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ABSTRACT

Knowledge distillation (KD) has been extensively employed to transfer the knowl-
edge using the soft label from a large teacher model to the smaller students, where
the parameters of the teacher are fixed (or partially) during training. Recent stud-
ies show that this mode may cause difficulties in knowledge transfer due to the
mismatched model capacities. To alleviate the mismatch problem, adjustment of
temperature parameters, label smoothing and teacher-student joint training meth-
ods (online distillation) to smooth the soft label of a teacher network, have been
proposed. But those methods rarely explain the effect of smoothed soft labels
to enhance the KD performance. The main contributions of our work are the
discovery, analysis, and validation of the effect of the smoothed soft label and a less
time-consuming and adaptive transfer of the teacher’s knowledge method, namely
PESF-KD by adaptive tuning soft labels of the teacher network. Technically, we
first mathematically formulate the mismatch as the sharpness gap between teacher’s
and student’s predictive distributions, where we show such a gap can be narrowed
with the appropriate smoothness of the soft label. Then, we introduce an adapter
module for the teacher and only update the adapter to obtain soft labels with appro-
priate smoothness. Experiments on various benchmarks show that PESF-KD can
significantly reduce the training cost while obtaining competitive results compared
to advanced online distillation methods.

1 INTRODUCTION

Knowledge distillation (KD) (Hinton et al., 2015), as an important method for model compression,
has been widely used in various fields (Jin et al., 2019; Tian et al., 2020; Zhang et al., 2022) of deep
learning. This traditional paradigm (Tian et al., 2020; Passalis & Tefas, 2018; Park et al., 2019)
utilizes a pre-trained teacher network to obtain a student network that is close to the teacher network
but with fewer parameters and the prediction output (soft label) is produced by the fixed teacher.

Label smoothing (LS) (Szegedy et al., 2016) is another method to produce soft labels to train a model.
Compared with KD, it can be harmful to the training of the network because teachers in KD can
understand the nuances of different classes, and such inter-class information brings more information
than label smoothing and helps students generalize some unseen data (Müller et al., 2019). However,
when independently training the model from scratch, the larger model is more likely to output sharper
values and obtain better accuracy, while the smaller model is more likely to output smoother values
and obtain poorer accuracy (Chen et al., 2021; Zhu & Wang, 2021; Mirzadeh et al., 2020; Cho &
Hariharan, 2019), which is called the capacity mismatch problem (Park et al., 2021; Zhu & Wang,
2021; Jin et al., 2019; Mirzadeh et al., 2020) and makes the knowledge transfer difficulty of the such
soft label (Gou et al., 2021) in KD.

One of the solutions to reducing this transfer difficulty is to manually smooth the teacher’s output.
Chandrasegaran et al. (2022) point out that KD can be compatible with LS when the temperature is
low, i.e., the teacher network trained by label smoothing can produce smoother soft labels to train a
better student. Müller et al. (2019) indicate that the label smoothness of the target provided by the
teacher exerts a great influence on the student network, and the difference in information between
classes determines whether the student’s performance can be improved. But manual conditioning is
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quite difficult and inefficient. Manually selecting the hyperparameters of LS to get the right teacher to
provide a soft label is too resource-intensive. And the label smoothness controlled by the temperature
may cause the loss of inter-class information when the temperature is not right.

The other type of method that can reduce this mismatch problem is online distillation (e.g.,
DML (Zhang et al., 2018), KDCL (Guo et al., 2020) and SFTN (Park et al., 2021)) not requir-
ing manual conditioning. The idea behind online KD methods is the same: using joint training
so that the teacher network can be optimized, which makes it easier for students to learn from the
teacher. In our preliminary experiments (see Figure 2), we found an interesting phenomenon of online
distillation: if the teacher network continues to fine-tune through the ground truth labels with the
rest of the settings as the vanilla KD, where teacher network can also get the gradient information
from the KD loss term, then the accuracy of the distilled student network is better and the teacher’s
labels become smoother. But the drawbacks of the online KD mainly lie in the need for iterative
updates which greatly increases the training time and the reason why this co-training can enhance
the transferability of knowledge is unclear. These questions motivate us to explore the relationship
between the label smoothness of KD and how to further reduce the co-training cost of online KD.

In this paper, for the first time, we give a unified explanation of the teacher-student mismatch problem
on KD: The smoothness of the labels is a vital factor that affects the teacher-student mismatch
problem. Our work provides the discovery, analysis, and validation of the effect of the smoothed
soft label. To get better suitable smoothing labels and save training costs, we introduce the idea
of efficient fine-tuning (Houlsby et al., 2019) into KD and propose a novel framework PESF-KD,
as shown in Figure 1(b), which achieves both parameter-efficient (fewer parameters to be updated)
and student-friendly (better teacher-student consistency) KD. This framework also looks at online
distillation from a new perspective: teachers learn to soften their own category distribution more
appropriately under the supervision of a network of students. This supervision can be seen as a
kind of transfer learning (i.e., adapting the student distribution). Based on extensive experiments
and analyses, we show that our framework can utilize the information from ground-truth labels and
student supervision to train the adapter modules, and further narrow the gap between the teacher and
student models, which makes knowledge transfer easier.

In summary, our contributions are:

• We provide evidences to show the smoothness of soft labels affect the KD. (§4)

• We propose a parameter-efficient and student-friendly distillation (PESF-KD) framework, which
can better facilitate the knowledge transfer by automatically updating the soft labels provided by
the teacher. (§3 and §4.2)

• We empirically validate the effectiveness and efficiency of our PESF-KD upon several vision and
language models compared to existing knowledge distillation methods. (§5)

2 BACKGROUND

2.1 LABEL SMOOTHING AND KNOWLEDGE DISTILLATION

Label Smoothing (Szegedy et al., 2016) is a method to soften and weigh traditional hard labels with
a uniform distribution. This approach has successfully improved the effectiveness of several deep
learning models and has been widely validated in natural language processing (NLP) and computer
vision (CV). And to date, this approach has also been used as a training trick to improve the training
of models. We provide a mathematical description of the label smoothing process. First, we show
the original cross-entropy: H(y,p) =

∑K
k=1−yk log (pk) , where yk is ”1” for the correct class and

”0” for the rest. Then the label smoothing is achieved by increasing the smoothing parameter α to
change yk to yLS

k : yLS
k = yk(1− α) + α/K. When a network is trained with label smoothing, the

differences between the logits of the correct and incorrect classes become a constant that is dependent
on α, while KD provides dynamic soft labels to let the network learn the distribution of teachers.

KD (Hinton et al., 2015) often employs a pre-trained teacher network with the goal of transferring
the teacher’s knowledge to a small group of students. In the classification task, one of the simplest
forms is to provide the soft label information by forwarding the teacher’s output. The initial teacher
and student model can be defined as: teacher p(θt) and student p(θs), respectively, where θ is the
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Figure 1: Comparison between FT-KD and PESF-KD. Green means the parameter needs to be
updated, while blue means not. (a) Our proposed FT-KD. Unlike vanilla KD (teacher networks in
the distillation process are fixed, resulting a gap of knowledge transfer), our FT-KD is quite like
DML (Zhang et al., 2018) and other online KD methods, which get better knowledge transfer and
need training teachers and students together. (b) Our proposed PESF-KD, updates the parameters of
adapter modules of the teacher with ground-truth labels and the feedback from student outputs, while
the rest of the parameters of the teacher are all fixed, which makes knowledge transfer better.

model parameters and pk(·) = exp(zk(θ)/τ)∑K
j=1 exp(zj(θ)/τ)

is the probability predict of the matching label and

K is the number of classes and zk is the logical output of the k−th class. So the vanilla KD loss
measuring the KL-Divergence of teachers and students can be formulated as:

LKL

(
p(τ |θs),p(τ |θt)

)
= τ2

∑
j

pj(τ |θt) · log
pj(τ |θt)
pj(τ |θs)

(1)

where τ is the temperature, which controls how much to rely on the teacher’s soft predictions.

2.2 ONLINE DISTILLATION

The teacher and the student are jointly trained to make the teacher’s knowledge more friendly to the
student called online distillation (Park et al., 2021; Jin et al., 2019; Xu et al., 2020; Bhat et al., 2021).
These methods, such as DML (Zhang et al., 2018) and KDCL (Guo et al., 2020), usually update
most or even all the parameters of the teacher by using the real labels (hard labels) and the feedback
information (soft labels) of the students, as shown in Figure 1(a). However, in the setting of online
distillation, a large teacher network and a student network need to be trained simultaneously for each
new downstream task from scratch, which is too time-consuming and inefficient. In contrast to these
above methods, we propose an adaptive knowledge transfer learning method (also can be regarded
as online KD) that can dynamically generate a soft target distribution at each time step for different
contexts under the constraint of the student’s logits distribution with less training time costs.

2.3 GAP BETWEEN TEACHER AND STUDENT

Label smoothness also can be called output sharpness. The sharpness of two networks of their labels
significantly exacerbates the knowledge transfer difficulty in KD Chandrasegaran et al. (2022); Müller
et al. (2019). We use a simple and intuitive sharpness metric to get a smooth approximation to the
maximum function considering the overall information of each class without the smoothing parameter
τ to directly calculate network output logits unlike Guo (2022) measuring the logits after temperature
scaling that is actually applied to the KL-Loss in Equation 1. They take an offline distillation approach
and control the smoothness of the network by a uniform scaling factor (temperature), which, similar
to LS, causes the problem of inter-class information elimination (Müller et al., 2019).

If we use K to denote K classes, the Sharpness is defined as the logarithm of the exponential sum of
logits:

Ssharpness = log

K∑
j

exp zj(θ) (2)
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Similar to fidelity (Stanton et al., 2021) and loyalty (Xu et al., 2021), measuring the resemblance
between the soft labels of student and teacher from different aspects, the sharpness gap can measure
the difference of the label sharpness between teacher and student networks:

Ggap = log

K∑
j

exp (zj(θ
t))− log

K∑
j

exp (zj(θ
s)) (3)

3 ADAPTIVE KNOWLEDGE TRANSFER LEARNING

3.1 KNOWLEDGE DISTILLATION WITH FINE-TUNED TEACHER (FT-KD)

The effectiveness of KD can be considered in two ways, i.e., Consistency, which can be called
Fidelity (Stanton et al., 2021) and loyalty (Xu et al., 2021), and Generalization. In general, most
studies (Zhang et al., 2018; Guo et al., 2020) consider the generalization of the student model,
which is the final classification accuracy. However, Stanton et al. (2021) show that good student
accuracy does not imply good distillation consistency. In this work, we further explore the link
between generalization and consistency and find that both the consistency and generalization among
models increase significantly through the co-training of the teacher-student networks even without
the additional designed losses compared to offline KD. To produce a more straightforward and robust
baseline FT-KD (see §4.2), we modify the DML (Zhang et al., 2018) settings by removing an explicit
KL loss term in the student-to-teacher direction and using the label adjustment technique.

Training Objectives. As shown in Figure 1(a), different from vanilla KD (Hinton et al., 2015), a
new baseline method FT-KD requires fine-tuning the parameters of the teacher network. The teacher
network needs to output soft labels to supervise the student network, it also requires ground-truth
labels to train itself. Take the classification task as an instance, the corresponding teacher’s loss is:
Lt = Ltask(θ

t) = −
∑

i∈|X|
∑

c∈C [1 [yi = c] · log p (yi = c | xi; θ
t)], where c is a class label and

C denotes the set of class labels.

In vanilla KD (Hinton et al., 2015), students receive soft label supervision (Equation 1) from the
teacher as well as hard label (the ground truth label) supervision. The teacher network provides soft
labels that help students learn, but there may be some generalization errors (maximum probability that
the labels are not the true labeled labels) that lead to a decrease in student performance. Therefore,
to reduce the impact of this part of the error, we modified the teacher’s soft labels called “label
adjustment”, i.e., the maximum probability labels are guaranteed to be the labeled true labels. So the
final formulation can be written as follows:

Ls = αLKL

(
p(θs),p(θt)

)
+ (1− α)Ltask(θ

s), (4)

where the task loss Ltask follows the same format as the teacher network. In this mode, the teacher
network can adjust its own smoothness of labels by implicitly acquiring the optimization signals
related to the student network through the teacher-to-student direction LKL term.

3.2 KNOWLEDGE DISTILLATION WITH ADAPTER (PESF-KD)

Adapter Module. Many online KD methods require training the whole teacher network, so it is
desirable to participate in training a teacher network with only a small number of parameters. To
reduce the over-consumption of the fully trained teacher network, we propose to adopt a standard
adapter module (Houlsby et al., 2019) for KD with updating parameters of this adapter module while
the original parameters of the teacher network are fixed. The adapters can be written as projdown

→ non-linear→ projup architecture. Specifically, the adapter firstly projects the input h to a lower-
dimensional space with dimension r, utilizing a down-projection weight matrix Wdown ∈ Rd×r.
Then through a nonlinear activation function and then through a up-projection function with weight
matrix Wup ∈ Rr×d to increase the dimension to the original dimension. Usually, these modules use
a residual connection, and the final form is as follows (He et al., 2022):

h← h+ f (hWdown )Wup (5)

Training Objectives. PESF-KD achieves better performance and less training time compared to
DML (Zhang et al., 2018) and FT-KD by introducing the adapter module and adjusting soft labels to
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provide the smoothed soft labels obtained by network training that are more reasonable compared to
LS and temperature adjustment, respectively. During training, we find that maintaining the KL loss
from teacher-to-student and student-to-teacher enhances the training stability of the adapter, so here
we do not remove the KL loss in the student-to-teacher direction as in FT-KD. Formally, the training
loss of the student and teacher network can be formulated as: Ls = αLKL (p(θs),p(θta)) + (1−
α)Ltask(θ

s), and Lt = αLKL (p(θta),p(θs)) + (1− α)Ltask(θ
ta), where θta is the parameter of

the adapter of the teacher network needed to update.

4 A CLOSER LOOK AT TEACHER-STUDENT RELATIONSHIP IN DISTILLATION

4.1 HOW TO NARROW THE GAP?

In this section, we will explore what factors affect this gap (Equation 3). We first approximate this
expression using a Taylor second expansion:

Ggap =log

K∑
j

exp (zj(θ
t))− log

K∑
j

exp (zj(θ
s))

≈ log

K +

K∑
j

zj(θ
t) +

1

2

K∑
j

zj(θ
t)2

− log

K +

K∑
j

zj(θ
s) +

1

2

K∑
j

zj(θ
s)2

 (6)

Following Hinton’s assumption (Hinton et al., 2015) and also through experimental phenomena (Guo,
2022), it can be known that the logits of each training sample are approximately zero-meaned so that∑K

j zj(θ
s) =

∑K
j zj(θ

t) = 0. So the gap can be rewritten as:

Ggap = log

K +
1

2

K∑
j

(
zj(θ

t)
)2− log

K +
1

2

K∑
j

(zj(θ
s))

2


= log

1 +
1

2K

K∑
j

zj(θ
t)2

− log

1 +
1

2K

K∑
j

zj(θ
s)2


= log

(
1 +

1

2
∗ σ2

t

)
− log

(
1 +

1

2
∗ σ2

s

)
,

(7)

where the σ2 = 1
K

∑K
j zj(θ)

2 is the variance of logits. So the change in the gap only comes from
the change in the variance of logits, making our discussion easier. Once these logits become smoother
then the corresponding variance becomes smaller, if the logits become sharper then the variance
becomes larger. The smoothness of the final logits results in a change in the gap. In the following
sections, we compared three methods, namely, vanilla KD with different temperatures, and our
proposed methods (FT-KD and PESF-KD) to check out how temperature and respective methods
affect the gap.

Figure 2: Normalized major logits distribution (Left: student;
Right: teacher).

In the real situation, the variance
of students’ logits will be affected
by the variance of teachers’ logits,
which makes our directly mathemat-
ical analysis of Equation 7 hard. To
more intuitively show the effect of
logits output smoothness on the gap,
we show the average major logit dis-
tribution of the student network in
Figure 2, the gap comparison in Fig-
ure 3 and the Top-1 accuracy of the
respective methods in Figure 4.

4.2 GAP ANALYSIS

Appropriate soft labels for teacher networks can reduce the sharpness gap. In Figure 2, we show
the output variance of the student and teacher can be greatly affected by different KD methods. The
logit has the largest value that represents the model’s category prediction. Obviously, vanilla KD
brings more sharp logit output of the student networks, that is, greater variance, while the student’s
variance of FT-KD and PESF-KD decreases sequentially with a large margin. Due to the tuning of
teacher network, the output of the teacher network becomes smoother compared to vanilla KD.
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Figure 3: Sharpness gap com-
parison.

The smoothing of the teacher’s network by gradient automatic
adjustment not only reduces the trouble of manually adjusting
the temperature, but also can obtain lower gap values in different
temperature ranges, as shown in Figure 3. Consistent with the
constrain of Equation 1 and 7, since the teacher’s output is
unchanged, that is, the σt calculated in Equation 7 is unchanged,
by increasing the temperature, the student’s output learning from
a smoother teacher (the output scaled by temperature, pj(τ |θt))
is indeed smoother, resulting in a larger gap. However, with much
lower temperatures (0.1 and 0.5), the soft label is closer to the hard
label (see Equation 1), which reduces the distinction of category information and causes students to
fail to learn useful information, and the variance of its output is instead smaller, so gap becomes larger.

Figure 4: Comparison of Top-1 accuracy.

In Figure 4, generally, lower gaps are associated with
higher accuracy (lower temperature, lower gap value),
but very close gaps may introduce anomalies (see the
case of temperatures 2 and 4), which illustrates that
even with different output smoothness of the teacher’s
soft labels, students’ final performance can be close in
some cases. This phenomenon shows that the appro-
priate soft labels of the teacher network by appropriate
temperature adjustment within a certain range can improve accuracy and reduce the gap. However,
manual adjustment τ or adaptive adjustment τ with the logits variance (Guo, 2022) scales the prob-
ability for all categories equally, erasing inter-class information (Müller et al., 2019). While our
methods, the soft labels can be dynamically adjusted according to the gradient of each sample to
achieve better knowledge transfer (compared to the vanilla KD with the best temperature setting, our
methods have improved a lot about the accuracy, and a large reduction in the sharpness gap).

Appropriate soft labels for teacher networks can make the knowledge transfer better. In this
part, we show that trainable part in teacher models can narrow the gap between student and teacher
and make the knowledge transfer process more student-friendly thus achieving better accuracy. We
further explore the relationship between NETWORK CONSISTENCY (sharpness gap in Figure 3,
KL-Divergence in Figure 5 & 6 and CKA (Kornblith et al., 2019) in Figure 7 & 8 ) and accuracy
in Figure 4. The three metrics mentioned above measure the final degree of consistency of the
teacher-student network from different perspectives. A lower sharpness gap represents a closer
knowledge representation of the teacher-student, and a lower KL represents the final convergence
degree of the lower bound through distillation learning, while a larger CKA represents the larger
similarity between the students and teachers. We get the following interesting findings:

1) From Equation 7, it is clear that the gap also decreases when the student network is trained with
the vanilla KD. This reduction comes from the fact that the output of the student network becomes
sharper (σs become bigger) i.e., more similar to the output of the larger teacher network (both KL
loss and Gap decrease).

Figure 5: KL loss
comparison. Figure 6: KL compari-

son of vanilla KD with
different temperature.

Figure 7: CKA of fea-
ture logits (last layer
before classifier).

Figure 8: CKA of
predictions vanilla KD
and proposed method

2) Both our proposed methods can reduce the gap, and the model trained with FT-KD can bring a
great reduction (from 36.3 to 16.8). Our methods also make the output of teachers and students more
consistent (the KL loss, and gap of the two methods are significantly lower and the CKA is higher
than those of vanilla KD with different temperatures).
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(a) Vanilla KD (b) FT-KD (c) PESF-KD
Figure 9: Visualize of penultimate layer representation of with 7 semantically different classes.

Table 1: Results on CIFAR-100 test set. We compare the top-1 accuracy on various teacher-student
combinations. The best results are bold. The second best results are underlined.We report the
averaged results over 3 random seeds.

method resnet56-20 resnet110-32 vgg13-8 resnet56-vgg8

offline KD Vanilla KD(Hinton et al., 2015) 70.950.51 73.080.42 73.360.24 73.980.33

PKT(Passalis & Tefas, 2018) 71.27 (+0.32) 73.67 (+0.59) 73.40 (+0.04) 74.10 (+0.12)

Representation KD CRD(Tian et al., 2020) 71.44 (+0.49) 73.62 (+0.54) 73.31 (-0.05) 74.06 (+0.08)
RKD (Park et al., 2019) 71.47 (+0.52) 73.53 (+0.45) 74.15 (+0.79) 73.35 (-0.63)

online KD KDCL (Guo et al., 2020) 70.11 (-0.84) 72.87 (-0.21) 73.99 (+0.63) 73.16 (-0.82)
DML(Zhang et al., 2018) 71.40 (+0.45) 72.21 (-0.87) 74.18 (+0.82) 73.86 (-0.12)

ours (online KD) FT-KD 71.650.11(+0.70) 73.900.22(+0.82) 73.520.14(+0.16) 74.400.2(+0.42)
PESF-KD 71.840.27(+0.89) 74.230.26(+1.15) 74.740.39(+1.38) 74.670.28(+0.69)

3) The accuracy of the final student network trained by our methods, and the gap between the two
networks, the KL loss (0.42 vs. 0.23), CKA of logits, and predictions (almost the same) of our
proposed methods are closer, which shows that our methods can guarantee the consistency of teacher
and student characteristics. It also illustrates that gap and KL-loss interpret the similarity of output
distributions from different perspectives.

4) We observe that clusters in our proposed approach are tighter because the student model is
encouraged to learn more information from all other class templates in the training data set by
narrowing the sharpness gap between teacher and student networks, as shown in Figure 9 using
T-SNE (Van der Maaten & Hinton, 2008). Besides, when looking at the projections, some clusters,
i.e., crimson and dark blue ones, are more discernible in our proposed methods than in Vanilla KD.

5 EXPERIMENTS

5.1 DATASETS AND BASELINES.

Datasets Two types of tasks including image classification (CIFAR-100 (Krizhevsky et al., 2009)
and ImageNet (Deng et al., 2009)) and natural language understanding (GLUE (Wang et al., 2019))
are adopted for a series of experiments. For natural language understanding tasks, we test three
commonly used and with a large amount of data datasets (Jiao et al., 2020): SST-2 (Socher et al.,
2013) for Sentiment Classification; RTE (Wang et al., 2019) for the Natural Language Inference;
QQP 1 for Paraphrase Similarity Matching.
Baselines. We report several knowledge distillation methods for comparison, including vanilla
KD (Hinton et al., 2015), knowledge distillation via collaborative learning (KDCL) (Guo et al., 2020),
deep mutual learning (DML) (Zhang et al., 2018), contrastive representation distillation (CRD) (Tian
et al., 2020), relational knowledge distillation (RKD) (Park et al., 2019) and probabilistic knowledge
transfer(PKT) (Passalis & Tefas, 2018). According to Gou et al. (2021) on CV datasets, KD methods
can be divided into two groups, online distillation and offline distillation. For a more fine-grained
comparison, we further split them into three different kinds, online KD (DML, KDCL), offline KD
(Vanilla KD, PKT) and representation KD (CRD, RKD). On NLP datasets, we compare one offline
distillation method (Vanilla KD) and four online distillation (RCO, TAKD, DML and SFTN). Besides
these methods, we report the result of our methods “FT-KD” and “PESF-KD” to support our argument
about less sharpness gap helps the student to perform better to absorb the knowledge of the teacher.

Experimental Setup. For CV tasks, we follow previous works (Tian et al., 2020) using various
combinations of student & teacher networks. Each pair of student & teacher networks are from
different capacity and architecture. We run isomorphic distillation and isomeric distillation. For
isomorphic distillation, we run three different combinations (ResNet56-ResNet20, ResNet 110-
ResNet32 and VGG13-VGG8). For isomerism distillation, the results of ResNet-56 to VGG-8 are

1https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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Table 2: Results on ImageNet test set. ResNet18/ResNet50 is the student/teacher model. We compare
the training time consumption (batch time) and the amount of parameters needed to update (params)
and the corresponding accuracy. The best results are bold. The second best results are underlined.
We report the averaged results over 3 random seeds.

method batch time params @1

offline KD Vanilla KD (Hinton et al., 2015) 0.46 47M 69.200.25

PKT (Passalis & Tefas, 2018) 0.47 47M 69.69 (+0.49)

Representation KD CRD (Tian et al., 2020) 0.57 63M 69.33 (+0.13)
RKD (Park et al., 2019) 1.53 47M 69.52 (+0.32)

online KD KDCL (Guo et al., 2020) 1.56 149M 70.17 (+0.97)
DML (Zhang et al., 2018) 1.45 149M 70.00 (+0.80)

ours (online KD) FT-KD 1.44 149M 70.000.13(+0.80)
PESF-KD 0.47 54M 70.550.14(+1.35)

Table 3: Results on the three NLP datasets. The best results are bold. The second best results are
underlined. We report the averaged results over 3 random seeds.

method #Params Time RTE
(2.5K)

SST-2
(67K)

QQP
(364K)

BERT-baseteacher - - 71.4 93.0 88.5
BERT-basestudent - - 67.9 91.1 86.9

Vanilla KD (Hinton et al., 2015) 66M 1.0x 67.7 91.2 87.3
RCO (Jin et al., 2019) >176M >2.66x 67.6 (-0.1) 91.4 (+0.2) 87.4 (+0.1)

TAKD (Mirzadeh et al., 2020) >132M >2.00x 68.5 (+0.8) 91.4 (+0.2) 87.5 (+0.2)
DML (Zhang et al., 2018) 176M 2.66x 68.4 (+0.7) 91.5 (+0.3) 87.4 (+0.1)
SFTN (Park et al., 2021) >176M >2.66x 69.4 (+1.7) 91.5 (+0.3) 87.5(+0.2)

FT-KD 176M 2.66x 68.2 (+0.5) 91.7 (+0.5) 87.2 (-0.1)
PESF-KD 66M 1.05x 69.0 (+1.3) 91.9 (+0.7) 87.7 (+0.4)

reported. For NLU tasks, we first fine-tune the pre-trained teacher (12-layers of BERT-Base) and
then train the student model (6-layers of BERT-Base) on each downstream task. We report Top 1
Accuracy (@1) for image classification experiments as a network performance metric. For QQP we
report F1. For other NLP tasks, we report accuracy.

5.2 RESULTS

1) Our method gets better (in most cases) or comparable performance compared to the com-
petitors, which demonstrates the power of our simple method in both CV and NLP tasks.
Generally, the distillation results of the online distillation methods are significantly higher than those
of the offline distillation methods, especially in the case of excessive differences in network capacity
between teachers and students (vgg13-8). On CIFAR-100 (Table 1) and a larger dataset ImageNet
(Table 2), our PESF-KD achieves the best top-1 accuracy among all distillation methods. On most
NLP datasets (Table 3), PESF-KD also achieves the best results across various online KD methods.

2) Even if the accuracy is slightly lower, our method significantly reduces training resource
consumption compared to the competitors (online KD), see Table 2 and Table 3. As shown
in Table 2 and Table 3, online KD will greatly increase the training cost due to the need to update
the parameters of the teacher network and the student network synchronously (see the batch time
change), while PESF-KD significantly reduces the number of parameters that need to be updated for
training and reduces the time required for training. The more detailed training consumption results
can be seen in the appendix. On the CV datasets (Table 1 and Table 2), PESF-KD improves student’s
accuracy even though our PESF-KD uses fewer training resources and less batch time. On NLP
datasets (Table 3), our PESF-KD can also obtain similar results to other baselines and require minimal
training cost, and even surpass other baselines on SST-2 and QQP, showing the generalizability.

3) As the number of categories increases, the increase in distillation accuracy of our method
is greater, confirming the role of soft labels smoothing. Most of the GLUE datasets are binary
classification tasks, with CIFAR-100/ImageNet being a 100/1000 classification task. This leads to
most of the online KD, which we attribute the result improvement to co-training leading to smoothing
the teacher’s soft labels (discussed in §4.2), and the improvement is relatively insignificant in datasets
with fewer categories (SST-2 and QQP, see Table 3) and get more promotion on more classes of tasks
(CIFAR-100 and ImageNet) because of richer inter-class information. However, by getting more
reasonable soft labels (adapting the student distribution), our PESF-KD continues to improve results
compared to traditional online distillation even when inter-class information is more absent.
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Orthogonality to other KD methods PESF-KD on the bottom of other KD methods can further get
improvements. Table 4 shows the results of four knowledge distillation approaches combined with
PESF-KD on the CV dataset (CIFAR-100) and Table 5 shows our results of PESF-KD combined
with intermediate layer distillation (PKD and TinyBERT2) on the NLP dataset (RTE and SST-2).

Table 4: Comparison of orthogonality with
existing methods on the CIFAR-100 dataset.

Teacher/Student ResNet56/ ResNet20

Method Stadard PESF-KD

KD (Hinton et al., 2015) 70.95 71.84 (+0.89)
PKT (Passalis & Tefas, 2018) 71.27 71.90 (+0.63)

CRD (Tian et al., 2020) 71.44 71.97 (+0.53)
RKD (Park et al., 2019) 71.47 71.72 (+0.25)

Our method can improve other KD methods on the
CV dataset, but the middle-layer distillation on NLP
can be a little different. Compared with the results of
TinyBERT, the results using PESF-KD performed bet-
ter in terms of consistency metrics and the standard
deviation was reduced. After combining PESF-KD,
both intermediate layer distillation methods (PKD
and TinyBERT) improved in consistency metrics.
Combined with the findings of Xu et al. (2021), PESF-KD improves consistency by changing
the teachers’ output logits, which is helpful in mitigating the loss of consistency from middle-layer
distillation. We give a more detailed explanation in the appendix.
Table 5: TinyBERT and PKD combined with PESF-KD on RTE and SST-2. We present the results
with 3 different random seeds in the form of mean (standard deviation).

Standard / PESF-KD
Method Accuracy(↑) PL(↑) (Xu et al., 2021) Agree(↑) (Stanton et al., 2021) Gap*10ˆ-2(↓)

RTE

TinyBERT (Jiao et al., 2020) 67.9(0.8)/68.4(0.4) 96.4(0.5)/96.7(0.1) 84.2(3.0)/84.6(0.9) 0.2(0.06)/0.2(0.04)
PKD (Sun et al., 2019) 67.6(0.4)/ 67.8(0.3) 88.2(0.7)/88.9(0.8) 76.2(1.5)/80.3(1.5) 1.7(0.30)/1.4(0.20)

SST-2

TinyBERT (Jiao et al., 2020) 92.0(0.4)/92.2(0.3) 97.3(0.3)/97.4(0.3) 99.2(0.1)/99.3(0.1) 0.1(0.06)/0.1/(0.05)
PKD (Sun et al., 2019) 91.1(0.3)/91.4(0.2) 97.3(0.1)/97.3(0.1) 98.1(0.1)/98.1(0.1) 0.7(0.05)/0.6(0.05)

Figure 10: Loss weight results
on CIFAR-100.

Figure 11: Loss weight on re-
sults on RTE.

Figure 12: Temperature results
on CIFAR-100.

Loss Weight and Temperature PESF-KD shows better performance and robustness compared to
vanilla KD in all experiments. In vanilla, the hyper-parameter α is a loss weight that needs non-trivial
tuning like hyperparameter search. Bigger α means a higher percentage of KL loss. To test the
robustness of our PESF-KD, we use the teacher-student combination of Resnet56/20 and BERT, and
run experiments on CIFAR-100 and RTE with different α as shown in Figure 10 and 11. It shows
that 1) properly grid searching indeed obtains better performance, and 2) our PEST-KD consistently
outperforms vanilla ranging from 0.3 to 1.0 (for CIFAR-100) and 0.2 to 0.8 (for RTE), confirming
the robustness of our method in terms of different loss weights. Figure 12 shows the performance
of student models in different temperatures. Vanilla KD and our proposed approach have a similar
trends in different temperatures.

6 CONCLUSION

In this paper, we show the smoothness of labels affects the teacher-student mismatch. To reduce this
mismatch and to balance the difficulty and cost of training, we present PESF-KD, a novel knowledge
distillation framework by applying adapters to optimize the teacher network for better knowledge
transfer to the student network. Through detailed analysis, we point out that the decline in sharpness
and a better ability to distinguish within classes lead to better knowledge transfer, which leads to
better results. Extensive experiments demonstrate the robustness and effectiveness of our method.

2TinyBERT is a two-stage distillation method, and for time and fairness reasons we only performed the second
stage of distillation (without distillation on pretrain stage). We used the 6-layer model provided by TinyBERT as
the student after the first stage distillation, and the teacher used the PESF-KD fine-tuned bert-base-uncased for
the distillation of the intermediate and prediction layers.
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Table 6: Statistics of datasets
dataset Training set Testing set Development set Classes

CIFAR-100(Krizhevsky et al., 2009) 50000 10000 - 100
ImageNet(Deng et al., 2009) ≈1200k ≈100k ≈50k 1000

SST-2 67350 1821 873 2
QQP 363870 390965 40431 2
RTE 2491 3000 277 2

A APPENDIX

A.1 TRAINING DETAILS

Datasets Table 6 shows the statistics used in our experiments. The training set, testing set, and
development set refer to the scale of data in each part of the dataset. Table 6 shows that ImageNet
is much bigger than CIFAR-100 in scale. And that’s the reason we choose the two datasets, to
verify our proposed approach in datasets of different scales. We are also concerned about people’s
consent and privacy in datasets. From the information search from the website, faces in ImageNet
have been blurred in order to protect privacy after being blamed to collect information from people
without consent. But we do not find a similar announcement on the website of CIFAR-100 and
GLUE. Maybe it’s because they have pre-processed the data or the data itself contains little privacy
information. It’s better for the websites to make the announcement of not containing personally
identifiable information or offensive content.

Infrastructure We implement our models with Pytorch, and our experiments are as follows:

1. CPU: 256 AMD EPYC 7742 64-Core Processor

2. RAM: 386840MB

3. GPU: 8x GeForce RTX 3090

4. Operating System: Ubuntu 18.04 LTS

5. Tools: Python3.7, tensorflow2,2,0, sklearn 0.23.2

Hyper-parameter search In CV experiment, we follow previous works (Tian et al., 2020), the
settings on CIFAR-100 and ImageNet dataset are the same as these works. In CIFAR-100 we train
the student model by SGD optimizer with a momentum of 0.9, a batch size of 64 and weight decay
of 5× 10−4. The learning rate starts from 0.05 and decays by 10 every 30 epochs after 150 epochs.
And on ImageNet we train the student model by SGD optimizer with a momentum of 0.9, a batch
size of 256 and weight decay of 1× 10−4. The learning rate starts from 0.1 and decays by 10 every
30 epochs after 30 epochs. In the experiment of FT-KD, we train the teacher model along with the
student model during the training process with a learning rate of 1× 10−3. And in the experiment of
a student trained with a teacher with the adapter module, also called adaptive teacher, the learning
rate of the trainable part in the teacher model is set to 1× 10−4. Notably, classification loss from the
teacher model is appended to the loss of students by multiplying a hyper-parameter of 0.5.

For NLP, we inherit parameters like maximum sequence length, temperature and batch size according
to setting from previous works (Zhou et al., 2022). We also perform grid search over the sets of
the student learning rate λ from {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}, teacher learning rate µ from {2e-6,
1e-5, 2e-5}, batch size from {32, 64}, the weight of KD loss from {0.3, 0.5, 0.8, 0.9} for a better
performance. We evaluate our methods on the dev set of the GLUE benchmark.

A.2 MORE DETAILED RESULTS

We show more detailed experimental results (number of trainable parameters, batch time and accu-
racy), as shown in the Table 7 and Table 9. To further illustrate the superiority of our methods, we
further compare the current typical distillation methods like previous work (Tian et al., 2020), as
shown in Table 8.

12



Under review as a conference paper at ICLR 2023

Table 7: Results on CIFAR-100 test set. We compare the training time consumption (batch time) and
the amount of parameters needed to update (params) and the corresponding accuracy (@1) on various
teacher-student combinations. The best results are bold. The second best results are underlined.

resnet56-20 resnet110-32 vgg13-8 resnet56-vgg8

method batch time params @1 batch time params @1 batch time params @1 batch time params @1

offline KD Vanilla KD(Hinton et al., 2015) 0.219 1.11M 70.95 0.319 1.89M 73.08 0.097 15.86M 73.36 0.134 15.86M 73.98
PKT(Passalis & Tefas, 2018) 0.225 1.11M 71.27 0.336 1.89M 73.67 0.120 15.86M 73.40 0.139 15.86M 74.10

Representation KD CRD(Tian et al., 2020) 0.234 1.18M 71.44 0.353 1.96M 73.62 0.139 16.39M 73.31 0.159 15.93M 74.06
RKD (Park et al., 2019) 0.234 1.11M 71.47 0.846 1.89M 73.53 0.207 15.86M 74.15 0.444 15.86M 73.35

online KD KDCL (Guo et al., 2020) 0.520 4.56M 70.11 1.035 8.84M 72.87 0.190 53.71M 73.99 0.433 19.31M 73.16
DML(Zhang et al., 2018) 0.524 4.56M 71.40 0.912 8.84M 72.21 0.190 53.71M 74.18 0.437 19.31M 73.86

ours (online KD) FT-KD 0.481 4.56M 71.65 0.819 8.84M 73.90 0.156 53.71M 73.52 0.443 19.31M 74.40
PESF-KD 0.228 1.16M 71.84 0.325 1.94M 74.23 0.117 15.91M 74.74 0.136 15.91M 74.67

Table 8: More Results on CIFAR-100 test set. The best results are bold. The
second best results are underlined.

teacher resnet56 resnet110 vgg13 resnet56
student resnet20 resnet32 vgg8 vgg8

teacher 72.34 74.31 74.64 79.34
student 69.06 71.14 70.36 70.36

KD (Hinton et al., 2015) 70.66 73.08 72.98 73.81
FitNet (Romero et al., 2015) 69.21 71.06 71.02 70.69

AT (Zagoruyko & Komodakis, 2017) 70.55 72.31 71.43 71.84
SP (Tung & Mori, 2019) 69.67 72.69 72.68 73.34
CC (Peng et al., 2019) 69.63 71.48 70.71 70.25
VID (Ahn et al., 2019) 70.38 72.61 71.23 70.30
AB (Heo et al., 2019) 69.47 70.98 70.94 70.65
FT (Kim et al., 2018) 69.84 72.37 70.58 70.29
FSP (Yim et al., 2017) 69.95 71.89 70.23 73.90

FT-KD 71.65 73.90 73.52 74.40
PESF-KD 71.84 74.23 74.74 74.67

Table 9: Results on ImageNet test set. ResNet18 is the student model and ResNet50 is the teacher
model. We report the averaged results over 3 random seeds. The best results are bold.

method batch time params @1 KL loss GAP

offline KD Vanilla KD (Hinton et al., 2015) 0.46 47M 69.20 10.3 19.3
PKT (Passalis & Tefas, 2018) 0.47 47M 69.69 10.3 19.2

Representation KD CRD (Tian et al., 2020) 0.57 63M 69.33 10.5 20.0
RKD (Park et al., 2019) 1.53 47M 69.52 9.6 20.5

online KD KDCL (Guo et al., 2020) 1.56 149M 70.17 6.8 14.8
DML (Zhang et al., 2018) 1.45 149M 70.00 6.7 14.1

ours (online KD) FT-KD 1.44 149M 70.00 6.7 14.9
PESF-KD 0.47 54M 70.55 7.2 15.2

A.3 FURTHER ANALYSIS ON OUR METHODS

A.3.1 DISCREPANCY BETWEEN TEACHER AND STUDENT PREDICTIONS

In this section, we compare the associated discrepancy metrics for teachers and students. These
metrics are: Probability Loyalty (PL↑) (Xu et al., 2021), Kullback-Leibler divergence (KL↓), Average
Top-1 Agreement (Agree↑) (Stanton et al., 2021) and Sharpness Gap (Gap↓), where ↑ means the
greater the better and ↓ means smaller the better.

Discrepancy in CV dataset First, we further measure the relevant consistency metrics in the CV
dataset(CIFAR-100), as shown in Table 10. We use resnet56/20 as the teacher-student combination.
Compared to vanilla KD, PESF-KD has a lower offset in accuracy. This phenomenon is also reflected
in the combination of PESF-KD with PKD and TinyBERT. Also the bias value of PESF-KD is
greater over both PL and Agree on consistency metrics. We speculate that this is because the online
distillation approach has greater logit variation for both models compared to the student-only training
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KD approach, resulting in a greater degree of bias. Overall, the results show that both our PESF-KD
(second best) and FT-KD (best) outperform vanilla KD in terms of the relevant consistency metrics as
well as accuracy, which is consistent with the findings of our main part of the analysis in section
4.2.

Table 10: Results of PESF-KD on CIFAR-100 with standard deviation. PESF-KD gets higher
accuracy and lower deviation compared with vanilla KD. We present the results with 3 different
random seeds in the form of mean/standard deviation. † denotes the results without label adjustment
strategy.

Method Accuracy(↑) KL(↓) PL(↑) Agree(↑)
Vanilla KD 70.95/0.51 1.84/0.07 78.6/0.7 80.0/0.2
PESF-KD† 71.63/0.27 0.52/0.09 78.5/0.8 80.4/0.4

FT-KD 71.65/0.11 0.43/0.11 79.0/1.1 80.1/0.3

Discrepancy in NLP dataset We experiment further on two datasets, SST-2 (67K, high resource)
and RTE (2.5K, low resource). And the results are shown in Table 11. We discover as Xu et al. (2021)
pointed out, that this type of distillation method (PKD, TinyBERT) combined with an intermediate
layer distillation term reduces the consistency of the label between teachers and students in high
resource settings((Xu et al., 2021) tests consistency in MNLI (393K)). We found that PESF-KD
performed better in both consistency metrics in the high resource case (SST-2), although in the
low resource case (RTE), only KL/Agree outperformed PKD.

However, we conjecture that an approach based on intermediate layer distillation(e.g., PKD) may
lead to a failure of the relevant consistency metric, i.e., higher consistency in the output of the
teacher-student network does not lead to better distillation results. Most of the distillation methods in
the main part achieve distillation goals based on prediction layers, while PKD (Sun et al., 2019) and
TinyBERT (Jiao et al., 2020) utilize distillation of intermediate layers for further combinations, and
we show the total training objects for PKD:

LPKD = (1− α)Ls
CE + αLKL + βLPT (8)

where Ls
CE denotes the standard cross-entropy loss as task loss, LKL denotes distillation loss as

described in the main part and LPT denotes the middle layer distillation loss. The α and β are
hyper-parameters that weigh the importance of each term.

According to the original PKD settings (Sun et al., 2019), we set α to 0.5 and β to 100 for the above
training objectives. In the actual experiment, we found that the loss of the Ls

CE term was largest and
much larger than the values of the other two distillation terms when the student model was nearly
converged, which we guess is why the value of β needs to be so large to highlight its constraining
effect. And this causes the LKL term to lose its usefulness (the loss is small enough compared with
the other two terms to be optimized more rarely) and also causes a relatively low consistency of the
labeled predicted values compared to prediction layer-based distillation methods such as FT-KD and
PESF-KD.

Table 11: The results of PESF-KD on SST-2 and RTE dataset compared with vanilla KD and PKD
and TinyBert. PESF-KD shows better performance on consistency metric (PL, KL, Agree, Gap)
compared with vanilla KD and PKD. Gap is computed by soft-max prediction differed from the
main part using original prediction. We present the results with 3 different random seeds in the
form of mean/standard deviation. † denotes the results without label adjustment strategy.

SST-2(67K) RTE(2.5K)
Method PL(↑) KL*10−2(↓) Agree(↑) Gap*10−2(↓) PL(↑) KL*10−2(↓) Agree(↑) Gap*10−2(↓)

Vanilla KD 92.1/0.7 6.8/0.4 91.0/0.7 4.0/0.2 85.7/2.1 10/0.3 71.8/3.9 1.9/0.2
FT-KD 96.3/0.2 2.4/0.2 98.1/0.7 1.8/0.3 87.8/1.3 8.6/0.5 83.2/3.0 1.8/0.6

PESF-KD† 97.5/0.9 1.8/0.5 98.3/0.7 1.7/0.4 88/1.76 8.3/0.5 83.2/5.0 1.8/0.3
PKD 92.6/0.5 6.7/0.4 91.8/0.4 4.0/0.2 88.2/0.7 9.7/0.5 76.2/1.5 1.7/0.3

TinyBERT 97.3/0.3 2.1/0.2 99.2/0.2 1.1/0.5 96.4/0.5 8.6/0.4 84.2/3.0 1.2/0.3
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A.3.2 ORTHOGONALITY TO OTHER KD METHODS

Table 12: Comparison of orthogonality with existing methods on the CIFAR-100 dataset. † denotes
the results without label adjustment strategy.

Teacher/Student ResNet56/ ResNet20

Method Stadard PESF-KD†

KD (Hinton et al., 2015) 70.95 71.63
PKT (Passalis & Tefas, 2018) 71.27 71.74

CRD (Tian et al., 2020) 71.44 71.76
RKD (Park et al., 2019) 71.47 71.52

Table 13: TinyBERT and PKD combined with PESF-KD on RTE and SST-2. Gap is computed
by soft-max prediction differed from the main part using original prediction. We present the
results with 3 different random seeds in the form of mean/standard deviation. † denotes the
results without label adjustment strategy.

Standard PESF-KD†

Method Accuracy(↑) PL(↑) Agree(↑) Gap*10ˆ-2(↓) Accuracy(↑) PL(↑) Agree(↑) Gap*10ˆ-2 (↓)
RTE

TinyBERT 67.9/0.8 96.4/0.5 84.2/3.0 0.2/0.06 68.4/0.4 96.7/0.1 84.6/0.9 0.2/0.04
PKD 67.6/0.4 88.2/0.7 76.2/1.5 1.7/0.30 67.8/0.3 88.9/0.8 80.3/1.5 1.4/0.20

SST-2

TinyBERT 92.0/0.4 97.3/0.3 99.2/0.1 0.1/0.06 92.2/0.3 97.4/0.3 99.3/0.1 0.1/0.05
PKD 91.1/0.3 97.3/0.1 98.1/0.1 0.7/0.05 91.4/0.2 97.3/0.1 98.1/0.1 0.6/0.05

We also test PESF-KD in other methods to verify the potential improvement of other knowledge
distillation methods even without the label adjustment strategy.

Table 12 shows results of four knowledge distillation approaches (vanilla KD (Hinton et al., 2015),
PKT (Passalis & Tefas, 2018), CRD (Tian et al., 2020) and RKD(Park et al., 2019)) combined with
PESF-KD on the CV dataset(CIFAR-100). Every traditional KD method combined with PESF-KD
can get better performance.

Table 13 shows our results of PESF-KD combined with intermediate layer distillation (PKD and
TinyBERT) on the NLP dataset(RTE and SST-2). Compared with the results of TinyBERT, the
results using PESF-KD performed better in terms of consistency metrics and the standard deviation
was reduced. After combining PESF-KD, both intermediate layer distillation methods(PKD and
TinyBERT) improved in consistency metrics. Combined with the findings of Xu et al. (2021), PESF-
KD improves consistency by changing the teachers’ output logits, which is helpful in mitigating the
loss of consistency from middle-layer distillation.

Compared with different knowledge distillation approaches varying from NLP and CV, results with
PESF-KD get better performance on accuracy and indicate that PESF-KD has the potential to
become a plug-in method on top of different KD methods.

A.3.3 ROBUSTNESS

In this section, we test the effects of a series of hyperparameters on the distillation results. Specifically,
the effects of adapter structure and dimensionality, the ratio of different losses, and temperature are
included. All the findings confirm that our PESF-KD is easy-to-use and robust to promote knowledge
distillation, making the strategy has the great potential to apply to a broad range of tasks.

Adapter dimension As shown in Figure 13, we test the impact of different scaling dimensions of
adapter on classification tasks on CIFAR-100. As mentioned in the main part, the adapter structure
is wdown, non-linear and wup. We modify the output dimension of wdown and the input dimension
of wup. As seen, dimension spanning 32, 64, and 96 seems not to affect the performance, further
reducing (e.g. 16) slightly worsens the performance (drop < 0.3), and all of them still outperform the
baseline, showing the robustness to different adapter dimensions. We follow the setting of He et al.
(2022) to make the dimension of the model lower than the input dimension and finally chose 32.
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Figure 13: Influence of adapter dimension on results of PESF-KD. We report the averaged results
over 3 random seeds. We set dimension from the set of {16, 32, 64, 96}. Dimension = 32 is an
appropriate choice.

Table 14: Ablation on different structures of adapter in VGG. Experiments are performed from
CIFAR-100. The simple adapter shows decent performance compared with other parameter
efficient methods in top 1 accuracy, CKA and time consuming.

Method Batch Time(↓) Parameter(↓) Top-1(↑) CKA(↑)

vanilla KD (Hinton et al., 2015) 0.097 15.86M 73.36 0.8537
Adapter (Houlsby et al., 2019) 0.137 15.95M 73.43 0.8758

LoRA (Hu et al., 2022) 0.166 15.95M 73.49 0.8579
Scaled PA (He et al., 2022) 0.165 15.95M 73.13 0.8594

Adapter Architecture The adapter module is our recipe for success in the above performance
comparisons. To explore the influence of adapter structure on classification results, we compare four
methods, including vanilla KD and three classic adapter structures, and report their top-1 accuracy
and CKA consistency. We use the teacher-student combination of vgg13-8 and conduct comparative
experiments on CIFAR-100. As can be seen from Table 14, the simple and efficient adapter achieves
second performance with top-1 accuracy, best CKA scores, and is less time-consuming. Therefore
we use the simple adapter module in all experiments.
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