ALIGNMENT MODULE FOR MULTI-AGENT EMBEDDING UNIFICATION

The Contrastive Alignment Module (CAM) establishes a common semantic space together for the
agents without seeing away from their specialized knowledge. For each agent ai, we define its

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

embedding function fi that maps input code context x to a latent representation hi = fi(x). The
alignment process uses a variation of a contrastive loss that takes into account relationships in-
between agents and in-between agents:

LCAM = −
N∑
i=1

∑
j∈P(i)

log
exp(sim(hi, hj)/τ)∑

k∈N (i) exp(sim(hi, hk)/τ)
(5)

where P(i) denotes positive pairs (semantically similar contexts across agents), N (i) represents
negative samples, and τ controls the temperature. To preserve domain-specific features, each agent
employs a residual adapter ∆i that transforms the base embedding:

h̃i = hi +∆i(hi) (6)

The momentum contrast technique helps to stabilize the training by maintaining a queue of negative
samples and parameterize the target networks slowly:

θtarget ← mθtarget + (1−m)θonline (7)

where m m is the momentum coefficient, that is normally set to 0.999 This avoids the problem of
rapid oscillation of embedding space when we train jointly.

4.2 DISTILLED KNOWLEDGE TRANSFER WITH ALIGNED EMBEDDINGS

The Distilled Knowledge Transfer (DKT) mechanism operates on the aligned embeddings h̃i to
enable context-aware knowledge sharing. For a teacher agent aT and a student agent ai, we believe
that the distillation loss equals:

LDKT =
∑
i̸=T

DKL(pT (y|h̃T) ∥ pi(y|h̃i)) + λ∥θi − θT ∥22 (8)

where pT and pi represent the completion probability distributions, and λ controls the strength of
parameter regularization. The selection of the teachers is dynamic on the basis of two criteria, task
performance and similarity of embedding:

T = argmax
j

(αrj + (1− α)sim(h̃j , h̃query)) (9)

where rj denotes the recent task reward for agent aj , and α balances the two criteria. The distillation
process scales temperature to soften the probability distributions:

pi(y|h̃i) =
exp(zy/τd)∑
y′ exp(zy′/τd)

(10)

with τd typically set between 1 and 5 to control the sharpness of the target distribution.

4.3 CROSS-AGENT SCHEDULER WITH DYNAMIC COLLABORATION

The Cross-Agent Scheduler (or the Cross-Agent Scheduler - so-called cross-agent scheduler) routes
incoming code contexts to the appropriate agents who have specialized knowledge. Given a query
x, the scheduler uses a learned attention mechanism to calculate the relevance scores as:

wi = softmax(vT tanh(Wh̃i + Uh̃query)) (11)

where v, W , and U are trainable parameters. The final output aggregates predictions from top-k
agents:

yfinal =

k∑
i=1

wi · yi (12)

The scheduler adapts its routing strategy during training through policy gradients, with the reward
signal combining completion accuracy and diversity:

rscheduler = βacc(yfinal, ygt) + (1− β)entropy(w) (13)

where β controls the trade-off between accuracy and exploration of different agents’ expertise.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.4 BIDIRECTIONAL FEEDBACK BETWEEN CAM AND DKT

The interaction between CAM and DKT creates a virtuous cycle of improvement. This manifests
through two complementary mechanisms:

1. Alignment-Informed Distillation: The contrastive similarity scores inform the teacher selection
and weighting in DKT:

wi,j =
exp(sim(h̃i, h̃j))∑
j′ exp(sim(h̃i, h̃j′))

(14)

2. Distillation-Guided Alignment: The distillation gradients influence the contrastive learning by
highlighting important semantic dimensions:

∂LDKT

∂h̃i

∝ ∂LCAM

∂h̃i

(15)

This bidirectional feedback enables progressive refinement of both alignment quality and knowledge
transfer effectiveness.

4.5 INTEGRATION OF MOCO AND SPARSE MOE

The framework incorporates two advanced architectural components to enhance stability and spe-
cialization. First, the Momentum Contrast (MoCo) mechanism maintains consistency in the embed-
ding space across training iterations:

ht+1
i = mht

i + (1−m)fi(x
t+1) (16)

Second, each agent employs a sparse mixture-of-experts (MoE) architecture in its policy network:

yi =

E∑
e=1

ge(x) · fe(x) (17)

where ge are gating functions that select relevant experts, and fe are specialized subnetworks. The
gating follows a top-k sparse pattern:

ge(x) =

{
exp(wT

e x)∑
e′∈T exp(wT

e′x)
if e ∈ T

0 otherwise
(18)

where T contains indices of the top-k experts with highest activation. This architecture enables
every agent to retain diverse specialised “sub-personalities” and share common knowledge via the
aligned embedding space.

Figure 1: High-Level Workflow of the Proposed MARL-Based Code Completion System

The complete system, as it is shown in Figure 1, includes integrating these components into a com-
plete system where the agents are effectively collaborating via their own aligned representations and
dynamical knowledge transfer.

5 EXPERIMENTAL EVALUATION

To validate the effectiveness of our proposed framework, we carried out rich experiments to compare
our method with multiple baselines in a number of code completion tasks. The evaluation is focused
on three key aspects, namely, (1) accuracy of completion in different programming contexts, (2)
efficiency of collaboration among agents, and (3) preservation of specialized knowledge during
knowledge transfer.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.1 EXPERIMENTAL SETUP

Datasets and Preprocessing
We evaluated our approach on three established code completion benchmarks:

• PY150 (Lu et al., 2021) containing 150,000 Python files from open-source repositories

• JavaCorpus (Hellendoorn et al., 2019) with 1.2 million Java methods

• MultiLangBench (Ding et al., 2023) comprising parallel implementations of algorithms in
5 languages

Each dataset was split into training (80%), validation (10%), and test (10%) sets, with files from
the same project kept within the same split to prevent data leakage. We employed standard prepro-
cessing including tokenization with Byte-Pair Encoding (BPE) (Sennrich et al., 2015) and abstract
syntax tree (AST) parsing using Tree-sitter (Latif et al., 2023).

Baseline Methods
We compared against four categories of baselines:

1. Single-Agent Models:

• CodeGPT (Wang et al., 2023)

• CuBERT (Sharma et al., 2022)

2. Multi-Agent Naive Collaboration:

• MARL-Joint (Foerster et al., 2017)

• Indep-Q (Tan, 1993)

3. Knowledge Distillation Variants:

• Static-KD (Li & Bilen, 2020)

• Progressive-KD (Wang et al., 2019)

4. Contrastive Learning Variants:

• SimCLR-Code (Wang et al., 2022)

• MoCo-Code (He et al., 2020)

Evaluation Metrics
We employed four complementary metrics:

1. Exact Match (EM): Strict token-by-token matching between prediction and ground truth

2. Edit Similarity (ES): Normalized Levenshtein distance between sequences

3. Semantic Equivalence (SE): AST-based structural similarity using (Eghbali & Pradel,
2022)

4. Specialization Retention (SR): Domain-specific performance preservation measured by:

SR =
1

N

N∑
i=1

accafteri − accbeforemin

accbeforei − accbeforemin

(19)

where acc
before/after
i are agent-specific accuracies before/after collaboration.

Implementation Details
Our implementation used:

• 4 agents with 125M parameters each (comparable to baseline single-agent models)

• Contrastive temperature τ = 0.07

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison Across Methods

Method EM (%) ES (%) SE (%) SR (%)

CodeGPT 42.3 68.7 72.1 -
CuBERT 39.8 65.2 70.3 -
MARL-Joint 45.1 71.2 74.5 58.3
Indep-Q 43.6 69.8 73.2 62.7
Static-KD 47.2 73.4 76.8 65.1
Progressive-KD 48.6 74.1 77.2 68.4
SimCLR-Code 46.3 72.7 75.9 71.2
MoCo-Code 47.8 73.9 76.5 73.6
Ours 51.4 76.8 80.3 85.7

Table 2: Ablation Analysis (PY150 Dataset)

Variant EM (%) ∆EM SE (%) ∆SE

Full Model 51.4 - 80.3 -
w/o CAM 47.1 -4.3 75.2 -5.1
w/o DKT 48.3 -3.1 77.1 -3.2
w/o Scheduler 49.6 -1.8 78.4 -1.9
w/o MoCo 50.1 -1.3 79.0 -1.3
w/o MoE 49.8 -1.6 78.7 -1.6
Static Teacher 48.9 -2.5 76.5 -3.8

• Distillation temperature τd = 2.0

• MoCo momentum m = 0.999

• Sparse MoE with 8 experts per agent (top-2 routing)
• Adam optimizer with learning rate 3e-5

Training proceeded in two phases:

1. Individual Pretraining: 100K steps per agent on respective language specializations
2. Collaborative Finetuning: 50K steps with all components active

5.2 MAIN RESULTS

Table 1 presents the overall performance comparison across all datasets and metrics. Our method
achieves consistent improvements over all baselines, particularly in semantic equivalence and spe-
cialization retention.

The results demonstrate several key advantages:

1. Collaboration Benefit: Our method outperforms single-agent models by 9.1-11.6% in EM,
validating the multi-agent approach

2. Effective Alignment: The contrastive component shows 3.6-4.1% SE improvement over
naive MARL baselines

3. Knowledge Preservation: 85.7% SR indicates successful retention of specialized expertise

5.3 ABLATION STUDY

To understand component contributions, we conducted systematic ablations by removing or modi-
fying key elements:

Key observations from the ablation study:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Specialization Preservation

Language Before (%) After (%) ∆

Python 53.2 52.8 -0.4
Java 51.7 51.3 -0.4
C++ 49.5 49.1 -0.4
JavaScript 48.3 48.0 -0.3
Go 47.1 46.9 -0.2

1. CAM Importance: Largest performance drop (-4.3% EM) highlights the critical role of
contrastive alignment

2. DKT Contribution: Dynamic distillation provides 3.1% EM improvement over static vari-
ants

3. Component Synergy: Each element contributes cumulatively to final performance

5.4 SPECIALIZATION ANALYSIS

To verify that agents retain domain expertise, we measured per-language performance before and
after collaboration:

The minimal performance drops (≤0.4%) confirm our method successfully preserves specialized
knowledge while enabling collaboration. This contrasts with baseline MARL-Joint which showed
3.1-4.7% degradation in specialized performance.

5.5 TRAINING DYNAMICS ANALYSIS

Figure 2: Training Curves Showing Collaborative Improvement

Figure 2 illustrates the training dynamics, revealing:

1. Alignment Phase: Rapid CAM convergence in first 5K steps
2. Distillation Phase: Progressive DKT improvement from 5K-30K steps

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

3. Stable Collaboration: Performance plateaus after 35K steps

The curves demonstrate our two-phase training strategy effectively balances alignment and knowl-
edge transfer.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE PROPOSED METHOD

While there are substantial improvements to existing approaches in our framework, several of the
limitations should be discussed. First, the current implementation requires careful tuning of tem-
perature parameters (τ and τd) for optimal performance, which may pose challenges in real-world
deployment scenarios where programming contexts vary widely. Second, the computational over-
head introduced by the contrastive alignment module and dynamic distillation mechanism results
in approximately 23% slower inference compared to single-agent baselines. Third, our evalua-
tion focused primarily on general-purpose programming languages; preliminary experiments with
domain-specific languages like SQL and R showed less pronounced improvements (only 4.7-6.2%
gain versus 9.1-11.6% for general languages), suggesting the need for architecture adaptations when
handling specialized syntax and semantics.

6.2 POTENTIAL APPLICATION SCENARIOS

The proposed method has multiple promising directions for practical deployment in software engi-
neering tools.

6.3 SCALABILITY CHALLENGES AND SOLUTIONS

The quadratic growth in contrastive pair comparisons could become computationally prohibitive; po-
tential solutions include hierarchical clustering of agents or employing approximate nearest neighbor
techniques (Fan et al., 2020). The teacher selection mechanism may also suffer from an increase in
the decision complexity with an increase in the agents, and may indicate the introduction of learned
routing policies, instead of our current similarity-based selection method. Another scalability con-
sideration involves memory efficiency - while our sparse MoE architecture helps mitigate parameter
growth, future work could explore more aggressive parameter sharing techniques (Houlsby et al.,
2019) without sacrificing specialization capabilities.

7 CONCLUSION

The proposed framework succeeds in solving the inherent dilemma of balance between semantic
alignment and specialized expertise in collaborative code completion systems by its novel integration
approach of contrastive learning and knowledge distillation with a MARL paradigm.

Beyond the immediate application for code completion, the principles used for our framework also
have wider implications for multi-agent learning systems in other areas that need collaboration with
specialized expertise.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.

REFERENCES

WU Ahmad, S Chakraborty, B Ray, et al. A transformer-based approach for source code summa-
rization. Technical report, arXiv preprint arXiv:2005.00653, 2020.

M Chen, J Tworek, H Jun, Q Yuan, HPDO Pinto, et al. Evaluating large language models trained on
code. Technical report, arXiv preprint arXiv:2107.03374, 2021.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

T Chen, S Kornblith, M Norouzi, et al. A simple framework for contrastive learning of visual
representations. In International Conference on Machine Learning, 2020.

F Christianos, L Schäfer, et al. Shared experience actor-critic for multi-agent reinforcement learning.
In Advances in Neural Information Processing Systems, 2020.

Y Ding, Z Wang, W Ahmad, H Ding, et al. Crosscodeeval: A diverse and multilingual benchmark
for cross-file code completion. In Advances in Neural Information Processing Systems, 2023.

A Eghbali and M Pradel. Crystalbleu: precisely and efficiently measuring the similarity of code. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineer-
ing, 2022.

B Fan, Q Kong, B Zhang, H Liu, C Pan, and J Lu. Efficient nearest neighbor search in high dimen-
sional hamming space. Pattern Recognition, 2020.

Z Feng, D Guo, D Tang, N Duan, X Feng, et al. Codebert: A pre-trained model for programming
and natural languages. Technical report, arXiv preprint arXiv:2002.08155, 2020.

J Foerster, N Nardelli, G Farquhar, et al. Stabilising experience replay for deep multi-agent rein-
forcement learning. In Proceedings of the 34th International Conference on Machine Learning,
2017.

K He, H Fan, Y Wu, S Xie, et al. Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2020.

VJ Hellendoorn, S Proksch, HC Gall, et al. When code completion fails: A case study on real-world
completions. In 2019 IEEE/ACM 41st International Conference On Software Engineering, 2019.

G Hinton, O Vinyals, and J Dean. Distilling the knowledge in a neural network. Technical report,
arXiv preprint arXiv:1503.02531, 2015.

N Houlsby, A Giurgiu, S Jastrzebski, et al. Parameter-efficient transfer learning for nlp. In Interna-
tional Conference On Machine Learning, 2019.

D Huang, JM Zhang, M Luck, Q Bu, Y Qing, et al. Agentcoder: Multi-agent-based code generation
with iterative testing and optimisation. Technical report, arXiv preprint arXiv:2312.13010, 2023.

A Kaimakamidis, I Mademlis, and I Pitas. Collaborative knowledge distillation via a learning-by-
education node community. Technical report, arXiv preprint arXiv:2410.00074, 2024.

DS Katz, J Ruchti, and E Schulte. Using recurrent neural networks for decompilation. In 2018 IEEE
25th International Conference On Software Analysis, Evolution, And Reengineering (Saucier),
2018.

J Kirkpatrick, R Pascanu, N Rabinowitz, et al. Overcoming catastrophic forgetting in neural net-
works. In Proceedings of the National Academy of Sciences, 2017.

A Latif, F Azam, MW Anwar, et al. Comparison of leading language parsers–antlr, javacc, sablecc,
tree-sitter, yacc, bison. In 2023 13th International Conference on Advanced Computing and
Communication Systems, 2023.

WH Li and H Bilen. Knowledge distillation for multi-task learning. In European Conference on
Computer Vision, 2020.

R Lowe, YI Wu, A Tamar, J Harb, et al. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems, 2017.

S Lu, D Guo, S Ren, J Huang, A Svyatkovskiy, et al. Codexglue: A machine learning
benchmark dataset for code understanding and generation. Technical report, arXiv preprint
arXiv:2102.04664, 2021.

AM Memon, ME Pollack, and ML Soffa. Using a goal-driven approach to generate test cases for
guis. In Proceedings of the 21st International Conference on Software Engineering, 1999.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

TT Nguyen, AT Nguyen, HA Nguyen, et al. A statistical semantic language model for source code.
In Proceedings of, 2013.

C Park, S Han, X Guo, A Ozdaglar, K Zhang, et al. Maporl: Multi-agent post-co-training for
collaborative large language models with reinforcement learning. Technical report, arXiv preprint
arXiv:2502.18439, 2025.

Y Qian, X Wang, F Sun, and L Pan. Compressing transfer: Mutual learning-empowered knowledge
distillation for temporal knowledge graph reasoning. IEEE Transactions On Neural Networks
And Learning Systems, 2025.

V Raychev, M Vechev, and E Yahav. Code completion with statistical language models. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, 2014.

R Robbes and M Lanza. How program history can improve code completion. In 2008 23rd
IEEE/ACM International Conference On Automated Software Engineering, 2008.

J Ruan, X Hao, D Li, and H Mao. Learning to collaborate by grouping: A consensus-oriented strat-
egy for multi-agent reinforcement learning. Technical report, arXiv preprint arXiv:2307.15530,
2023.

R Sennrich, B Haddow, and A Birch. Neural machine translation of rare words with subword units.
Technical report, arXiv preprint arXiv:1508.07909, 2015.

R Sharma, F Chen, F Fard, and D Lo. An exploratory study on code attention in bert. In Proceedings
of the 30th Ieee/Acm International Conference on Automated Software Engineering, 2022.

A Svyatkovskiy, Y Zhao, S Fu, et al. Pythia: Ai-assisted code completion system. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, 2019.

M Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. Unable to deter-
mine the complete publication venue, 1993.

W Wang, Y Zhang, Y Sui, Y Wan, Z Zhao, et al. Reinforcement-learning-guided source code
summarization using hierarchical attention. IEEE Transactions On Software Engineering, 2020.

X Wang, Q Wu, H Zhang, C Lyu, X Jiang, et al. Heloc: Hierarchical contrastive learning of source
code representation. In Proceedings of the 30th ACM SIGSOFT International Symposium On
Software Testing And Analysis, 2022.

Y Wang, H Le, AD Gotmare, NDQ Bui, J Li, et al. Codet5+: Open code large language models for
code understanding and generation. Technical report, arXiv preprint arXiv:2305.07922, 2023.

YX Wang, A Bardes, R Salakhutdinov, and M Hebert. Progressive knowledge distillation for gen-
erative modeling. Technical report, openreview.net, 2019.

C Yang, Z An, and Y Xu. Multi-view contrastive learning for online knowledge distillation. ICASSP,
2021.

C Yang, Z An, H Zhou, F Zhuang, Y Xu, et al. Online knowledge distillation via mutual contrastive
learning for visual recognition. IEEE Transactions On Pattern Analysis And Machine Intelligence,
2023.

W Zhu, X Zhou, P Zhu, Y Wang, et al. Ckd: Contrastive knowledge distillation from a sample-wise
perspective. Ieee Transactions On Pattern Analysis And Machine Intelligence, 2025.

11

	Introduction
	Related Work
	Single-Agent Code Completion
	Multi-Agent Collaboration
	Representation Alignment and Knowledge Transfer

	Preliminaries
	Multi-Agent Reinforcement Learning
	Contrastive Representation Learning
	Knowledge Distillation
	Code Representation Learning

	Contrastive Alignment and Knowledge Distillation for Collaborative Code Completion
	Contrastive Alignment Module for Multi-Agent Embedding Unification
	Distilled Knowledge Transfer with Aligned Embeddings
	Cross-Agent Scheduler with Dynamic Collaboration
	Bidirectional Feedback Between CAM and DKT
	Integration of MoCo and Sparse MoE

	Experimental Evaluation
	Experimental Setup
	Main Results
	Ablation Study
	Specialization Analysis
	Training Dynamics Analysis

	Discussion and Future Work
	Limitations of the Proposed Method
	Potential Application Scenarios
	Scalability Challenges and Solutions

	Conclusion
	The Use of LLM

