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Abstract

Machine learning models are prone to making incorrect predictions on inputs that are far
from the training distribution. This hinders their deployment in safety-critical applications
such as autonomous vehicles and healthcare. The detection of a shift from the training dis-
tribution of individual datapoints has gained attention. A number of techniques have been
proposed for such out-of-distribution (OOD) detection. But in many applications, the inputs
to a machine learning model form a temporal sequence. Existing techniques for OOD detec-
tion in time-series data either do not exploit temporal relationships in the sequence or do not
provide any guarantees on detection. We propose using deviation from the in-distribution
temporal equivariance as the non-conformity measure in conformal anomaly detection frame-
work for OOD detection in time-series data. Computing independent predictions from mul-
tiple conformal detectors based on the proposed measure and combining these predictions by
Fisher’s method leads to the proposed detector CODiT with guarantees on false detection
in time-series data. We illustrate the efficacy of CODiT by achieving state-of-the-art results
on computer vision datasets in autonomous driving. We also show that CODiT can be used
for OOD detection in non-vision datasets by performing experiments on the physiological
GAIT sensory dataset. Code, data, and trained models are available at https://drive.
google.com/file/d/1uSNYGoSNWu4_d-nPAcIcxYyBYI8VLqPq/view?usp=sharing.

1 Introduction

Deployment of machine learning models in safety-critical systems such as autonomous driving (Bojarski et al.,
2016), and healthcare (De Fauw et al., 2018) is hindered by uncertainty in the outputs of these models. One
such source of uncertainty at the inference time is a shift in the distribution of the model’s inputs from their
training distribution. Detection of this shift or out-of-distribution (OOD) detection on individual datapoints
has therefore gained quite attention (Hendrycks & Gimpel, 2016; Lee et al., 2017; 2018; Hendrycks et al.,
2019; Tack et al., 2020; Kaur et al., 2021). But this problem of OOD detection in time-series data is less
explored (Cai & Koutsoukos, 2020; Ramakrishna et al., 2021; Feng et al., 2021). In time-series data, OOD
detection aims at detecting those windows of time-series datapoints that are outside the training distribution.
In this case, the distribution of interest is not just of individual datapoints, but the distribution of sequences
in which these datapoints occur in the time-series data. In this paper, we propose CODiT, a novel algorithm
for OOD detection in time-series data with a bounded false detection rate.

Most of the existing approaches for detection in time-series data are point-based, i.e., they independently treat
each datapoint in the window, such as individual frames in a video clip. In other words, these approaches do
not exploit time-dependency among the datapoints in a window to detect if the window is OOD. An example
of an OOD window is a car drifting video clip due to slippery ground or loss of control, given normal driving
video clips as in-distribution (iD) data. As shown in Fig. 1, we cannot tell from a single frame if the car has
drifted since drift is defined based on the relative relation between frames (e.g., a trajectory of a car). We
define these OOD windows as temporal OODs, which require considering the sequence of datapoints in the
window for detection. In contrast to the existing point-based approaches, we propose using time-dependency
among the datapoints in a window for detection of temporal OODs. Specifically, we propose using deviation
from the iD temporal equivariance, i.e. equivariance with respect to a set of temporal transformations learned
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Figure 1: Drift in cars as temporal OODs. This trace is taken from the drift dataset by Noor et al. (2020).

by a model on windows drawn from the training distribution, for OOD detection in time-series data. This
is because a model trained to learn equivariance with respect to temporal transformations on data drawn
from the training distribution might not generalize or exhibit equivariance on OOD samples dissimilar to
the training distribution.

To bound false detection on the iD data, we leverage inductive conformal anomaly detection (ICAD) (Bal-
asubramanian et al., 2014). ICAD is a general framework for testing if an input conforms to the training
distribution by computing quantitative scores defined by a non-conformity measure. A p-value, computed by
comparing non-conformity score of the input with these scores on the data drawn from training distribution,
indicates anomalous behavior of the input. The detection performance of ICAD, however, depends on the
choice of the non-conformity measure used in the framework (Balasubramanian et al., 2014). We propose
using deviation from the expected temporal equivariant behavior of a model learned on data drawn from the
training distribution as the non-conformity measure in ICAD for OOD detection in the time-series data.

ICAD computes a single p-value of the input to detect its anomalous behavior. To enhance detection perfor-
mance, we propose using multiple (n > 1) p-values computed from n transformations sampled as independent
and identically distributed (IID) variables from a distribution over the set of temporal transformations. The
intuition for using multiple transformations is that an OOD window might behave as a transformed iD
window with one transformation but the likelihood of this decreases with the number of temporal transfor-
mations. Using Fisher’s method (Toccaceli & Gammerman, 2017) to combine these n independent p-values
leads to the proposed detector CODiT for conformal OOD detection in time-series data with a bounded false
detection rate. The contributions of this paper can be summarized as:

• Novel Measure for OOD Detection in Time-Series Data. To our knowledge, all the existing
non-conformity measures for OOD detection are defined on individual datapoints. We propose a
measure that is defined on the window containing information about the sequence of time-series
datapoints for enhancing the detection of temporal OODs. Specifically, we propose using deviation
from the iD temporal equivariance as the non-conformity measure in ICAD for OOD detection in
time-series data.

• Enhanced detection performance. To enhance the detection performance, we propose to use
Fisher’s method as an ensemble approach for combining predictions from multiple conformal anomaly
detectors based on the proposed measure.

• CODiT. Computing n independent p-values of the input from the proposed measure in the ICAD
framework, and combining these values by Fisher’s method leads to the proposed detector CODiT
with a bounded false detection rate.

• Evaluation. For comparison with the point-based approaches, we perform experiments on weather
and night OODs on a driving dataset simulated by CARLA (Dosovitskiy et al., 2017), achieving
state-of-the-art (SOTA) results. We outperform the existing non-point based SOTA (Feng et al.,
2021) on vision temporal OODs. To illustrate that CODiT can be used for OOD detection beyond
vision, we also perform experiments on the real physiological GAIT sensory dataset (Hausdorff et al.,
2000).
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Table 1: Detection capabilities of OOD detectors in time-series data.

Detector False Detection Rate Guarantees Temporal OODs Non-vision Datasets
VAE-based (Cai & Koutsoukos, 2020) ✓ ✗ ✓

β VAE-based (Ramakrishna et al., 2021) ✓ ✗ ✓
Optical Flow based (Feng et al., 2021) ✗ ✓ ✗

CODiT (Ours) ✓ ✓ ✓

2 Problem statement and Motivation

2.1 Problem Statement

OOD detection in time-series data takes in a window Xt,w of consecutive time-series datapoints
(xt, xt+1, . . . , xt+w−1), and labels Xt,w as iD or OOD. Here t is the starting time of the window and w
is the window length.

2.2 Motivation of the Proposed OOD Detection Measure

The existing point-based detectors might not be able to detect temporal OODs. An example of a temporal
OOD, as shown in Fig. 2, is the replay window where camera gets stuck at a single frame and starts generating
the same image over and over again. We need to consider the sequence of same image in a replay window
to detect the window as OOD. Detection results on replay dataset in Fig. 3 shows that both the existing
point-based detectors, namely variational autoencoder (VAE) based Cai et al.’s (2020), and β VAE-based
Ramakrishna et al.’s (2021), perform poorly in the detection of these temporal OODs. We, therefore, propose
using time-dependency among the datapoints in a window for OOD detection in time-series data.

To our knowledge, Feng et al.’s (2021) detector is the only existing OOD detector in time-series data that takes
into account time-dependency among the individual datapoints in a window. It does so by extracting optical
flow information from consecutive frames in a video clip. As shown in the experimental results on temporal
OODs (Fig. 7) of Section 6, Feng et al.’s detector can thus be used to detect temporal OODs. However, since
this detector depends on the optical flow information, it is restricted to the vision data. In contrast, CODiT
can be used to detect temporal OODs across domains without relying on any domain-specific features.

Table 1 compares the detection capabilities of CODiT with the existing OOD detectors in time-series data.

Figure 2: Replay window: An example of the tem-
poral OOD where camera gets stuck and generates same
image in the entire window. This trace is generated by
CARLA, an open-source simulator for autonomous driving
research (Dosovitskiy et al., 2017).

Figure 3: ROC curves (left), TNR (at 95% TPR on
right) results on replay OODs. The existing point-based
OOD detectors in time-series data, namely VAE-based Cai
et al.’s (2020), and β VAE-based Ramakrishna et al.’s (2021)
perform poorly in the detection of these temporal OODs.

3 Related Work

OOD detection in non time-series datasets such as CIFAR-10 (Krizhevsky et al., 2009) has been extensively
studied and detectors with OOD scores based on the difference in statistical, geometrical or topological
properties of the individual iD and OOD datapoints have been proposed. These detectors can be classified
into supervised (Lee et al., 2018; Kaur et al., 2021), self-supervised (Hendrycks et al., 2019; Tack et al., 2020),
and unsupervised (Hendrycks & Gimpel, 2016; Lee et al., 2017) categories. Unsupervised approaches do not
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require access to any OOD data for training the detector, while supervised approaches do. Self-supervised
approaches are the current SOTA for OOD detection in non time-series data which require a self-labeled
dataset for training the detector. This dataset is created by applying transformations to the training data
and labeling the transformed data with the applied transformation. In this paper, we consider the problem
of OOD detection in time-series data, where the input is a window of consecutive time-series datapoints and
the output is OOD detection on the window. The proposed approach, CODiT, is a self-supervised OOD
detection approach, where the self-labeled dataset is created by applying temporal transformations on the
windows drawn from the training distribution.

Recently, there has been interest in leveraging ICAD for OOD detection with guarantees on false detection
rate (Cai & Koutsoukos, 2020; Ramakrishna et al., 2021; Kaur et al., 2022). While iDECODe (Kaur et al.,
2022) is an OOD detector for individual datapoints, Cai et al.’s (2020), and Ramakrishna et al.’s (2021)
are detectors for time-series data. iDECODe (2022) uses error in the equivariance learned by a model with
respect to a set of transformations on individual datapoints as the non-conformity measure in ICAD for
detection in non time-series data. It is not clear how to directly apply iDECODe to time-series data with
the ICAD guarantees due to the following two reasons. First, even if we apply iDECODe to individual
datapoints in the time-series window independently, we do not know how to combine detection verdicts on
these datapoints for detection on the window. Second, for detection guarantees by ICAD, it is required
that all non-conformity scores for p-value computation to be IID (Laxhammar & Falkman, 2015). Since
iDECODe is not solving OOD detection in time-series data it is not clear how to apply it to time-series
data while preserving the IID assumption on the time-series data. Also, iDECODe uses a single p-value
for detection and we propose using multiple (n > 1) independent p-values to be combined by the Fisher’s
method for preserving the detection guarantees.

Cai et al. (2020) propose using reconstruction error by VAE on an input image as the non-conformity
measure in the ICAD framework. Martingale formula (Vovk et al., 2003) is used to combine multiple p-
values computed on multiple samples of the input in the latent space of the VAE. The OOD detection
score on a window is then computed by applying cumulative sum procedure (Basseville et al., 1993) on the
martingale values of all the images in the window. Ramakrishna et al. (2021) propose using KL-divergence
between the disentangled feature space of β-VAE on an input image and the normal distribution, as the
non-conformity measure in the ICAD framework. They also use the martingale formula to combine p-values
of all the images in the window for detection. Both these detectors on the time-series data are point-based,
and as shown by the experiments on replay OODs, these might perform poorly in the detection of temporal
OODs. CODiT computes the p-value of the window (and not individual datapoints in the window) in the
ICAD framework. It is, therefore, a non-point based approach and as shown by experiments on temporal
OODs in Section 6, it can be used to detect these OODs.

To our knowledge, the current SOTA approach for OOD detection in time-series data is by Feng et al. (2021).
They propose extracting optical flow information from a window of the time-series data and training a VAE
on this information. KL-divergence between the trained VAE and a specified prior is used as the OOD score.
This detector uses optical flow to extract time-dependency in the frames of a window and thus can be used
to detect temporal OODs. However, this approach does not provide any guarantees on detection and will
not work on non-vision datasets as it relies on optical flows. As shown in the experiments on the GAIT
sensory dataset, CODiT can be used for OOD detection in non-vision datasets.

Anomaly detection in time-series data is also a closely related and an active research area (Ishimtsev et al.,
2017; Guo & Bardera, 2018; Gao et al., 2020). In this paper, we consider the detection of a special class of
anomalous data, the OOD data (data lying outside the training distribution). For instance, let us consider
the case where most of the training data is clean and the rest is adversarially perturbed. In this case, the
rare adversarial inputs are anomalous with respect to the training data, where most of the training data was
drawn from the training distribution of clean data. However, adversarially perturbed inputs are not OOD as
some of the training data was sampled from the training distribution of these adversarially perturbed data.
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4 Background and Notations

Here we provide the background on equivariance, inductive conformal anomaly detection (ICAD), and
Fisher’s method required for technical details of the proposed OOD detector, CODiT. We also define the
notations used in the rest of the paper.

4.1 Equivariance

A function f is equivariant with respect to a transformation g if we know how the output of f changes
if we transform its input from x to g(x). Learning features that are equivariant to translations on inputs
by sharing of kernels in the convolutional neural networks has played a crucial role in the success of these
networks (Cohen & Welling, 2016). Invariance is a special case of equivariance where the output of f does
not change by the transformation g on its input. Invariance with respect to geometric transformations such
as rotation, tilt, scale, etc. is a desired property of the deep learning classifiers. For example, classification
results on the upright images of cats should not change with a tilt in these images.
Definition 1 (Schmidt & Roth, 2012). For a set X, a function f is defined to be equivariant with respect
to a set of transformations G, if there exists the following relationship between any transformation g ∈ G of
the function’s input and the corresponding transformation g′ of the function’s output:

f(g(x)) = g′(f(x)),∀x ∈ X. (1)

Invariance is a special case of equivariance where g′ is the identity function, i.e. the output of f remains
unchanged by the transformation g on its input.

Learning Equivariance: Autoencoding Variational Transformations (AVT). Augmenting training
data with transformations from the set G of geometric transformations is a common approach to learning
invariance with respect to G (Chen et al., 2020a;b; Chatzipantazis et al., 2021). The auxiliary task of
predicting an applied transformation from G on the training data also encourages the model to learn
equivariance with respect to G (Qi et al., 2019). Qi et al.’s 2019 “Autoencoding Variational Transformations”
(AVT) framework trains a VAE to learn a latent space that is equivariant to transformations. For the set
X of training images and the set G of geometric transformations, a VAE is trained to predict the applied
transformation from G on an input x ∈ X. Equivariance between the latent space of VAE and G is learned
by maximizing mutual information between the latent space and G.

Definition 2 (Jenni & Jin, 2021). Temporal equivariance of a function f from equation 1 is defined on a set
X of windows of consecutive time-series datapoints and with respect to a set G of temporal transformations.

Some examples of temporal transformations on video clips are skipping every second frame in the clip (2x
speed), shuffling the frames in the clip (shuffle), reversing the order of frames in the clip (reverse), and
reversing the order of the second half frames in the clip (periodic).

In the rest of the paper, we will use the notation GT to represent a set of temporal transformations. We call
a function f as GT -equivariant if it learns equivariant representations of windows drawn from the training
distribution with respect to the set GT of temporal transformations. We refer to the deviation from the
expected result of this function f on a transformed input (transformed with a g ∼ GT ) as deviation from
the iD GT -equivariance.

4.2 Inductive Conformal Anomaly detection (ICAD)

Inductive Conformal Anomaly Detection (ICAD) (Laxhammar & Falkman, 2015) is a general framework for
testing if an input conforms to the training distribution. It is based on a non-conformity measure (NCM),
which is a real-valued function that assigns a non-conformity score α to the input. This score indicates non-
conformance of the input with data drawn from the training distribution. The higher the score is, the more
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non-conforming or anomalous the input is with respect to training data. An example of the non-conformity
score is the reconstruction error by a VAE trained on data drawn from the training distribution.

The training dataset X of size l is split into a proper training set Xtr = {xj : j = 1, . . . , m} and a calibration
set Xcal = {xj : j = m + 1, . . . , l}. Proper training set Xtr is used in defining NCM. In the example of
reconstruction error by a VAE as the non-conformity score, the VAE trained on Xtr is used for computing
the error. Calibration set Xcal is a held-out training set that is used for computing p-value of an input.
p-value of an input x is computed by comparing its non-conformity score α(x) with these scores on the
calibration datapoints:

p-value(x) = |{j = m + 1, ..., l : α(x) ≤ α(xj)}|+ 1
l −m + 1 . (2)

If x is drawn from the training distribution, then its non-conformity score is expected to lie within the range
of scores for the calibration datapoints and thus higher p-values for the iD datapoints. With ϵ ∈ (0, 1) as the
anomaly detection threshold, x is therefore detected as an anomalous input if the p-value of x is less than ϵ.

False Detection Rate Guarantees. The false anomalous detection on an input drawn from the training
distribution is upper bounded by the specified detection threshold ϵ in the ICAD framework.
Lemma 1 (Balasubramanian et al., 2014). If an input x and the calibration datapoints xm+1, . . . , xl are
independent and identically distributed (IID), then for any choice of the NCM defined on the proper training
set Xtr, the p-value(x) in equation 2 is uniformly distributed. Moreover, we have Pr (p-value(x) < ϵ) ≤ ϵ,
where the probability is taken over xm+1, . . . , xl, and x.

From Lemma 1, we know that if x and the datapoints in the calibration set Xcal are IID, then the p-
value(x) from equation 2 is uniformly distributed over {1/(l−m + 1), 2/(l−m + 1), . . . , 1}. The probability
of p-value(x) less than ϵ or misclassifying x as anomalous is, therefore,

∑
1≤i≤(l−m+1)ϵ 1/(l − m + 1) =

⌊(l −m + 1)ϵ⌋/(l −m + 1) ≤ ϵ.

4.3 Fisher’s Method

Same hypothesis can be tested by multiple conformal predictors and an ensemble approach for combining
these predictions can be used to improve upon the performance of individual predictors. Fisher’s method is
one of these approaches for combining multiple conformal predictions or p-values of an input from equation 2.
Fisher value of an input x from n p-values is computed as follows:

fisher-value(x) = t

n−1∑
i=0

(− log t)i

i! , where t =
n∏

k=1
pk. (3)

Lemma 2 (Toccaceli & Gammerman, 2017). If n p-values, p1, . . . , pn, are independently drawn from a
uniform distribution, then −2

∑n
i=1 log pi follows a chi-square distribution with 2n degrees of freedom. Thus,

the combined p-value is

Pr

(
y ≤ −2

n∑
i=1

log pi

)
= t

n−1∑
i=0

(− log t)i

i! ,

where t =
∏n

k=1 pk, y is a random variable following a chi-square distribution with 2n degrees of freedom,
and the probability is taken over y. Moreover, the combined p-value follows the uniform distribution.

5 Temporal Equivariance for Conformal OOD Detection in Time-Series Data

Here, we first classify OOD data in time-series into temporal and non-temporal types, and then provide
details of the proposed detector CODiT.
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Figure 4: GAIT in patients with neurodegenerative diseases (Hausdorff et al., 2000) as temporal OODs.

5.1 OOD Data Types in Time-Series

We classify OOD windows in time-series data into two types: temporal OODs and non-temporal OODs.

A crucial property of the temporal OODs compared to the non-temporal OODs is that it is hard to detect
temporal OODs by looking at individual datapoints within the window without considering time-dependency
between these datapoints. Examples of temporal OODs in autonomous driving are car drifting video clips
(Fig. 1), and replay OODs (Fig. 2). An example of the temporal OOD in healthcare is the GAIT (or waking
pattern) of patients with neurodegenerative diseases. With the GAIT of healthy individuals as iD data, the
GAIT of patients with neurodegenerative diseases, such as Parkinson’s disease (PD), Huntington’s disease
(HD), and Amyotrophic Lateral Sclerosis (ALS), are examples of temporal OODs. As shown in Fig. 4,
we need a sequence of time-series datapoints to determine whether the walking pattern is from a healthy
individual or a patient. In contrast to the temporal OODs, the non-temporal OODs include driving video
clips under rainy, foggy, or snowy weather, given the driving video clips under clear sunny weather as iD
data. We can detect weather OODs by looking at images in the window independently.

Based on these observations, we call a window Xt,w as a temporal OOD if Xt,w is drawn from OOD but
confused to be drawn from iD by removing the time-dependency of individual datapoints within Xt,w (e.g.,
randomly shuffling the order of video clip frames). As shown in the experimental section 6, CODiT can be
used to detect both temporal and non-temporal OODs in time-series data.

5.2 CODiT

CODiT uses an OOD detection score based on multiple p-values from ICAD. Here, we first define the
proposed NCM to be used in the ICAD framework for computing a p-value along with the final detection
score, and then formalize CODiT’s algorithm with a bounded false detection rate.

5.2.1 Proposed NCM and OOD Detection Score

Proposed NCM. We propose to use time-dependency between datapoints in a time-series window for
detection on the window. Unlike all the existing NCMs defined on individual datapoints, we propose an
NCM that is defined on the window containing information about the sequence of datapoints in the window.
Specifically, we propose using deviation from the expected iD GT -equivariance learned by a model on windows
drawn from the training distribution as an NCM in ICAD for OOD detection in time-series data. Learning
GT -equivariance via an auxiliary task of predicting the applied temporal transformation (such as shuffle,
reverse, etc.) on a window requires learning changes in the original sequence of the datapoints in a predictable
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way. For a VAE model M trained to learn GT -equivariance on windows of proper training data in the AVT
framework, we propose to use error in the prediction of the applied temporal transformation g ∈ GT on an
input window Xt,w as the NCM:

PredictionError(g, M(g(Xt,w))).

We call the proposed NCM as the Temporal Transformation Prediction Error (TTPE) NCM.

The existing AVT framework (Qi et al., 2019) is defined to learn equivariance with respect to geometric
transformations on images. We extend it to learn GT -equivariance by:

(1) Modifying VAE’s architecture to accept windows of consecutive time-series datapoints as inputs. The
time-series can be on vision (e.g. drift car video clip) or non-vision (e.g., GAIT) datapoints.
(2) Modifying the auxiliary task to predict the applied temporal transformation from a set GT on windows
of time-series datapoints.

Motivation for TTPE-NCM. GT -equivariance learned by a model on windows drawn from the training
distribution is more likely to work on iD data and is not guaranteed to generalize to OOD data dissimilar
to that used for training. With the set GT = {2x speed, shuffle, reverse, periodic, identity}, we train a
VAE model on the proper training data of the drift dataset to predict an applied transformation g sampled
independently from a uniform distribution over GT . With GT as the set of five classes of temporal trans-
formations, we use CrossEntropyLoss(g, M(g(Xt,w))) as the PredictionError(g, M(g(Xt,w))). Fig. 5 shows
that the model has much higher prediction losses on the OOD windows than on the test iD windows on all
the five ground truth transformations in GT . This supports our hypothesis that GT -equivariance learned
on data drawn the training distribution is not likely to generalize on data drawn from OOD, and therefore
higher prediction errors on OOD windows than on the iD windows.

OOD Detection Score. Instead of using a single p-value from the TTPE-NCM in ICAD, we propose
using multiple (n > 1) p-values to enhance detection. We require n non-conformity scores for both the input
and the calibration datapoints for computing n p-values. These scores are computed from n transformations
sampled independently from a distribution QGT

over GT for both the input and the calibration datapoints:

αi(Xt,w) = PredictionError(gi, M(gi(Xt,w))) : 1 ≤ i ≤ n, gi ∼ QGT
,

where Xt,w is the input or a calibration datapoint. Using Fisher’s method to combine these n p-values gives
us the fisher-value of input from equation 3. This value is expected to be higher for iD datapoints than
OOD datapoints (Fisher, 1932), and therefore we perform detection by using a threshold on the fisher-value
of input. In other words, CODiT uses fisher-value of the input as the final OOD detection score.

Motivation for multiple p-values for OOD Detection. A single p-value measures deviation from the iD
GT -equivariance of the input with respect to one transformation g ∼ QGT

. With multiple p-values, we test
this deviation with respect to multiple transformations sampled independently from QGT

. We hypothesize
that under one transformation, an OOD window might behave as the transformed iD window but the likeli-
hood of this decreases with the number of transformations. For testing this hypothesis, we train three VAE
models with the set GT equal to {2x speed, reverse, identity}, {2x speed, shuffle, periodic, identity}, and
{2x speed, reverse, shuffle, periodic, identity} respectively. These models are trained on the proper training
set of the drift dataset to predict an applied transformation g sampled independently from a uniform dis-
tribution over GT . Again, we use PredictionError(g, M(g(Xt,w))) as the CrossEntropyLoss(g, M(g(Xt,w))).
Fig. 6 shows that the detection performance (in AUROC and TNR) of CODiT increases as we increase the
number n of p-values used in the final OOD detection score (or the fisher-value) for all of the three cases
(|GT | = 3, 4, and 5). This supports our hypothesis on using multiple p-values for enhancing detection.

5.2.2 Algorithm and Guarantee for OOD Detection

Algorithm 1 is the proposed algorithm CODiT for OOD detection in time-series data. With QGT
as the

distribution over the set GT of temporal transformations, Line 4 samples a transformation g independently
from QGT

. The transformed input g(Xt,w) is passed through the VAE model M trained to learn GT -
equivariance on the windows drawn from the proper training data (Line 5). Line 6 computes the non-
conformity score α of Xt,w from the TTPE-NCM, which is the prediction error function f over the applied
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Figure 5: Higher P rediction Error(g, M(g(Xt,w))) = CrossEntropyLoss(g, M(g(Xt,w))) on the OOD windows than on the
test iD windows of the drift dataset. This shows that GT -equivariance learned on the windows drawn from the training
distribution is less likely to generalize on the windows drawn from OOD.

Figure 6: AUROC vs. n (left), TNR vs. n (center), and bounded FDR (right) of CODiT on drift dataset with different |GT |.

transformation g on Xt,w and the transformation ĝ predicted by M . p-value of Xt,w is computed in Line
7 by comparing its non-conformity score with these scores on the calibration windows. This process from
sampling a transformation from QGT

to computing the p-value of Xt,w is repeated n times to compute n
p-values of Xt,w (Line 3 to 8). Xt,w is detected as OOD if the fisher-value computed from its n p-values is
less than the desired false detection rate ϵ (Line 10).

Algorithm 1 CODiT: Conformal Out-of-Distribution Detection in Time-Series Data
1: Input: a window Xt,w of time-series data, VAE model M trained on proper training set of the iD

windows, distribution QGT
over the set GT of temporal transformations, prediction error function f , n

sets of calibration set alphas {αk
j : 1 ≤ k ≤ n, m + 1 ≤ j ≤ l}, and a desired false detection rate ϵ ∈ (0, 1)

2: Output: “1” if Xt,w is detected as OOD; “0” otherwise
3: for k ← 1, . . . , n do
4: g ∼ QGT

5: ĝ ←M(g(Xt,w))
6: α← f(g, ĝ)
7: pk ←

|{j=m+1,...,l: α≤αk
j }|+1

l−m+1
8: end for
9: t←

∏n
k=1 pk

10: if t
∑n−1

i=0
(− log t)i

i! < ϵ then return 1 else return 0

Theorem 1. The probability of false OOD detection on Xt,w by Algorithm 1 is upper bounded by ϵ.
Proof. By our construction, an input Xt,w ∼ D and datapoints in the calibration set Xcal are IID given the
proper training set Xtr and the set of temporal transformations GT . Due to this, the indepdently drawn
transformation g, and Lemma 1, n p-values of Xt,w computed in Line 7 of Algorithm 1 are independent and
uniformly distributed. Furthermore, due to this property on the n p-values and Lemma 2, the combined
p-value in Line 10 of Algorithm 1 is also uniformly distributed. Therefore, the probability of falsely detecting
Xt,w as OOD from the the combined p-value (or the fisher-value(Xt,w)) is upper bounded by the detection
threshold ϵ due to Lemma 1.

With ϵ = 0.05 . k, k = 1, . . . , 10, Fig. 6 (right) shows that the false detection rate of CODiT (n = 5) is always
less than ϵ for all the three VAE models (|GT | = 3, 4, and 5) described in the previous section.

9
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6 Experimental Results

We perform experiments on the following three computer vision datasets in autonomous driving:
(1) a driving dataset under different weather conditions generated by CARLA, an open-source simulator for
autonomous driving research (Dosovitskiy et al., 2017).
(2) a replay OOD dataset simulated by CARLA.
(3) a real driving drift dataset (Noor et al., 2020).

To illustrate that CODiT can be used for OOD detection beyond vision, we also perform experiments on:
(4) a real physiological GAIT sensory dataset (Hausdorff et al., 2000).

All the existing approaches report their results on weather OODs. So, we compare CODiT’s performance
with the existing approaches on weather OODs (1). Results on temporal OODs in vision datasets, i.e. replay
(2), and drift (3) are compared with the existing non-point based SOTA (Feng et al., 2021). Since Feng et al.
(2021)’s approach is not applicable to non-vision datasets, we generate a non-point based baseline for the
detection of temporal OODs in GAIT dataset (4) and compare our results with it. We also perform ablation
studies on the drift dataset.

6.1 Weather OODs

6.1.1 Dataset

Training Set. We generate 33 driving traces of varying lengths on a clear day weather as the iD training
traces. We randomly split these into 20 traces of the proper training set Xtr and 13 traces of the calibration
set Xcal. Windows from Xtr are sampled for training the model. Windows from Xcal are sampled n = 20
times (with one window from each calibration trace at a time to make each window in the set independent)
for calculating the 20 sets of calibration non-conformity scores.

Test Set. We generate 27 driving traces of varying lengths on a clear day weather as the iD test traces.
Weather and night time OOD traces are generated by using the automold software (Saxena, 2018)1 on the
27 iD test traces. OOD traces start from iD and gradually become OOD, i.e. the intensity of rain, fog, snow,
or low brightness (for night) starts increasing gradually turning into the OOD traces. Examples of these iD
and OOD windows are shown in Appendix.

6.1.2 Training Details, GT, and TTPE-NCM

We train an VAE model with the R3D network architecture (Tran et al., 2018) on the windows of length
w = 16 from Xtr. R3D network is the 3D CNNs with residual connections and thus can be used on the 3D
time-series input data. We use GT = {2x Speed, Shuffle, Periodic, Reverse, Identity} and train the model
to predict the applied transformation g ∈ GT with cross-entropy loss between the true and the predicted
transformation. CrossEntropyLoss(g, M(g(Xt,w))) is used as the Prediction Error(g, M(g(Xt,w))). The
value of this loss is used as the non-conformity score α for computing the p-value of an input Xt,w.

6.1.3 Results

We report results on the sliding windows (w = 16) of the test iD and OOD traces. We call iD as positive
and OOD as negative. We report AUROC, TNR(@95% TPR), and detection delay(@95% TPR) in Table 2.
Starting from the first ground truth OOD window in a trace, number of windows required to detect the first
OOD window in the trace is reported as the detection delay. This number is averaged over the total number
of OOD traces and reported in the table. As can be seen CODiT outperforms other approaches, except for
Snowy OOD, where our approach is the second best.

1Automold is a software used for augmenting road images to have various weather and road conditions.
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Table 2: Cai et al.’s/Ramakrishna et al.’s/Feng et al.’s/CODiT’s results on weather and night OODs. Best results are in bold.

OOD AUROC (↑) TNR (@95% TPR) (↑) Detection Delay (@95% TPR) (↓)
Rainy 53.56 / 92.07 / 84.21 / 99.71 0 / 81.00 / 27.63 / 98.57 NA / 0.15 / 5.33 / 0.15
Foggy 52.02 / 41.02 / 86.09 / 99.66 2.30 / 2.75 / 28.01 / 98.05 33.05 / 19.65 / 5.37 / 0
Snowy 53.23 / 97.52 / 95.91 / 96.67 0 / 99.69 / 78.20 / 86.47 NA / 0.33 / 0 / 0
Night 50.86 / 95.57 / 75.07 / 98.94 1.78 / 71.90 / 0.40 / 94.55 72.80 / 4.07 / 85.4 / 1.41

6.2 Temporal OODs

6.2.1 Vision: Replay and Drift

We compare the performance of the current non-point based SOTA OOD detector in time-series data,
i.e., Feng et al. (2021)’s detector with CODiT on vision temporal OODs. We use the same model architecture,
GT , and TTPE-NCM on replay and drift datasets as we use on CARLA dataset from Section 6.1.2.

Replay Dataset. Replay dataset is generated from the CARLA’s 27 iD test traces on a clear day weather
by randomly sampling a position in each trace. All images from the sampled position in the trace are replaced
with the image at the sampled position in the original trace. Again, results are reported for n = 20, and on
the sliding windows of replay OODs.

Drift dataset. We split 72 iD traces of cars driving straight without any drift from the drift dataset (Noor
et al., 2020) into 24 for Xtr, 14 for Xcal, and 34 for test iD traces. Windows from Xtr are sampled for
training the VAE. Windows from Xcal are sampled n = 20 times (with one window from one trace at a time
to make each window in the set independent) for calculating the 20 sets of calibration non-conformity scores.
We report results on the sliding windows of 34 iD test and 100 OOD drift traces.

Results. Fig: 7 (left) compares the ROC, AUROC and TNR (@95% TPR) results of CODiT with Feng
et al. (2021)’s detector on the replay and drift datasets. We achieve SOTA results on both datasets.

Ablations on drift. We perform the following ablation studies on the drift dataset. All VAE models used
in these studies are trained on the proper training set of the drift dataset with the same model architecture,
GT , and TTPE-NCM from Section 6.1.2.

(1) Performance of CODiT with Different Window Lengths w: We train two VAE models with
w = 18, 20 and compare the performance of CODiT (with n = 20) with Feng et al. (2021)’s detector on
these window lengths. Fig 7 (right) shows that with both w = 18 and 20, CODiT performs consistently well.

(2) Performance of CODiT with Different |GT|: We compare the performance of CODiT with different
sizes of the transformation set. Table 3 shows that the performance of CODiT (n = 5) increases with |GT |.

(3) Using Deviation from iD GT -equivariance as NCM: With GT =
{2x speed, shuffle, reverse, periodic, identity}, and for all ground truth temporal transformations in
GT , Fig. 5 shows that the non-conformity score from TTPE-NCM is much higher for OOD windows than
the test iD windows. This justifies our hypothesis that GT -equivariance learned by a model on windows
drawn from training distribution is not likely to generalize on windows drawn from OOD.

(4) CODiT’s Performance Increases with n: We train three VAE models with
GT equal to {2x speed, reverse, identity}, {2x speed, shuffle, periodic, identity}, and
{2x speed, reverse, shuffle, periodic, identity}. Results on AUROC and TNR in Fig. 6 shows that
the performance of CODiT improves with the number n of p-values used for detection in all the three cases
(|GT | = 3, 4, and 5). This justifies our hypothesis that under one transformation an OOD window might
behave as a transformed iD window but the likelihood of that decreases with the number of transformations.

(5) Bounded FDR: For models trained with |GT | = 3, 4, and 5 from above, Fig. 6 shows that the false
detection rate of CODiT (n = 5) is always less than ϵ.
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Figure 7: Comparison with SOTA detector Feng et al. (2021) on temporal OODs in vision (left). Ablations on w (right).
Table 3: Performance of CODiT increases with |GT |.

|GT | Transformations AUROC

3
Speed, Identity, Shuffle 84.78

Reverse, Shuffle, Identity 85.47
Speed, Reverse, Identity 87.67

4
Speed, Shuffle, Periodic, Identity 88.08
Speed, Identity, Shuffle, Reverse 88.76

Speed, Reverse, Periodic, Identity 89.56
5 Speed, Shuffle, Reverse, Periodic, Identity 90.78

6.2.2 Non-vision: GAIT
Dataset. We use the physiological sensory GAIT dataset (Hausdorff et al., 2000) for our case study on
non-vision temporal OODs. This dataset consists of records on 16 healthy control subjects. We split these
into 6 for Xtr, 5 for Xcal, and 5 for test iD records. We use all 27 records from the severe patient group
with neurodegenerative diseases as OOD records. These 27 records contain 9 records from each of the three
diseases, namely Amyotrophic Lateral Sclerosis (ALS), Parkinson’s (PD), and Huntington’s disease (HD).

Training Details, GT, and TTPE-NCM. We use the 1D derived time-series features from the dataset
(the .ts files) to train a VAE model with the Lenet5 architecture (LeCun et al., 1998) on windows sampled
from Xtr. Lenet5 uses 2D CNNs that can be used on the time-series data of 1D feature space. We use
GT = {high-pass filter, high-low filter, low-high filter, identity}. By high-low (or low-high) filter, we mean
that we apply high (or low)-pass filter to the first half features and low (or high)-pass filter to the last half
features of the dataset. Again, we use the cross entropy-loss between the true and predicted transformation
as the TTPE-NCM.

Baseline and Results. We use a one-class SVM trained on the auto-correlated features in the time
dimension of all the sliding windows in Xtr as a baseline. We report results on the sliding windows of the
test iD and OODs records. Table 4 compares the AUROC performance of CODiT (n = 100) with baseline
on individual and all (ALS, PD, and HD) OODs with different sliding window lengths w (16, 18, and 20).
As can be seen, CODiT outperforms the baseline except for one case.

7 Conclusion
We propose CODiT, a novel OOD detector in time-series data with guarantees on false detection rate. We
illustrate the efficacy of CODiT on different modalities in time-series.

Table 4: AUROC of baseline / CODiT on GAIT with different w.

OOD w = 16 w = 18 w = 20
ALS 78.25 / 68.62 77.73 / 79.61 77.99 / 80.69
PD 74.11 / 85.38 74.18 / 84.25 74.52 / 84.40
HD 76.97 / 94.17 76.64 / 95.42 76.68 / 93.74
ALL 76.23 / 83.85 75.99 / 86.66 76.21 / 86.68
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A Appendix

B Examples of iD and OOD windows

Here we show:

• A window from the iD trace of the drift dataset.

• A window from the iD trace of the CARLA dataset.

• Windows from the weather and night OOD traces from the CARLA dataset.

Figure 8: A window from an iD trace of the drift dataset: car driving straight without any drift.

Figure 9: A window from an iD trace of the CARLA dataset: driving in the clear daytime weather.
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Figure 10: An OOD window from the foggy trace. The intensity of fog gradually increases in these OOD
traces.

Figure 11: An OOD window from the night trace. The intensity of low brightness gradually increases in
these OOD traces.

Figure 12: An OOD window from the snowy trace. The intensity of snow gradually increases in these OOD
traces.

Figure 13: An OOD window from the rainy trace. The intensity of rain gradually increases in these OOD
traces.
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