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Abstract

Recent advances in Vision-Language Models001
(VLMs) and the scarcity of high-quality multi-002
modal alignment data have inspired numerous003
researches on synthetic VLM data generation.004
Challenging the conventional norm in VLM005
data construction, which uses a mixture of spe-006
cialists in caption and OCR, or stronger VLM007
APIs and expensive human annotation, we pro-008
pose to leverage the VLM itself for extracting009
cross-modal information of each via different010
prompts and filter the generated outputs again011
by itself via a consistency filtering strategy. In012
this paper, we present World to Code (W2C),013
a meticulously curated multi-modal data con-014
struction pipeline that organizes the final gener-015
ation output into a Python code format. Exper-016
iments have demonstrated the high quality of017
W2C by improving various existing visual ques-018
tion answering and visual grounding bench-019
marks across different VLMs. Further analysis020
also demonstrates that the new code parsing021
ability of VLMs presents better cross-modal022
equivalence than the commonly used detail cap-023
tion ability. Our code and data will be made024
public.025

1 Introduction026

Fueled by the rapid development of Vision-027

Language Models (VLMs) (Zhu et al., 2023;028

Liu et al., 2024b; Team et al., 2023; Liu et al.,029

2024a; Dong et al., 2024b) and Diffusion Models030

(DMs) (Betker et al., 2023), collecting detailed and031

concrete high-quality captions for each image be-032

comes more and more urging. However, expensive033

and tedious human labeling for high-quality image-034

text pairs further incurs the necessity of a cheap035

and reliable data construction pipeline without hu-036

man intervention. Related works on image-text037

data curation can be divided into two main streams.038

Distillation-based methods leverage closed-source039

commercial products (e.g., GPT-4V (Achiam et al.,040

2023)) with the state-of-the-art performance for im-041

age caption (Chen et al., 2023a; Li et al., 2023e; 042

Chen et al., 2024a). Another line of work curates 043

an image caption pipeline with existing VLMs to 044

filter high-quality image-text for the training of 045

better VLMs. These methods usually combine 046

open-source LLMs (Touvron et al., 2023a,b; Chi- 047

ang et al., 2023) and different visual specialists (Li 048

et al., 2023a; Huang et al., 2023b; Zong et al., 2023; 049

Zhang et al., 2024a; Fang et al., 2023; Minderer 050

et al., 2022; Ren et al., 2024; Zhang et al., 2023b) 051

to endow existing VLMs with new abilities, e.g., 052

pixel grounding in GLaMM (Rasheed et al., 2023). 053

However, the dependency on a mixture of special- 054

ists and human feedback in filtering noisy gener- 055

ations (Wang et al., 2023b) makes it difficult to 056

scale the generated data and automate the process. 057

Recent progress shows that generated results of 058

LLMs (Wang et al., 2022; Li et al., 2023c) and 059

VLMs (Zhang et al., 2024b) for prompts with simi- 060

lar meanings should be alike and we can help filter 061

out noisy generated texts and captions by consis- 062

tency checking. In light of the above evidence, we 063

present a self-instructed data construction pipeline, 064

coined W2C , to filter generated image captions via 065

existing VLMs through multiple instructed prompt 066

consistency. The overall pipeline reduces requested 067

specialists and frees off expensive human feedback 068

as shown in Figure 1. In addition, we leverage the 069

idea from human-machine interaction and organize 070

the model-generated responses into a Python code 071

format, following Eureka (Ma et al., 2023) and 072

Text2Reward (Xie et al., 2023a). 073

Experiments have shown that our proposed W2C 074

can improve VLMs on various visual question- 075

answering benchmarks. To be specific, W2C per- 076

forms the best in 7 out of 9 VQA benchmarks 077

on LLaVA-NeXT-7B, and 6 out of 9 VQA bench- 078

marks on LLaVA-NeXT-13B. Furthermore, W2C 079

also improves few-shot evaluations on two widely 080

used VQA benchmarks including GQA and MME. 081

Especially, on the 2-shot evaluation of GQA, the 082
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Figure 1: Overview of W2C and comparison of existing data construction pipelines. W2C differs from existing
works by reducing the need for a mixture of specialists and expensive human annotations via self-instruct.

method achieves over 5 accuracy gains across dif-083

ferent VLMs.084

Our contribution is summarized in threefold:085

• We present the data pipeline of W2C , which086

proposes to generate and filter data all by ex-087

isting VLMs themselves via self-instruct, sig-088

nificantly reducing the need for a mixture of089

specialists or expensive human annotations in090

conventional pipelines.091

• The generated data of W2C presents compa-092

rable better performance on classical VQA093

benchmarks and consistently better perfor-094

mance on visual grounding benchmarks than095

ShareGPT4V.096

• Further analysis presents that the new code097

parsing ability displays better cross-modality098

equivalence than the commonly used detail099

caption ability in presenting the details of an100

image.101

2 Related Work102

Vision Language Models With the emergence103

of LLMs (OpenAI, 2023; Achiam et al., 2023; Tou-104

vron et al., 2023a; Team et al., 2023; Jiang et al.,105

2024), VLMs (Zhu et al., 2023; Zhang et al., 2023a;106

Team et al., 2023) have demonstrated exceptional107

capabilities in visual recognition and understand-108

ing, achieving remarkable results on various VLM109

benchmarks (Singh et al., 2019; Tito et al., 2021;110

Zhang et al., 2024b; Liu et al., 2023b; Ying et al.,111

2024; Fu et al., 2024). The seminal BLIP2 (Li112

et al., 2023a) firstly introduces Q-Former to adapt113

encoded image features as potential language to-114

kens for LLM-based caption prediction. Following115

works (Liu et al., 2024a; Team et al., 2023; Dong116

et al., 2024c) improve the visual component by re- 117

placing VIT (Dosovitskiy et al., 2020) or scaling 118

the input image resolution, while Zhu et al. (Zhu 119

et al., 2023) extends BLIP2 by employing emergent 120

open-source LLMs (Touvron et al., 2023a; Chiang 121

et al., 2023), endowing current VLMs with signif- 122

icantly better instruction following and problem 123

solving abilities. LLaVA/LLaVA-1.5 (Liu et al., 124

2024b, 2023a) further remove Q-Former and point 125

out that simple MLP projection layers present im- 126

pressive performance in aligning image represen- 127

tation with LLMs. Some works also highlight the 128

importance of collecting high-quality cross-modal 129

alignment data for improving the consistently scal- 130

ing VLMs (Bai et al., 2023; Wang et al., 2023b; Li 131

et al., 2023b). 132

Multi-modal Dataset Construction The 133

scarcity of high-quality human-labeled data 134

inspires the synthesis of cross-modal data (Wang 135

et al., 2024; Chen et al., 2023a; Rasheed et al., 136

2023; Wang et al., 2023a; Li et al., 2023e; Lu 137

et al., 2023; Dong et al., 2024a; Chen et al., 138

2024c). Among them, Wang et al. (2023b) 139

propose the AS-1B data generation pipeline and 140

open-sourced high-quality dense captions on 1B 141

images. GLaMM (Rasheed et al., 2023) further 142

extends AS-1B by introducing about 10 specialists 143

of different functionalities including grounding, 144

tagging, and in-context learning. These specialists 145

enable pixel-wise grounded dense captions for 146

each image. However, the expensive human 147

annotation required in AS-1B and the complicated 148

construction pipeline in GLaMM have greatly 149

limited the potential of data scaling. In this work, 150

we try to answer whether synthetic data can 151

improve VLMs on classical VQA benchmarks (Fu 152
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et al., 2024; Ying et al., 2024; Chen et al., 2024b)153

to avoid tedious data collection.154

Recent progress in synthetic data generation for155

LLMs (Huang et al., 2023a; Li et al., 2023c; Wang156

et al., 2022, 2023c) shed light on the possibility of157

Multi-modal data construction by leveraging con-158

sistency in generation to filter invalid data. Wang159

et al. (2022) presents the consistent reasoning path160

generation demonstrating better performance in161

COT. Li et al. (2023c) uses the generator-validator162

consistent data for training and can effectively im-163

prove LLMs on various tasks. Zhang et al. (2024b)164

further shows that the generator-validator consis-165

tency in most VLMs is prone to be correct.166

Code Representation for Visual Tasks Code167

representations can formally encode various struc-168

ture information in a scene. Eureka (Ma et al.,169

2023) and Text2Reward (Xie et al., 2023a)170

parse a scene into Python codes and encourage171

LLMs to generate programmable dense rewards.172

ViStruct (Chen et al., 2023b) takes the first step in173

visual code intelligence by decomposing the code-174

visual representation into multiple components in-175

cluding object recognition, object grounding, at-176

tribute detection, relation detection, and event de-177

tection. Chen et al. (2023b) further introduces a178

curriculum learning approach to endow VLMs with179

the aforementioned four abilities. However, the180

heavy dependency on supervised human-labeled181

datasets and the complicated curriculum learning182

pipeline limits its potential. This work investigates183

an effective data-constructing pipeline based on184

code-vision representation.185

3 Method186

Our data construction pipeline shares some similar-187

ities with GLaMM (Rasheed et al., 2023), where188

both methods focus on the region-level caption of189

the whole image. W2C further extend GLaMM to190

support generation-validation consistency filtering191

by exploring different organization formations of192

the labeled elements and present how VLMs boost193

themselves on basic multi-modal understanding194

tasks.195

To make a comprehensive and systematic exposi-196

tion of our W2C entire pipeline, the following will197

be divided into three parts for discussion:198

(1) Visual Concepts Extraction in Section 3.1,199

(2) Self-Instructed Information Extraction in Sec-200

tion 3.2, (3) Information Filtering via Self Con-201

sistency in Section 3.3, (4) Structured formatting202

in Section 3.4. The overview of our construction 203

pipeline is shown in Figure 2 and all the used in- 204

struct prompts are shown in Appendix A.1. 205

3.1 Visual Concepts Extraction 206

To build a fully covered concept list for each image 207

I in images dataset Draw, we prompt VLMs to gen- 208

erate both general captions (for a concise overview 209

of the image) and detail captions (to bootstrap as 210

many visual concepts as possible in caption) us- 211

ing specific instruct prompts, pg and pd. We use 212

beam search to encourage the VLMs to provide 213

as many visual concepts as possible to improve 214

the generation diversity. The captions obtained as 215

follows: 216

og, od = fVLM(I, pg), fVLM(I, pd) (1) 217

where og, od denote the general captions and de- 218

tail captions. Since the visual concepts are mainly 219

composed of noun phrases, we employ the NLTK 220

toolkit (Bird, 2006) to extract all noun phrases 221

denoted as N = {N1, N2, ..., Nk} from og and 222

od. This process can be represented as N = 223

NLTK(og, od). 224

We use Grounding DINO to map the extracted 225

noun phrases to the bounding box areas of the cur- 226

rent image, where part of the false positive noun 227

phrases are filtered as they fail to be mapped with 228

corresponding areas in the image. Here we denote 229

the filtered visual concepts as C = {c1, c2, ..., ck}, 230

and their corresponding bounding boxes as B = 231

{b1, b2, ..., bk}, which is formulated as follows: 232

B,C = fDINO(I,N) (2) 233

3.2 Self-Instructed Information Extraction 234

Region-level Captions We crop image I for each 235

visual concept ci with its corresponding bounding 236

box bi to obtain detailed caption and prompt the 237

VLMs to provide a general caption centered on ci. 238

Additionally, to encourage the VLMs for providing 239

more concrete details about the properties of ci, we 240

instruct the VLMs to include the color and material 241

of ci in the caption. Denote the description prompt 242

for region-level caption as pdesc(ci) and the image 243

cropped by bi as I(bi). The region-level caption 244

for each visual concept ci is formulated as: 245

odesc(ci) = fVLM(pdesc(ci), I(bi)) (3) 246

OCR information Unlike previous methods that 247

mainly use OCR tools (PaddleOCR, 2023) to en- 248

hance the OCR capabilities, W2C acquire the OCR 249
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Figure 2: The data construction pipeline for W2C . Our pipeline utilizes both VLM and an object detector model
to furnish structured data with region-specific awareness, detailed entity captions, and comprehensive global
information. The VLM is iteratively invoked to generate the caption and perform consistency filtering to obtain
high-quality data. The visual concepts set is obtained from the captions by the NLTK toolkit, ci here represents a
visual concept from the set. The instruction prompts are all predefined templates.

information via instructed prompt to guide VLMs250

for existing VLMs have better capability in reading251

text in complex natural scenarios. Given the OCR252

instruct prompt pocr(bi), the OCR information in253

each bounding box area bi is formulated as follows:254

oocr(bi) = fVLM(pocr(bi), I(bi)) (4)255

3.3 Information Filtering via Self Consistency256

Our consistency filtering strategy is inspired by the257

similar generator-validator consistency findings in258

ConBench (Zhang et al., 2024b), where different in-259

struct prompts may lead to in-consistent captions of260

visual concepts, and the highly consistent genera-261

tions are prone to be correct ones. In this paper, we262

propose to filter the visual concepts via generation-263

validation consistency, where we change the region-264

level captions into multiple visual question answer-265

ing problems for both counting filtering and caption266

reranking.267

Counting Filtering via Consistency Different268

from AS-1B, we introduce Grounding DINO in269

our construction process, which can naturally fil-270

ter part of the plausible visual concepts as these271

concepts usually fail to find corresponding bound-272

ing boxes in the image. However, Grounding273

DINO introduces new challenges for counting prob-274

lems, as visual concepts ci might be mapped to275

multiple boxes that have a large overlap due to276

inappropriately designed hyper-parameters. To277

prevent the effect by plausibly mapped (bi, ci),278

we group all the ci that has the same name into 279

C̃ = {c̃1, c̃2, ..., c̃i, ..., c̃t}, and calculate the ex- 280

isting times for each c̃i as {n1, n2, ..., ni, ..., nt}. 281

We then merge all the boxes for each c̃i (which 282

might contain multiple visual concepts with the 283

same name) into B̃ = {b̃1, b̃2, ..., b̃i, ..., b̃t}, for a 284

box b̃i we crop the image and prompt the VLMs to 285

check whether the group element c̃i exist ni times 286

in the image via instruct prompt pc̃ivalid-g: 287

ovalid-g(c̃i) = fVLM(pvalid-g(c̃i), I(b̃i)) (5) 288

Caption Re-ranking via Consistency To pro- 289

vide better region-level captions for a given visual 290

concept, we use beam search to bootstrap multiple 291

caption candidates. To select the best candidate, we 292

again leverage the generator-validator consistency. 293

Specifically, denote the beam size as b, for the given 294

visual concept ci, we get a list of caption candidate 295

[o1desc(ci), o
2
desc(ci), ..., o

b
desc(ci)]. We use NLTK to 296

parse these captions and collect all the visual con- 297

cepts that are contained in these captions. Taking 298

n as the total number of extracted concepts in the 299

captions of ci, we get a new visual concept list 300

denoted as [c1i , c
2
i , ..., c

k
i , ..., c

t
i]. 301

Following Equation 5, we prompt VLMs to 302

check the existence of each extracted visual con- 303

cept cki via instruct prompt pvalid-c(c
k
i ): 304

ovalid-c(c
k
i ) = fVLM(pvalid-c(c

k
i ), I(b̃i)) (6) 305

We then manually design a scoring mechanism 306

based on the validation result ovalid-c(c
k
i ). Specif- 307
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Algorithm 1 Data Construction and Consistency
Filtering Pipeline
Input: Image I from dataset Draw, Instruct Prompts: Pg, Pd,

Pdesc, Pocr, Pvalid-g, Pvalid-c, VLM fVLM, Grounding DINO
fDINO.

1: Caption generate.
og, od = fVLM(I, pg), fVLM(I, pd)

2: Visual Concepts Extraction.
N = NLTK(og, od), B,C = fDINO(I,N)

3: Compositional Captions.(ci from C,bi from B)
odesc(ci) = fVLM(pdesc(ci), I(bi))

4: OCR information Extraction.
oocr(bi) = fVLM(pocr(bi), I(bi))

5: Grouping Concepts in C and B.
C̃ = {c̃1, c̃2, ..., c̃i, ..., c̃t}
B̃ = {b̃1, b̃2, ..., b̃i, ..., b̃t}

6: Counting Filtering via Consistency.
ovalid-g(c̃i) = fVLM(pvalid-g(c̃i), I(b̃i))

7: Caption Re-ranking via Consistency.
ovalid-c(c

k
i ) = fVLM(pvalid-c(c

k
i ), I(b̃i))

8: Rule-based Structured Formatting and Counting Filtering
to get DW2C .

Output: W2C dataset DW2C

ically, for each caption that contains multiple ex-308

tracted visual concepts, we assign each correct vi-309

sual concept ovalid-c(c
k
i ) = "Yes" to score 1 and310

each hallucinated visual concept ovalid-c(c
k
i ) =311

"No" to -1. By accumulating the scores in each cap-312

tion, we select the caption with the highest score313

in one beam as the final caption for the given vi-314

sual concept ci, which is supposed to be the most315

diverse and correct caption.316

3.4 Structured Formatting and Filtering317

As shown in Figure 2, we organize the structured318

information into code format to fully represent the319

region-level information of an image. Inspired by320

Eureka (Ma et al., 2023) and Text2Reward (Xie321

et al., 2023b), we organize the information as a322

structured representation into the Python format323

due to its generality and conciseness. The organi-324

zation is achieved by the following three rules.325

• One general caption og of the whole image as326

the comments of each image Class.327

• Each visual concept is an attribute for the im-328

age class. For each visual concept ci, we get329

their corresponding bounding box bi and their330

caption ocidesc and ociocr. Such visual concept331

is then organized into one single attribute:332

{caption:ocidesc, text:ociocr, bbox:bi}.333

• Grouping visual concepts with the same name.334

To make the representation code more concise,335

we group the visual concepts with the same 336

name in a list c̃i′ = [c1i , c
2
i , ...]. 337

By integrating these rules, we get the final code 338

representation of each image, which is then fol- 339

lowed by the rule-based filtering strategy that filters 340

out counting in-consistent samples. 341

In conclusion, by denoting the final dataset as 342

DW2C , the whole data construction pipeline is de- 343

picted in Algorithm 1. 344

4 Experiments 345

4.1 Experimental Setup 346

Datasets For the data construction pipeline, we 347

strictly use the images in the ShareGPT4V dataset 348

for our self-instructed approach validation in a 349

fair comparison. Since the original ShareGPT4V 350

dataset contains duplicate images, We remove the 351

repeated images in the original 102K data and get 352

about 87K original images. We follow the practice 353

of LLaVA-1.5 (Liu et al., 2023a) to adopt a two- 354

stage training approach consisting of prompt tuning 355

(PT) and instruct tuning (IT). For the experiments 356

on low resolution setting, we follow the LLaVA- 357

1.5 to use training dataset LLaVA558k for PT stage 358

and LLaVA665k for IT stage on LLaVA-1.5 training 359

stages. As the specific mixture ratio details of the 360

LLaVA-NeXT data were omitted, we directly uti- 361

lized the entire training set from each of the follow- 362

ing datasets in the IT stage, forming a mixture of 363

datasets including: LLaVA665k (Liu et al., 2023a), 364

DocVQA (Tito et al., 2021), ChartQA (Masry et al., 365

2022) and ShareGPT4V (Chen et al., 2023a) on 366

high resolution setting. 367

To comprehensively assess the effectiveness of 368

our constructed dataset, we evaluate the model 369

on widely adopted multi-modal benchmarks and 370

grouding benchmarks, including TextVQA (Singh 371

et al., 2019) (without providing OCR tokens), 372

DocVQA (Tito et al., 2021), ChartQA (Masry 373

et al., 2022), MME (Fu et al., 2024), MMT 374

Bench (Ying et al., 2024), MMStar (Chen et al., 375

2024b), ScienceQA (Lu et al., 2022), POPE (Li 376

et al., 2023d), GQA (Hudson and Manning, 377

2019), RefCOCO (Kazemzadeh et al., 2014), Ref- 378

COCO+ (Mao et al., 2016) and RefCOCOg (Mao 379

et al., 2016). These benchmarks provide a com- 380

prehensive assessment of multiple perspectives on 381

multi-modal VLM performance. 382

Implementation Details In this paper, we em- 383

ploy two types of leading methods: LLaVA- 384
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Method GQA MME. POPE SQAI MMS. MMT. Text. Doc. Chart.

Low resolution setting

LLaVA-1.5-7B∗ 62.3 1468 86.2 68.2 32.4 48.6 47.6 - -
+ShareGPT4V 63.4 1507 86.0 69.0 34.3 49.3 47.9 - -
+W2C 62.8 1503 85.6 69.8 33.5 49.4 46.6 - -

LLaVA-1.5-13B∗ 63.7 1574 85.7 72.1 33.5 51.1 49.0 - -
+ShareGPT4V 64.0 1537 86.1 72.0 33.9 50.9 48.8 - -
+W2C 64.0 1547 85.7 72.6 36.1 51.7 48.9 - -

High resolution setting

LLaVA-NeXT-7B 64.2 1473 87.3 67.9 34.6 48.2 63.9 75.4 62.0
+ShareGPT4V∗ 64.0 1513 85.8 68.5 33.7 49.5 64.2 75.1 62.2
+W2C 64.2 1516 87.5 68.3 35.8 50.1 63.7 76.5 63.0

LLaVA-NeXT-13B 65.3 1545 87.1 70.1 37.2 50.6 67.6 78.1 66.2
+ShareGPT4V∗ 65.3 1574 87.1 70.1 37.5 50.4 67.0 78.4 63.8
+W2C 65.5 1597 87.5 70.7 37.1 51.4 65.2 79.1 65.6

Table 1: Visual Question Answering benchmarks of W2C on LLaVA1.5 and LLaVA-NeXT under different
combination of IT datasets. The best results are bold and the second results are underlined. ∗: our reproduction of
LLaVA-1.5 and LLaVA-Next, which achieves comparable performance with the original papers. −: LLaVA-1.5 does
not support benchmarks that requires high input resolution. Abbreviations: SQAI (ScienceQA), MMS.(MMStar),
MMT.(MMT-Bench), Text.(TextVQA), Doc.(DocVQA), Chart.(ChartQA).

1.5 (Liu et al., 2023a) uses a CLIP-pretrained ViT-385

L/14 (Radford et al., 2021) as a vision encoder,386

a projector and an LLM, and LLaVA-NeXT (Liu387

et al., 2024a) increases the input image resolution388

by applying an adaptive image cropping strategy to389

concatenate all vision tokens. To ensure a fair and390

comprehensive comparison Table 1 and Table 2391

present results both excluding and including the392

ShareGPT4V dataset, as well as results from the393

incorporation of our dataset.394

We have reproduced LLaVA-NeXT with a learn-395

ing rate of ViT to 1/10 of the base learning rate for396

the reason that LLaVA-NeXT only publishes their397

evaluation code. The learning rate for the PT stage398

is set to 1e−3 and the IT stage is set to 2e−5 for399

both Vicuna-7B and Vicuna-13B backbone LLM.400

We use 16 A100 for experiments on VLM training.401

We freeze the vision encoder during training on the402

LLaVA-1.5 and only freeze the vision encoder on403

the PT stage during training on the LLaVA-NEXT404

following the original paper. We show more train-405

ing details in the Appendix B.1406

Data Processing Details During the data con-407

struction pipeline, we employ NLTK (Bird, 2006)408

tool to extract noun phrases from the captions, and409

the resulting set of phrases is then post-processed410

using WordNet (Miller, 1995) to remove duplicates411

and filter out inaccurately named entities. The total412

amount of final data after consistency filtering will413

not be completely consistent for different VLMs414

and we show the details in Appendix B.1. The 415

checkpoints of the VLM we used in our data pro- 416

cessing are the original checkpoints of the official 417

release. For LLaVA-1.5, which is not trained with 418

the ShareGPT4V dataset, LLaVA-NEXT is trained 419

with part of the ShareGPT4V dataset. The detailed 420

GPU hours can be found in Appendix B.2 and we 421

show the visualization of our W2C samples in Ap- 422

pendix B.3. 423

4.2 Main Results 424

Effectiveness of W2C data improve various 425

VLMs in Visual Question Answering bench- 426

marks We show a quantitative comparison re- 427

sults of the trained VLMs with and without the 428

ShareGPT4V dataset, as well as W2C for replace- 429

ment of the ShareGPT4V during the IT training 430

stage in Table 1. W2C consistently improves the 431

performance on different settings in both LLaVA- 432

1.5 and LLaVA-NeXT. Especially, in the high reso- 433

lution setting, our W2C presents impressive perfor- 434

mance improvement on multi-modal visual under- 435

standing benchmarks such as MMT Bench, MM- 436

Star, and MME. Specifically, W2C can bring im- 437

provement in 7 out of 9 benchmarks on LLaVA- 438

NeXT-7B and 6 out of 9 on LLaVA-NeXT-13B. 439

Especially, on LLaVA-NeXT-13B, W2C improves 440

DocVQA by 0.7 ANLS, ChartQA by 1.8 accu- 441

racy, MMT Bench by 0.8 accuracy and MME by 442

23 points compared to the reproduction results of 443

LLaVA-NeXT. 444
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Method RefCOCO RefCOCO+ RefCOCOg
test-a test-b val test-a test-b val test val Avg.

Low resolution setting

LLaVA-1.5-7B 86.8 72.9 80.0 79.3 60.7 70.7 72.2 72.2 74.4
+ShareGPT4V 87.1 72.7 80.4 79.5 62.2 71.5 72.5 72.2 74.8
+W2C 88.0 75.3 81.7 81.5 63.1 73.9 75.2 75.2 76.3

LLaVA-1.5-13B 88.9 75.3 82.3 82.4 65.0 74.3 75.2 74.6 77.3
+ShareGPT4V 89.0 75.6 83.0 82.7 65.6 75.7 75.3 75.0 77.7
+W2C 89.6 77.6 84.1 85.0 67.2 77.3 76.8 76.8 79.3

High resolution setting

LLaVA-NeXT-7B 89.9 78.7 84.8 84.5 68.7 77.0 79.4 78.8 80.2
+ShareGPT4V 89.4 76.8 83.5 82.1 65.9 75.5 77.5 77.6 78.5
+W2C 90.9 81.3 86.4 85.8 70.5 79.5 80.7 80.5 82.0

LLaVA-NeXT-13B 91.7 81.9 86.3 86.2 71.2 79.5 80.9 80.8 82.3
+ShareGPT4V 91.5 80.8 86.5 86.0 71.1 79.6 79.6 79.8 81.9
+W2C 91.1 83.6 87.3 86.3 72.9 81.0 81.7 81.3 83.2

Table 2: Grounding benchmarks of W2C on LLaVA1.5 and LLaVA-NeXT under different combination of IT
datasets. The best results are bold and the second results are underlined.

Method format MMT-Bench DocVQA TextVQA RefCOCOval RefCOCO+val RefCOCOgval

LLaVA-NeXT-7B single 49.2 75.4 63.8 85.4 78.5 79.5
LLaVA-NeXT-7B multi 48.8 72.0 61.4 82.4 73.8 76.8
LLaVA-NeXT-7B code 50.1 76.5 63.7 86.4 79.5 80.5

Table 3: Ablation study of W2C on using different data organization format. single/multi/code: constructed data are
organized in single-round conversations/multi-round conversations/python code format.

W2C data show impressive performance on445

Grounding benchmarks We present the perfor-446

mance of the VLMs on Grounding benchmarks in447

Table 2. The task of referential expression com-448

prehension necessitates that the model accurately449

identifies and localizes the object described. Our450

models demonstrate their exceptional capability451

for detailed image recognition and localization by452

undergoing evaluation across various referential453

expression comprehension benchmarks, including454

RefCOCO, RefCOCO+, and RefCOCOg. Benefit455

from the entity-enteric generation of local captions456

and the presence of local bounding box informa-457

tion, our model achieved an average improvement458

of 1.5/1.6 average IoU on LLaVA-1.5 7B/13B and459

3.5/1.3 average IoU on LLaVA-NeXT 7B/13B.460

4.3 Ablation Studies461

Our results show advantageous performance in Ta-462

ble 1 and Table 2, but our analysis of these results463

shows the limitations of the base model’s OCR ca-464

pability on LLaVA-1.5. We proceed with further465

ablation studies on LLaVA-Next-7B for the con-466

straints on resources, which optimally demonstrate467

the full benefits of our pipeline and consistency468

filtering in a comprehensive manner. 469

Organizing data into the python code format 470

presents better performance We discussed in 471

Section 3.2 the strengths of choosing the code for- 472

mat for the representation of structured data. In 473

Table 3, we quantitatively compare our data format 474

with a single-round dialogue format and a multi- 475

round dialogue format. By using the python code 476

as data construction format, we observe improved 477

performance in both visual grounding benchmarks 478

and visual question answer benchmarks on LLaVA- 479

NeXT-7B. Especially, we improved the MMT- 480

Bench by 0.9/1.3 accuracy and DocVQA by 1.1/4.5 481

ANLS compared to the single/multi data format. 482

Filtering introduces better downstream bench- 483

marks performance We show the ablation of 484

different consistency filtering choices in Table 4. 485

Similarly, the performance of LLaVA-NeXT-7B 486

on the both visual grounding benchmarks and vi- 487

sual question answering benchmarks highlights the 488

effectiveness and necessity of our consistency fil- 489

tering approaches. When two filtering strategies 490

are combined, we achieve the best performance 491

by improving DocVQA with 1.0 ANLS, TextVQA 492
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Method re-ranking counting MMT-Bench DocVQA TextVQA RefCOCOval RefCOCO+val RefCOCOgval

LLaVA-NeXT-7B 50.3 75.5 62.7 86.6 79.0 79.7
LLaVA-NeXT-7B ✓ 49.4 76.3 63.4 86.1 78.5 80.4
LLaVA-NeXT-7B ✓ 49.4 75.3 63.2 86.5 79.2 79.7
LLaVA-NeXT-7B ✓ ✓ 50.1 76.5 63.7 86.4 79.5 80.5

Table 4: Ablation study of W2C when combined the different consistency filtering strategy. re-ranking: caption
re-ranking. counting: counting filtering.

Method GQA MME
2-shot 4-shot 2-shot 4-shot

LLaVA-1.5-7B
detail caption 34.79 39.67 1136 1098
code parsing 41.06 43.40 1139 1169

LLaVA-1.5-13B
detail caption 34.00 40.87 1192 1170
code parsing 39.12 43.70 1199 1224

LLaVA-NeXT-7B
detail caption 34.89 40.70 1174 1105
code parsing 40.07 45.07 1154 1189

LLaVA-NeXT-13B
detail caption 31.63 40.07 1193 1127
code parsing 39.80 42.83 1151 1190

Table 5: Comparison between detail caption and code
parsing ability in few-shot evaluations on MME and
GQA without referring to the image.

with 1.0 accuracy, RefCOCO+val with 0.5 IOU and493

RefCOCOgval with 0.8 IOU. We also achieve com-494

parable results on MMT-Bench and RefCOCOval495

with little performance degradation.496

4.4 Code Parsing Ability Evaluation497

We further present better cross-modality equiva-498

lence between image and text brought by the new499

code parsing ability. An ideal caption of the im-500

age should enable the ability to question without501

referring to the image. Therefore, we compare the502

quality of the code output and widely used detail503

caption output in the ability to handle downstream504

tasks via in-context learning on the same Large505

Language Model.506

Experimental Setting We conduct experiments507

on both LLaVA-1.5-7B/13B and LLaVA-NeXT-508

7B/13B on two widely used Visual Question An-509

swering benchmarks, including GQA and the per-510

ception subset of MME. Due to the support of511

32k long context and satisfying performance in512

the open-source community, we use Qwen-1.5-513

14B (Bai et al., 2023; Team, 2024) as the problem-514

solving LLM, and prompt it with few shot inputs.515

Each shot can be represented as a combination516

of {description, question, answer}. For the detail 517

caption output, we use the models trained with both 518

the original dataset and the ShareGPT4V dataset to 519

improve their detail caption abilities. For the code 520

parsing output, we replace ShareGPT4V with our 521

proposed W2C dataset. 522

The code parsing ability of VLMs presents much 523

better few-shot performance. From Table 5, the 524

code parsing output shows significant improvement 525

when compared with using the detail caption out- 526

put. On the binary classification task for the visual 527

perception subset of MME, the code parsing abil- 528

ity achieves comparable or better performance in 529

various settings. On the free generation VQA task, 530

GQA, using the code parsing output can bring clear 531

accuracy gain across different model size and ar- 532

chitectures. Especially, on the 2-shot evaluation 533

of GQA on LLaVA-NEXT-13B, the code parsing 534

output by model trained with W2C achieves 8.2 ac- 535

curacy improvement compared to baseline, indicat- 536

ing that the code-parsing ability present improved 537

performance in presenting the details of one image. 538

5 Conclusion 539

This paper presents W2C , an enhanced data 540

construction pipeline that only leverages existing 541

VLMs themselves for detail and compositional 542

captions for an image, which is further organized 543

in Python code format. We present that existing 544

VLMs can improve themselves on the understand- 545

ing benchmarks in various scenarios, significantly 546

reducing the need for a mix of visual specialists 547

and heavy human annotations. Moreover, addi- 548

tional experiments show that the new code parsing 549

ability of VLMs presents better capability in fully 550

describing the image, with notable improvement in 551

the few-shot evaluation on downstream tasks when 552

the raw images are not provided. Our proposed 553

W2C not only enhances the original capabilities on 554

the widely used multi-modal understanding bench- 555

marks but also endows existing VLMs with detailed 556

and executable multi-modal parsing ability. 557
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6 Limitation558

Despite the advancements in improved multi-modal559

understanding benchmarks and new code parsing560

ability, W2C can be further improved in some as-561

pects.562

• In this paper, we directly use the ShareGPT4V563

dataset images for a fair comparison with564

ShareGPT4V. However, it contains fewer565

OCR-centric images, limiting the final perfor-566

mance. Further investigation could be taken567

in studying the performance of W2C on more568

distribution of unlabeled datasets.569

• The experiments are mainly conducted on570

the SOTA open-source VLM structures, i.e.,571

the LLaVA series which use MLP projectors572

for multi-modal alignment. The effectiveness573

of W2C can be further investigated on other574

VLM structures.575

Given the promising performance of W2C on576

evaluation benchmarks, we would like to explore577

a more high-quality and diverse data generation578

pipeline in future investigation.579

References580

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama581
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,582
Diogo Almeida, Janko Altenschmidt, Sam Altman,583
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.584
arXiv preprint arXiv:2303.08774.585

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,586
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei587
Huang, et al. 2023. Qwen technical report. arXiv588
preprint arXiv:2309.16609.589

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jian-590
feng Wang, Linjie Li, Long Ouyang, Juntang Zhuang,591
Joyce Lee, Yufei Guo, et al. 2023. Improving image592
generation with better captions. Computer Science.593
https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8.594

Steven Bird. 2006. Nltk: the natural language toolkit.595
In Proceedings of the COLING/ACL 2006 Interactive596
Presentation Sessions, pages 69–72.597

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang,598
Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhihong599
Chen, Jianquan Li, Xiang Wan, and Benyou Wang.600
2024a. Allava: Harnessing gpt4v-synthesized data601
for a lite vision-language model. arXiv preprint602
arXiv:2402.11684.603

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang604
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,605
Yu Qiao, Dahua Lin, et al. 2024b. Are we on the606

right way for evaluating large vision-language mod- 607
els? arXiv preprint arXiv:2403.20330. 608

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Con- 609
ghui He, Jiaqi Wang, Feng Zhao, and Dahua 610
Lin. 2023a. Sharegpt4v: Improving large multi- 611
modal models with better captions. arXiv preprint 612
arXiv:2311.12793. 613

Yangyi Chen, Xingyao Wang, Manling Li, Derek 614
Hoiem, and Heng Ji. 2023b. Vistruct: Visual struc- 615
tural knowledge extraction via curriculum guided 616
code-vision representation. In Proceedings of the 617
2023 Conference on Empirical Methods in Natural 618
Language Processing, pages 13342–13357. 619

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, 620
and Quanquan Gu. 2024c. Self-play fine-tuning con- 621
verts weak language models to strong language mod- 622
els. arXiv preprint arXiv:2401.01335. 623

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 624
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 625
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 626
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 627
source chatbot impressing gpt-4 with 90%* chatgpt 628
quality. 629

Hongyuan Dong, Jiawen Li, Bohong Wu, Jiacong Wang, 630
Yuan Zhang, and Haoyuan Guo. 2024a. Bench- 631
marking and improving detail image caption. arXiv 632
preprint arXiv:2405.19092. 633

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, 634
Bin Wang, Linke Ouyang, Xilin Wei, Songyang 635
Zhang, Haodong Duan, Maosong Cao, et al. 636
2024b. Internlm-xcomposer2: Mastering free- 637
form text-image composition and comprehension 638
in vision-language large model. arXiv preprint 639
arXiv:2401.16420. 640

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang 641
Cao, Bin Wang, Linke Ouyang, Songyang Zhang, 642
Haodong Duan, Wenwei Zhang, Yining Li, et al. 643
2024c. Internlm-xcomposer2-4khd: A pioneer- 644
ing large vision-language model handling resolu- 645
tions from 336 pixels to 4k hd. arXiv preprint 646
arXiv:2404.06512. 647

Alexey Dosovitskiy, Lucas Beyer, Alexander 648
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 649
Thomas Unterthiner, Mostafa Dehghani, Matthias 650
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. 651
An image is worth 16x16 words: Transformers 652
for image recognition at scale. In International 653
Conference on Learning Representations. 654

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, 655
Xinlong Wang, and Yue Cao. 2023. Eva-02: A vi- 656
sual representation for neon genesis. arXiv preprint 657
arXiv:2303.11331. 658

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, 659
Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, 660
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. 661
2024. Mme: A comprehensive evaluation benchmark 662

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394


for multimodal large language models. Preprint,663
arXiv:2306.13394.664

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,665
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2023a.666
Large language models can self-improve. In The667
2023 Conference on Empirical Methods in Natural668
Language Processing.669

Xinyu Huang, Youcai Zhang, Jinyu Ma, Weiwei Tian,670
Rui Feng, Yuejie Zhang, Yaqian Li, Yandong Guo,671
and Lei Zhang. 2023b. Tag2text: Guiding vision-672
language model via image tagging. In The Twelfth673
International Conference on Learning Representa-674
tions.675

Drew A Hudson and Christopher D Manning. 2019.676
Gqa: A new dataset for real-world visual reasoning677
and compositional question answering. In Proceed-678
ings of the IEEE/CVF conference on computer vision679
and pattern recognition, pages 6700–6709.680

Albert Q Jiang, Alexandre Sablayrolles, Antoine681
Roux, Arthur Mensch, Blanche Savary, Chris Bam-682
ford, Devendra Singh Chaplot, Diego de las Casas,683
Emma Bou Hanna, Florian Bressand, et al. 2024.684
Mixtral of experts. arXiv preprint arXiv:2401.04088.685

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,686
and Tamara Berg. 2014. Referitgame: Referring to687
objects in photographs of natural scenes. In Proceed-688
ings of the 2014 conference on empirical methods in689
natural language processing (EMNLP), pages 787–690
798.691

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.692
2023a. Blip-2: Bootstrapping language-image pre-693
training with frozen image encoders and large lan-694
guage models. In International conference on ma-695
chine learning, pages 19730–19742. PMLR.696

Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi697
Wang, Shuhuai Ren, Mukai Li, Yazheng Yang,698
Jingjing Xu, Xu Sun, et al. 2023b. M3it: A large-699
scale dataset towards multi-modal multilingual in-700
struction tuning. arXiv preprint arXiv:2306.04387.701

Xiang Lisa Li, Vaishnavi Shrivastava, Siyan Li, Tat-702
sunori Hashimoto, and Percy Liang. 2023c. Bench-703
marking and improving generator-validator consis-704
tency of language models. In The Twelfth Interna-705
tional Conference on Learning Representations.706

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,707
Wayne Xin Zhao, and Ji-Rong Wen. 2023d. Eval-708
uating object hallucination in large vision-language709
models. arXiv preprint arXiv:2305.10355.710

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo711
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and712
Xiang Bai. 2023e. Monkey: Image resolution and713
text label are important things for large multi-modal714
models. arXiv preprint arXiv:2311.06607.715

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 716
Lee. 2023a. Improved baselines with visual instruc- 717
tion tuning. In NeurIPS 2023 Workshop on Instruc- 718
tion Tuning and Instruction Following. 719

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan 720
Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava- 721
next: Improved reasoning, ocr, and world knowledge. 722

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 723
Lee. 2024b. Visual instruction tuning. Advances in 724
neural information processing systems, 36. 725

Yuliang Liu, Zhang Li, Hongliang Li, Wenwen Yu, 726
Mingxin Huang, Dezhi Peng, Mingyu Liu, Mingrui 727
Chen, Chunyuan Li, Lianwen Jin, et al. 2023b. On 728
the hidden mystery of ocr in large multimodal models. 729
arXiv preprint arXiv:2305.07895. 730

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei 731
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng 732
Shang, and Qun Liu. 2023. Self: Language-driven 733
self-evolution for large language model. arXiv 734
preprint arXiv:2310.00533. 735

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai- 736
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter 737
Clark, and Ashwin Kalyan. 2022. Learn to explain: 738
Multimodal reasoning via thought chains for science 739
question answering. Advances in Neural Information 740
Processing Systems, 35:2507–2521. 741

Yecheng Jason Ma, William Liang, Guanzhi Wang, De- 742
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke 743
Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eu- 744
reka: Human-level reward design via coding large 745
language models. In The Twelfth International Con- 746
ference on Learning Representations. 747

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana 748
Camburu, Alan L Yuille, and Kevin Murphy. 2016. 749
Generation and comprehension of unambiguous ob- 750
ject descriptions. In Proceedings of the IEEE con- 751
ference on computer vision and pattern recognition, 752
pages 11–20. 753

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, 754
and Enamul Hoque. 2022. Chartqa: A benchmark 755
for question answering about charts with visual and 756
logical reasoning. arXiv preprint arXiv:2203.10244. 757

George A Miller. 1995. Wordnet: a lexical database for 758
english. Communications of the ACM, 38(11):39–41. 759

Matthias Minderer, Alexey Gritsenko, Austin Stone, 760
Maxim Neumann, Dirk Weissenborn, Alexey Doso- 761
vitskiy, Aravindh Mahendran, Anurag Arnab, 762
Mostafa Dehghani, Zhuoran Shen, et al. 2022. Sim- 763
ple open-vocabulary object detection. In European 764
Conference on Computer Vision, pages 728–755. 765
Springer. 766

OpenAI. 2023. Chatgpt. https://openai.com/blog/ 767
chatgpt/. 768

10

https://arxiv.org/abs/2306.13394
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/


PaddleOCR. 2023. Awesome multilingual ocr toolk-769
its based on paddlepaddle. https://github.com/770
PaddlePaddle/PaddleOCR.771

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya772
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-773
try, Amanda Askell, Pamela Mishkin, Jack Clark,774
et al. 2021. Learning transferable visual models from775
natural language supervision. In International confer-776
ence on machine learning, pages 8748–8763. PMLR.777

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Ab-778
delrahman Shaker, Salman Khan, Hisham Cholakkal,779
Rao M Anwer, Erix Xing, Ming-Hsuan Yang, and780
Fahad S Khan. 2023. Glamm: Pixel ground-781
ing large multimodal model. arXiv preprint782
arXiv:2311.03356.783

Shuhuai Ren, Aston Zhang, Yi Zhu, Shuai Zhang, Shuai784
Zheng, Mu Li, Alexander J Smola, and Xu Sun. 2024.785
Prompt pre-training with twenty-thousand classes for786
open-vocabulary visual recognition. Advances in787
Neural Information Processing Systems, 36.788

Amanpreet Singh, Vivek Natarajan, Meet Shah,789
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,790
and Marcus Rohrbach. 2019. Towards vqa models791
that can read. In Proceedings of the IEEE/CVF con-792
ference on computer vision and pattern recognition,793
pages 8317–8326.794

Gemini Team, Rohan Anil, Sebastian Borgeaud,795
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,796
Radu Soricut, Johan Schalkwyk, Andrew M Dai,797
Anja Hauth, et al. 2023. Gemini: a family of798
highly capable multimodal models. arXiv preprint799
arXiv:2312.11805.800

Qwen Team. 2024. Introducing qwen1.5.801

Rubèn Tito, Dimosthenis Karatzas, and Ernest Val-802
veny. 2021. Document collection visual question803
answering. In Document Analysis and Recognition–804
ICDAR 2021: 16th International Conference, Lau-805
sanne, Switzerland, September 5–10, 2021, Proceed-806
ings, Part II 16, pages 778–792. Springer.807

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier808
Martinet, Marie-Anne Lachaux, Timothée Lacroix,809
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal810
Azhar, et al. 2023a. Llama: Open and effi-811
cient foundation language models. arXiv preprint812
arXiv:2302.13971.813

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-814
bert, Amjad Almahairi, Yasmine Babaei, Nikolay815
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti816
Bhosale, et al. 2023b. Llama 2: Open founda-817
tion and fine-tuned chat models. arXiv preprint818
arXiv:2307.09288.819

Teng Wang, Jinrui Zhang, Junjie Fei, Yixiao Ge, Hao820
Zheng, Yunlong Tang, Zhe Li, Mingqi Gao, Shanshan821
Zhao, Ying Shan, et al. 2023a. Caption anything: In-822
teractive image description with diverse multimodal823
controls. arXiv preprint arXiv:2305.02677.824

Weiyun Wang, Yiming Ren, Haowen Luo, Tiantong Li, 825
Chenxiang Yan, Zhe Chen, Wenhai Wang, Qingyun 826
Li, Lewei Lu, Xizhou Zhu, et al. 2024. The all-seeing 827
project v2: Towards general relation comprehension 828
of the open world. arXiv preprint arXiv:2402.19474. 829

Weiyun Wang, Min Shi, Qingyun Li, Wenhai Wang, 830
Zhenhang Huang, Linjie Xing, Zhe Chen, Hao Li, 831
Xizhou Zhu, Zhiguo Cao, et al. 2023b. The all-seeing 832
project: Towards panoptic visual recognition and un- 833
derstanding of the open world. In The Twelfth Inter- 834
national Conference on Learning Representations. 835

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 836
Ed H Chi, Sharan Narang, Aakanksha Chowdhery, 837
and Denny Zhou. 2022. Self-consistency improves 838
chain of thought reasoning in language models. In 839
The Eleventh International Conference on Learning 840
Representations. 841

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 842
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh 843
Hajishirzi. 2023c. Self-instruct: Aligning language 844
models with self-generated instructions. In Proceed- 845
ings of the 61st Annual Meeting of the Association for 846
Computational Linguistics (Volume 1: Long Papers), 847
pages 13484–13508. 848

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, 849
Qian Luo, Victor Zhong, Yanchao Yang, and Tao 850
Yu. 2023a. Text2reward: Automated dense reward 851
function generation for reinforcement learning. arXiv 852
preprint arXiv:2309.11489. 853

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, 854
Qian Luo, Victor Zhong, Yanchao Yang, and Tao 855
Yu. 2023b. Text2reward: Automated dense reward 856
function generation for reinforcement learning. arXiv 857
preprint arXiv:2309.11489. 858

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, 859
Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi 860
Lin, Shuo Liu, et al. 2024. Mmt-bench: A compre- 861
hensive multimodal benchmark for evaluating large 862
vision-language models towards multitask agi. arXiv 863
preprint arXiv:2404.16006. 864

Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao 865
Xu, Linke Ouyang, Zhiyuan Zhao, Shuangrui Ding, 866
Songyang Zhang, Haodong Duan, Hang Yan, et al. 867
2023a. Internlm-xcomposer: A vision-language 868
large model for advanced text-image comprehension 869
and composition. arXiv preprint arXiv:2309.15112. 870

Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao, 871
Wenqi Shao, Wenwei Zhang, Kai Chen, and Ping 872
Luo. 2023b. Gpt4roi: Instruction tuning large lan- 873
guage model on region-of-interest. arXiv preprint 874
arXiv:2307.03601. 875

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, 876
Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin, Tong 877
Luo, Yaqian Li, Shilong Liu, et al. 2024a. Recognize 878
anything: A strong image tagging model. In Pro- 879
ceedings of the IEEE/CVF Conference on Computer 880
Vision and Pattern Recognition, pages 1724–1732. 881

11

https://github.com/ PaddlePaddle/PaddleOCR
https://github.com/ PaddlePaddle/PaddleOCR
https://github.com/ PaddlePaddle/PaddleOCR
https://qwenlm.github.io/blog/qwen1.5/


Yuan Zhang, Fei Xiao, Tao Huang, Chun-Kai Fan,882
Hongyuan Dong, Jiawen Li, Jiacong Wang, Kuan883
Cheng, Shanghang Zhang, and Haoyuan Guo. 2024b.884
Unveiling the tapestry of consistency in large vision-885
language models. arXiv preprint arXiv:2405.14156.886

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and887
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing888
vision-language understanding with advanced large889
language models. In The Twelfth International Con-890
ference on Learning Representations.891

Zhuofan Zong, Guanglu Song, and Yu Liu. 2023. Detrs892
with collaborative hybrid assignments training. In893
Proceedings of the IEEE/CVF international confer-894
ence on computer vision, pages 6748–6758.895

12



A Prompt Templates for W2C data896

construction pipeline897

A.1 Prompt Templates898

W2C data construction pipeline calls the VLMs re-899

peatedly by using different prompts. We guide the900

VLMs to accurately answer questions by designing901

universal prompt templates, thus ensuring better902

compliance with instruction. All the prompts are903

shown in Table 6.904

B Implementation Details for W2C905

experiments906

B.1 Dataset Details907

All the creators or original owners of assets used908

in the paper are credited properly, and the license909

and terms of use are explicitly mentioned and are910

respected properly. All datasets we use are from in-911

ternet open-source datasets under CC-BY licenses912

and are cited properly.913

Data Construction Pipeline Details We incor-914

porate images from the open-source ShareGPT4V915

dataset, totaling approximately 87K images. For916

the VLMs in our data construction pipeline, we di-917

rectly use the official release checkpoints including918

LLaVA-1.5 and LLaVA-NeXT.919

For the cost of our data construction pipeline,920

we use about 1/1.5 day on 32 A100s GPU for921

LLaVA-1.5 and about 2/3 days on 48 A100s GPU922

for LLaVA-NeXT. For the data obtained by W2C923

pipeline, we get 34K from LLaVA-1.5-7B, 33K924

from LLaVA-1.5-13B, 37K from LLaVA-NeXT-925

7B, and 29K from LLaVA-NeXT-13B. The reasons926

for the inconsistency in the amount of data are mul-927

tifaceted. On the one hand, a minor portion of the928

data was discarded due to improper handling of929

anomalous data throughout the processing stage.930

On the other hand, a significant amount of data was931

eliminated during the consistency filtering stage932

owing to inconsistencies detected by the VLMs.933

Additionally, the generative capabilities of various934

VLMs vary, and the inherent randomness within935

VLMs themselves also contributes to these incon-936

sistencies.937

Training Details During the training of VLMs,938

we use different dataset combinations. We uti-939

lize the original paper’s open-source dataset during940

both the PT and IT training stages for LLaVA-1.5.941

In contrast, for the training of LLaVA-NeXT, the942

lack of disclosure regarding the specific details943

of the IT stage, we trained using all training set 944

from LLaVA665k (Liu et al., 2023a), DocVQA (Tito 945

et al., 2021), ChartQA (Masry et al., 2022) and 946

ShareGPT4V (Chen et al., 2023a). Furthermore, by 947

aligning our dataset with that of the original study, 948

we achieved comparable experimental results. We 949

use the CLIP-pretrained ViT-L/14 (Radford et al., 950

2021) as a vision encoder, which input resolution 951

is 336×336. We freeze the vision encoder during 952

training on the LLaVA-1.5 and only freeze the vi- 953

sion encoder on the PT stage during training on the 954

LLaVA-NEXT following the original paper. The 955

experiments of VLM training are all conducted on 956

16 A100 GPUs. 957

B.2 Implementation Details of our Pipeline 958

We employ beam search to fully leverage the power- 959

ful language generation capabilities and extensive 960

knowledge base of VLM. This approach enables 961

the generation of an increased number of captions, 962

assisting us in acquiring a broader set of visual con- 963

cept candidates. Due to the limitation of GPU mem- 964

ory, we set the generation beam to 8 on LLaVA-1.5 965

and 4 on LLaVA-Next. The learning rate for the 966

PT stage is set to 1e−3 and the IT stage is set to 967

2e−5 for both Vicuna-7B and Vicuna-13B back- 968

bone LLM. We set the warmup ratio to 0.03, the 969

PT stage batch size is set to 256 and the IT stage 970

batch size is set to 128. We use model max length 971

2048 on LLaVA-1.5 and 4096 on LLaVA-Next for 972

its high resolution setting. 973

B.3 Data Example 974

In Figure 3 and Figure 4, we present images from 975

the ShareGPT4V dataset alongside the correspond- 976

ing annotations we constructed by W2C . As shown 977

in these images, the annotations generated entirely 978

by the VLMs accurately describe both the global 979

captions and the detailed captions of local entities 980

within specific areas. Additionally, the OCR text is 981

also encapsulated within the corresponding frames. 982

For multiple entities present in the images, a dis- 983

play of group merging is also conducted. 984
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class NaturalEnv:
# The image shows a large building with an American flag on top, advertising a 

country music event.
def __init__(self):

self.flag_group=[
Object(type="flag", description="The flag has a star at its center, resembling 

the shape of the state of Tennessee, and is flown against a blue sky backdrop.", 
bounding_box=[0.82,0.23,0.93,0.42]),

Object(type="flag", description="The flag on the pole is a flat striped flag 
with a stars and stripe design.", 

bounding_box=[0.16,0.09,0.22,0.31]),
]
self.banner_group=[

Object(type="banner", description="This is a stylized image of a huge banner.", 
text=Text(text="grand ole opry, the show that made country music famous"), 
bounding_box=[0.28,0.38,0.58,0.64]),

Object(type="banner", description="A large rectangular banner featuring the 
images of a man playing an acoustic guitar and four other individuals performing with 
microphones on a red stage setback.", 

bounding_box=[0.02,0.35,0.11,0.74]),
Object(type="banner", description="The large banner prominently displays the 

sign 'OLE OPRY' in the shape of a red circle with a white border and text.", 
bounding_box=[0.36,0.39,0.51,0.64]),

]
self.bush_group=[

Object(type="bush", description="This small bush is beautifully trimmed and 
has purple flowers adorning it.",

bounding_box=[0.61,0.65,0.99,0.83]),
Object(type="bush", description="Large green bush next to a white pole.", 

bounding_box=[0.0,0.65,0.3,0.81]),
Object(type="bush", description="On the concrete walk in the foreground, there 

is a green bush that has been trimmed into an interesting, bushy shape.", 
bounding_box=[0.0,0.66,0.36,1.0]),

]
self.opry_house=Object(type="opry_house", description="The Grand Ole Opry house is 

a three-sided building with a light brown roof and orange and white odeon-style 
marquee.", 

text=Text(text="grand ole opry house, the show that made country music famous, 
grand ole opry"), 

bounding_box=[0.0,0.07,0.98,0.82])
self.tree=Object(type="tree", description="The tree is tall and green, located on 

the side of a building next to a flower bed.", 
bounding_box=[0.85,0.49,1.0,0.78])

self.entrance=Object(type="entrance", description="The entrance to the building 
with a dark wooden door and a black awning.", 

bounding_box=[0.36,0.64,0.5,0.83])
self.country_music_musicians=Object(type="country_music_musicians", 

description="The poster on the wall shows a country music singer in high 
contrast red and blue with vibrant white highlights on his attire.", 

text=Text(text="Grand Ole Opry, The Show that Made Country Music Famous"), 
bounding_box=[0.28,0.41,0.35,0.63])

Figure 3: Visualization of one W2C sample with OCR information.
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class NaturalEnv:
# A herd of elephants wading through water with people.
def __init__(self):

self.elephant_group=[
Object(type="elephant", description="The brown elephant is wadding into the 

water.", 
bounding_box=[0.45,0.42,0.77,1.0]),

Object(type="elephant", description="The large elephant on the right has a 
muddy side and a long trunk.", 

bounding_box=[0.0,0.58,0.23,1.0]),
Object(type="elephant", description="The elephant is a large, dark brown 

mammal wading in a river.", 
bounding_box=[0.15,0.47,0.35,0.89]),

]
self.people_group=[

Object(type="people", description="Several people wearing green shirts and 
khaki pants are walking on the rocky shore.", 

bounding_box=[0.94,0.06,1.0,0.3]),
Object(type="people", description="A group of seven men in green shirts and 

tan shorts standing together in a sandy area with a wooden pole.", 
bounding_box=[0.89,0.0,0.95,0.21]),

]
self.stick=Object(type="stick", description="A long, slender wooden pole with a 

curved shape and a shiny, smooth surface.", 
bounding_box=[0.81,0.55,0.88,0.66])

self.water_flowing=Object(type="water_flowing", description="Rough surface of the 
water shows agitated movement as the elephants bathe in the murky stream.", 

bounding_box=[0.0,0.0,1.0,1.0])
self.trunk=Object(type="trunk", description="The elephant's trunk is long and 

curled at the end.", 
bounding_box=[0.63,0.73,0.77,1.0])

self.onlooker=Object(type="onlooker", description="One onlooker standing on an 
elevated rock with greenish-brown sandal, wearing brown cargo shorts.", 

bounding_box=[0.81,0.0,1.0,0.3])
self.riverbank=Object(type="riverbank", description="This riverbank is sandy and 

rocky, with a cliff-like appearance.", 
bounding_box=[0.63,0.11,1.0,0.37])

self.stone=Object(type="stone", description="A rectangular, weathered limestone 
slab by a river.", 

bounding_box=[0.86,0.67,1.0,0.92])
self.stick=Object(type="stick", description="The brown stick the person is 

holding.", 
bounding_box=[0.04,0.24,0.07,0.45])

Figure 4: Visualization of one W2C sample without OCR information.
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Stage Prompt

Prompt for Caption

Global Caption − pg Please provide a simple sentence that describes this image accurately.
Detail Caption − pd Please describe all the visual concepts in the image in detail, but use concise words

with no more than 120 words.

Prompt for Self-Instructed Concept-targeted Captions

Compositional Caption − pdesc From the image, provide one sentence that describes {e} (you should try your best to
include attributes like shape, color or material), especially, using {e} as the beginning
of your answer.

OCR Extract − pocr List all the text in the image, answer with the ocr tokens only, and answer ’No’ with
one word if there isn’t any.

Prompt for Consistency Filtering

Caption Re-ranking − pvalid-c Is ’{e}’ a valid and visible visual concept in the image? Answer yes or no with only
one single word.

Counting Group Filtering − pvalid-g Is there {parse times} or more {group key} in the image? Answer yes or no with a
single word.

Symbol Explanation

{e} means an entity in the final detected entity list of this image.
{parse times} means the number of times an entity appears in the entity list of this image.
{group key} means the entity name corresponding to parse times in the entity list of this image.

Table 6: Prompt for W2C data construction pipeline.
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