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Abstract

Recently, there has been a surge in deploying
Large Language Models (LLMs) for decision-
making tasks, such as income prediction and
crime risk assessments. Due to bias in the
pre-training data, LLMs generally present un-
fairness and discrimination against underpriv-
ileged groups. However, traditional fairness
enhancement methods are generally impracti-
cal for LLMs due to the computational cost of
fine-tuning and the black-box nature of pow-
erful LLMs. To deal with this, In-Context
Learning (ICL) offers a promising strategy for
enhancing LLM fairness through input-output
pairs, without the need for extensive retrain-
ing. Nevertheless, the efficacy of ICL is hin-
dered by the inherent bias in both data and the
LLM itself, leading to the potential exagger-
ation of existing societal disparities. In this
study, we investigate the unfairness problem
in LLMs and propose a novel demonstration
selection strategy to address data and model
biases when applying ICL. Extensive exper-
iments on various tasks and datasets validate
the superiority of our strategy.

1 Introduction

In recent years, Large Language Models (LLMs)
have shown exceptional capabilities across a vari-
ety of applications (Chowdhery et al., 2022), in-
cluding income prediction (Sun et al., 2024) and
crime risk assessments (Wang et al., 2023a). How-
ever, the widespread deployment of these mod-
els has highlighted significant bias issues. For
instance, when LLMs are used to assess job ap-
plications, inherent biases in their training data
(often derived from real-world human prejudices)
can result in preferential treatment for certain ap-
plicant groups (Bogen and Rieke, 2018; Ferrara,
2023). This can limit employment opportuni-
ties for individuals from underrepresented groups,
thereby worsening inequalities in the job mar-
ket (Raghavan et al., 2020). In addition, as shown

Q: There is a [married] [male] above [30]-years old, with
a max bill amount of [1510] ... Please predict whether this
individual has subscribed fo a term deposit.

A: Yes. One might infer a level of financial stability and
potentially a propensity for saving or investing.

Q: There is a [married] [female] above [30]-years old,
with a max bill amount of [1510] ... Please predict
whether this individual has subscribed fo a term deposit.

A: No. The max bill amount suggests that after covering
expenses, she may prioritize liquidity over term deposits.

Figure 1: An example that showcases the responses of
GPT-3.5 on predicting whether an individual has sub-
scribed to a term deposit, from the dataset Bank Mar-
keting (Moro et al., 2014).

in Fig. 1, LLMs also exhibit bias when predicting
whether an individual has subscribed to a term de-
posit (Pessach and Shmueli, 2022). Further stud-
ies have revealed that LLMs can perpetuate so-
cietal biases, favoring specific genders or races
in tasks ranging from toxicity screening (Cheng
et al., 2022), content recommendation (Gao et al.,
2023), to question answering (Zhao et al., 2023a).

Given the widespread adoption of LLMs in var-
ious sectors (Thoppilan et al., 2022), addressing
their inherent biases is crucial. However, current
strategies for enhancing fairness, such as using
fairness-aware regularization (Hardt et al., 2016;
Yurochkin et al., 2020) or modifications to bi-
ased training data (Samadi et al., 2018; Backurs
et al., 2019), are typically impractical for LLMs.
These methods face significant challenges: they
either (1) require a large number of labeled sam-
ples, which may be difficult to obtain in practice,
or (2) necessitate updates to the model parameters
which is unfeasible for complex, opaque models
like GPT-4 (OpenAl, 2023).

Due to the above two reasons, we propose to
leverage In-Context Learning (ICL) to enhance the
fairness of LLMs (Sun et al., 2024; Chhikara et al.,
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Figure 2: An example showcasing the existence of data
bias in labeled samples in the decision-making task of
predicting individual incomes., i.e., a larger proportion
of male and high-income samples.

2024). Generally, ICL allows LLMs to adapt to
new tasks, such as generating less biased outputs,
by simply appending a few input-output exam-
ples (known as demonstrations) to the query in-
put. This method infuses additional knowledge,
such as fairness awareness, into the model (Zhao
et al., 2023b; Xu et al., 2024). Consequently, ICL
sidesteps the high computational costs and exten-
sive data requirements typically associated with
fine-tuning LLMs. Nevertheless, improving the
fairness of LLMs through ICL faces two primary
challenges: (1) Data Bias. First, the bias shown
by labeled samples may be encoded in the demon-
strations. For example, as shown in Fig. 2, we
partition all labeled samples into four clusters to
examine the potential distribution unbalance be-
tween genders and income levels. We observe that
samples with a sensitive attribute value of “male”
have a higher probability of the “high-income” la-
bel. Such a correlation suggests that bias may
persist within the selected demonstrations, which
poses a significant challenge for ICL in enhanc-
ing the fairness of LLMs (Chuang and Mroueh,
2021). (2) Model Bias. ICL struggles to address
the model bias encoded within LLM parameters,
influencing the fairness of the model output. Re-
cent studies have also highlighted examples such
as the preference of ChatGPT toward libertarian
views (McGee, 2023). Unlike fine-tuning strate-
gies, ICL will not directly modify model param-
eters to mitigate such model bias. Consequently,
LLMs may still yield biased outputs even if unbi-
ased demonstrations are selected as input.

To address the challenges above, we propose
a novel Fairness-Aware Demonstration Selection
strategy, namely FADS, for improving LLM fair-
ness via ICL. To mitigate data bias that may ap-
pear in the selected demonstrations, we partition

the set of candidate demonstrations into clusters
and select the most balanced ones in terms of sen-
sitive attributes and labels. In this way, we ensure
that the demonstrations selected from these clus-
ters contain less data bias. To counteract the in-
herent model bias of LLMs, we exclude samples
that the LLM tends to make unfair predictions on.
As such, we select demonstrations that could elicit
fairer outputs by the LLM, thereby mitigating the
inherent model bias in the LLM. Our evaluation
experiments span various decision-making tasks
and datasets with different sensitive attributes. In
summary, our contributions are as follows:

* We systematically evaluate the bias exhibited
by LLMs on human-centered decision-making
tasks, highlighting the potential and challenges
to improve fairness for LLMs.

* We propose a novel demonstration selection
strategy to enhance LLM fairness with ICL, ad-
dressing both data and model biases.

* We conduct extensive experiments on vari-
ous human-centered decision-making tasks and
datasets. Experimental results demonstrate the
effectiveness of the proposed strategy.

2 Related Work

Fairness of LLLMs. The bias in LLMs can re-
sult in discriminatory outcomes against underrep-
resented groups and lead to societal harm (Wad-
hwa et al., 2022). Such concerns have encouraged
research on assessing and addressing the fairness
issues by employing LLMs (Wang et al., 2023b).
Various benchmarks have been proposed to assess
the fairness of LLMs from various perspectives,
such as CrowS-Pair (Nangia et al., 2020) for evalu-
ating stereotypical associations and HELM (Liang
et al., 2023) that involves detections of social bias.
More recently, TrustGPT (Huang et al., 2023) as-
sesses the toxicity levels in the model outputs
towards different demographic groups. Decod-
ingTrust (Wang et al., 2023a) first evaluates the
preference bias of LLMs, particularly the favor
of a particular race in predicting individual in-
comes. Trustworthy LLMs (Liu et al., 2023) and
TrustLLM (Sun et al., 2024) both evaluate various
types of bias for LLMs, including stereotyping and
preference bias. Unlike previous works that fo-
cus mainly on classification tasks, GFair (Bi et al.,
2023) evaluates the bias of LLMs on generation
tasks by analyzing model outputs when inputs are
associated with different sensitive attributes.



In-Context Learning. The concept of In-Context
Learning (ICL) illustrates LLMs’ capacity to per-
form (potentially new) tasks with several demon-
strations as additional knowledge in the input,
without explicit parameter updates (Liu et al.,
2021; Lee et al., 2022; Dong et al., 2022; Dai
et al., 2023). Recent studies indicate that the
effectiveness of ICL significantly hinges on the
construction and composition of these demonstra-
tions, including the format, content, and their or-
der (Rubin et al., 2022; Li and Qiu, 2023). There-
fore, different strategies propose to select better
demonstrations, based on scores from a learned re-
triever (Hu et al., 2022; Poesia et al., 2022) or sim-
ilarity between demonstration embeddings (Liu
et al., 2022). However, when applied to improv-
ing the fairness of LLMs, recent studies (Wang
et al., 2023a; Sun et al., 2024) point out that ICL
with demonstrations selected based on similarity
only yields marginal improvements in fairness. In
a more recent work (Chhikara et al., 2024), the au-
thors introduce fairness definitions as additional
prompts for selected demonstrations. Neverthe-
less, the selection is heuristic, relying on choosing
an equal number of demonstrations with different
sensitive attribute values and labels. As such, the
inherent data bias in demonstrations and the model
bias in LLMs could not be effectively addressed.

3 Fairness of LLMs in Decision-Making

When applying LLMs to human-centered
decision-making scenarios, their fairness issues
become critical, as exhibited prejudice against
certain demographic groups could jeopardize
the trustworthiness of the model. Generally,
group fairness is among the most commonly used
fairness criteria, which refers to the capability
of LLMs to ensure that different groups (e.g.,
individuals with different genders or races) enjoy
their fair share of interest. Another widely used
fairness notion, counterfactual fairness, requires
the model to output consistent predictions for
each individual when the sensitive attribute is
changed. Although existing works have observed
the issue of bias in LLMs, the group and counter-
factual fairness of LLMs remains under-explored,
especially in human-centered decision-making
tasks (Chhikara et al., 2024). Therefore, we
explore the task of decision-making in this study,
aiming to better understand and address bias
issues in LL.Ms applied to this scenario.
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Figure 3: The unfairness scores of various LLMs on the
Adult dataset under the zero-shot setting. The original
prompt directly inputs the values and attribute names
as a list, and the structured prompt formats attribute
values as a sentence.

3.1 Fairness-Aware Decision-Making Tasks

Here we introduce the preliminaries for the
fairness-aware decision-making tasks studied in
this paper. We denote Z = X x ) as the input
space, where X is the input space of all textual in-
put samples. ) = {0, 1} is the label space of the
binary decision-making task. Notably, our work
could be easily extended to non-binary scenarios.
We consider a sensitive attribute s € {0,1} for
each sample z € X. In each specific task, the
dataset D is comprised of two disjoint subsets: the
labeled set X7 and the test set Xr. In general,
as there are typically sufficient samples in X7, we
could select demonstrations from them for ICL.

3.2 Zero-shot Evaluation of Fairness

We first perform a zero-shot evaluation for LLMs
on decision-making tasks to investigate their capa-
bility of enhancing fairness without ICL. In par-
ticular, we first consider the task of predicting
the annual income for individuals on the Adult
dataset (Dua et al., 2017), based on the character-
istics of each individual as inputs. As the char-
acteristics include sensitive attributes like gender,
fairness is particularly important in this decision-
making scenario (Chhikara et al., 2024). We uti-
lize structured prompts, inclusive of instructions,
designed to elicit fair and unbiased responses from
LLMs. The template incorporates special tokens
that mark the beginning and end of the prompts,
aiding the LLMs in generating responses that are
not only relevant but also aligned with fairness
guidelines. We utilize a Markdown-style template,
due to its effectiveness in eliciting clear output
from LLMs. We provide an example of the struc-
tured prompt in the zero-shot setting as follows.



You are an assistant for assessing the annual
income of individuals. There is a [RACE]
[GENDER] with an age of [AGE] ...

Please predict the range of the annual income of
this individual. The answer should be chosen from
(1) less than 50K and (2) more than 50K.

In addition to the structured prompt above, we
also consider directly using original values and at-
tributes as input without any textual description
(i.e., using the original prompt). We consider the
(counterfactual) unfairness score (Agarwal et al.,
2021) as the evaluation metric, which is defined as
the ratio of predictions that change when the sensi-
tive attributes of inputs are changed (the zero-shot
results on group fairness provided in Sec. 6.3). We
also consider a variant of GPT-4 by directly asking
it to output fairer outputs, i.e., GPT-4-Fair. From
the results with both types of prompts in Fig. 3,
we observe that the unfairness score is surpris-
ingly high for powerful LLMs like GPT4, even
with structured prompts. The results indicate that
solving fairness issues in decision-making tasks is
difficult, regardless of whether model sizes are in-
creased or alignment tuning is conducted. In the
following section, we further explore various ICL
strategies to enhance the fairness of LLMs.

4 ICL for Improving Fairness of LLMs

Generally, in-context learning (ICL) represents a
methodology whereby language models can ac-
quire knowledge to solve new tasks through a
small set of examples (referred to as demonstra-
tions) (Brown et al., 2020). ICL enables LLMs to
undertake specific tasks by utilizing a task-focused
prompt P, which aggregates [ demonstrations
into the form D = [z1, 29,...,2p|. Here, each
demonstration z; = (x;, s;,y;) is a labeled sam-
ple that includes the input z;, its corresponding
label y;, and its sensitive attribute s; € {0,1}.
Notably, we include the sensitive attribute in each
demonstration, which is important for predictions
in decision-making tasks (Chuang and Mroueh,
2021; Slack et al., 2020). With these demonstra-
tions as input context, LLMs learn to deal with the
specific task presented by D. The probability of
a candidate answer y; provided by the LLM M
could be represented as follows, with the K se-
lected demonstrations:

C 2Dy Xy Si)

()
where D(x;) is the selected demonstration set tai-
lored for input sample x;.

P(yj|$i’D($i)) =M (%‘\2717227 .

4.1 Baseline Methods

To employ ICL for enhancing the fairness of
LLMs, we consider two baseline methods:

e Vanilla ICL. It is a foundational approach
that incorporates the use of K examples of
instruction-output pairs (i.e., demonstrations) to
guide the generation of fair and unbiased re-
sponses in LL.Ms. We select demonstrations
according to their similarity to the input query
(based on embeddings), without any strategies
tailored for fairness enhancements.

 Fair ICL. To exploit the benefits of ICL in im-
proving fairness, we select demonstrations that
are balanced in terms of sensitive attribute val-
ues and labels, i.e., the same number of demon-
strations with each sensitive attribute value and
label. As noted in previous research (Wang
et al., 2023a; Sun et al., 2024), incorporating
such a balanced set of demonstrations could
benefit the fairness of LLMs.

Nevertheless, recent works (Wang et al., 2023a;
Chhikara et al., 2024; Sun et al., 2024) point out
that these demonstration selection strategies only
provide marginal improvements in LLM fairness,
as LLM could be easily affected by the bias in the
demonstrations provided (Si et al., 2023).

5 FADS: Fairness-Aware Demonstration
Selection

In this section, we introduce our framework FADS
that aims to enhance the fairness of LLMs via
ICL by selecting demonstrations while dealing
with data bias and model bias. FADS consists of
two filtering steps to address these two types of
bias, respectively, by filtering out potentially bi-
ased samples. The demonstrations are only se-
lected from the remaining samples.

5.1 Data Bias Mitigation

In the first step of filtering, we aim to mitigate data
bias by filtering out samples with a strong correla-
tion between a sensitive attribute and a label. With
the labeled set (i.e., the training set of a dataset)
Xy, = {x1,22,...,7x,)}, to efficiently filter out
biased samples, we first partition A, into K clus-
ters based on their embeddings. The embeddings
are obtained from a pre-trained text encoder (e.g.,
Sentence-BERT (Reimers and Gurevych, 2019)):
X; = Menc(2;), where x; € R is the embedding



vector, and d is the dimension size. Specifically,
we obtain K clusters via K-Means clustering:

C1,Ca,...,Cxk = K-Means(Xp), 2)

where C; is the i-th cluster. To mitigate data bias,
we propose to filter out the clusters with an imbal-
anced distribution of sensitive attribute values and
labels. In particular, we first divide each cluster
into four sub-clusters, i.e.,

Ci= |J cl), where CY(i)

y,s€{0,1}

:CiﬂXSy.

3)
Each sub-cluster corresponds to a specific ¢ and s,
and thus these sub-clusters do not overlap. In this
manner, for each given (s,y), we can obtain K
sub-clusters, i.e., {C¥(i)|i = 1,2..., K}. In order
to select clusters that contain four sub-clusters of
similar sizes, we consider the summed differences
between each sub-cluster size and the average sub-
cluster size as follows:

= argmln Z Z

Ci€G y,s€{0, 1}
1 .
where C; = 1 Z ICY(3)],
y,s€{0,1}
=Ny, Gc{Gli=1,2...,K}.

’Cy ’ CZ‘ )

s.t. |G|
4)

Here N, is the number of clusters selected in
our data mitigation step. Through the above
equation, we extract the N, clusters with the
most balanced distribution of s and y into G =

{gla gQa vy gNd}
5.2 Model Bias Mitigation

To mitigate the model bias inherent in LLMs, we
propose to further filter out the clusters with bi-
ased LLM predictions. Notably, here we consider
the four sub-clusters, each of which only contains
demonstrations of a specific s and y, within each
cluster after our data bias mitigation step. That be-
ing said, each cluster consists of four sub-clusters:

Gi= |J 0Y), where G¥(i)

y,s€{0,1}

:giﬂXg”.

(&)

As LLMs tend to exhibit different degrees of
fairness toward various groups, the four sub-
clusters in a cluster may not be similarly fair in
terms of LLM predictions. Therefore, we propose
to individually select sub-clusters for each (s, y).

We first gather the sub-clusters from all clusters
with a specific (s, y) as

Isy = 19¢(1),64(2), ..., G{(Na)}. ()

From these N, sub-clusters with a specific s and y
(i.e., Gsy), we select IV, sub-clusters with fairer
model predictions, denoted as G . In this way,
we could exclude samples with biased model pre-
dictions, which could potentially elicit model bias
when used as demonstrations. These sub-clusters
are selected as follows:

Goy= argmm Z |
CeGs,y
where CY = {z € C|M(z) =y},
s.t. |g;§y| = Nn, g;jy C Gsy-
Here N,, denotes the number of sub-clusters
selected for a given (s,y). In this way, we

could filter out the N, sub-clusters on which
LLMs exhibit biased predictions, i.e., G;, =

{64(1),64(2), ..., G¢(Nm) }-

5.3 Demonstration Selection

[1e? = 1et
(M

After two filtering steps to mitigate data bias
and model bias, respectively, we obtain /V,, sub-
clusters for each of the four (s,y) pairs. To en-
sure that selected demonstrations contain all (s, y)
pairs, we propose to select M samples from each
of M sub-clusters in GY based on their similarity
to the input sample x. Notably, as there are four
(s,y) pairs, it holds that M = D/4, where D
is the size of demonstrations for ICL. For a given
(s,y), the M demonstrations (denoted as D (z))
are obtained as follows:

DY(x) = argmax Z max fs(x, ¢),
DY cepy € )
st. [DY| = M, DY C G .

Here f,(-,-) denotes the cosine similarity between

embeddings. The above formulation selects M
sub-clusters D () from G, with the largest sim-

ilarity to . Then we select the most similar sam-
ple to x, in each sub-cluster, and combine them
into the final demonstration set D(z):

D(z) = U U argmax fs(z,c). (9)

y,s€{0,1} DeDY (z) ceP

In this manner, we combine the M = D/4 se-
lected samples from filtered sub-clusters from all
four (s,y) pairs and result in the final selected
demonstrations D(z) of size D. We provide de-
tails of the overall process in Algorithm 1.



Table 1: Results of accuracy, two group fairness metrics (ADP and AEO), and unfairness scores on three datasets
of the instance assessment task. We evaluate three LLMs with three baselines and our strategy FADS.

Methods | Models Adult-Gender Adult-Race
Acct ADP| AEO| Unfair.] | Acct ADP| AEO| Unfair.}
Zero-shot J14+.08  .23+.03 .30+.02 19402 | .72+.03 .23+.04 .28+.05 .19+.04
GPT-3.5 | Vanilla ICL .63+.02 .14+.02 .18+.05 .14+.06 | .67+.03 .13+.03 .20+.03 .13+£.03
8-shot Fair ICL .67+.03  .06+.03 .06+.04 .04+.01 | .67+.01 .08+.04 .04+01 .09+.04
FADS (Ours) | .67+.08 .04+.01 .04+.01 .07+£.03 | .66+.04 .03+.01 .08+.03 .07+.02
GPT3.5 Vapilla ICL .67+.02  .10+£.02 .10+.05 .13+£.06 | .69+.03 .09+.03 .12+.03 .15+.03
16-shot Fair ICL .65+.06 .06+.03 .06+.04 .05+£.01 | .65+.01 .12+.04 .09+.05 .13+£.04
FADS (Ours) | .684+.08 .06+.03 .05+.02 .07+.04 | .66+.04 .07+.03 .08+.01 .05+.02
Zero-shot J1+.08  .26+.03  .344+.02  .18+.07 | .79+.03 .14+.04 .26+.05 .164.04
GPT-4 Vanilla ICL J1+.02  23+£.02 .34+.05 .19+06 | .77+.03 .10+.03 12403 .15+.03
8-shot Fair ICL 73+.06  .16+.03 .224.04 .14+.01 | .78+.01 .18+.04 12+.05 .134.04
FADS (Ours) | .744+.08 .06+.03 .08+.02 .13+.04 | .674+.04 .08+.03 .144+.01 .10+.02
GPT-A4 Vapilla ICL B1+.02  .18+.02 .14+.05 .15+.06 | .67+.03 .13+.03 .18+.03 .08+.03
16-shot Fair ICL J1+.06 14403  .094+.04 .14+.01 | .70+.01  .124+.04 .17+£05 12404
FADS (Ours) | .744+.08 .06+.03 .11+.02 .09+.04 | .69+.04 .08+.03 .10+.01 .09+.02

6 Experiments

In this section, we conduct experiments and try
to answer the following research questions: RQ1:
How fair are vanilla LLMs, i.e., under the zero-
shot settings? RQ2: How is ICL helpful for LLM
fairness? RQ3: How does our proposed strategy
FADS perform in mitigating data bias and model
bias when selecting demonstrations?

6.1 Metrics

To evaluate the prediction performance of our
model, we employ the average accuracy (ACC)
across the test set. To evaluate group fairness,
we adopt demographic parity (DP) and equal-
ized odds (EO) as our primary metrics, which
are consistent with prior research (Chuang and
Mroueh, 2021; Zhao and Chen, 2020; Yurochkin
et al., 2020). As we focus on binary classification
datasets, the model output is a prediction score
M(x) € R for each sample =. These metrics are
then computed across all test samples as follows:

A —
bP |»c|ZM mZM

reXy TEX]
AEO— Y [WHe) - M),
ye{0,1}
where ./\/l |Xy| Z M(x

zeXY
(10)
Here Xy and &) denote the sets of test samples
with a sensitive attribute value of 0 and 1, respec-
tively. Moreover, XY = X, N XY denotes the sub-

set of test samples in Xy with label y, where XY
denotes the set of samples with label y. s € {0,1}
is the sensitive attribute value.

Unfairness Score. In addition to group fairness
metrics ADP and AEO, we also consider coun-
terfactual fairness by measuring whether the la-
bel prediction will change if the sensitive attribute
value of the input is flipped (i.e., from O to 1 or
vice versa). This direct measurement reveals the
potential unfairness more clearly to users. Follow-
ing (Agarwal et al., 2021), we define the (counter-
factual) unfairness score in terms of counterfactual
fairness as follows:

|X1T, S M) - M(@)]

zEXT
1D
where T is identical to x, except that its sensitive
attribute value is flipped. Xr is the test set.

Unfairness =

6.2 Experimental Settings

Datasets. In our study, we evaluate the fairness
of LLMs with two crucial real-world tasks: in-
stance assessment (Pessach and Shmueli, 2022)
and toxicity classification (Baldini et al., 2022),
both of which involve binary classifications. In the
instance assessment task, we consider the Adult
dataset (Dua et al., 2017) for instance assessment,
involving two types of sensitive attributes: gen-
der and race. The binary labels represent whether
an individual’s annual income exceeds $50,000.
Samples in toxicity classification are text contents
collected from online platforms, with fine-grained
annotations of individuals, such as gender and



Table 2: Results of accuracy and two group fairness metrics (ADP and AEO) on three datasets of the toxicity

classification task. We evaluate three LLMs with three baselines and our strategy FADS.

Methods Jigsaw-Gender Jigsaw-Race Jigsaw-Religion

Acct ADP|  AEO] Acct ADP| AEOJ Acct ADP| AEOJ
GPT-3.5 (16-shot)

Zero-shot 754.06  .154+.04 .16+.03 | .67+.02 .194+.01 .18+.04 | .75+£.03 .254+.03 .18+.04

Vanilla ICL J1+.02 21405 .08+.04 | .67+.03 .144+.05 .18+.03 | .73+£.02 .06+.02 .10+.03

Fair ICL TJ44+.06  .09+.03 .06+.02 | .62+.04 .09+.03 .244.04 | .724+.03 .09+.07 .144.02

FADS (Ours) | .73+.09 .06+.01 .04+.02 | .63+.01 .06+.03 .124+.02 | .73+.04 .06+.02 .10+.02

GPT-4 (16-shot)

Zero-shot 784+.02  .16+.02  .12+.01 | .70+£.03 .194+.01 .14+.05 | .82+.04 .204+.04 .14+.01

Vanilla ICL 784+.04  .164.02  .10+.05 | .69+.07 .164.01 .14+.02 | .79+£.03 .154+.04 .16+.02

Fair ICL 67+.09 .17+.04 .164.03 | .624+.03 .14+.05 .134+.03 | .80+.06 .16+.03 .18+.03

FADS (Ours) | .754+.06 .09+.05 .08+.04 | .66+.10 .08+.02 .11+.03 | .794+.07 .10+£.02 .08+.02

race. The binary labels indicate whether the con-
tent is toxic or not. For toxicity classification, we
use dataset Jigsaw (cjadams, 2019), which con-
tains text samples collected from online discus-
sions. This dataset contains three types of sensi-
tive attributes: gender, race, and religion. We pro-
vide dataset statistics in Table 3 and more details
in Appendix A.2.

Implementation Details. We consider two pow-
erful LLMs with large parameter sizes for fairness
evaluation: GPT-3.5 and GPT-4 (OpenAl, 2023),
under both the 8-shot and 16-shot settings, i.e.,
D = 8, 16. For the text encoder to embed each in-
put sample, we utilize Sentence-BERT (Reimers
and Gurevych, 2019)) with a dimension size of
768, ie., d = 768. By default, we set the
hyper-parameter values as follows: K = 64,
Ny = 16, and N,, = 8. All of our experi-
ments are conducted on a single Nvidia GeForce
RTX A6000 GPU. Our code is provided at
https://anonymous.4open.science/r/FADS-F932/.

6.3 Comparative Results

In Table 1 and Table 2, we present the results of
various LLMs on two tasks, with three baselines
and our proposed strategy. From the results, we
could achieve the following observations:

* Zero-shot Performance. Under the zero-shot
setting, most LLMs present various degrees of
bias in terms of group fairness. Compared to
GPT-3.5, the larger model GPT-4 could provide
better performance in accuracy. However, the
improvement in fairness is not significant. This
indicates that although a larger model size could
bring more competitive performance in predic-
tions, the fairness in output may not improved.

* Vanilla ICL Performance. Comparing the re-
sults of vanilla ICL with the zero-shot setting,
we observe that appending demonstrations se-
lected based on similarity is capable of improv-
ing both the accuracy and group fairness of
LLMs. This implies that demonstrations could
provide benefits by informing the LLMs about
the task background to aid LLMs in perform-
ing fairness-aware predictions. Notably, larger
LLMs (e.g., GPT-4) could benefit more from
the strategy of vanilla ICL, compared to smaller
models such as GPT-3.5. Such a phenomenon
indicates that larger LLMs are more capable of
learning from demonstrations for improving the
group fairness of LLMs via ICL.

* Fair ICL Performance. Regarding the re-
sults with fair ICL, i.e., involving demonstra-
tions with balanced sensitive attribute values
and labels, the performance improvements of
both accuracy and group fairness appear to be
marginal. In particular, the values of ADP and
AEO slightly decrease on most models. The re-
sults indicate that the benefits of fair ICL mainly
originate from the incorporation of demonstra-
tions, and are not notably related to the distri-
butions of labels or sensitive attribute values in
demonstrations. Hence, as simply selecting bal-
anced demonstrations is not particularly help-
ful, it becomes important to select demonstra-
tions in a more fairness-aware manner.

* Our Performance. With our demonstration se-
lection strategy, we observe that the values of
group fairness metrics, i.e., ADP and AEO,
both greatly decrease. These results validate
the effectiveness of our strategy in mitigating
both data and model bias to enhance the fairness
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Figure 4: The results of GPT-4 under different degrees
of data bias on Adult-Gender.

of LLMs. Furthermore, comparing the perfor-
mance across various datasets, we observe that
our strategy works better on toxic classification
tasks. This is probably because our framework
could handle the higher extent of data bias in
the demonstrations.

6.4 Data Bias Mitigation Performance

In this subsection, we investigate the degree to
which our strategy tackles the data bias issue. We
introduce different degrees of data bias into the
labeled set of Adult-Gender by manipulating the
correlation between sensitive attributes and labels.
Specifically, we consider samples from underrep-
resented groups that are initially associated with
the favorable label. By flipping the labels on a
proportion of these samples to the unfavorable la-
bel, we manually increase the correlation between
these groups and the unfavorable label. As such,
the selected demonstrations could easily involve
more data bias. Here we additionally consider
the Fair ICL baseline and a variant of our strat-
egy by removing the data bias mitigation step, re-
ferred to as FADS\D. From the results presented
in Fig. 4, we could observe that, when the data
bias is low, the performance of our strategy and its
variant without data basis mitigation is compara-
ble. When the data bias degree further increases,
the unfairness scores of all methods become larger.
However, our strategy FADS, especially compared
with its variant FADS\D and Fair ICL, shows sig-
nificantly better results with a much lower unfair-
ness score. In concrete, the experiments indicate
the effectiveness of our data bias mitigation step
in demonstration selection.

6.5 Model Bias Mitigation Performance

In this subsection, we explore the effectiveness of
our strategy in mitigating the model bias of LL.Ms.

40 FADS FADS\M Fair ICL
230 1
£ -

& 20 T I I
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Figure 5: The results of different GPT-4 variants under
different degrees of model bias.

We manipulate model bias by explicitly providing
the GPT-4 model with different instructions. We
consider three variants: (1) GPT-4-bias, which is
explicitly asked to provide more biased outputs;
(2) GPT-4-fair, which is directly asked to be a fair
assistant for assessments; (3) GPT-4-bias-instruct,
which injects explicit bias into the input prompts
as an instruction by showcasing the strong biased
correlations between sensitive attributes and la-
bels. With these models, we evaluate our strat-
egy, its variant without model bias mitigation (re-
ferred to as FADS\M), and fair ICL. As shown
in Fig. 5, the results indicate that when the LLM
is asked to output biased answers or provided with
biased instructions, the unfairness scores generally
increase. With our strategy FADS for demonstra-
tion selection, the unfairness score substantially
reduces for all variants of GPT-4. Moreover, the
effectiveness of FADS is outstanding in the bi-
ased variant of GPT-4-bias-instruct, indicating that
FADS is applicable to scenarios where the model
bias is significantly larger.

7 Conclusion

In this work, we propose to address the bias issue
in Large Language Models (LLMs) when they are
applied to human-centered decision-making tasks,
which could hinder their applicability. By lever-
aging In-Context Learning (ICL) as a fairness en-
hancement strategy for LLMs, we underscore its
potential to promote the fairness of LLMs with-
out comprehensive fine-tuning or a large amount
of training data. To address the challenges in ICL
due to the bias in the labeled samples and the
model itself, we introduce a two-step filtering pro-
cess that aims to mitigate these biases. The com-
prehensive evaluation across multiple real-world
tasks and datasets confirms the efficacy of our ap-
proach in enhancing fairness for LLMs.



8 Limitations

Despite the promising results of using In-Context
Learning (ICL) to enhance fairness in Large Lan-
guage Models (LLMs), several limitations remain
in our study. First, the effectiveness of ICL heav-
ily depends on the quality and diversity of the
input-output pairs (i.e., demonstrations) used. If
these demonstrations do not adequately represent
the actual query samples in real-world scenarios,
the model may still exhibit biased behavior. More-
over, ICL, while bypassing the need for extensive
re-training/fine-tuning, does not alter the underly-
ing model architecture or the pre-trained parame-
ters. This means that ICL’s ability to correct in-
depth biases in LLMs, such as bias during rea-
soning, is limited. Finally, our demonstration se-
lection strategy assumes that a training dataset is
available during inference, which may not always
be feasible in practice.

9 Ethics Statement

In conducting this research, we adhered to eth-
ical guidelines to ensure that our methods and
implementations did not perpetuate or exacerbate
discrimination against any group. We acknowl-
edge the significant ethical responsibilities that ac-
company the deployment of LLMs in decision-
making tasks, particularly in sensitive areas such
as income prediction and crime risk assessment.
Throughout our experiments, we employed pub-
licly available datasets, avoiding the use of pri-
vate or personally identifiable information. Our
demonstration selection strategy is specifically de-
signed to mitigate biases and enhance the fairness
of LLM outputs, aiming to contribute positively
towards more trustworthy Al technologies. We
also encourage the broader research community to
critically evaluate and iteratively improve fairness-
aware methodologies to better address the com-
plex, multifaceted nature of bias in Al systems.
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A Experimental Settings

In this subsection, we introduce the details of ex-
perimental settings.

A.1 Models

Large Language Models (LLMs) recently exhib-
ited significant learning and generalizing capabil-
ities in natural language processing due to their
massive parameter sizes. However, LLMs also
present challenges from different perspectives of
trustworthiness. In our study, we conduct exper-
iments to evaluate the fairness of three distinct
LLMs:

e GPT-3.5. GPT-3.5, also known as Chat-
GPT (OpenAl, 2022), stands out for its spe-
cialized optimization for dialogue, which sig-
nificantly enhances its ability to follow instruc-
tions. This capability allows for greater gener-
alizability and personalization, such as config-
uring the specific roles and conversation types
of the model (Ouyang et al., 2022; Wei et al.,
2021; Chung et al., 2022). Such a capability
differentiates GPT-3.5 significantly from classic
models like BERT (Devlin et al., 2018). In par-
ticular, GPT-3.5’s advancements facilitate the
applications of LLMs in more complex tasks
such as question-answering, via utilizing sev-
eral demonstrations as additional input. Nev-
ertheless, these new capabilities inevitably in-
troduce additional fairness issues, as the bias in
real life could exist in the data for pre-training
and ultimately be encoded in model parame-
ters. The fairness issues, such as discrimina-
tion, could raise concerns about the reliability
of these LLMs in practice. Specifically, we uti-
lize the gpt-3.5-turbo-0301 model for GPT-3.5.

e GPT-4. GPT-4 (Anand et al., 2023), released
shortly after GPT-3.5, continues to further im-
prove the capabilities of LLMs in large-scale
deployments (Bubeck et al., 2023). GPT-4 not
only inherits GPT-3.5’s enhanced instruction-
following capabilities but also introduces fur-
ther refinements that enable new functionalities,
such as more sophisticated question-answering
and robust in-context learning (Wang et al.,
2023a). GPT-4’s design aims to handle a
broader range of user prompts and scenarios,
thereby providing more reliable performance
under various scenarios (Peng et al., 2023).
Similar to GPT-3.5, the new capabilities of
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Table 3: The detailed statistics of each dataset used for
evaluation in this work.

Dataset |Xz]  Sens. #Feat. Label

Adult-Gender | 45,222 Gender 12 Income
Adult-Race 45,222  Race 12 Income
Jigsaw-Gender | 3,563 Gender - Toxicity
Jigsaw-Race 6,125  Race - Toxicity
Jigsaw-Religion | 7,127 Religion - Toxicity

GPT-4 also necessitate rigorous evaluations to
address emergent fairness concerns and ensure
its trustworthy deployment in practice (Sun
et al., 2024). In particular, we consider the gpt-
4-0613 model for GPT-4.

A.2 Datasets

In this subsection, we introduce the details of the
datasets used in our work. The detailed statistics
are provided in Table 3.

e Adult. The Adult dataset (Dua et al., 2017)
is prevalently used in evaluating the fairness
of machine learning models. This dataset
originates from the 1994 U.S. Census Bureau
database and aims to predict whether an indi-
vidual’s annual income is more than $50,000
or not, based on their profile data. The Adult
Dataset contains 48,842 samples, each repre-
senting an individual with 12 attributes, includ-
ing age, weight, education level, etc. Addition-
ally, each individual has 2 sensitive attributes:
"race" and "gender". The binary label is ob-
tained based on whether the income is more
than $50,000 or not.

» Jigsaw. In 2019, Jigsaw (cjadams, 2019) re-
leased a dataset as part of the “Unintended Bias
in Toxicity Classification” Kaggle competition.
This dataset comprises approximately two mil-
lion text samples from online discussions and
includes ratings for toxicity along with annota-
tions for various demographic groups. A text
sample is classified under a sensitive group (i.e.,
a given sensitive attribute value) if it has any re-
lated annotation. We consider the original train-
ing data as the labeled set, filtering out sam-
ples without annotations. Similarly, we extract
test samples from the test set in the original
dataset, while removing samples without anno-
tations. Each text sample is annotated with a
toxicity score, with scores above 0.5 labeled as
toxic. Notably, the Jigsaw dataset is obtained



Algorithm 1 Detailed overall process of our framework.

Input: Labeled sample set X7, Test sample x, Demonstration size D, hyper-parameters K, Ng, Np,.
Output: Selected in-context learning demonstrations D(z) for .

// Preparing phase

aCK;

1. Perform K-Means on A7, to obtain K clusters, i.e., C1,Co, . ..

2: for s = {0,1} do

3: for y = {0,1} do

4: XY — {xila; = s,y; = y,i € [1,|XL]];

5: fori=1,2,..., K do

6: Cf;f(z) %Ciﬂ.)(:gy;

7: end for

8: end for

9: end for

10: Obtain Ny clusters i.e., G = {G1,Ga, ..., Gn, }, according to Eq. (4);

—
—

: for s ={0,1} do

12: for y = {0,1} do

13: fori:=1,2,...,N;do

14: Gi(i) «+ Gin &Y,

15: end for

16: Gy < {G4(1),G4(2),...,G4(Ny)};
17:

18: end for

19: end for

// Inference phase
20: for s = {0,1} do
21: for y = {0,1} do

Obtain N, sub-clusters, i.e., G5, = {G¥(1),G¢(2),...,G¢(Nm)}, according to Eq. (7);

22: Select D /4 sub-clusters, D¢ (x), from G} according to Eq. (8);
23: end for
24: end for

25: D(x) < Uy sef0,13 Upepy (») 2r8max ep fs(z, ).

via crowdsourcing, and thus there could be mul-
tiple annotations on a sample. In this case, we
decide the sensitive attribute values based on
majority voting.

A.3 Implementation Details

In this section, we introduce the implementa-
tion details for our experiments. Particularly, we
conduct all our experiments on a single Nvidia
GeForce RTX A6000 GPU with a memory of
48GB. The experiments are repeated 10 times to
obtain the values of accuracy, ADP, AEO, and the
unfairness score, along with their standard devia-
tion. By default, we set K = 64, N; = 16, and
N, = 8. For the text encoder to embed each input
sample, we utilize Sentence-BERT (Reimers and
Gurevych, 2019)) with a dimension size of 768,
i.e., d = 768. We use DecodingTrust (Wang et al.,
2023a), and Fairlearn (Bird et al., 2020) for evalu-
ation.

B Algorithm

Here we provide the detailed overall process of our
demonstration selection strategy in Algorithm 1.
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