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Abstract. Accurate segmentation of the inferior alveolar canal (IAC)
in cone-beam computed tomography (CBCT) scans is crucial for den-
tal and maxillofacial applications, yet it remains highly challenging due
to its fine-scale structure, anatomical variability, and imaging artifacts.
To solve this problem, we utilized both automated and interactive ap-
proaches. Specifically, we compared an nnU-Net-based model with an
nnInteractive model. While nnInteractive demonstrated promising im-
provements with minimal user input, our final submission was based on
nnU-Net due to its favorable trade-off between accuracy and computa-
tional efficiency. To further enhance runtime performance, we incorpo-
rated inference acceleration strategies, achieving a speedup without sac-
rificing segmentation quality. Our method achieved a top-three ranking
in the challenge test phase, highlighting its potential for accurate and effi-
cient IAC segmentation. Our code is avaiable at: https://github.com/duola-
wa/Toothfairy3.
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1 Introduction

The Inferior Alveolar Canal (IAC) is a crucial anatomical structure in the
mandible. It plays a significant role in dental procedures and maxillofacial surgery,
where precise delineation is essential for treatment planning, nerve preservation,
and risk assessment [2,13,10]. The accurate segmentation of the IAC in Cone
Beam Computed Tomography (CBCT) images is vital for ensuring successful
outcomes in these clinical applications [16].

Despite its importance, segmenting the IAC in CBCT scans presents con-
siderable challenges. The IAC is often small, located in intricate regions of the
mandible, and exhibits significant variability across patients [1]. Its fine-grained
structure, combined with artifacts and noise in the CT scans, complicates the
task further [12]. Moreover, the complexity of the mandibular anatomy requires
precise localization and accurate delineation, which can be difficult for fully au-
tomated models to achieve reliably [11].
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In recent years, deep learning-based methods have been widely explored
for automating segmentation tasks in medical imaging [17,6,14,4,5]. These ap-
proaches have shown impressive potential for segmenting complex anatomical
structures. However, these models often face a trade-off between segmentation
accuracy and computational efficiency. While high accuracy is crucial for clinical
applicability, deep learning models can be computationally expensive, leading to
long processing times or excessive memory usage, making them impractical for
real-time clinical workflows [8,9].

The ToothFairy3 Task 2 in the MICCAI 2025 competition focuses on the
segmentation of complex IAC structures in CBCT scans. This task aims to ad-
vance the state of the art in IAC segmentation by encouraging participants to
explore both automated and interactive approaches. The challenge seeks to im-
prove segmentation accuracy while ensuring computational efficiency. To address
these challenges, we implemented and compared two methods: an interactive
segmentation approach termed nnInteractive [7], and an nnU-Net-based model.
The nnInteractive method incorporates user inputs, allowing clinicians to guide
the segmentation process with minimal effort, enhancing precision. After care-
ful evaluation of both methods, considering both precision and computational
efficiency, we selected nnU-Net-based model as our submission version. Our con-
tributions can be summarized as follows:

• We explored both interactive and automated segmentation approaches, com-
paring their performance in IAC segmentation tasks.

• We balanced segmentation accuracy with computational efficiency, showing
the potential for further enhancement in clinical applicability.

• Our method secured a top-three ranking in the ToothFairy3 Task 2 test
phase, showcasing its effectiveness in IAC segmentation.

2 Proposed Method

2.1 Framework Overview

As shown in Fig. 1, we utilize two methods for the segmentation of the IAC:
an nnU-Net-based approach and an interactive segmentation approach nnIn-
teractive. After obtaining the initial segmentation results from the automated
nnU-Net-based approach, we apply post-processing techniques to refine the pre-
dictions and obtain the final segmentation output. The second method, nnIn-
teractive, introduces interactive point-based refinement. In this approach, we
iteratively utilize 1 to 5 interaction points as point prompts, which guide the
model’s segmentation process. After each refinement step, the model updates
the segmentation based on the inputs. Similar to Option 1, post-processing is
applied to the results, ensuring that the final segmentation is both accurate and
clinically feasible.
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Fig. 1. Overview of the two segmentation approaches. The first method involves nnU-
Net-based. The second method nnInteractive incorporates interaction points for itera-
tive refinement of the segmentation.

2.2 Data Preprocessing

Before training the model, the dataset underwent several preprocessing steps to
ensure proper input for the segmentation task. First, the dataset integrity was
verified to ensure the quality and completeness of the images and annotations.
This step involves checking for any inconsistencies, missing data, or potential
errors in the dataset, ensuring that all the images are properly aligned with
their corresponding ground truth annotations.

Next, the data was processed to fit the input requirements of the segmenta-
tion model. This involved standardizing the image size, orientation, and intensity
values to ensure consistency across all images. The images were also resampled to
match the target resolution, ensuring that the spatial dimensions were uniform.
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These preprocessing steps helped to minimize variability across the dataset and
ensured that the model could learn from high-quality, consistent input data.

2.3 Model Training Strategy

For the Option 1 model training, we utilized the nnU-Net framework, which
automatically adapts to the dataset’s specific characteristics. The training was
conducted using a 3D full-resolution architecture, focusing on the highest res-
olution for optimal segmentation performance. Notably, we disabled the mirror
augmentation in the data preprocessing step. This was done because the left and
right inferior alveolar nerves are anatomically similar, and applying mirror aug-
mentation could increase the difficulty in accurately assigning categories during
segmentation.

For Option 2, we leveraged the pre-trained weights provided by the official
repository of nnInteractive, as the training process for nnInteractive was not
yet publicly available. These pre-trained weights enabled us to perform a com-
parative analysis of the interactive segmentation method without the need for
additional training from scratch.

nnInteractive adopts a classic U-Net architecture for image segmentation, but
with a distinct approach compared to other segmentation models like SAM. Un-
like models that use separate image and prompt encoders, nnInteractive employs
an "early prompt strategy." In this method, the user-provided prompts and the
original image are concatenated along the channel dimension before being fed
into the segmentation network. The architecture utilizes eight channels, includ-
ing the original image, existing segmentation masks, and six additional channels
representing different forms of interaction: foreground points, background points,
foreground scribbles, background scribbles, lasso, and bounding boxes. To handle
large targets and high-resolution 3D medical images, nnInteractive incorporates
an AutoZoom mechanism. This dynamic adjustment of the region of interest
(ROI) and multi-stage optimization addresses the problem of target truncation
and loss of details caused by fixed input block sizes. By combining flexible user
interaction with advanced segmentation techniques, nnInteractive significantly
enhances the model’s ability to handle anatomical structures with high preci-
sion, making it highly suitable for clinical applications where user guidance can
be seamlessly integrated into the workflow.

2.4 Post-processing

The post-processing step refines the segmentation results by applying connected
component analysis to identify distinct regions in the predicted mask. Label
shape statistics are then used to assess the size of these regions, and a minimum
area threshold is applied to remove small, irrelevant components. This step aims
to ensure that only the clinically relevant structures, thereby enhancing the
accuracy and reliability of the results.
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3 Experiments and Results

3.1 Dataset and Assessment Metrics

The dataset consists of a total of 532 volumes. Each volume contains two classes
corresponding to the left and right branches of the IAC [3,2,15].

To assess the performance of the segmentation methods, several metrics are
computed for each IAC branch. These include the Dice Similarity Coefficient
(DSC) and Hausdorff Distance at the 95th percentile (HD95) for the final seg-
mentation, as well as the area under the curve (AUC) for both DSC and HD95
over the five interaction steps. Additionally, the average inference time and max-
imum memory usage are recorded for each case. These combined metrics provide
a comprehensive assessment of both the accuracy and efficiency of the segmen-
tation models.

3.2 Implementation details

Environments and Requirements. The nnU-Net model was trained for 1000
epochs, with the computational environment and dependencies detailed in Ta-
ble 1.

Table 1. System Configuration

Ubuntu version Ubuntu 24.04 LTS
CPU Intel(R) Xeon(R) Platinum 8352S CPU @ 2.20GHz
RAM 503 GB
GPU 1 NVIDIA GeForce RTX 4090 (24G)
CUDA version 12.4
Programming language Python 3.12.11
Deep learning framework PyTorch (torch 2.6.0, torchvision 0.21.0)
Code will available at https://github.com/duola-wa/Toothfairy3

Inference Acceleration. To improve inference efficiency, we implemented sev-
eral strategies due to the importance of runtime in the challenge evaluation.
First, we disabled augmentation during the inference phase of nnU-Net, which
significantly reduced computational load while maintaining accuracy. Addition-
ally, we enhanced the multi-class prediction process by refining the interpolation
step. Instead of using traditional integer-based resampling methods, we utilized
PyTorch’s interpolate function on floating-point tensors, which preserved numer-
ical precision and improved throughput for large volumetric segmentation tasks.
These optimizations enabled faster nnU-Net inference across the entire test set.

3.3 Results and Analysis

nnU-Net-based Model. The results of the debug and test phases are summa-
rized in Table 2. In the debug phase, the performance of Option 1 across several
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metrics was relatively strong, as demonstrated in the visualization shown in Fig-
ure 2, where the debug data results are compared to the ground truth. This
comparison highlights the model’s segmentation accuracy on the debug data.
However, the test phase results reveal the challenges of generalizing the model
to unseen data, with some test volumes demonstrating lower performance com-
pared to the debug phase. Additionally, due to platform limitations, the test
phase results do not include runtime and AUC metrics.

Table 2. Segmentation performance on Debug and test sets.

Metric Debug Test

Mean Std Min Max Mean Std Min Max

Dice_AUC 4.49 0.10 4.38 4.58 – – – –
HD95_AUC 6.38 1.20 5.00 7.07 – – – –
Dice_Final 0.899 0.020 0.877 0.917 0.768 0.190 0.175 0.937
HD95_Final 1.276 0.239 1.000 1.414 32.232 85.896 1.000 376.323

CBCT Image Ground TruthPrediction

Fig. 2. Visualization of the debug phase results. The segmentation results are compared
to the ground truth to demonstrate the accuracy of Option 1 in the debug phase.

nnInteractive. As shown in Fig. 3, we provide a visual comparison of the seg-
mentation results for two options. For nnInteractive, we show results with the
introduction of 3 and 5 interaction points, respectively. This visualization high-
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lights the impact of increasing the number of user interactions on the segmen-
tation accuracy. Due to the limited number of submissions in the competition,
we did not include metric-based results in this analysis, focusing instead on the
visual comparison of the segmentation outputs.

CBCT Image nnU-NetnnInteractive (3-pt) Ground TruthnnInteractive (5-pt)

Fig. 3. The nnInteractive method is evaluated with 3 and 5 interaction points, high-
lighting the effect of prompt refinement on segmentation accuracy.

Upon analyzing the results, despite nnInteractive not being pre-trained on
the competition dataset, still produces promising outcomes in most cases. The
method demonstrates strong potential for interactive segmentation, achieving
competitive results with a relatively small number of interaction points. However,
considering the trade-off between accuracy and runtime, we chose nnU-Net for
our submission.

Inference Acceleration. We implemented inference acceleration for the nnU-
Net model to enhance runtime performance without compromising segmentation
accuracy. Due to the submission limit, we did not include specific metrics. How-
ever, as shown in Fig. 4, the segmentation results before and after acceleration
are nearly identical. Additionally, testing on external CBCT data shows that,
after applying the acceleration, the model’s inference speed increased by a factor
of four on 40 external CBCT volumes. This highlights the effectiveness of our
acceleration approach, which successfully improves inference speed while main-
taining stable accuracy.
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CBCT Image Ground Truthw/ speed-up w/o speed-up

Fig. 4. Comparison of segmentation results before and after acceleration. The results
are compared to the ground truth, demonstrating that the segmentation performance
remains nearly identical after applying the acceleration.

4 Conclusion

In this work, we addressed the challenging task of IAC segmentation in CBCT
scans as part of the ToothFairy3 Task 2 challenge. To address this problem, we
utilized both an automated nnU-Net-based approach and an interactive segmen-
tation approach (nnInteractive). The automated nnU-Net model demonstrated
competitive performance and was selected as our final submission due to its
trade-off between segmentation accuracy and computational efficiency. However,
we believe that as the training capabilities of nnInteractive become available in
the future, its performance will further improve, offering even greater potential
for interactive segmentation tasks. In particular, inference acceleration strategies
further improved runtime efficiency while maintaining stable performance, mak-
ing the method potential for applications. These enhancements not only made
the model faster but also demonstrated its potential for applications requiring
both efficiency and high accuracy in medical imaging tasks.

5 Acknowledgement

We would like to thank the organizers of the competition for their meticulous
data organization and the opportunity to participate. We also greatly appreciate
their continuous and timely support in addressing the questions and concerns
that arose during the competition.



Balancing Accuracy and Efficiency in IAC Segmentation 9

References

1. Anıl, A., Peker, T., Turgut, H., Gülekon, I., Liman, F.: Variations in the anatomy
of the inferior alveolar nerve. British Journal of Oral and Maxillofacial Surgery
41(4), 236–239 (2003)

2. Bolelli, F., Lumetti, L., Vinayahalingam, S., Di Bartolomeo, M., Pellacani, A.,
Marchesini, K., Van Nistelrooij, N., Van Lierop, P., Xi, T., Liu, Y., et al.: Seg-
menting the inferior alveolar canal in cbcts volumes: the toothfairy challenge. IEEE
Transactions on Medical Imaging (2024)

3. Bolelli, F., Marchesini, K., van Nistelrooij, N., Lumetti, L., Pipoli, V., Ficarra,
E., Vinayahalingam, S., Grana, C.: Segmenting maxillofacial structures in cbct
volumes. In: Proceedings of the Computer Vision and Pattern Recognition Con-
ference. pp. 5238–5248 (2025)

4. Cipriano, M., Allegretti, S., Bolelli, F., Pollastri, F., Grana, C.: Improving segmen-
tation of the inferior alveolar nerve through deep label propagation. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
21137–21146 (2022)

5. Di Bartolomeo, M., Pellacani, A., Bolelli, F., Cipriano, M., Lumetti, L., Negrello,
S., Allegretti, S., Minafra, P., Pollastri, F., Nocini, R., et al.: Inferior alveolar canal
automatic detection with deep learning cnns on cbcts: development of a novel model
and release of open-source dataset and algorithm. Applied Sciences 13(5), 3271
(2023)

6. Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal,
J., Koehler, G., Norajitra, T., Wirkert, S., et al.: nnu-net: Self-adapting frame-
work for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486
(2018)

7. Isensee, F., Rokuss, M., Krämer, L., Dinkelacker, S., Ravindran, A., Stritzke, F.,
Hamm, B., Wald, T., Langenberg, M., Ulrich, C., et al.: nninteractive: Redefining
3d promptable segmentation. arXiv preprint arXiv:2503.08373 (2025)

8. Ji, C., Liu, Y., He, L., Jiang, Y., Huang, C., Wang, L.: Two-stage semi-supervised
nnu-net framework for tooth segmentation in cbct images. In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. pp.
100–109. Springer (2024)

9. Ji, C., Liu, Y., He, L., Jiang, Y., Huang, C., Wang, L.: A two-stage semi-supervised
nnu-net model for automated tooth segmentation in panoramic x-ray images. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 91–99. Springer (2024)

10. Jiang, Y., Liu, Y., Ji, C., Wang, L.: Enhanced multi-structure segmentation in cbct
images with adaptive structure optimization. In: International Conference on Med-
ical Image Computing and Computer-Assisted Intervention. pp. 30–40. Springer
(2024)

11. Khalil, H.: A basic review on the inferior alveolar nerve block techniques. Anes-
thesia Essays and Researches 8(1), 3–8 (2014)

12. Li, Y., Ling, Z., Zhang, H., Xie, H., Zhang, P., Jiang, H., Fu, Y.: Association
of the inferior alveolar nerve position and nerve injury: a systematic review and
meta-analysis. In: Healthcare. vol. 10, p. 1782. MDPI (2022)

13. Liu, Y., Xin, R., Yang, T., Wang, L.: Inferior alveolar nerve segmentation in
cbct images using connectivity-based selective re-training. In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. pp.
3–12. Springer (2024)



10 C. Ji et al.

14. Liu, Y., Zhang, S., Wu, X., Yang, T., Pei, Y., Guo, H., Jiang, Y., Feng, Z., Xiao,
W., Wang, Y.P., et al.: Individual graph representation learning for pediatric tooth
segmentation from dental cbct. IEEE Transactions on Medical Imaging (2024)

15. Lumetti, L., Pipoli, V., Bolelli, F., Ficarra, E., Grana, C.: Enhancing patch-based
learning for the segmentation of the mandibular canal. IEEE Access 12, 79014–
79024 (2024)

16. Pogrel, M.A.: Permanent nerve damage from inferior alveolar nerve blocks—an
update to include articaine. Journal of the California Dental Association 35(4),
271–273 (2007)

17. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)


	Balancing Accuracy and Efficiency in Inferior Alveolar Canal Segmentation from CBCT Scans

