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ABSTRACT

Different from multi-class classification where each testing input only has a single
ground truth label, multi-label classification aims to make predictions for test-
ing inputs with multiple ground-truth labels. Multi-label classification has many
real-world applications such as disease detection, object recognition, document
classification, just to name a few. Recent studies, however, showed that a multi-
label classifier is vulnerable to data-poisoning attacks, where an attacker can poison
the training dataset of the multi-label classifier such that the classifier makes pre-
dictions as the attacker desires. Existing provable defenses are all designed for
multi-class classification and they achieve sub-optimal results when applying their
robustness guarantees to multi-label classification (as we will demonstrate in this
paper). In this work, we propose PoisoningGuard, the first provable defense against
data-poisoning attacks to multi-label classification. In particular, we generalize
two state-of-the-art multi-class certification methods, namely bagging and Deep
Partition Aggregation (DPA), to multi-label classification. Our major technical
contribution is to jointly consider multiple labels when deriving the provable ro-
bustness guarantees. We perform comprehensive evaluations on three datasets. Our
experimental results show that our generalized methods significantly outperform
bagging and DPA when applying them to multi-label classification. The code will
be released.

1 INTRODUCTION

In multi-class classification, an input is assumed to has a single ground-truth label only and thus a
multi-class classifier predicts a single label for it. However, in many real-world applications, such as
object recognition (Wang et al., 2016), document classification (Partalas et al., 2015), and diseases
detection (Ge et al., 2018), an input has multiple ground-truth labels. For instance, an image could
contain multiple objects; a patient could be infected with multiple diseases; a document could belong
to multiple topics. As a result, multi-class classification is insufficient for those applications. By
contrast, multi-label classification (Tsoumakas & Katakis, 2007; Trohidis et al., 2008; Read et al.,
2009; Wang et al., 2016) assumes each input can have multiple ground-truth labels, and a multi-label
classifier predicts multiple labels for it.

Similar to multi-class classification, many recent studies (Ma et al., 2022; Chen et al., 2023; Chan
et al., 2023) showed that multi-label classification is also vulnerable to data-poisoning attacks. In
particular, given a clean dataset, an attacker could add, delete, and/or modify a certain number of
poisoned examples to the clean dataset such that a multi-label classifier makes predictions as the
attacker desires. Empirical defenses (Geiping et al., 2021; Peri et al., 2020; Koh et al., 2022; Shokri
et al., 2020; Yang et al., 2022; Tran et al., 2018; Liu et al., 2022; Gao et al., 2019; Chou et al., 2020;
Chen et al., 2018; Liu et al., 2018; Qiu et al., 2021; Wang et al., 2019; Qiao et al., 2019) cannot
provide formal robustness guarantees against data poisoning attacks. Thus, they could be broken by
new attacks. For instance, Chen et al. (2023) showed seven state-of-the-art empirical defenses (Guo
et al., 2020; Gao et al., 2019; Chou et al., 2020; Chen et al., 2018; Liu et al., 2018; Qiu et al., 2021;
Wang et al., 2019; Qiao et al., 2019) are ineffective for poisoning attacks to multi-label classification.
Thus, we focus on provable defense in this work.
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However, existing state-of-the-art provable defenses (Jia et al., 2020; Levine & Feizi, 2021; Wang
et al., 2022) are all designed for multi-class classification. The idea of those defenses as follows.
Given a dataset, they first create many sub-datasets that contains a subset of training examples from
the given dataset. Then, they train a classifier (called base classifier) on each sub-dataset. Finally,
they use those base classifier to build an ensemble classifier. In particular, given a testing input,
they use each base classifier to predict a label for it and take a majority vote over predicted labels
as the final prediction of the ensemble classifier for the given testing input. The predicted label of
the ensemble classifier is provably unaffected when the number of added, deleted, and modified
samples to a dataset is bounded. As they are designed for multi-class classification, they assume each
testing input has a single ground-truth label and they only need to guarantee the predicted label of
the ensemble classifier for the testing input does not change when deriving the provable robustness
guarantee. By contrast, each input has multiple ground-truth labels in multi-label classification. Thus,
the robustness guarantees of those defenses are sub-optimal when applied to multi-label classification
as shown in our experimental results.

Our contribution. In this work, we propose PoisoningGuard, the first provable defense against
data poisoning attacks to multi-label classification. In particular, our PoisoningGuard generalizes
state-of-the-art certified defenses, namely bagging (Jia et al., 2021) and DPA (Levine & Feizi, 2021),
to multi-label classification. Our PoisoningGuard has the following difference with bagging and
DPA. First, both base classifier and ensemble classifier in PoisoningGuard can predict multiple labels
for a testing input. By contrast, they can only predict a single label in bagging and DPA. Second,
given a set of labels, the ensemble classifier of PoisoningGuard can guarantee at least R (called
certified intersection size) labels in the given set are predicted when the number of added (or deleted
or modified) examples to a dataset is no larger than T (called perturbation size). By contrast, bagging
and DPA can only guarantee their ensemble classifiers provably predict the same label (a single label)
for a testing input. Moreover, when the given set only contains a single label, our PoisoningGuard
simplifies to bagging and DPA. In other words, they are a special case of our PoisoningGuard.

Our key technical contribution is to derive certified intersection size for a testing input. The major
technical challenge is how to jointly consider multiple labels in the derivation. To solve the challenge,
we first assume less than r ground-truth labels are predicted by our PoisoningGuard when a dataset
is poisoned (denoted by the predicate P ) and then use our assumption to derive a condition (denoted
by the predicate Q), i.e., P → Q. By utilizing the law of contra-position, i.e., if P → Q, then
¬Q→ ¬P (¬ is negation), we know ¬Q is a sufficient condition of ¬P , i.e., at least r ground-truth
labels are predicted by our PoisoningGuard under poisoning attacks. Given a perturbation size T , our
certified intersection size is the maximum r such that the sufficient condition is satisfied. In particular,
our sufficient condition involves the comparison of two terms, which are very challenging to compute
due to 1) the complex training process of base multi-label classifiers (deep neural networks), and
2) those two terms involve multiple labels. In response, we respectively develop new techniques
to derive a lower (or upper) bounds for those two terms when our PoisoningGuard is based on
bagging and DPA. Specifically, for PoisoningGuard with bagging, we find standard Neyman Pearson
Lemma (Neyman & Pearson, 1933) utilized by bagging Jia et al. (2021) cannot be used to jointly
consider multiple labels to derive bounds and thus we propose a variant of standard Neyman Pearson
Lemma to address the challenge. For PoisoningGuard with DPA, we formulate those two terms as
objectives of two constrained optimization problems and then derive lower (or upper) bounds for the
objectives.

We perform extensive evaluations on three benchmark datasets. Moreover, we compare our
PoisoningGuard with bagging and DPA when applying their robustness guarantees to multi-label
classification. Our experimental results show our PoisoningGuard significantly and consistently out-
perform bagging and DPA in different settings, which demonstrate that jointly considering multiple
labels improve the robustness guarantee for multi-label classification. For example, on NUS-WIDE
dataset, our PoisoningGuard with bagging ensures that at least 30% of the labels in the ground truth
set of testing inputs are correctly predicted on average with perturbation size T = 100. Under the
same setting, both bagging and DPA can only guarantee 0% of labels are correctly predicted on
average under the same setting. Our major contributions are summarized as follows:

• We propose PoisoningGuard, the first provable defense against data poisoning attacks for multi-
label classification.

• We derive provable robustness guarantees of PoisoningGuard by jointly considering multiple labels.
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• We evaluate our PoisoningGuard on multiple benchmark datasets and compare it with existing
state-of-the-art baselines.

2 BACKGROUND AND RELATED WORK

Multi-label classification. In multi-label classification, a testing input has multiple ground truth
labels, and a multi-label classifier predicts a set of labels for it. Multi-label classification has many
applications such as medical image diagnosis (Ge et al., 2018), object recognition (Lin et al., 2014),
and document classification (Hayes & Weinstein, 1990). Many approaches (Li et al., 2014; Yang
et al., 2016; Wang et al., 2016; 2017; Zhu et al., 2017; Nam et al., 2017; Huynh & Elhamifar, 2020;
Chen et al., 2019; You et al., 2020; Wu et al., 2020; Ben-Baruch et al., 2020; Dao et al., 2021) have
been proposed for multi-label classification. Specifically, a family of studies (Chen et al., 2019; Zhu
et al., 2017; Wang et al., 2017; 2016; Li et al., 2014) proposed to design new model architectures.
For instance, Wang et al. (Wang et al., 2016) proposed a CNN-RNN framework for multi-label
classification, where CNN and RNN parts are used to extract image semantic representations and
characterize label relationships, respectively. In general, those methods make complex modifications
to model architectures and thus are less general. To address the issue, another family of methods (Wu
et al., 2020; Ridnik et al., 2021) proposed to design new loss functions. For instance, Ridnik et al.
(2021) proposed an asymmetric loss to handle the positive-negative imbalance (i.e., each class has
much more negative samples than positive ones as most images contain a small fraction of possible
labels) in multi-label classification. Those methods are agnostic to model architecture and training
methods, and are thus they are more general in practice.

Poisoning attacks to multi-label classification. Many existing studies (Biggio et al., 2012; Li et al.,
2016; Shafahi et al., 2018) showed that multi-class classification is vulnerable to data poisoning
attacks (Geiping et al., 2020; Biggio et al., 2012; Li et al., 2016; Shafahi et al., 2018). Similarly, recent
studies (Ma et al., 2022; Chen et al., 2023; Chan et al., 2023) showed that multi-label classification
is also vulnerable to poisoning attacks. For instance, Chen et al. (Chen et al., 2023) showed that an
attacker can poison the training dataset (e.g., mislabel the annotations of certain training images)
of a multi-label classifier such that it has attacker desired behaviors, e.g., the multi-label classifier
misclassifies images with certain objects. They also evaluate 7 empirical defenses (Guo et al., 2020;
Gao et al., 2019; Chou et al., 2020; Chen et al., 2018; Liu et al., 2018; Qiu et al., 2021; Wang et al.,
2019; Qiao et al., 2019) generalized from multi-class classification and find that they are ineffective.
Thus, we focus on provable defense in this work.

Existing provable defenses. All existing provable defenses (Jia et al., 2021; Levine & Feizi, 2021;
Steinhardt et al., 2017; Wang et al., 2022; Ma et al., 2019; Rosenfeld et al., 2020; Wang et al., 2020;
Zhang et al., 2022) focus on multi-class classification. For instance, bagging (Jia et al., 2021) and
DPA (Levine & Feizi, 2021) are two state-of-the-art provable defenses for multi-label classification.
However, their robustness guarantees are sub-optimal when applied to multi-label classification
as they cannot jointly consider a set of labels. By contrast, our work significantly improves the
robustness guarantees for multi-label classification by simultaneously considering multiple labels.

3 OUR DESIGN

3.1 PROBLEM FORMULATION

Data poisoning attacks. Given a clean training dataset Dtr, we suppose an attacker can arbitrarily
add (or delete or modify) at most T training examples to Dtr to craft a poisoned training dataset, and
T is the perturbation size. For simplicity, we use Sp(T,Dtr) to denote the set of all possible poisoned
training datasets when an attacker could add (or delete or modifies) at most T training examples to
a clean training dataset Dtr. We call an attack addition attack (or deletion attack or modification
attack) if an attacker adds (or deletes or modifies) training examples to Dtr.

Certified intersection size. We suppose G(·;Dp) is a multi-label classifier trained on a poisoned
training dataset Dp. Given a testing input x, G(x;Dp) is a set of k labels predicted by the multi-label
classifier for x. Suppose L(x) is the set of ground-truth labels of x, given a perturbation size T , we
define the certified intersection size for x as follows:

R(x;T ) = max r, s.t. |G(x;Dp) ∩ L(x)| ≥ r, ∀Dp ∈ Sp(T,Dtr). (1)
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Intuitively, the certified size R(x;T ) is the smallest number of labels in L(x) that are predicted for x
by a multi-label classifier built upon an arbitrary poisoned training dataset in Sp(T,Dtr).

3.2 GENERALIZING BAGGING (JIA ET AL., 2021) TO MULTI-LABEL CLASSIFICATION

Below, we first generalize bagging (Jia et al., 2021) to build an ensemble multi-label classifier and
then derive its certified intersection size for an arbitrary testing input.

Ensemble classifier. Suppose we have a training dataset Dtr that contains n training examples,
where each training example consists of an image and a set of ground-truth labels of the image. We
can randomly subsample m training examples from Dtr with replacement. For simplicity, we use X
to denote the randomly subsampled training dataset. Given an arbitrary training algorithm A, we can
use it to train a base multi-label classifier g on the subsampled dataset, where the hyper-parameter
kb is the number of labeled predicted by g for a testing input. Given a testing input x, we can
use g to predict a set of kb labels for it. For simplicity, we use g(x;X ) to denote the set of kb
predicted labels. Due to the randomness of X , the set g(x;X ) is also random. Given an arbitrary
label l ∈ {1, 2, · · · , C}, where C is the total number of classes, we use pl to denote the probability
that the label l is in g(x;X ). Formally, we have pl = Pr(l ∈ g(x;X )). We call pl label probability.
Our ensemble classifier G predicts a set of k labels with the largest label probabilities pl’s for the
testing input x. For simplicity, we use G(x;Dtr) to denote the set of k predicted labels. Formally,
we have:

G(x;Dtr) = {l1, l2, · · · , lk}
s.t. pli ≥ plj ,∀li ∈ {l1, l2, · · · , lk},∀lj ∈ {1, 2, · · · , C} \ {l1, l2, · · · , lk}. (2)

Note that kb and k are the number of predicted labels by a base multi-label classifier g and ensemble
multi-label classifier G, respectively. Below, we show robustness guarantees of the ensemble classifier.

Deriving the Certified Intersection Size. We use Dp to denote an arbitrary poisoned dataset
in Sp(T,Dtr). Moreover, we use X and Y to denote two random variables, which represent the
randomly subsampled datasets with m training examples from the clean dataset Dtr and the poisoned
dataset Dp, respectively. Based on the definition, we have pl = Pr(l ∈ g(x;X )). We define poisoned
label probability as p′l = Pr(l ∈ g(x;Y)), where l = 1, 2, · · · , C. p′l measures the probability that
a label is predicted by a base multi-label classifier trained on a randomly subsampled dataset Y
from the poisoned dataset Dp. Suppose L(x) is a set of M ground truth labels of a testing image
x. Our goal is to derive a lower bound on the number of labels (i.e., certified intersection size) in
L(x) that are predicted by our ensemble multi-label classifier built upon an arbitrary poisoned dataset
Dp ∈ Sp(T,Dtr).

The key challenge to directly derive certified perturbation size is how to simultaneously consider
multiple labels. To address the challenge, we utilize the law of contraposition. Suppose the total
number of labels in L(x) that are predicted by our ensemble classifier built upon a poisoned dataset
Dp is smaller than r, i.e., the certified intersection size is smaller than r, then we know that at
least M − r + 1 ground truth labels (denoted by U ) in L(x) are not predicted by our ensemble
classifier for x, where M = |L(x)|. Similarly, we know at least k − r + 1 labels (denoted by
V ) in {1, 2, · · · , C} \ L(x) are predicted for x. In other words, we know there exist U ⊆ L(x)
and V ⊆ {1, 2, · · · , C} \ L(x) such that maxu∈U p′u ≤ minv∈V p′v. We define the following two
predicates: P : the certified intersection size is smaller than r, and Q : maxu∈U p′u ≤ minv∈V p′v.
Our previous derivation shows the following statement is true: if P , then Q. Based on the law of
contraposition, we know if ¬Q, then ¬P . In other words, if we could show maxu∈U p′u > minv∈V p′v
for arbitrary U and V , i.e., minU maxu∈U p′u > maxV minv∈V p′v, then we know the certified
intersection size is no smaller than r. Thus, our certified intersection size is the maximum r such that
minU maxu∈U p′u > maxV minv∈V p′v is satisfied for an arbitrary Dp ∈ Sp(T,Dtr).

It is very challenging to compute minU maxu∈U p′u and maxV minv∈V p′v as our base multi-label
classifier is a complex deep neural network. Therefore, we derive a lower bound of minU maxu∈U p′u
and an upper bound of maxV minv∈V p′v. In particular, suppose py is a lower bound of probability
py for for each label y ∈ L(x) and pl is an upper bound of pl for each label l ∈ {1, 2, · · · , C}\L(x).
We utilize Neyman Pearson Lemma (Neyman & Pearson, 1933) to derive those bounds. However,
the key challenge of standard Neyman Pearson Lemma (Neyman & Pearson, 1933) is that it can
only consider each label independently. In other words, it can only be applied when U (or V ) only
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contains a single label. To address the challenge, we develop an extended version of it to jointly
consider multiple labels. Due to space reason, we only present high level idea in main text and defer
details to Appendix A. Suppose Υ is the joint space between the two random variables X and Y .
We divide Υ into three sub-spaces A, B, and C, i.e., Υ = A ∪ B ∪ C. Based on the definition
of X and Y , we could compute their probability mass functions. Given an arbitrary U , we find

a sub-space B′ ⊆ B such that the probability of X in that sub-space is
∑︁

u∈U p#
u

kb
− Pr(X ∈ A),

where p#u ≜ kb

nm ⌊pu · n
m

kb
⌋ (we round pu to make it an integer multiple of kb

nm such that B′ can be
constructed). Then, we derive a lower bound of

∑︁
u∈U p′u by our extended Neyman Pearson Lemma.

Based on the fact that the maximum value in a set is no smaller than the average value, we derive
a lower bound of maxu∈U p′u. By considering all possible U , we could derive a lower bound of
minU maxu∈U p′u. Similarly, we derive an upper bound of maxV minv∈V p′v. Given those bounds,
we can compute the certified perturbation size by letting minU maxu∈U p′u > maxV minv∈V p′v for
∀Dp ∈ Sp(T,Dtr). Formally, we have the following theorem:

Theorem 1 (Certified Intersection Size). Suppose we have a training dataset Dtr. Moreover, we
assume we have a base learning algorithm A that can be used to train a base multi-label classifier
on a randomly subsampled m training examples from Dtr. Our ensemble classifier G is as defined in
Equation 2. Given a testing input x whose ground truth labels are L(x) = {l1, l2, · · · , lM}. We use
pl and pl to denote the label probability lower and upper bound for a label l = 1, 2, · · · , C. Given a
perturbation size T , we have the following:

|G(x;Dp) ∩ L(x)| ≥ R(x, T ),∀Dp ∈ Sp(T,Dtr), (3)

where R(x, T ) is the solution to the following optimization problem:

R(x, T ) = argmax
r

r

s.t. max(
M−r+1
max
t=1

1

t
(

lr+t−1∑︂
l=lr

p#l − kb + kb · (
e

n
)m)

nm

(np)m
, (p#lr − 1 + (

e

n
)m)

nm

(np)m
)

>min(
k−r+1
min
t=1

1

t
(

sk−r+1∑︂
s=sk−r+2−t

p∗s
nm

(np)m
+ kb(1− (

e

np
)m)), p∗sk−r+1

nm

(np)m
+ 1− (

e

np
)m) (4)

where p#u ≜ kb

nm ⌊pu · n
m

kb
⌋ ≤ pu for u ∈ L(x) and they satisfy p#l1 ≥ p#l2 ≥ · · · ≥ p#lM , and p∗v ≜

kb

nm ⌈pv · n
m

kb
⌉ ≥ pv for v ∈ {1, 2, · · · , C}\L(x). s1, s2, · · · , sk−r+1 are the k−r+1 labels with the

largest p∗v’s in {1, 2, · · · , C} \ L(x) and they satisfy p∗s1 ≥ p∗s2 ≥ · · · ≥ p∗sk−r+1
. lr, lr+1, · · · , lM

are the M − r + 1 labels with the smallest p#u ’s in L(x) and they satisfy p#lr ≥ p#lr+1
≥ · · · ≥ p#lM .

We have e = n− T and np = n for modification attack; e = n and np = n+ T for addition attack;
e = n− T and np = n− T for deletion attack.

Proof. Please refer to Appendix A.

We have the following differences with bagging (Jia et al., 2021). First, our base and ensemble
classifiers could predict multiple labels while they only only produce a single label in bagging.
Second, we jointly consider multiple ground truth labels in our derivation of certified intersection size
while bagging can only consider a single label. To jointly consider multiple labels, we utilize new
technique such as the law of contraposition and extend standard Neyman Pearson Lemma (Neyman
& Pearson, 1933) to consider multiple labels. Our experimental results show our method significantly
outperform bagging when extending robustness guarantee in bagging to multi-label classification (the
details on the extension is shown in Section 4.1). We note that our certified intersection size reduces
to bagging when both kb = 1 and k = 1, i.e., bagging is a special case of our method.

Computing the certified intersection size. To compute the certified intersection size, we need
to estimate probabaility lower or upper bounds of pl, where l = 1, 2, · · · , C. Following previous
studies (Cohen et al., 2019; Jia et al., 2021), we utilize Monte-Carlo sampling. We defer the details to
Appendix C. Given those probabaility lower or upper bounds, we use binary search to find R(T,x).
Algorithm 1 in Appendix shows the complete process.
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3.3 GENERALIZING DPA (LEVINE & FEIZI, 2021) TO MULTI-LABEL CLASSIFICATION

Building an ensemble classifier. Given a training dataset Dtr = {xi,yi}ni=1 with n training exam-
ples, we use a hash function Hash to divide it into N sub-datasets, denoted by {D1

tr,D2
tr, · · · ,DN

tr}.
In particular, we view each entry of xi or yi as a string, concatenate those strings, and feed it to
the hash function. For simplicity, we use Hash(xi ⊕ yi) to denote the output of the hash func-
tion for the ith training example, where ⊕ represents concatenation operation. Then, we have
Dj

tr = {(xi,yi) ∈ Dtr|Hash(xi ⊕ yi)%N = j − 1}, where % is the modulo operator and
j = 1, 2, · · · , N . Given each sub-dataset and a training algorithm, we train a base multi-label
classifier that outputs kb labels for a testing input. For simplicity, we use h1, h2, · · · , hN to denote
those base classifiers, where hj(x) is a set of kb labels predicted by hj for x. Given those base
multi-label, we build an ensemble multi-label classifier H . Given a testing input x, we use nl to
denote the number of base classifiers that predicts the label l for x, i.e., nl =

∑︁N
j=1 I(l ∈ hj(x)),

where I is the indicator function, l = 1, 2, · · · , C, and C is the total number of classes. We call nl

label frequency. Our ensemble classifier H predicts a set of k labels (denoted by H(x;Dtr)) with
the largest label frequency nl’s for the testing input x. Formally, we have:

H(x;Dtr) = {l1, l2, · · · , lk} (5)
s.t. nli ≥ nlj ,∀li ∈ {l1, l2, · · · , lk},∀lj ∈ {1, 2, · · · , C} \ {l1, l2, · · · , lk}. (6)

Then, we can show that ensemble classifier is provably robust against data poisoning attacks.

Deriving the certified intersection size. We use Dp to denote an arbitrary poisoned dataset in
Sp(T,Dtr). Moreover, we use n′

l (called poisoned label frequency) to denote the number of base
multi-label classifiers that predicts the label l when they are trained on sub-datasets created from a
poisoned dataset Dp, where l = 1, 2, · · · , C. Similar to our previous proof, we also utilize the law of
contraposition to derive the certified intersection size. Suppose U and V are the M − r + 1 labels in
L(x) and k − r + 1 labels in {1, 2, · · · , C} \ L(x), respectively. Our goal is to find a maximum r
such that minU maxu∈U n′

u > maxV minv∈V n′
v is satisfied for ∀Dp ∈ Sp(T,Dtr) (the reasoning

process is similar to our previous proof). For space reasons, we will show high level idea of how we
compute minU maxu∈U n′

u and maxV minv∈V n′
v , and defer the details to Appendix B.

For simplicity, we denote δu = nu−n′
u for u ∈ U . Given a perturbation size T , we know an attacker

could corrupt at most T̃ sub-datasets, where T̃ = T (or T̃ = T or T̃ = 2T ) for addition attack (or
deletion attack or modification attack). Therefore, at most T̃ base multi-label classifiers change their
predictions. As a result, we have the following two observations for an arbitrary U : 1) we have
δl ≤ T̃ since at most T̃ base multi-label classifiers change their predictions for the label l, and 2)
we have

∑︁
u∈U δu ≤ kb · T̃ since the total number of predicted labels by the T̃ base multi-label

classifiers is kb · T̃ . Based on those two observations and the relationship that δu = nu − n′
u, we

formulate finding maxu∈U n′
u for an arbitrary U as the following optimization problem:

min
{δu|u∈U}

max
u∈U

(nu − δu), s.t. δu ≤ T̃ for ∀u ∈ U, and
∑︂
u∈U

δu ≤ kb · T̃ . (7)

We note that it is very challenging to solve the optimization problem due to its minimax structure,
especially when T is large. To address the challenge, we derive a lower bound for the objective in the
optimization problem. We adopt two ways to derive the lower bound. First, we consider each label
independently. In this case, we have the following lower bound: min{δu|u∈U} maxu∈U (nu − δu) ≥
maxu∈U (nu−T̃ ) since ∀δu ≤ T̃ . Then, we jointly consider multiple labels. Suppose Ut is a subset of
t labels with the smallest label frequencies in U , i.e., Ut ⊆ U . Based on the fact that the largest value
in a set is no smaller than the average value and

∑︁
u∈U δu ≤ kb · T̃ , we derive the following lower

bound: min{δu|u∈U} maxu∈U (nu−δu) ≥ 1
t min{δu|u∈U}

∑︁
u∈Ut

(nu−δu) ≥ 1
t (
∑︁

u∈Ut
nu−kb·T̃ ).

This lower bound holds for arbitrary t = 1, 2, · · · ,M − r + 1, where M − r + 1 is the size of
U . Thus, we have min{δu|u∈U} maxu∈U (nu − δu) ≥ maxM−r+1

t=1
1
t (
∑︁

u∈Ut
nu − kb · T̃ ). By

taking the maximum one of the two bounds, we obtain the final lower bound for maxu∈U n′
u.

Finally, we find the smallest lower bound of maxu∈U n′
u over different U ’s as the lower bound of

minU maxu∈U n′
u. Similarly, we could derive an upper bound for maxV minv∈V n′

v. Given the
lower bound of minU maxu∈U n′

u and the upper bound of maxV minv∈V n′
v , we could compute the

certified intersection size by finding the maximum r such that the lower bound of minU maxu∈U n′
u

is larger than the upper bound of maxV minv∈V n′
v . Formally, we have the following theorem:
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Theorem 2 (Certified Intersection Size). Suppose we have a training dataset Dtr. Moreover, we
assume we have a base learning algorithm A that can be used to train a base multi-label classifier
on N sub-datasets D1

tr,DN
tr , · · · ,DN

tr created from Dtr. Our ensemble classifier H is as defined
in Equation 5. Given a testing input x whose ground truth labels are L(x) = {y1, y2, · · · , yM}.
Without loss of generality, we assume ny1

≥ ny2
≥ · · · ≥ nyM

. Given a perturbation budget T , we
have the following:

|H(x;Dp) ∩ L(x)| ≥ R(x, T ),∀Dp ∈ Sp(T,Dtr), (8)

where R(x, T ) is the solution to the following optimization

R(x, T ) = argmax
r

r

s.t.
M−r+1
max
t=1

1

t
(

lr+t−1∑︂
u=lr

nu −min(kb · T̃ , t · T̃ )) >
k−r+1
min
t=1

1

t
(

sk−r+1∑︂
v=sk−r+2−t

nv +min(kb · T̃ , t · T̃ ))

(9)

where T̃ = T for addition attack or deletion attack, and T̃ = 2T for modification attack.
s1, s2, · · · , sk−r+1 are the k − r + 1 labels with the largest nv’s in {1, 2, · · · , C} \ L(x) and
they satisfy ns1 ≥ ns2 ≥ · · · ≥ nsk−r+1

. lr, lr+1, · · · , lM are the M − r+1 labels with the smallest
p#u ’s in L(x) and they satisfy p#lr ≥ p#lr+1

≥ · · · ≥ p#lM .

Proof. Please refer to Appendix B in supplementary material.

Our method has the following differences with DPA (Levine & Feizi, 2021). First, both our base and
ensemble classifiers could predict multiple labels but they only predict a single label in DPA. Second,
we jointly consider multiple labels to derive certified intersection size while DPA only considers a
single label. Thus, they achieve sub-optimal results when their robustness guarantee is extended
to multi-label classification as shown in our experimental results (the details on the extension is
shown in Section 4.1). Second, our technique to derive robustness guarantees is significantly different
from DPA. For instance, to joint consider multiple labels, we utilize the law of contraposition and
formulate the derivation as an optimization problem as well as derive a lower bound for its objective
to find the solution. Our bound reduces to the one in DPA when kb = 1 and k = 1, i.e., DPA is a
special case of our method.

Solving the optimization problem in Equation 9. We solve the optimization problem in Equation 9
efficiently via binary search. Details are shown in Algorithm 1 in Appendix.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We perform evaluation on following benchmark datasets: MS-COCO (Lin et al., 2014),
NUS-WIDE (Chua et al., 2009), and VOC-2007 (Everingham et al., 2007). The details of those
datasets can be found in Appendix D.

Base multi-label classifiers. For all datasets, we use asymmetric loss (ASL) (Ben-Baruch et al.,
2020) to train each base multi-label classifier. We use the same hyper-parameter setting as Ben-Baruch
et al. (2020). The details could be found in Appendix E. Following previous studies (Jia et al., 2021),
we use an encoder pre-trained on ImageNet dataset by MoCo-v2 (Chen et al., 2020) as a feature
extractor. In particular, we append a linear layer to the encoder and only optimize the parameters of
the least liner layer when training each base multi-label classifier.

Evaluation metrics. As evaluation metrics, we utilize certified top-k precision@T , certified
top-k recall@T , and certified top-k f1-score@T . These metrics are defined based on a per-
turbation size T , and we describe them as follows: certified top-k precision@T = R(x, T )/k,
certified top-k recall@T = R(x, T )/|L(x)|, certified top-k f1-score@T = 2 · R(x, T )/(|L(x)| +
k). As our final result, we report the average values of certified top-k precision@T ,
certified top-k recall@T , and certified top-k f1-score@T computed on the testing dataset.

Compared methods. We compare our PoisoningGuard-Bagging (PG-Bagging) and
PoisoningGuard-DPA (PG-DPA) with state-of-the-art certified defenses against poisoning attacks for
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Figure 1: Comparing our methods with bagging and DPA on MS-COCO (first row), NUS-
WIDE (second row), and VOC-2007 (third row).

multi-class classification, including bagging (Jia et al., 2021) and DPA (Levine & Feizi, 2021). We
note that all those methods require each base multi-label classifier to predict a single label for each
testing input. Thus, we set kb = 1 in our comparison. We use the same model architecture, training
algorithm, and hyper-parameters to train base classifiers for different methods to fairly compare them.
As bagging and DPA are designed for multi-class classification, they cannot jointly consider multiple
labels. In particular, given two labels l1 and l2 where pl1 > pl2 (or nl1 > nl2 for DPA), they can
guarantee the poisoned label probability p′l1 (or poisoned label frequency n′

l1
) is larger than p′l2 (or

n′
l2

) when the number of poisoned examples is bounded. For multi-label classification, we can certify
a sample by letting l1 = lr and l2 = sk−r+1 (which are defined in Theorem 1). By contrapositive
law, proving that the poisoned label probability p′lr (or poisoned label frequency n′

lr
) is larger than

p′sk−r+1
(or n′

sk−r+1
) ensures that the intersection size is at least r when the perturbation size is

T . Then we apply binary search to find the maximum r such that the inequality plr > psk−r+1
(or

nlr > nsk−r+1
for DPA) holds. It is worth noting that this is equivalent to solving Equation 4 (or

Equation 9 for DPA) with the value of t fixed to 1.

Parameter setting. Our primary focus is on modification attacks because they are considered
stronger than deletion and addition attacks, as discussed in Jia et al. (2021); Levine & Feizi (2021).
We utilize following default hyperparameters. We set k = 3 and kb = 1 for all datasets and
certification methods. For certifications based on bagging, we set α = 0.001 and train 1,000 base
classifiers. Additionally, we set m = 1, 000 for MS-COCO and NUS-WIDE and m = 100 for
VOC-2007, considering that VOC-2007 has a smaller number of training samples compared to
MS-COCO and NUS-WIDE. As for DPA-based certifications, we let N = 300 for all datasets. We
will study the impact of each hyper-parameter on our method.

4.2 EXPERIMENTAL RESULTS

Comparing PoisoningGuard with existing methods. Figure 1 shows the comparison results on MS-
COCO, NUS-WIDE, and VOC-2007 in default setting. We have two observations. First, we find that
PG-Bagging (or PG-DPA) consistently outperforms bagging (or DPA) on all datasets. This is because
PoisoningGuard derives robustness guarantees by taking multiple labels into consideration. By
contrast, bagging and DPA are designed for multi-class classification and their robustness guarantees
are derived by considering a single ground truth label. Second, we can see that PG-Bagging and
PG-DPA achieve comparable performances. In particular, each method outperforms the other in
certain scenarios. For instance, when the perturbation size T is large, PG-Bagging outperforms
PG-DPA on NUS-WIDE but performs worse than PG-DPA on VOC-2007. As for MS-COCO, these
two methods show similar performance. We note that PG-Bagging has probabilistic robustness
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(c) Certified top-k f1-score@T

Figure 2: Impact of k (first row), kb (second row), and m (third row) for PG-Bagging on
MS-COCO.

guarantees (i.e., the certified robustness guarantee is true with a certain probability) but DPA has
deterministic robustness guarantees (i.e., the robustness guarantee is true with probability 1).

Impact of k. The first row of Figure 2 (MS-COCO), Figure 5 (NUS-WIDE; in Appendix) and Figure 7
(VOC-2007; in Appendix) show the impact of k on PG-Bagging. We have the following observations
from the results. First, we find that a larger k gives us a smaller certified top-k precision@T without
attacks, but the curve drops more slowly as T increases (i.e., a larger k is more robust against poisoned
examples as T increases). This is because jointly consider multiple labels is more effective when k is
larger. Second, we find that certified top-k recall@T increases as k increases. The reason is that more
labels are predicted by our PoisoningGuard as k increases. Note that certified top-k f1-score@T
measures a tradeoff between the certified top-k precision@T and certified top-k recall@T . We also
have those observations for the impact of k on PG-DPA. The results could be found in Figure 4
(MS-COCO), Figure 6 (NUS-WIDE) and Figure 8 (VOC-2007) in Appendix.

Impact of kb. The second row of Figure 2 (MS-COCO), Figure 5 (NUS-WIDE; in Appendix)
and Figure 7 (VOC-2007; in Appendix) show the impact of kb on PG-Bagging. We find that
PoisoningGuard achieves a larger certified top-k precision@T (or certified top-k recall@T or certified
top-k f1-score@T ) without attacks, but it is less robust as the perturbation size T increases. The
reason is that our ensemble classifier could utilize more information from each base multi-label
classifier when kb is large and thus achieve a larger certified top-k precision@T (or certified top-k
recall@T or certified top-k f1-score@T ). However, a larger kb also leads to additional attack space
as each base-multi label classifier predicts more labels, which makes the curves drop more quickly as
T increases. We also have those observations for the impact of kb on PG-DPA. The results could be
found in Figure 4 (MS-COCO), Figure 6 (NUS-WIDE) and Figure 8 (VOC-2007) in Appendix.

Impact of m (or N ) for PG-Bagging (or PG-DPA). The third row of Figure 2 (MS-COCO),
Figure 5 (NUS-WIDE; in Appendix) and Figure 7 (VOC-2007; in Appendix) show the impact of m
on PG-Bagging. We find that m achieves a tradeoff between certified top-k precision@T (or certified
top-k recall@T or certified top-k f1-score@T ) without attacks and robustness, i.e., the curve for a
larger m is higher when T = 0 but drops more quickly as T increases. The reason is that each base
multi-label classifier is more likely to be trained on a poisoned set of subsampled training examples
when m is larger. Similar to PG-Bagging, we find that N also achieves a tradeoff between certified
top-k precision@T (or certified top-k recall@T or certified top-k f1-score@T ) without attacks and
robustness. The results could be found in Figure 4 (MS-COCO), Figure 6 (NUS-WIDE) and Figure 8
(VOC-2007) in Appendix.

5 CONCLUSION

We propose PoisoningGuard, the first certified defense against data poisoning attacks for multi-label
classification. Our results show PoisoningGuard significantly improve the robustness guarantees
against poisoning attacks for multi-label classification by jointly considering multiple labels.
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