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Abstract
We aim to bridge the gap between typical human
and machine-learning environments by extend-
ing the standard framework of few-shot learning
to an online, continual setting. In this setting,
episodes do not have separate training and test-
ing phases, and instead models are evaluated on-
line while learning novel classes. As in the real
world, where the presence of spatiotemporal con-
text helps us retrieve learned skills in the past,
our online few-shot learning setting also features
an underlying context that changes throughout
time. Object classes are correlated within a con-
text and inferring the correct context can lead to
better performance. Building upon this setting,
we propose a new few-shot learning dataset based
on large scale indoor imagery that mimics the vi-
sual experience of an agent wandering within a
world. Furthermore, we convert popular few-shot
learning approaches into online versions and we
also propose a new contextual prototypical mem-
ory model that can make use of spatiotemporal
contextual information from the recent past.

1. Introduction
In machine learning, many paradigms exist for training
and evaluating models: standard train-then-evaluate, few-
shot learning, incremental learning, continual learning, and
so forth. None of these paradigms well approximates the
naturalistic conditions that humans and artificial agents
encounter as they wander within a physical environment.
Consider, for example, learning and remembering peoples’
names in the course of daily life. We tend to see people
in a given environment—work, home, gym, etc. We tend
to repeatedly revisit those environments, with different en-
vironment base rates, nonuniform environment transition
probabilities, and nonuniform base rates of encountering a
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given person in a given environment. We need to recognize
when we do not know a person, and we need to learn to
recognize them the next time we encounter them. We are
not always provided with a name, but we can learn in a
semi-supervised manner. And every training trial is itself an
evaluation trial as we repeatedly use existing knowledge and
acquire new knowledge. In this article, we propose a novel
paradigm, online contextualized few-shot learning, that ap-
proximates these naturalistic conditions, and we develop
deep-learning architectures well suited for this paradigm.

In traditional few-shot learning (FSL) (Lake et al., 2015;
Vinyals et al., 2016), training is episodic. Within an isolated
episode, a set of new classes is introduced with a limited
number of labeled examples per class—the support set—
followed by evaluation on an unlabeled query set. While
this setup has inspired the development of a multitude of
meta-learning algorithms which can be trained to rapidly
learn novel classes with a few labeled examples, the algo-
rithms are focused solely on the few classes introduced in
the current episode; the classes learned are not carried over
to future episodes. Although incremental learning and con-
tinual learning methods (Rebuffi et al., 2017; Hou et al.,
2019) address the case where classes are carried over, the
episodic construction of these frameworks seems artificial:
in our daily lives, we do not learn new objects by grouping
them with five other new objects, process them together, and
then move on.

To break the rigid, artificial structure of continual and few-
shot learning, we propose a new continual few-shot learning
setting where environments are revisited and the total num-
ber of novel object classes increases over time. Crucially,
model evaluation happens on each trial, very much like the
setup in online learning. When encountering a new class,
the learning algorithm is expected to indicate that the class
is “new,” and it is then expected to recognize subsequent
instances of the class once a label has been provided.

When learning continually in such a dynamic environment,
contextual information can guide learning and remembering.
Any structured sequence provides temporal context: the
instances encountered recently are predictive of instances
to be encountered next. In natural environments, spatial
context—information in the current input weakly correlated
with the occurrence of a particular class—can be beneficial
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for retrieval as well. For example, we tend to see our boss
in an office setting, not in a bedroom setting. Human mem-
ory retrieval benefits from both spatial and temporal con-
text (Howard, 2017; Kahana, 2012). In our online few-shot
learning setting, we provide spatial context in the presenta-
tion of each instance and temporal structure to sequences,
enabling an agent to learn from both spatial and tempo-
ral context. Besides developing and experimenting on a
toy benchmark using handwritten characters (Lake et al.,
2015), we also propose a new large-scale benchmark for
online contextualized few-shot learning derived from indoor
panoramic imagery (Chang et al., 2017). In the toy bench-
mark, temporal context can be defined by the co-occurrence
of character classes. In the indoor environment, the context—
temporal and spatial—is a natural by-product as the agent
wandering in between different rooms.

We propose a model that can exploit contextual information,
called contextual prototypical memory (CPM), which in-
corporates an RNN to encode contextual information and a
separate prototype memory to remember previously learned
classes (see Figure 4). This model obtains significant gains
on few-shot classification performance compared to models
that do not retain a memory of the recent past. We compare
to classic few-shot algorithms (Vinyals et al., 2016; Allen
et al., 2019; Snell et al., 2017; Javed & White, 2019; San-
toro et al., 2016) extended to an online setting, and CPM
consistently achieves the best performance.

The main contributions of this paper are as follows. First, we
define an online contextualized few-shot learning (OC-FSL)
setting to mimic naturalistic human learning. Second, we
build two datasets. The RoamingOmniglot dataset is based
on handwritten characters from Omniglot (Lake et al., 2015)
and the RoamingRooms dataset is our new few-shot learn-
ing dataset based on indoor imagery (Chang et al., 2017),
which resembles the visual experience of a wandering agent.
Third, we benchmark classic FSL methods and also explore
our CPM model, which combines the strengths of RNNs
for modeling temporal context and Prototypical Networks
(Snell et al., 2017) for memory consolidation and rapid
learning.

2. Related Work
In this section, we briefly review paradigms that have been
used for few-shot learning (FSL) and continual learning
(CL). Table 1 compares these paradigms based on vari-
ous properties of the task; To denote properties that are
incorporated in some preliminary form, we use to denote
properties that are not fully implemented but have some
preliminary form. For example, the class-incremental learn-
ing paradigm evaluates models after each task is completed,
which is similar to our online evaluation in spirit but still
not the same as the evaluation does not take place after

Table 1: Comparison of past FSL and CL paradigms vs. our online
contextualized FSL (OC-FSL)

Tasks Few Semi-sup. Continual Online Predict Soft Context
Shot Supp. Set Eval. New Switch

Incremental Learning (IL)
Few-shot (FSL) (Vinyals et al., 2016)

Incremental FSL (Ren et al., 2019)
Cls. Incremental FSL (Tao et al., 2020)

Semi-supv. FSL (Ren et al., 2018)
Continual Meta-Learning

w/o Tasks (Harrison et al., 2019)
Online Mixture (Jerfel et al., 2019)
Online Meta (Javed & White, 2019)

Continual FSL (Antoniou et al., 2020)
(Concurrent Work)

OC-FSL (Ours)

each example. Our proposed online contextual few-shot
learning (OC-FSL) spans the complete set of features of the
other paradigms. We also review relevant models and their
relationship to our CPM.

Few-shot learning: FSL (Lake et al., 2015; Li et al., 2007;
Koch et al., 2015; Vinyals et al., 2016) considers learning
new tasks with few labeled examples. FSL models can be
categorized as based on: metric learning (Vinyals et al.,
2016; Snell et al., 2017), memory (Santoro et al., 2016),
and gradient adaptation (Finn et al., 2017; Li et al., 2017).
The model we propose, CPM, lies on the boundary between
these approaches, as we use an RNN to model the temporal
context but we also use metric-learning mechanisms and
objectives to train.

Several previous efforts have aimed to extend few-shot learn-
ing to incorporate more natural constraints. One such exam-
ple is semi-supervised FSL (Ren et al., 2018), where models
learn not only from a few labeled examples but also from
a pool of unlabeled examples. While traditional FSL only
tests the learner on novel classes, incremental FSL (Gidaris
& Komodakis, 2018; Ren et al., 2019) tests on novel classes
together with a set of base classes. These approaches, how-
ever, have not explored how to iteratively add new classes.

In concurrent work, Antoniou et al. (2020) extend FSL to a
continual setting based on image sequences, each of which
is divided into stages with a fixed number of examples per
class followed by a query set. Our paradigm focuses on
more flexible and faster adaptation since the models are
evaluated online, and context is a soft constraint instead of
a hard separation of tasks. Moreover, new classes need to
be identified as part of the sequence, crucial to any learner’s
incremental acquisition of knowledge.

Continual learning: Continual (or lifelong) learning is
a parallel line of research that aims to handle a sequence
of dynamic tasks (Kirkpatrick et al., 2017; Li & Hoiem,
2018; Lopez-Paz & Ranzato, 2017; Yoon et al., 2018). A
key challenge here is catastrophic forgetting (McCloskey
& Cohen, 1989; French, 1999), where the model “forgets”
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A) Online evaluation with old and new classes
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Figure 1: Online contextualized few-shot learning. A) Our setup is similar to online learning, where there is no separate testing phase;
model training and evaluation happen at the same time. The input at each time step is an (image, class-label) pair. The number of classes
grows incrementally and the agent is expected to answer “new” for items that have not yet been assigned labels. Sequences can be
semi-supervised; here the label is not revealed for every input item (labeled/unlabeled shown by red solid/grey dotted boxes). The agent is
evaluated on the correctness of all answers. The model obtains learning signals only on labeled instances, and is correct if it predicts the
label of previously-seen classes, or ‘new’ for new ones. B) The overall sequence switches between different learning environments. While
the environment ID is hidden from the agent, inferring the current environment can help solve the task.

a task that has been learned in the past. Incremental learn-
ing (Hou et al., 2019; Rebuffi et al., 2017; Kemker & Kanan,
2018) is a form of continual learning, where each task is an
incremental batch of several new classes. This assumption
that novel classes always come in batches seems unnatural.

Traditionally, continual learning is studied with tasks
such as permuted MNIST (Lecun et al., 1998) or
split-CIFAR (Krizhevsky, 2009). Recent datasets aim
to consider more realistic continual learning, such
as CORe50 (Lomonaco & Maltoni, 2017) and Open-
LORIS (She et al., 2019). We summarize core features of
these continual learning datasets in the Appendix. First,
both datasets have relatively few object classes, which
makes meta-learning approaches inapplicable; second, both
datasets contain images of small objects with minimal oc-
clusion and viewpoint changes; and third, OpenLORIS does
not have the desired incremental class learning.

Online meta-learning: Some existing work builds on
early approaches (Thrun, 1998; Schmidhuber, 1987) that
tackle continual learning from a meta-learning perspective.
Finn et al. (2019) propose storing all task data in a data
buffer to perform inner loop gradient descent; by contrast,
Javed & White (2019) propose to directly update the inner
loop with the current input and instead learn a good repre-
sentation that supports such online updates. In Jerfel et al.
(2019), a hierarchical Bayesian mixture model is used to
address the dynamic nature of continual learning. To evalu-
ate the performance of online meta-learning methods, the
papers above also created a few synthetic continual learning
tasks which are less realistic than ours (see Table 1).

Connections to the human brain: Our CPM model con-
sists of multiple memory systems, consistent with claims
of cognitive neuroscientists of multiple memory systems

in the brain. The complementary learning systems (CLS)
theory (Mcclelland et al., 1995) suggests that the hippocam-
pus stores the recent experience and supports fast recall
of novel concepts, which is likely where few-shot learning
takes place. When the same content has been retrieved sev-
eral times, the neocortex changes synaptic weights slowly
to learn a more robust representation. The hippocampal
system can be further divided into an episodic memory for
individual spatiotemporal events and a semantic memory
for a concrete piece of knowledge (Cohen & Squire, 1980).
Our proposed CPM contains parallels to these components.
Long term statistical learning is captured in a CNN that pro-
duces a deep embedding. An RNN holds a type of working
memory that can retain novel objects and spatiotemporal
contexts. Lastly, the prototype memory represents the se-
mantic memory, which consolidates multiple events into a
single knowledge vector. Other deep learning researchers
have proposed multiple memory systems for continual learn-
ing. In Parisi et al. (2018), the learning algorithm is heuris-
tic and representations come from pretrained networks. In
Kemker & Kanan (2018), a prototype memory is used for
recalling recent examples and rehearsal from a generative
model allows this knowledge to be integrated and distilled
into a long-term memory.

3. Online Contextualized Few-Shot Learning
In this section, we introduce our new online contextual-
ized few-shot learning (OC-FSL) setup in the form of a
sequential decision problem, and then introduce our new
benchmark datasets.

Continual few-shot classification as a sequential deci-
sion problem: In traditional few-shot learning, an episode
is constructed by a support set S and a query set Q. A
few-shot learner f is expected to predict the class of each
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example in the query set xQ based on the support set infor-
mation: ŷQ = f(xQ; (xS

1 , y
S
1 ), . . . , (xS

N , y
S
N )). This setup

is not a natural fit for continual learning, since it is unclear
when to insert a query set into the sequence.

Inspired by the online learning literature, we can convert
continual few-shot learning into a sequential decision prob-
lem, where every input example is also part of the evaluation:
ŷt = f(xt; (x1, ỹ1), . . . , (xt−1, ỹt−1)), for t = 1 . . . T ,
where ỹ here further allows that the sequence of inputs to
be semi-supervised: ỹ equals yt if labeled, or otherwise −1.
The setup in Santoro et al. (2016) and Kaiser et al. (2017)
is similar; they train RNNs using such a temporal sequence
as input. However, their evaluation relies on another “query
set” at the end of the sequence. We instead evaluate online
while learning. Figure 1-A illustrates these features, using
an example of an input sequence where an agent is learning
about new objects in a kitchen. The model is rewarded when
it correctly predicts a known class or when it indicates that
the item has yet to be assigned a label.

Contextualized environments: Typical continual learn-
ing consists of a sequence of tasks, and models are trained
sequentially for each task. This feature is also preserved in
many incremental learning settings (Rebuffi et al., 2017).
For instance, the split-CIFAR task divides CIFAR-100 into
10 learning environments, each with 10 classes, presented
sequentially. In our formulation, the sequence returns to
earlier environments (see Figure 1-B), which enables as-
sessment of long-term durability of knowledge. Although
the ground-truth environment identity is not provided, we
structure the task such that the environment itself provides
contextual cues which can constrain the correct class label.
Spatial cues in the input help distinguish one environment
from another. Temporal cues are implicit because the se-
quence tends to switch environments infrequently, allowing
recent inputs to be beneficial in guiding the interpretation
of the current input.

RoamingOmniglot: The Omniglot dataset (Lake et al.,
2015) contains 1623 handwritten characters from 50 differ-
ent alphabets. We split the alphabets into 31 for training,
5 for validation, and 13 for testing. We augment classes
by 90 degree rotations to create 6492 classes in total. Each
contextualized few-shot learning image sequence contains
150 images, drawn from a random sample of 5-10 alphabets,
for a total of 50 classes per sequence. These classes are
randomly assigned to 5 different environments; within an
environment, the characters are distributed according to a
Chinese restaurant process (Aldous, 1985) to mimic the im-
balanced long-tail distribution of naturally occurring objects.
We switch between environments using a Markov switching
process; i.e., at each step there is a constant probability of
switching to another environment. An example sequence is

shown in Figure 2-A.

RoamingRooms: As none of the current few-shot learn-
ing datasets provides the natural online learning experience
that we would like to study, we created our own dataset
using simulated indoor environments. We formulate this
as a few-shot instance learning problem, which could be a
use case for a home robot: it needs to quickly recognize
and differentiate novel object instances, and large viewpoint
variations can make this task challenging (see examples in
Figure 2-B). There are over 7,000 unique instance classes in
the dataset, making it suitable to meta-learning approaches.

Our dataset is derived from the Matterport3D dataset (Chang
et al., 2017), which has 90 indoor worlds captured using
panoramic depth cameras. We split these into 60 worlds for
training, 10 for validation and 20 for testing. We use Mat-
terSim (Anderson et al., 2018) to load the simulated world
and collect camera images and use HabitatSim (Savva et al.,
2019) to simulate 3D mesh and align instance segmenta-
tion labels onto 2D image space. We created a random
walking agent to collect the virtual visual experience. For
each viewpoint in the random walk, we randomly sample
one object from the image sensor and highlight it with the
available instance segmentation, forming an input frame.
Each viewpoint provides environmental context—the other
objects present in the room with the highlighted object.

Figure 3-A shows the object instance distribution. We see
strong temporal correlation, as 30% of the time the same
instance appears in the next frame (Figure 3-B), but there is
also a significant proportion of revisits. On average, there
are three different viewpoints per 100-image sequence (Fig-
ure 3-C).

4. Contextual Prototypical Memory Networks
In the online contextualized few-shot learning setup, the few-
shot learner can potentially improve by modeling the tempo-
ral context. Metric learning approaches (Vinyals et al., 2016;
Allen et al., 2019; Snell et al., 2017) typically ignore tem-
poral relations and directly compare the similarity between
training and test samples. Gradient-based approaches (Finn
et al., 2017; Javed & White, 2019), on the other hand, have
the ability to adapt to new contexts, but they do not naturally
handle new and unlabeled examples. We instead propose
a simple yet effective approach that augments the classic
Prototypical Network with a temporal contextual encoder
using an RNN, shown in Figure 4. Next, we describe our
approach in detail.

Prototype memory: We start describing our model with
the prototype memory, which is an online version of the
Prototypical Network (or ProtoNet) (Snell et al., 2017). Pro-
toNet can be viewed as a knowledge base memory, where
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A) RoamingOmniglot B) RoamingRooms C) # Cls vs. Time

Chair 324 Table 320 Picture 457 Picture 457

Appliance 402 Appliance 402 Appliance 402Appliance 434

Figure 2: Sample online contextualized few-shot learning sequences. A) RoamingOmniglot. Red solid boxes denote labeled examples
of Omniglot handwritten characters, and dotted boxes denote unlabeled ones. Environments are shown in colored labels in the top left
corner. B) Image frame samples of a few-shot learning sequence in our RoamingRooms dataset collected from a random walking agent.
The task here is to recognize novel instances in the home environment. C) The growth of total number of labeled classes in a sequence for
RoamingOmniglot (top) and RoamingRooms (bottom).
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Figure 3: Statistics for our RoamingRooms dataset. Plots show a natural long tail distribution of viewpoints and instances grouped
into categories. An average sequence has 3 different view points. Sequences are highly correlated in time but revisits are not uncommon.

each object class k is represented by a prototype vector p[k],
computed as the mean vector of all the support instances of
the class in a sequence. It can also be applied to our task of
online few-shot learning naturally, with some modifications.
Suppose that at time-step t we have already stored a few
classes in the memory, each represented by their current
prototype pt[k], and we would like to query the memory
using the current input feature ht. We model our prototype
memory as

ŷt,k = softmax(−‖ht − pt[k]‖2Mt
), (1)

where ‖·‖2Mt
is the squared Mahalanobis distance for some

to-be-specified, time-varying hyperparameter matrix Mt.
To predict whether an example is of a new class, we can use
a separate novelty output ûrt with sigmoid activation, similar
to the approach introduced in (Ren et al., 2018), where βr

t

and γrt are yet-to-be-specified thresholding hyperparameters
(the superscript r stands for read):

ûrt = sigmoid((min
k
‖ht − pt[k]‖2Mt

− βr
t )/γrt ). (2)

Memory consolidation with online prototype averaging:
Traditionally, ProtoNet uses the average representation of

RNN RNN RNN

CNN CNN CNN

t-2 t-1 t
time

Prototype Memory

Cls 1
Cls 2

Cls 3

…
Contextual RNN

Online Avg.
…

+

Context Vector 
& Control 
Param.

Figure 4: Contextual prototypical memory model. Temporal
contextual features are extracted from an RNN. The prototype
memory stores one vector per class and performs online averaging
when learning new examples of the class. Examples falling outside
the radii of all prototypes are classified as “new.”

a class across all support examples. Here, we must be able
to adapt the prototype memory incrementally at each step.
Fortunately, we are able to recover the same prototypes as
a regular ProtoNet computes offline by using online aver-
aging. For each prototype k, we store a count scalar c[k]t
to indicate the number of examples that have been added
to this prototype up to time t. When the current example
is unlabeled, yt is encoded as −1, and the model’s own
prediction ŷwt will determine which prototype to update; in
this case, the model must also determine a strength of belief,
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ûwt , that the current unlabeled example should be treated as
a new class. Given ûwt and yt, the model can then update a
prototype:

ûwt = sigmoid((min
k
‖ht − pt[k]‖2Mt

− βw
t )/γwt ),

∆[k]t = 1[yt = k]︸ ︷︷ ︸
Supervised

+ ŷt,k(1− ûwt )1[yt = −1]︸ ︷︷ ︸
Unsupervised

,

c[k]t = c[k]t−1 + ∆[k]t,

p[k]t =
1

c[k]t
(p[k]t−1c[k]t−1 + ht∆[k]t) if ∆[k]t > 0.

As-yet-unspecified hyperparameters βw
t and γwt are required.

(The superscript w in βw
t and γwt is for write.) These param-

eters for the online-updating novelty output ûwt are distinct
from βr

t and γrt in Equation 2. The intuition is that for “self-
teaching” to work, the model potentially needs to be more
conservative in creating new classes (avoiding corruption of
prototypes) than in predicting an input as being a new class.

Contextual RNN: Instead of directly using the features
from the CNN hCNN

t as input features to the prototype mem-
ory, we would also like to use contextual information from
the recent past. Above we introduced threshold hyperparam-
eters βr

t , γrt , βw
t , γwt as well as the metric parameter Mt.

We let the contextual RNN output these additional control
parameters, so that the unknown thresholds and metric func-
tion can adapt based on the information in the context. The
RNN produces the context vector hRNN

t and other control
parameters conditioned on hCNN

t :[
zt,h

RNN
t ,mt, β

r
t , γ

r
t , β

w
t , γ

w
t

]
= RNN(hCNN

t ; zt−1),

where zt is the recurrent state of the RNN, and mt is the
diagonal vector of Mt. The context, hRNN

t , serves as an
additive bias on the state vector used for FSL: ht = hCNN

t +
hRNN
t .

Loss function: The loss function is computed after an
entire sequence ends and all network parameters are learned
end-to-end. The loss is composed of two parts. The first
is binary cross-entropy (BCE), for telling whether each
example has been assigned a label or not, i.e., prediction of
new classes. Second we use a multi-class cross-entropy for
classifying among the known ones. We can write down the
overall loss function as follows:

L =
1

T

T∑
t=1

λ
[
−1[yt<0] log(ûrt )− 1[yt≥0] log(1− ûrt )

]︸ ︷︷ ︸
Binary cross entropy on old vs. new

+

K∑
k=1

−1[yt = k] log(ŷt,k)︸ ︷︷ ︸
Cross entropy on old classes

.

5. Experiments
In this section, we show experimental results for our online
contextualized few-shot learning paradigm, using Roamin-
gOmniglot and RoamingRooms (see Sec. 3) to evaluate our
model, CPM, and other state-of-the-art methods. For Om-
niglot, we apply an 8×8 CutOut (Devries & Taylor, 2017)
to each image to make the task more challenging.

Implementation details: For the RoamingOmniglot ex-
periment we used the common 4-layer CNN for few-shot
learning with 64 channels in each layer. For the Roamin-
gRooms experiment we resize the input to 120×160 and we
use the ResNet-12 architecture (Oreshkin et al., 2018) with
{32,64,128,256} channels per block. To represent the feature
of the input image with an attention mask, we concatenate
the global average pooled feature with the attention ROI fea-
ture, resulting in a 512d feature vector. For the contextual
RNN, in both experiments we used an LSTM (Hochreiter &
Schmidhuber, 1997) with a 256d hidden state.

We use the Adam optimizer (Kingma & Ba, 2015) with
initial learning rate 1e-3 for all experiments. For Omniglot
we train the network for 40k steps with batch size of 32 with
maximum sequence length 150 across 2 GPUs and learning
rate decay by 0.1× at 20k and 30k steps. For Matterport
3D we train for 20k steps with batch size 8 with maximum
sequence length 100 across 4 GPUs and learning rate decay
by 0.1× at 8k and 16k steps. We use BCE coeffcient λ = 1
for all experiments. In semisupervise experiments, around
30% examples are labeled.

Evaluation metrics: In order to compute a single number
that characterizes the learning ability over sequences, we
propose to use average precision (AP) to combine the pre-
diction on old and new classes. Concretely, all predictions
are sorted by their old vs. new scores, and we compute
AP using the area under the precision-recall curve. True
positive is defined as the correct prediction of a multi-class
classification among known classes. We also compute the
“N -shot” accuracy; i.e., the average accuracy after seeing
the label N times in the sequence. Note that these accuracy
scores only reflect the performance on known class predic-
tions. All numbers are reported with an average over 2,000
sequences and for N -shot accuracy standard error is also
included.

Comparisons: To evaluate the merits of our proposed
model, we implement classic few-shot learning and online
meta-learning methods.

• OML (Javed & White, 2019): This is an online version
of MAML (Finn et al., 2017). It performs one gradient de-
scent step for each labled input image, and slow weights
are learned via backpropagation through time.
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Table 2: RoamingOmniglot OC-FSL results. Max 5 env., 150 images, 50 classes, with 8×8 box occlusion.

Method Supervised Semi-supervised
AP 1-shot Acc. 3-shot Acc. AP 1-shot Acc. 3-shot Acc.

OML 70.97 63.32 ± 0.21 91.67 ± 0.15 54.27 71.64 ± 0.19 93.72 ± 0.27
LSTM 64.34 61.00 ± 0.22 81.85 ± 0.21 54.34 68.30 ± 0.20 76.38 ± 0.49
DNC 81.30 78.87 ± 0.19 91.01 ± 0.15 81.37 88.56 ± 0.12 93.81 ± 0.26

Online MatchingNet 88.69 84.82 ± 0.15 95.55 ± 0.11 84.39 88.77 ± 0.13 97.28 ± 0.17
Online IMP 90.15 85.74 ± 0.15 96.66 ± 0.09 81.62 88.68 ± 0.13 97.09 ± 0.19

Online ProtoNet 90.49 85.68 ± 0.15 96.95 ± 0.09 84.61 88.71 ± 0.13 97.61 ± 0.17
CPM (Ours) 93.55 89.49 ± 0.13 98.07 ± 0.07 89.43 91.81 ± 0.11 98.34 ± 0.14

Table 3: RoamingRooms OC-FSL results. Max 100 images and 40 classes.

Method Supervised Semi-supervised
AP 1-shot Acc. 3-shot Acc. AP 1-shot Acc. 3-shot Acc.

OML 74.34 72.63 ± 0.37 84.97 ± 0.32 58.71 68.87 ± 0.38 87.62 ± 0.51
LSTM 45.67 59.90 ± 0.40 61.85 ± 0.45 33.32 52.71 ± 0.38 55.83 ± 0.76
DNC 80.86 82.15 ± 0.32 87.30 ± 0.30 73.49 80.27 ± 0.33 87.87 ± 0.49

Online MatchingNet 85.91 82.82 ± 0.32 89.99 ± 0.26 78.99 80.08 ± 0.34 92.43 ± 0.41
Online IMP 87.33 85.28 ± 0.31 90.83 ± 0.25 75.36 84.57 ± 0.31 91.17 ± 0.43

Online ProtoNet 86.01 84.89 ± 0.31 89.58 ± 0.28 76.36 80.67 ± 0.34 88.83 ± 0.49
CPM (Ours) 88.09 87.07 ± 0.29 90.90 ± 0.26 82.88 84.97 ± 0.32 91.47 ± 0.44

Table 4: Ablation of CPM architectural components on
RoamingOmniglot

Method hRNN β∗
t , γ

∗
t Metric Val AP

Online PN 91.22
No hRNN 3 3 92.52
hRNN only 3 93.48

No metric mt 3 3 93.61
No β∗

t , γ
∗
t 3 3 93.98

ht = hRNN
t 3 3 3 93.70

Full CPM 3 3 3 94.08

• LSTM (Hochreiter & Schmidhuber, 1997) &
DNC (Graves et al., 2016): We include RNN methods
for comparison as well. Differentiable neural computer
(DNC) is an improved version of memory augmented
neural network (MANN) (Santoro et al., 2016).

• Online MatchingNet (Vinyals et al., 2016), IMP (Allen
et al., 2019) & ProtoNet (Snell et al., 2017): We used
the same negative Euclidean distance as the similarity
function for these three metric learning based approaches.
In particular, MatchingNet stores all examples and per-
forms nearest neighbor matching, which can be memory
inefficient. Note that Online ProtoNet is a variant of our
method without the contextual RNN.

Main results: Our main results are shown in Table 2 and
3, including both supervised and semi-supervised settings.
Our approach achieves the best performance on AP con-

Table 5: Ablation of semi-supervised learning components on
RoamingOmniglot

Method RNN Prototype βw
t , γw

t Val AP

Online PN 90.83
Online PN 3 89.10
Online PN 3 3 91.22

CPM 92.57
CPM 3 93.16
CPM 3 3 93.20
CPM 3 3 3 94.08

sistently across all settings. Online ProtoNet is a direct
comparison without our contextual RNN and it is clear that
CPM is significantly better. Our method is slightly worse
than Online MatchingNet in terms of 3-shot accuracy on the
RoamingRooms semisupervised benchmark. This can be
explained by the fact that MatchingNet stores all past seen
examples, whereas CPM only stores one prototype per class.
Per timestep accuracy is plotted in Figure 5, and the decay-
ing accuracy is due to the increasing number of classes over
time. In RoamingOmniglot, CPM is able to closely match or
even sometimes surpass the offline classifier, which re-trains
at each step, which uses all prior images in a sequence. This
is reasonable as our model is able to leverage information
from the current context.

Effect of spatiotemporal context: To answer the ques-
tion whether the gain in performance is due to spatiotempo-
ral reasoning, we conduct the following experiment compar-
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Figure 5: Few-shot classification accuracy over time. Left: RoamingOmniglot semisupervised. Right: RoamingRooms semisupervised.
An offline logistic regression (Offline LR) baseline is also included, using pretrained ProtoNet features. It is trained on all labeled
examples except for the one at the current time step.
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Figure 6: Effect of spatiotemporal context. Spatiotemporal context are added separately and together in RoamingOmniglot, by
introducing texture background and temporal correlation. Left: Stimuli used for spatial cue of the background environment. Right: Our
CPM model significantly benefits from the presence of a temporal context (“+Temporal” and “+Both”), while Spatial context helps both
CPM and online ProtoNet.

ing CPM with online ProtoNet. We allow the CNN to have
the ability to recognize the context in RoamingOmniglot
by adding a texture background image using the Kylberg
texture dataset (Kylberg, 2011) (see Figure 6 left). As a con-
trol, we can also destroy the temporal context by shuffling
all the images in a sequence. We train four different models
on dataset controls with or without the presence of spatial
or temporal context, and results are shown in Figure 6. First,
both online ProtoNet and CPM benefit from the inclusion
of a spatial context. This is understandable as the CNN has
the ability to learn spatial cues, which re-confirms our main
hypothesis that successful inference of the current context
is beneficial to novel object recognition. Second, only our
CPM model benefits from the presence of temporal con-
text, and it receives distinct gains from spatial and temporal
contexts.

Ablation studies: We ablate each individual module we
introduce. Results are shown in Tables 4 and 5. Table 4
studies different ways we use the RNN, including the con-
text vector hRNN, the predicted threshold parameters β∗

t , γ
∗
t ,

and the predicted metric scaling vector mt. Table 5 studies
various ways to learn from unlabeled examples, where we
separately disable the RNN update, prototype update, and
distinct write-threshold parameters βw

t , γ
w
t (vs. using read-

threshold parameters). We verify that each component has a
positive impact on the performance.

6. Conclusion
We proposed online contextualized few-shot learning, OC-
FSL, a paradigm for machine learning that emulates a hu-
man or artificial agent interacting with a physical world. It
combines multiple properties to create a challenging learn-
ing task: every input must be classified or flagged as novel,
every input is also used for training, semi-supervised learn-
ing can potentially improve performance, and the temporal
distribution of inputs is non-IID and comes from a gen-
erative model in which input and class distributions are
conditional on a latent environment with Markovian transi-
tion probabilities. We proposed the RoamingRooms dataset
to simulate an agent wandering within a physical world. We
also proposed a new model, CPM, which uses an RNN to
extract spatiotemporal context from the input stream and
to provide control settings to a prototype-based FSL model.
In the context of naturalistic domains like RoamingRooms,
CPM is able to leverage contextual information to attain
performance unmatched by other state-of-the-art FSL meth-
ods.
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