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Abstract

Recently, there has been a surge in deploying001
Large Language Models (LLMs) for decision-002
making tasks, such as income prediction and003
crime risk assessments. Due to bias in the004
pre-training data, LLMs generally present un-005
fairness and discrimination against underpriv-006
ileged groups. However, traditional fairness007
enhancement methods are generally impracti-008
cal for LLMs due to the computational cost of009
fine-tuning and the black-box nature of pow-010
erful LLMs. To deal with this, In-Context011
Learning (ICL) offers a promising strategy for012
enhancing LLM fairness through input-output013
pairs, without the need for extensive retrain-014
ing. Nevertheless, the efficacy of ICL is hin-015
dered by the inherent bias in both data and the016
LLM itself, leading to the potential exagger-017
ation of existing societal disparities. In this018
study, we investigate the unfairness problem019
in LLMs and propose a novel demonstration020
selection strategy to address data and model021
biases when applying ICL. Extensive exper-022
iments on various tasks and datasets validate023
the superiority of our strategy.024

1 Introduction025

In recent years, Large Language Models (LLMs)026

have shown exceptional capabilities across a vari-027

ety of applications (Chowdhery et al., 2022), in-028

cluding income prediction (Sun et al., 2024) and029

crime risk assessments (Wang et al., 2023a). How-030

ever, the widespread deployment of these mod-031

els has highlighted significant bias issues. For032

instance, when LLMs are used to assess job ap-033

plications, inherent biases in their training data034

(often derived from real-world human prejudices)035

can result in preferential treatment for certain ap-036

plicant groups (Bogen and Rieke, 2018; Ferrara,037

2023). This can limit employment opportuni-038

ties for individuals from underrepresented groups,039

thereby worsening inequalities in the job mar-040

ket (Raghavan et al., 2020). In addition, as shown041

Figure 1: An example that showcases the responses of
GPT-3.5 on predicting whether an individual has sub-
scribed to a term deposit, from the dataset Bank Mar-
keting (Moro et al., 2014).

in Fig. 1, LLMs also exhibit bias when predicting 042

whether an individual has subscribed to a term de- 043

posit (Pessach and Shmueli, 2022). Further stud- 044

ies have revealed that LLMs can perpetuate so- 045

cietal biases, favoring specific genders or races 046

in tasks ranging from toxicity screening (Cheng 047

et al., 2022), content recommendation (Gao et al., 048

2023), to question answering (Zhao et al., 2023a). 049

Given the widespread adoption of LLMs in var- 050

ious sectors (Thoppilan et al., 2022), addressing 051

their inherent biases is crucial. However, current 052

strategies for enhancing fairness, such as using 053

fairness-aware regularization (Hardt et al., 2016; 054

Yurochkin et al., 2020) or modifications to bi- 055

ased training data (Samadi et al., 2018; Backurs 056

et al., 2019), are typically impractical for LLMs. 057

These methods face significant challenges: they 058

either (1) require a large number of labeled sam- 059

ples, which may be difficult to obtain in practice, 060

or (2) necessitate updates to the model parameters 061

which is unfeasible for complex, opaque models 062

like GPT-4 (OpenAI, 2023). 063

Due to the above two reasons, we propose to 064

leverage In-Context Learning (ICL) to enhance the 065

fairness of LLMs (Sun et al., 2024; Chhikara et al., 066
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Figure 2: An example showcasing the existence of data
bias in labeled samples in the decision-making task of
predicting individual incomes., i.e., a larger proportion
of male and high-income samples.

2024). Generally, ICL allows LLMs to adapt to067

new tasks, such as generating less biased outputs,068

by simply appending a few input-output exam-069

ples (known as demonstrations) to the query in-070

put. This method infuses additional knowledge,071

such as fairness awareness, into the model (Zhao072

et al., 2023b; Xu et al., 2024). Consequently, ICL073

sidesteps the high computational costs and exten-074

sive data requirements typically associated with075

fine-tuning LLMs. Nevertheless, improving the076

fairness of LLMs through ICL faces two primary077

challenges: (1) Data Bias. First, the bias shown078

by labeled samples may be encoded in the demon-079

strations. For example, as shown in Fig. 2, we080

partition all labeled samples into four clusters to081

examine the potential distribution unbalance be-082

tween genders and income levels. We observe that083

samples with a sensitive attribute value of “male”084

have a higher probability of the “high-income” la-085

bel. Such a correlation suggests that bias may086

persist within the selected demonstrations, which087

poses a significant challenge for ICL in enhanc-088

ing the fairness of LLMs (Chuang and Mroueh,089

2021). (2) Model Bias. ICL struggles to address090

the model bias encoded within LLM parameters,091

influencing the fairness of the model output. Re-092

cent studies have also highlighted examples such093

as the preference of ChatGPT toward libertarian094

views (McGee, 2023). Unlike fine-tuning strate-095

gies, ICL will not directly modify model param-096

eters to mitigate such model bias. Consequently,097

LLMs may still yield biased outputs even if unbi-098

ased demonstrations are selected as input.099

To address the challenges above, we propose100

a novel Fairness-Aware Demonstration Selection101

strategy, namely FADS, for improving LLM fair-102

ness via ICL. To mitigate data bias that may ap-103

pear in the selected demonstrations, we partition104

the set of candidate demonstrations into clusters 105

and select the most balanced ones in terms of sen- 106

sitive attributes and labels. In this way, we ensure 107

that the demonstrations selected from these clus- 108

ters contain less data bias. To counteract the in- 109

herent model bias of LLMs, we exclude samples 110

that the LLM tends to make unfair predictions on. 111

As such, we select demonstrations that could elicit 112

fairer outputs by the LLM, thereby mitigating the 113

inherent model bias in the LLM. Our evaluation 114

experiments span various decision-making tasks 115

and datasets with different sensitive attributes. In 116

summary, our contributions are as follows: 117

• We systematically evaluate the bias exhibited 118

by LLMs on human-centered decision-making 119

tasks, highlighting the potential and challenges 120

to improve fairness for LLMs. 121

• We propose a novel demonstration selection 122

strategy to enhance LLM fairness with ICL, ad- 123

dressing both data and model biases. 124

• We conduct extensive experiments on vari- 125

ous human-centered decision-making tasks and 126

datasets. Experimental results demonstrate the 127

effectiveness of the proposed strategy. 128

2 Related Work 129

Fairness of LLMs. The bias in LLMs can re- 130

sult in discriminatory outcomes against underrep- 131

resented groups and lead to societal harm (Wad- 132

hwa et al., 2022). Such concerns have encouraged 133

research on assessing and addressing the fairness 134

issues by employing LLMs (Wang et al., 2023b). 135

Various benchmarks have been proposed to assess 136

the fairness of LLMs from various perspectives, 137

such as CrowS-Pair (Nangia et al., 2020) for evalu- 138

ating stereotypical associations and HELM (Liang 139

et al., 2023) that involves detections of social bias. 140

More recently, TrustGPT (Huang et al., 2023) as- 141

sesses the toxicity levels in the model outputs 142

towards different demographic groups. Decod- 143

ingTrust (Wang et al., 2023a) first evaluates the 144

preference bias of LLMs, particularly the favor 145

of a particular race in predicting individual in- 146

comes. Trustworthy LLMs (Liu et al., 2023) and 147

TrustLLM (Sun et al., 2024) both evaluate various 148

types of bias for LLMs, including stereotyping and 149

preference bias. Unlike previous works that fo- 150

cus mainly on classification tasks, GFair (Bi et al., 151

2023) evaluates the bias of LLMs on generation 152

tasks by analyzing model outputs when inputs are 153

associated with different sensitive attributes. 154
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In-Context Learning. The concept of In-Context155

Learning (ICL) illustrates LLMs’ capacity to per-156

form (potentially new) tasks with several demon-157

strations as additional knowledge in the input,158

without explicit parameter updates (Liu et al.,159

2021; Lee et al., 2022; Dong et al., 2022; Dai160

et al., 2023). Recent studies indicate that the161

effectiveness of ICL significantly hinges on the162

construction and composition of these demonstra-163

tions, including the format, content, and their or-164

der (Rubin et al., 2022; Li and Qiu, 2023). There-165

fore, different strategies propose to select better166

demonstrations, based on scores from a learned re-167

triever (Hu et al., 2022; Poesia et al., 2022) or sim-168

ilarity between demonstration embeddings (Liu169

et al., 2022). However, when applied to improv-170

ing the fairness of LLMs, recent studies (Wang171

et al., 2023a; Sun et al., 2024) point out that ICL172

with demonstrations selected based on similarity173

only yields marginal improvements in fairness. In174

a more recent work (Chhikara et al., 2024), the au-175

thors introduce fairness definitions as additional176

prompts for selected demonstrations. Neverthe-177

less, the selection is heuristic, relying on choosing178

an equal number of demonstrations with different179

sensitive attribute values and labels. As such, the180

inherent data bias in demonstrations and the model181

bias in LLMs could not be effectively addressed.182

3 Fairness of LLMs in Decision-Making183

When applying LLMs to human-centered184

decision-making scenarios, their fairness issues185

become critical, as exhibited prejudice against186

certain demographic groups could jeopardize187

the trustworthiness of the model. Generally,188

group fairness is among the most commonly used189

fairness criteria, which refers to the capability190

of LLMs to ensure that different groups (e.g.,191

individuals with different genders or races) enjoy192

their fair share of interest. Another widely used193

fairness notion, counterfactual fairness, requires194

the model to output consistent predictions for195

each individual when the sensitive attribute is196

changed. Although existing works have observed197

the issue of bias in LLMs, the group and counter-198

factual fairness of LLMs remains under-explored,199

especially in human-centered decision-making200

tasks (Chhikara et al., 2024). Therefore, we201

explore the task of decision-making in this study,202

aiming to better understand and address bias203

issues in LLMs applied to this scenario.204
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Figure 3: The unfairness scores of various LLMs on the
Adult dataset under the zero-shot setting. The original
prompt directly inputs the values and attribute names
as a list, and the structured prompt formats attribute
values as a sentence.

3.1 Fairness-Aware Decision-Making Tasks 205

Here we introduce the preliminaries for the 206

fairness-aware decision-making tasks studied in 207

this paper. We denote Z = X × Y as the input 208

space, where X is the input space of all textual in- 209

put samples. Y = {0, 1} is the label space of the 210

binary decision-making task. Notably, our work 211

could be easily extended to non-binary scenarios. 212

We consider a sensitive attribute s ∈ {0, 1} for 213

each sample x ∈ X . In each specific task, the 214

datasetD is comprised of two disjoint subsets: the 215

labeled set XL and the test set XT . In general, 216

as there are typically sufficient samples in XL, we 217

could select demonstrations from them for ICL. 218

3.2 Zero-shot Evaluation of Fairness 219

We first perform a zero-shot evaluation for LLMs 220

on decision-making tasks to investigate their capa- 221

bility of enhancing fairness without ICL. In par- 222

ticular, we first consider the task of predicting 223

the annual income for individuals on the Adult 224

dataset (Dua et al., 2017), based on the character- 225

istics of each individual as inputs. As the char- 226

acteristics include sensitive attributes like gender, 227

fairness is particularly important in this decision- 228

making scenario (Chhikara et al., 2024). We uti- 229

lize structured prompts, inclusive of instructions, 230

designed to elicit fair and unbiased responses from 231

LLMs. The template incorporates special tokens 232

that mark the beginning and end of the prompts, 233

aiding the LLMs in generating responses that are 234

not only relevant but also aligned with fairness 235

guidelines. We utilize a Markdown-style template, 236

due to its effectiveness in eliciting clear output 237

from LLMs. We provide an example of the struc- 238

tured prompt in the zero-shot setting as follows. 239
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You are an assistant for assessing the annual
income of individuals. There is a [RACE]
[GENDER] with an age of [AGE] ...
Please predict the range of the annual income of
this individual. The answer should be chosen from
(1) less than 50K and (2) more than 50K.

240

In addition to the structured prompt above, we241

also consider directly using original values and at-242

tributes as input without any textual description243

(i.e., using the original prompt). We consider the244

(counterfactual) unfairness score (Agarwal et al.,245

2021) as the evaluation metric, which is defined as246

the ratio of predictions that change when the sensi-247

tive attributes of inputs are changed (the zero-shot248

results on group fairness provided in Sec. 6.3). We249

also consider a variant of GPT-4 by directly asking250

it to output fairer outputs, i.e., GPT-4-Fair. From251

the results with both types of prompts in Fig. 3,252

we observe that the unfairness score is surpris-253

ingly high for powerful LLMs like GPT4, even254

with structured prompts. The results indicate that255

solving fairness issues in decision-making tasks is256

difficult, regardless of whether model sizes are in-257

creased or alignment tuning is conducted. In the258

following section, we further explore various ICL259

strategies to enhance the fairness of LLMs.260

4 ICL for Improving Fairness of LLMs261

Generally, in-context learning (ICL) represents a262

methodology whereby language models can ac-263

quire knowledge to solve new tasks through a264

small set of examples (referred to as demonstra-265

tions) (Brown et al., 2020). ICL enables LLMs to266

undertake specific tasks by utilizing a task-focused267

prompt P , which aggregates D demonstrations268

into the form D = [z1, z2, . . . , zD]. Here, each269

demonstration zi = (xi, si, yi) is a labeled sam-270

ple that includes the input xi, its corresponding271

label yi, and its sensitive attribute si ∈ {0, 1}.272

Notably, we include the sensitive attribute in each273

demonstration, which is important for predictions274

in decision-making tasks (Chuang and Mroueh,275

2021; Slack et al., 2020). With these demonstra-276

tions as input context, LLMs learn to deal with the277

specific task presented by D. The probability of278

a candidate answer yj provided by the LLM M279

could be represented as follows, with the K se-280

lected demonstrations:281

P (yj |xi,D(xi)) ≜M (yj |z1, z2, . . . , zD, xi, si) ,
(1)282

where D(xi) is the selected demonstration set tai-283

lored for input sample xi.284

4.1 Baseline Methods 285

To employ ICL for enhancing the fairness of 286

LLMs, we consider two baseline methods: 287

• Vanilla ICL. It is a foundational approach 288

that incorporates the use of K examples of 289

instruction-output pairs (i.e., demonstrations) to 290

guide the generation of fair and unbiased re- 291

sponses in LLMs. We select demonstrations 292

according to their similarity to the input query 293

(based on embeddings), without any strategies 294

tailored for fairness enhancements. 295

• Fair ICL. To exploit the benefits of ICL in im- 296

proving fairness, we select demonstrations that 297

are balanced in terms of sensitive attribute val- 298

ues and labels, i.e., the same number of demon- 299

strations with each sensitive attribute value and 300

label. As noted in previous research (Wang 301

et al., 2023a; Sun et al., 2024), incorporating 302

such a balanced set of demonstrations could 303

benefit the fairness of LLMs. 304

Nevertheless, recent works (Wang et al., 2023a; 305

Chhikara et al., 2024; Sun et al., 2024) point out 306

that these demonstration selection strategies only 307

provide marginal improvements in LLM fairness, 308

as LLM could be easily affected by the bias in the 309

demonstrations provided (Si et al., 2023). 310

5 FADS: Fairness-Aware Demonstration 311

Selection 312

In this section, we introduce our framework FADS 313

that aims to enhance the fairness of LLMs via 314

ICL by selecting demonstrations while dealing 315

with data bias and model bias. FADS consists of 316

two filtering steps to address these two types of 317

bias, respectively, by filtering out potentially bi- 318

ased samples. The demonstrations are only se- 319

lected from the remaining samples. 320

5.1 Data Bias Mitigation 321

In the first step of filtering, we aim to mitigate data 322

bias by filtering out samples with a strong correla- 323

tion between a sensitive attribute and a label. With 324

the labeled set (i.e., the training set of a dataset) 325

XL = {x1, x2, . . . , x|XL|}, to efficiently filter out 326

biased samples, we first partition XL into K clus- 327

ters based on their embeddings. The embeddings 328

are obtained from a pre-trained text encoder (e.g., 329

Sentence-BERT (Reimers and Gurevych, 2019)): 330

xi =Menc(xi), where xi ∈ Rd is the embedding 331
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vector, and d is the dimension size. Specifically,332

we obtain K clusters via K-Means clustering:333

C1, C2, . . . , CK = K-Means(XL), (2)334

where Ci is the i-th cluster. To mitigate data bias,335

we propose to filter out the clusters with an imbal-336

anced distribution of sensitive attribute values and337

labels. In particular, we first divide each cluster338

into four sub-clusters, i.e.,339

Ci =
⋃

y,s∈{0,1}

Cys (i), where Cys (i) = Ci ∩ X y
s .

(3)340

Each sub-cluster corresponds to a specific y and s,341

and thus these sub-clusters do not overlap. In this342

manner, for each given (s, y), we can obtain K343

sub-clusters, i.e., {Cys (i)|i = 1, 2 . . . ,K}. In order344

to select clusters that contain four sub-clusters of345

similar sizes, we consider the summed differences346

between each sub-cluster size and the average sub-347

cluster size as follows:348

G =argmin
G

∑
Ci∈G

∑
y,s∈{0,1}

1

|Ci|
· ||Cys (i)| − Ci| ,

where Ci =
1

4

∑
y,s∈{0,1}

|Cys (i)|,

s.t. |G| = Nd, G ⊂ {Ci|i = 1, 2 . . . ,K}.
(4)349

Here Nd is the number of clusters selected in350

our data mitigation step. Through the above351

equation, we extract the Nd clusters with the352

most balanced distribution of s and y into G =353

{G1,G2, . . . ,GNd
}.354

5.2 Model Bias Mitigation355

To mitigate the model bias inherent in LLMs, we356

propose to further filter out the clusters with bi-357

ased LLM predictions. Notably, here we consider358

the four sub-clusters, each of which only contains359

demonstrations of a specific s and y, within each360

cluster after our data bias mitigation step. That be-361

ing said, each cluster consists of four sub-clusters:362

Gi =
⋃

y,s∈{0,1}

Gys (i), where Gys (i) = Gi ∩ X y
s .

(5)363

As LLMs tend to exhibit different degrees of364

fairness toward various groups, the four sub-365

clusters in a cluster may not be similarly fair in366

terms of LLM predictions. Therefore, we propose367

to individually select sub-clusters for each (s, y).368

We first gather the sub-clusters from all clusters 369

with a specific (s, y) as 370

Gs,y = {Gys (1),Gys (2), . . . ,Gys (Nd)}. (6) 371

From these Nd sub-clusters with a specific s and y 372

(i.e., Gs,y), we select Nm sub-clusters with fairer 373

model predictions, denoted as G∗s,y. In this way, 374

we could exclude samples with biased model pre- 375

dictions, which could potentially elicit model bias 376

when used as demonstrations. These sub-clusters 377

are selected as follows: 378

G∗s,y = argmin
G∗

∑
C∈Gs,y

1

|C|
·
∣∣|C0| − |C1|∣∣ ,

where Cy = {x ∈ C|M(x) = y},
s.t. |G∗s,y| = Nm, G∗s,y ⊂ Gs,y.

(7) 379

Here Nm denotes the number of sub-clusters 380

selected for a given (s, y). In this way, we 381

could filter out the Nm sub-clusters on which 382

LLMs exhibit biased predictions, i.e., G∗s,y = 383

{Gys (1),Gys (2), . . . ,Gys (Nm)}. 384

5.3 Demonstration Selection 385

After two filtering steps to mitigate data bias 386

and model bias, respectively, we obtain Nm sub- 387

clusters for each of the four (s, y) pairs. To en- 388

sure that selected demonstrations contain all (s, y) 389

pairs, we propose to select M samples from each 390

of M sub-clusters in Gys based on their similarity 391

to the input sample x. Notably, as there are four 392

(s, y) pairs, it holds that M = D/4, where D 393

is the size of demonstrations for ICL. For a given 394

(s, y), the M demonstrations (denoted as Dy
s (x)) 395

are obtained as follows: 396

Dy
s (x) = argmax

Dy
s

∑
C∈Dy

s

max
c∈C

fs(x, c),

s.t. |Dy
s | = M, Dy

s ⊂ G∗s,y.
(8) 397

Here fs(·, ·) denotes the cosine similarity between 398

embeddings. The above formulation selects M 399

sub-clustersDy
s (x) from G∗s,y, with the largest sim- 400

ilarity to x. Then we select the most similar sam- 401

ple to x, in each sub-cluster, and combine them 402

into the final demonstration set D(x): 403

D(x) =
⋃

y,s∈{0,1}

⋃
D∈Dy

s (x)

argmax
c∈D

fs(x, c). (9) 404

In this manner, we combine the M = D/4 se- 405

lected samples from filtered sub-clusters from all 406

four (s, y) pairs and result in the final selected 407

demonstrations D(x) of size D. We provide de- 408

tails of the overall process in Algorithm 1. 409
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Table 1: Results of accuracy, two group fairness metrics (∆DP and ∆EO), and unfairness scores on three datasets
of the instance assessment task. We evaluate three LLMs with three baselines and our strategy FADS.

Methods Models Adult-Gender Adult-Race
Acc↑ ∆DP↓ ∆EO↓ Unfair.↓ Acc↑ ∆DP↓ ∆EO↓ Unfair.↓

Zero-shot .71±.08 .23±.03 .30±.02 .19±.02 .72±.03 .23±.04 .28±.05 .19±.04

GPT-3.5 Vanilla ICL .63±.02 .14±.02 .18±.05 .14±.06 .67±.03 .13±.03 .20±.03 .13±.03

8-shot Fair ICL .67±.03 .06±.03 .06±.04 .04±.01 .67±.01 .08±.04 .04±.01 .09±.04

FADS (Ours) .67±.08 .04±.01 .04±.01 .07±.03 .66±.04 .03±.01 .08±.03 .07±.02

GPT-3.5
Vanilla ICL .67±.02 .10±.02 .10±.05 .13±.06 .69±.03 .09±.03 .12±.03 .15±.03

16-shot
Fair ICL .65±.06 .06±.03 .06±.04 .05±.01 .65±.01 .12±.04 .09±.05 .13±.04

FADS (Ours) .68±.08 .06±.03 .05±.02 .07±.04 .66±.04 .07±.03 .08±.01 .05±.02

Zero-shot .71±.08 .26±.03 .34±.02 .18±.07 .79±.03 .14±.04 .26±.05 .16±.04

GPT-4 Vanilla ICL .71±.02 .23±.02 .34±.05 .19±.06 .77±.03 .10±.03 .12±.03 .15±.03

8-shot Fair ICL .73±.06 .16±.03 .22±.04 .14±.01 .78±.01 .18±.04 .12±.05 .13±.04

FADS (Ours) .74±.08 .06±.03 .08±.02 .13±.04 .67±.04 .08±.03 .14±.01 .10±.02

GPT-4
Vanilla ICL .81±.02 .18±.02 .14±.05 .15±.06 .67±.03 .13±.03 .18±.03 .08±.03

16-shot
Fair ICL .71±.06 .14±.03 .09±.04 .14±.01 .70±.01 .12±.04 .17±.05 .12±.04

FADS (Ours) .74±.08 .06±.03 .11±.02 .09±.04 .69±.04 .08±.03 .10±.01 .09±.02

6 Experiments410

In this section, we conduct experiments and try411

to answer the following research questions: RQ1:412

How fair are vanilla LLMs, i.e., under the zero-413

shot settings? RQ2: How is ICL helpful for LLM414

fairness? RQ3: How does our proposed strategy415

FADS perform in mitigating data bias and model416

bias when selecting demonstrations?417

6.1 Metrics418

To evaluate the prediction performance of our419

model, we employ the average accuracy (ACC)420

across the test set. To evaluate group fairness,421

we adopt demographic parity (DP) and equal-422

ized odds (EO) as our primary metrics, which423

are consistent with prior research (Chuang and424

Mroueh, 2021; Zhao and Chen, 2020; Yurochkin425

et al., 2020). As we focus on binary classification426

datasets, the model output is a prediction score427

M(x) ∈ R for each sample x. These metrics are428

then computed across all test samples as follows:429

∆DP =| 1

|X0|
∑
x∈X0

M(x)− 1

|X1|
∑
x∈X1

M(x)|,

∆EO =
∑

y∈{0,1}

∣∣My
0(x)−M

y
1(x)

∣∣ ,
where My

s(x) =
1

|X y
s |

∑
x∈X y

s

M(x).

(10)430

Here X0 and X1 denote the sets of test samples431

with a sensitive attribute value of 0 and 1, respec-432

tively. Moreover, X y
s = Xs ∩ X y denotes the sub-433

set of test samples in Xs with label y, where X y 434

denotes the set of samples with label y. s ∈ {0, 1} 435

is the sensitive attribute value. 436

Unfairness Score. In addition to group fairness 437

metrics ∆DP and ∆EO, we also consider coun- 438

terfactual fairness by measuring whether the la- 439

bel prediction will change if the sensitive attribute 440

value of the input is flipped (i.e., from 0 to 1 or 441

vice versa). This direct measurement reveals the 442

potential unfairness more clearly to users. Follow- 443

ing (Agarwal et al., 2021), we define the (counter- 444

factual) unfairness score in terms of counterfactual 445

fairness as follows: 446

Unfairness =
1

|XT |
∑
x∈XT

|M(x)−M(x)| ,

(11) 447

where x is identical to x, except that its sensitive 448

attribute value is flipped. XT is the test set. 449

6.2 Experimental Settings 450

Datasets. In our study, we evaluate the fairness 451

of LLMs with two crucial real-world tasks: in- 452

stance assessment (Pessach and Shmueli, 2022) 453

and toxicity classification (Baldini et al., 2022), 454

both of which involve binary classifications. In the 455

instance assessment task, we consider the Adult 456

dataset (Dua et al., 2017) for instance assessment, 457

involving two types of sensitive attributes: gen- 458

der and race. The binary labels represent whether 459

an individual’s annual income exceeds $50,000. 460

Samples in toxicity classification are text contents 461

collected from online platforms, with fine-grained 462

annotations of individuals, such as gender and 463

6



Table 2: Results of accuracy and two group fairness metrics (∆DP and ∆EO) on three datasets of the toxicity
classification task. We evaluate three LLMs with three baselines and our strategy FADS.

Methods Jigsaw-Gender Jigsaw-Race Jigsaw-Religion
Acc↑ ∆DP↓ ∆EO↓ Acc↑ ∆DP↓ ∆EO↓ Acc↑ ∆DP↓ ∆EO↓

GPT-3.5 (16-shot)
Zero-shot .75±.06 .15±.04 .16±.03 .67±.02 .19±.01 .18±.04 .75±.03 .25±.03 .18±.04

Vanilla ICL .71±.02 .21±.05 .08±.04 .67±.03 .14±.05 .18±.03 .73±.02 .06±.02 .10±.03

Fair ICL .74±.06 .09±.03 .06±.02 .62±.04 .09±.03 .24±.04 .72±.03 .09±.07 .14±.02

FADS (Ours) .73±.09 .06±.01 .04±.02 .63±.01 .06±.03 .12±.02 .73±.04 .06±.02 .10±.02

GPT-4 (16-shot)
Zero-shot .78±.02 .16±.02 .12±.01 .70±.03 .19±.01 .14±.05 .82±.04 .20±.04 .14±.01

Vanilla ICL .78±.04 .16±.02 .10±.05 .69±.07 .16±.01 .14±.02 .79±.03 .15±.04 .16±.02

Fair ICL .67±.09 .17±.04 .16±.03 .62±.03 .14±.05 .13±.03 .80±.06 .16±.03 .18±.03

FADS (Ours) .75±.06 .09±.05 .08±.04 .66±.10 .08±.02 .11±.03 .79±.07 .10±.02 .08±.02

race. The binary labels indicate whether the con-464

tent is toxic or not. For toxicity classification, we465

use dataset Jigsaw (cjadams, 2019), which con-466

tains text samples collected from online discus-467

sions. This dataset contains three types of sensi-468

tive attributes: gender, race, and religion. We pro-469

vide dataset statistics in Table 3 and more details470

in Appendix A.2.471

Implementation Details. We consider two pow-472

erful LLMs with large parameter sizes for fairness473

evaluation: GPT-3.5 and GPT-4 (OpenAI, 2023),474

under both the 8-shot and 16-shot settings, i.e.,475

D = 8, 16. For the text encoder to embed each in-476

put sample, we utilize Sentence-BERT (Reimers477

and Gurevych, 2019)) with a dimension size of478

768, i.e., d = 768. By default, we set the479

hyper-parameter values as follows: K = 64,480

Nd = 16, and Nm = 8. All of our experi-481

ments are conducted on a single Nvidia GeForce482

RTX A6000 GPU. Our code is provided at483

https://anonymous.4open.science/r/FADS-F932/.484

6.3 Comparative Results485

In Table 1 and Table 2, we present the results of486

various LLMs on two tasks, with three baselines487

and our proposed strategy. From the results, we488

could achieve the following observations:489

• Zero-shot Performance. Under the zero-shot490

setting, most LLMs present various degrees of491

bias in terms of group fairness. Compared to492

GPT-3.5, the larger model GPT-4 could provide493

better performance in accuracy. However, the494

improvement in fairness is not significant. This495

indicates that although a larger model size could496

bring more competitive performance in predic-497

tions, the fairness in output may not improved.498

• Vanilla ICL Performance. Comparing the re- 499

sults of vanilla ICL with the zero-shot setting, 500

we observe that appending demonstrations se- 501

lected based on similarity is capable of improv- 502

ing both the accuracy and group fairness of 503

LLMs. This implies that demonstrations could 504

provide benefits by informing the LLMs about 505

the task background to aid LLMs in perform- 506

ing fairness-aware predictions. Notably, larger 507

LLMs (e.g., GPT-4) could benefit more from 508

the strategy of vanilla ICL, compared to smaller 509

models such as GPT-3.5. Such a phenomenon 510

indicates that larger LLMs are more capable of 511

learning from demonstrations for improving the 512

group fairness of LLMs via ICL. 513

• Fair ICL Performance. Regarding the re- 514

sults with fair ICL, i.e., involving demonstra- 515

tions with balanced sensitive attribute values 516

and labels, the performance improvements of 517

both accuracy and group fairness appear to be 518

marginal. In particular, the values of ∆DP and 519

∆EO slightly decrease on most models. The re- 520

sults indicate that the benefits of fair ICL mainly 521

originate from the incorporation of demonstra- 522

tions, and are not notably related to the distri- 523

butions of labels or sensitive attribute values in 524

demonstrations. Hence, as simply selecting bal- 525

anced demonstrations is not particularly help- 526

ful, it becomes important to select demonstra- 527

tions in a more fairness-aware manner. 528

• Our Performance. With our demonstration se- 529

lection strategy, we observe that the values of 530

group fairness metrics, i.e., ∆DP and ∆EO, 531

both greatly decrease. These results validate 532

the effectiveness of our strategy in mitigating 533

both data and model bias to enhance the fairness 534
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Figure 4: The results of GPT-4 under different degrees
of data bias on Adult-Gender.

of LLMs. Furthermore, comparing the perfor-535

mance across various datasets, we observe that536

our strategy works better on toxic classification537

tasks. This is probably because our framework538

could handle the higher extent of data bias in539

the demonstrations.540

6.4 Data Bias Mitigation Performance541

In this subsection, we investigate the degree to542

which our strategy tackles the data bias issue. We543

introduce different degrees of data bias into the544

labeled set of Adult-Gender by manipulating the545

correlation between sensitive attributes and labels.546

Specifically, we consider samples from underrep-547

resented groups that are initially associated with548

the favorable label. By flipping the labels on a549

proportion of these samples to the unfavorable la-550

bel, we manually increase the correlation between551

these groups and the unfavorable label. As such,552

the selected demonstrations could easily involve553

more data bias. Here we additionally consider554

the Fair ICL baseline and a variant of our strat-555

egy by removing the data bias mitigation step, re-556

ferred to as FADS\D. From the results presented557

in Fig. 4, we could observe that, when the data558

bias is low, the performance of our strategy and its559

variant without data basis mitigation is compara-560

ble. When the data bias degree further increases,561

the unfairness scores of all methods become larger.562

However, our strategy FADS, especially compared563

with its variant FADS\D and Fair ICL, shows sig-564

nificantly better results with a much lower unfair-565

ness score. In concrete, the experiments indicate566

the effectiveness of our data bias mitigation step567

in demonstration selection.568

6.5 Model Bias Mitigation Performance569

In this subsection, we explore the effectiveness of570

our strategy in mitigating the model bias of LLMs.571

Fair Bias Bias-Instruct
Variant of GPT-4

0
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40

U
nf

ai
rn
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FADS FADS\M Fair ICL

Figure 5: The results of different GPT-4 variants under
different degrees of model bias.

We manipulate model bias by explicitly providing 572

the GPT-4 model with different instructions. We 573

consider three variants: (1) GPT-4-bias, which is 574

explicitly asked to provide more biased outputs; 575

(2) GPT-4-fair, which is directly asked to be a fair 576

assistant for assessments; (3) GPT-4-bias-instruct, 577

which injects explicit bias into the input prompts 578

as an instruction by showcasing the strong biased 579

correlations between sensitive attributes and la- 580

bels. With these models, we evaluate our strat- 581

egy, its variant without model bias mitigation (re- 582

ferred to as FADS\M), and fair ICL. As shown 583

in Fig. 5, the results indicate that when the LLM 584

is asked to output biased answers or provided with 585

biased instructions, the unfairness scores generally 586

increase. With our strategy FADS for demonstra- 587

tion selection, the unfairness score substantially 588

reduces for all variants of GPT-4. Moreover, the 589

effectiveness of FADS is outstanding in the bi- 590

ased variant of GPT-4-bias-instruct, indicating that 591

FADS is applicable to scenarios where the model 592

bias is significantly larger. 593

7 Conclusion 594

In this work, we propose to address the bias issue 595

in Large Language Models (LLMs) when they are 596

applied to human-centered decision-making tasks, 597

which could hinder their applicability. By lever- 598

aging In-Context Learning (ICL) as a fairness en- 599

hancement strategy for LLMs, we underscore its 600

potential to promote the fairness of LLMs with- 601

out comprehensive fine-tuning or a large amount 602

of training data. To address the challenges in ICL 603

due to the bias in the labeled samples and the 604

model itself, we introduce a two-step filtering pro- 605

cess that aims to mitigate these biases. The com- 606

prehensive evaluation across multiple real-world 607

tasks and datasets confirms the efficacy of our ap- 608

proach in enhancing fairness for LLMs. 609
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8 Limitations610

Despite the promising results of using In-Context611

Learning (ICL) to enhance fairness in Large Lan-612

guage Models (LLMs), several limitations remain613

in our study. First, the effectiveness of ICL heav-614

ily depends on the quality and diversity of the615

input-output pairs (i.e., demonstrations) used. If616

these demonstrations do not adequately represent617

the actual query samples in real-world scenarios,618

the model may still exhibit biased behavior. More-619

over, ICL, while bypassing the need for extensive620

re-training/fine-tuning, does not alter the underly-621

ing model architecture or the pre-trained parame-622

ters. This means that ICL’s ability to correct in-623

depth biases in LLMs, such as bias during rea-624

soning, is limited. Finally, our demonstration se-625

lection strategy assumes that a training dataset is626

available during inference, which may not always627

be feasible in practice.628

9 Ethics Statement629

In conducting this research, we adhered to eth-630

ical guidelines to ensure that our methods and631

implementations did not perpetuate or exacerbate632

discrimination against any group. We acknowl-633

edge the significant ethical responsibilities that ac-634

company the deployment of LLMs in decision-635

making tasks, particularly in sensitive areas such636

as income prediction and crime risk assessment.637

Throughout our experiments, we employed pub-638

licly available datasets, avoiding the use of pri-639

vate or personally identifiable information. Our640

demonstration selection strategy is specifically de-641

signed to mitigate biases and enhance the fairness642

of LLM outputs, aiming to contribute positively643

towards more trustworthy AI technologies. We644

also encourage the broader research community to645

critically evaluate and iteratively improve fairness-646

aware methodologies to better address the com-647

plex, multifaceted nature of bias in AI systems.648
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A Experimental Settings926

In this subsection, we introduce the details of ex-927

perimental settings.928

A.1 Models929

Large Language Models (LLMs) recently exhib-930

ited significant learning and generalizing capabil-931

ities in natural language processing due to their932

massive parameter sizes. However, LLMs also933

present challenges from different perspectives of934

trustworthiness. In our study, we conduct exper-935

iments to evaluate the fairness of three distinct936

LLMs:937

• GPT-3.5. GPT-3.5, also known as Chat-938

GPT (OpenAI, 2022), stands out for its spe-939

cialized optimization for dialogue, which sig-940

nificantly enhances its ability to follow instruc-941

tions. This capability allows for greater gener-942

alizability and personalization, such as config-943

uring the specific roles and conversation types944

of the model (Ouyang et al., 2022; Wei et al.,945

2021; Chung et al., 2022). Such a capability946

differentiates GPT-3.5 significantly from classic947

models like BERT (Devlin et al., 2018). In par-948

ticular, GPT-3.5’s advancements facilitate the949

applications of LLMs in more complex tasks950

such as question-answering, via utilizing sev-951

eral demonstrations as additional input. Nev-952

ertheless, these new capabilities inevitably in-953

troduce additional fairness issues, as the bias in954

real life could exist in the data for pre-training955

and ultimately be encoded in model parame-956

ters. The fairness issues, such as discrimina-957

tion, could raise concerns about the reliability958

of these LLMs in practice. Specifically, we uti-959

lize the gpt-3.5-turbo-0301 model for GPT-3.5.960

• GPT-4. GPT-4 (Anand et al., 2023), released961

shortly after GPT-3.5, continues to further im-962

prove the capabilities of LLMs in large-scale963

deployments (Bubeck et al., 2023). GPT-4 not964

only inherits GPT-3.5’s enhanced instruction-965

following capabilities but also introduces fur-966

ther refinements that enable new functionalities,967

such as more sophisticated question-answering968

and robust in-context learning (Wang et al.,969

2023a). GPT-4’s design aims to handle a970

broader range of user prompts and scenarios,971

thereby providing more reliable performance972

under various scenarios (Peng et al., 2023).973

Similar to GPT-3.5, the new capabilities of974

Table 3: The detailed statistics of each dataset used for
evaluation in this work.

Dataset |XL| Sens. # Feat. Label
Adult-Gender 45,222 Gender 12 Income
Adult-Race 45,222 Race 12 Income
Jigsaw-Gender 3,563 Gender - Toxicity
Jigsaw-Race 6,125 Race - Toxicity
Jigsaw-Religion 7,127 Religion - Toxicity

GPT-4 also necessitate rigorous evaluations to 975

address emergent fairness concerns and ensure 976

its trustworthy deployment in practice (Sun 977

et al., 2024). In particular, we consider the gpt- 978

4-0613 model for GPT-4. 979

A.2 Datasets 980

In this subsection, we introduce the details of the 981

datasets used in our work. The detailed statistics 982

are provided in Table 3. 983

• Adult. The Adult dataset (Dua et al., 2017) 984

is prevalently used in evaluating the fairness 985

of machine learning models. This dataset 986

originates from the 1994 U.S. Census Bureau 987

database and aims to predict whether an indi- 988

vidual’s annual income is more than $50,000 989

or not, based on their profile data. The Adult 990

Dataset contains 48,842 samples, each repre- 991

senting an individual with 12 attributes, includ- 992

ing age, weight, education level, etc. Addition- 993

ally, each individual has 2 sensitive attributes: 994

"race" and "gender". The binary label is ob- 995

tained based on whether the income is more 996

than $50,000 or not. 997

• Jigsaw. In 2019, Jigsaw (cjadams, 2019) re- 998

leased a dataset as part of the “Unintended Bias 999

in Toxicity Classification” Kaggle competition. 1000

This dataset comprises approximately two mil- 1001

lion text samples from online discussions and 1002

includes ratings for toxicity along with annota- 1003

tions for various demographic groups. A text 1004

sample is classified under a sensitive group (i.e., 1005

a given sensitive attribute value) if it has any re- 1006

lated annotation. We consider the original train- 1007

ing data as the labeled set, filtering out sam- 1008

ples without annotations. Similarly, we extract 1009

test samples from the test set in the original 1010

dataset, while removing samples without anno- 1011

tations. Each text sample is annotated with a 1012

toxicity score, with scores above 0.5 labeled as 1013

toxic. Notably, the Jigsaw dataset is obtained 1014
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Algorithm 1 Detailed overall process of our framework.

Input: Labeled sample set XL, Test sample x, Demonstration size D, hyper-parameters K, Nd, Nm.
Output: Selected in-context learning demonstrations D(x) for x.

// Preparing phase
1: Perform K-Means on XL to obtain K clusters, i.e., C1, C2, . . . , CK ;
2: for s = {0, 1} do
3: for y = {0, 1} do
4: X y

s ← {xi|ai = s, yi = y, i ∈ [1, |XL|];
5: for i = 1, 2, . . . ,K do
6: Cys (i)← Ci ∩ X y

s ;
7: end for
8: end for
9: end for

10: Obtain Nd clusters i.e., G = {G1,G2, . . . ,GNd
}, according to Eq. (4);

11: for s = {0, 1} do
12: for y = {0, 1} do
13: for i = 1, 2, . . . , Nd do
14: Gys (i)← Gi ∩ X y

s ;
15: end for
16: G∗s,y ← {G

y
s (1),Gys (2), . . . ,Gys (Nd)};

17: Obtain Nm sub-clusters, i.e., G∗s,y = {Gys (1),Gys (2), . . . ,Gys (Nm)}, according to Eq. (7);
18: end for
19: end for

// Inference phase
20: for s = {0, 1} do
21: for y = {0, 1} do
22: Select D/4 sub-clusters, Dy

s (x), from G∗s,y according to Eq. (8);
23: end for
24: end for
25: D(x)←

⋃
y,s∈{0,1}

⋃
D∈Dy

s (x)
argmaxc∈D fs(x, c).

via crowdsourcing, and thus there could be mul-1015

tiple annotations on a sample. In this case, we1016

decide the sensitive attribute values based on1017

majority voting.1018

A.3 Implementation Details1019

In this section, we introduce the implementa-1020

tion details for our experiments. Particularly, we1021

conduct all our experiments on a single Nvidia1022

GeForce RTX A6000 GPU with a memory of1023

48GB. The experiments are repeated 10 times to1024

obtain the values of accuracy, ∆DP, ∆EO, and the1025

unfairness score, along with their standard devia-1026

tion. By default, we set K = 64, Nd = 16, and1027

Nm = 8. For the text encoder to embed each input1028

sample, we utilize Sentence-BERT (Reimers and1029

Gurevych, 2019)) with a dimension size of 768,1030

i.e., d = 768. We use DecodingTrust (Wang et al.,1031

2023a), and Fairlearn (Bird et al., 2020) for evalu-1032

ation.1033

B Algorithm 1034

Here we provide the detailed overall process of our 1035

demonstration selection strategy in Algorithm 1. 1036
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