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Abstract

Bayesian formulations of probabilistic circuits
(PCs) have gained increasing attention, e.g., to reg-
ularize parameter or structure learning or perform
model selection. However, prior specification, an
essential part of the Bayesian workflow, is often
not adequately addressed. In this work, we discuss
priors in Bayesian PCs and show that certain con-
structions are related to Pólya tree processes in the
limit of infinite depth. Furthermore, we show that
Bayesian PCs can accurately represent mixtures of
multivariate Pólya trees with only a fraction of the
random variables required in the former. We verify
our findings with simulations on synthetic data.

1 INTRODUCTION & RELATED WORK

Over the years, probabilistic circuits (PCs) (e.g., Darwiche
[2003], Poon and Domingos [2011], Peharz [2015], Trapp
[2020], Choi et al. [2020], Vergari et al. [2021]) have gained
increasing attention in the machine learning community as
an effective approach for tractable and flexible probabilistic
modelling. Consequently, a plethora of approaches for para-
meter and structure learning of PCs have been proposed,
including various techniques that leverage Bayesian learn-
ing (e.g., Zhao et al. [2016], Trapp et al. [2019], Vergari
et al. [2019], Trapp [2020]). In comparison to frequentist
approaches, Bayesian learning of PCs has shown to be more
robust, allows learning despite missing data [Trapp et al.,
2019], and enables interpretable inferences useful for data
type discovery [Vergari et al., 2019].

Orthogonal to the research on PCs, Bayesian deep learning,
which aims to leverage Bayesian learning for deep neural
networks, has recently gained large attention in the machine
learning community. Alongside advancements in approx-
imated Bayesian inference for Bayesian neural networks
(BNNs), investigating prior specification has become a ma-
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Figure 1: Illustration of a density function drawn from a
finite mixture of multivariate Pólya trees (a) and a Bayesian
probabilistic circuit (b) on a 2D toy data set. Both represent
priors over a similar (in KL divergence) set of densities, but
probabilistic circuits require only a fraction (less than 10%)
of the random variables needed for the Pólya tree.

jor research direction (e.g., Pearce et al. [2020], Fortuin
et al. [2021], Meronen et al. [2021]). However, somewhat
surprisingly, prior specification in Bayesian formulations of
PCs is still in its infancy and lacks a thorough investigation.

In this work, we study prior selection in Bayesian formu-
lations of PCs and show that specific constructions of PCs
are related to tail-free processes, such as the Pólya tree
process and the Dirichlet process, in the limit of infinite
depth. In fact, finite Pólya trees can be seen as a special case
of Bayesian PCs. Moreover, while the number of random
variables (RVs) in finite multivariate Pólya trees (MPTs)
scales exponentially in depth J and input dimensionality p,
Bayesian PCs obtain comparable results often with only a
fraction (<10%) of the number of RVs, cf. Fig. 1.

Our contributions can be summarised as follow: (i) we show
that certain Bayesian PCs are related to Pólya trees in the
limit of infinite depth, (ii) we show that Bayesian PCs can
represent mixtures of finite MPTs accurately and efficiently,
(iii) and lastly, we verify our results through simulations on
synthetic data sets.
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Figure 2: Illustration of a Pólya tree process and a deterministic Bayesian PC representing a truncation of the Pólya tree.
Both recursively sub-divide the domain and associate each sub-part with a random probability (random weight). For example,
computing the probability of P (A010) in the PC is equivalent to the computation in a finite/truncated Pólya tree.

2 PRELIMINARIES

We briefly review background information on probabilistic
circuits and Pólya trees and introduce the notation used in
this work. See appendix for a notation summary.

2.1 PROBABILISTIC CIRCUITS

For consistency with recent works, we will briefly introduce
probabilistic circuits (PCs) based on the formalism used
in Trapp et al. [2019] and Choi et al. [2020]. A PC on a
set of RVs X = {Xd}pd=1, denoted as C(X), is defined
as a tuple (G, ψ) consisting of a directed acyclic graph G
and a scope function ψ. Nodes in G are either sum nodes
(S(x) =

∑
N∈ch(S) wS,N N(x)), product nodes (P(x) =∏

N∈ch(P) N(x)), or leaf nodes (L(x) = p(x | θL)). We
use N to denote a generic node and boldface to indicate sets
of nodes. The scope function ψ : N→P(X) assigns each
node in the graph G a scope, i.e., a subset Y ⊆ X , where
P(X) is the power set including ∅ and X .

Depending on the structural properties of the circuit, specific
probabilistic inference queries can be answered tractably.
We will assume throughout the paper that the circuit is
smooth and decomposable, see Choi et al. [2020] for details.

We will additionaly consider the property called determin-
ism. A sum node is deterministic if, for any fully-instantiated
input, the output of at most one of its children is nonzero. A
PC is deterministic if all of its sum nodes are deterministic.
This is a strong structural constraint, but it has been shown
by prior work that ensembles thereof can obtain competitive
results in density estimation tasks (e.g., Peharz et al. [2014],
Liang et al. [2017]) and can be effective surrogate models
for Bayesian inference (e.g., Shih and Ermon [2020]).

2.2 PÓLYA TREES

The Pólya tree process (e.g., Mauldin et al. [1992], Lavine
[1992], Hanson [2006]) has been widely used in the statist-
ics literature and applied to various applications, including
modeling of censored data (e.g., Neath [2003]), modeling
regression errors (e.g., Hanson and Johnson [2002]), and
survival analysis (e.g., Muliere and Walker [1997], Zhao
et al. [2009]). We will give a brief and pragmatic introduc-
tion to Pólya trees and refer to Ghosal and van der Vaart
[2017] for a more rigourous and thorough discussion.

Let (Ω,A ,P) be some abstract probability space, (X,X )
some sample space of interest and let M denote the set of
probability measures on the sample space. We are interested
in representing a random probability measure ξ : Ω×X →
[0, 1] through a Pólya tree process. For this, let the sample
space X be recursively partitioned into measurable subsets,
i.e., Π1 = {X} = A0 ∪ A1, Π2 = {A0, A1} = {A00 ∪
A01, A10 ∪A11}, and ΠJ = {Aε0 ∪Aε1 | ε ∈ BJ} where
Aε0 ∩ Aε1 = ∅ for every ε. Finally, let each part A be
associated with a positive random weight V representing
the following conditional probabilities:

Vε0 = P (Aε0 | Aε) and Vε1 = P (Aε1 | Aε), (1)

and let the partitioning be tree additive, i.e., P (Aε) =
P (Aε0 | Aε) + P (Aε1 | Aε). Therefore, we have:

P (Aε0,ε1,...,εJ ) = Vε0Vε0ε1 . . . Vε0...εJ , (2)

with εi ∈ B for the joint probability.

Definition 2.1 (Pólya tree process) A random measure is
a Pólya tree process wrt a sequence of partitions Πj , j ∈
1, . . . , J if {V0} ⊥⊥ {V00, V10} ⊥⊥ . . . ⊥⊥ {Vε0 | ε ∈ BJ}
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and each random weight is distributed according to Vε0 ∼
Beta(αε0, αε1) and Vε1 = 1 − Vε0. If J = ∞, we call the
process an infinite Pólya tree process and finite otherwise.

In the following we use PTJ(c, ρ,Π) to denote a finite
Pólya tree process of depth J with partitions Π on X
parameterized with c > 0 and ρ(·) > 0. Moreover, we
will use a prior specification given as Vεj(k)0, Vεj(k)1 ∼
Dir(cρ(j), cρ(j)) with k ∈ 1, . . . , 2j−1 and j ∈ 1, . . . , J ,
where εj(·) is used to encode elements into a linear index
at each level j. Note that depending on the choice of ρ a
Pólya tree process is a process over a.c. distributions with
probability 1, i.e., if ρ(j) = j2, or a process over discrete dis-
tributions, e.g., if ρ(j) = 2ρ(j + 1) and X = R, as J →∞.
Throughout this work we will assume that ρ(j) = j2 and
refer to Lavine [1992], Ghosal and van der Vaart [2017] for
details on parameterisations of Pólya tree processes.

3 MAIN RESULTS

Given a sample space (X,X ), let C = (G, ψ) be a finite bin-
ary tree of depth J that recursively partitions X into measur-
able subsets AN ∈ Π defined by a computational graph and
a scope function mapping to X (cf., Trapp et al. [2020]).
Further, let AN = supp(N) denote the support of nodes
in the tree and let wSεj(k)0

, wSεj(k)1
∼ Dir(cρ(j), cρ(j))

denote random weights associated to the sum nodes S =
{Sεj(k) | k ∈ 1, . . . 2j−1, j ∈ 1, . . . , J} of the tree.

Then, probabilities wrt sum nodes Sεj(k) are computed as:

pSεj(k)
(ASεj(k)

) = wSεj(k)0
pSεj(k)0

(ASεj(k)0
)

+ wSεj(k)1
pSεj(k)1

(ASεj(k)1
). (3)

Further, we assume indicator functions at the leaves, i.e.,
pL(AL) = 1[x∈AL], which return one if the argument is true
and zero otherwise. Moreover, as commonly assumed in
Bayesian approaches to PCs (e.g., Zhao et al. [2016], Trapp
et al. [2019]), we will assume the random weight sets for
sum nodes to be mutually independent across the tree.

From the description above, it becomes evident that specific
constructions of Bayesian PCs are indeed finite Pólya trees.

Corollary 1 A finite Pólya tree process is a special case of
deterministic Bayesian probabilistic circuit.

Fig. 2 illustrates a Pólya tree process and a deterministic
Bayesian PC respresenting a truncation of the process.

Implications: There are various direct implications
arising from the correspondence between certain determin-
istic Bayesian PCs and Pólya tree processes.

1. Specific constructions of deterministic Bayesian PCs
allow tractable posterior inference.

2. Specific constructions of deterministic Bayesian PCs
correspond to Dirichlet processes in the limit.

3. Specific constructions of deterministic Bayesian PCs
are distributions over a.c. distributions in the limit.

3.1 MULTIVARIATE PÓLYA TREES

Our definition of Pólya trees can easily be extended to the
multivariate case. For this, let us assume that X = R2. Then
Π1 will divide the 2D plane into four sets, each of those
sets will be further divided into four sets resulting in 16
sets at level j = 2. Generally, at a depth of j, we obtain a
sub-division of Rp with p > 0 into 2pj disjoint sub-sets.

This highlights a key issue when working with finite MPTs,
the number of RVs scales exponentially in depth and di-
mensionality, i.e.,

∑J
j=1 2pj . Therefore, one is restricted to

using MPTs only in low-dimensional settings. Alternatively,
one may use the marginal model by marginalising out the
random measure in higher-dimensional cases. However, do-
ing so still requires storing counts for all of the

∑J
j=1 2pj

many RVs.

Fortunately, by leveraging a representation with a de-
terministic Bayesian PC that places a product node (i.e.,
assumes independence between input dimensions) after
each sum node, we can approximate a MPT with only
2pJp + 2(p−1)Jp−1 + · · · + 2J1 +

∑J
j=J̃ 2j RVs where

J̃ = 1 +
∑p
d=1 Jd and

∑p
d=1 Jd ≤ J . Thus, a construction

through deterministic Bayesian PCs can substantially re-
duce the computational and memory costs required for finite
MPTs. However, in practice, such an approximation might
be too rough, and we ought to introduce product nodes after
several consecutive sum nodes instead. In Section 3.3 we
discuss the effect of representing a mixture of MPTs with
an increasing number of consecutive sum nodes (increasing
fraction of RVs).

3.2 MIXTURES OF PÓLYA TREES

Mixtures of Pólya trees have been widely studied (e.g., Han-
son [2006], Paddock et al. [2003]), for ease of the discus-
sion, we will focus on the construction proposed by Han-
son [2006]. Let gθ denote the density of an a.c. parametric
distribution indexed by θ with CDF Gθ. Further, let the
partitions be given as Πj

θ = {Bθ(ej(k)) : k ∈ 1, . . . , 2j}
where Bθ(ej(k)) = (G−1

θ ((k − 1)2−j), G−1
θ (k2−j)) and

let G ∼ PT(c, ρ,Π) follow Gθ on sets of Πj
θ. Then, we ob-

tain a mixture of Pólya trees if θ is considered to be random.
The above can be generalised to the multivariate case with
some additional technical details.

As for finite Pólya trees, we can represent a mixture of finite
Pólya trees (or a mixture of MPTs) through a Bayesian PC.
In the case of a mixture, we obtain an ensemble of determ-
inistic Bayesian PCs. Details can be found in Appendix A.
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Figure 3: Comparison between the posterior expectation of a mixture of multivariate Pólya trees and a Bayesian probabilistic
circuit based on Monte Carlo estimates of the KL divergence under different values of c ∈ [1, 10, 100]. Left hand-side
shows results on the two moons data set, and right hand-side shows results on the two circles data set. Horizontal lines show
Monte Carlo estimates for the entropy of the posterior expectation of the mixture of multivariate Pólya trees for comparison.
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Figure 4: Average test set log-likelihoods for draws from a Bayesian probabilistic circuit under different values of c ∈
[1, 10, 100]. Left hand-side shows results on the two moons data set, and right hand-side shows results on the two circles
data set. Horizontal lines show average results for draws from a mixture of multivariate Pólya trees for comparison.

As in the case of MPTs, we can obtain a more efficient
representation through the use of Bayesian PCs.

3.3 SIMULATION RESULTS

We evaluated our approach by comparing draws from the
posterior of a mixture of MPTs against draws from Bayesian
PCs as well as their posterior expectations under varying
concentration parameters c. For this purpose, we generated
two synthetic data sets, the two moons and two circles data
sets, each consisting of ntrain = 400 training samples and
p = 2 dimensions. In each experiment, we analysed the
performance of Bayesian PCs as a surrogate model for a
mixture of MPTs under different values of the control para-
meter c ∈ [1, 10, 100]. We refer to Appendix B for details.

Fig. 3 shows the Kullback–Leibler (KL) divergence from the
posterior expectation of a mixture of MPTs to the posterior
expectation of a Bayesian PC following the same partition-
ing applied by the MPTs. With an increasing number of
consecutive sum nodes (represented by the % of RVs of the
Pólya tree used for the circuit), the KL divergence quickly
decays, indicating that a Bayesian PC can accurately repres-
ent the marginal model of a mixture of MPTs with a fraction

of the computational and memory costs.

Fig. 4 shows the average test log-likelihood for draws from
a mixture of MPTs and a Bayesian PC following the same
partitioning. Bayesian PCs that use as little as 25% of the
RVs required for a mixture of MPTs provide a reasonable
approximation, indicating that Bayesian PCs are a prom-
ising alternative to fully instantiated MPTs. Additionaly,
Fig. 5 shows a comparison of the computational costs and
approximation quality, and Fig. 6 qualitatively compares
draws from both models, verifying our results.

4 CONCLUSION AND DISCUSSION

We have shown that certain constructions of deterministic
Bayesian probabilistic circuits (PCs) correspond to finite
Pólya trees and henceforth to infinite Pólya tree processes
in the limit of infinite depth. Moreover, we have shown that
Bayesian PCs can represent multivariate Pólya trees (MPTs)
and mixtures thereof more efficiently. Our simulation results
indicate that Bayesian PCs provide a computationally at-
tractive alternative to fully instantiated MPTs and mixtures
of MPTs. In future, we plan to further explore the aforemen-
tioned connection and investigate applications thereof.
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Supplementary Material:
On Priors in Bayesian Probabilistic Circuits and Multivariate Pólya trees

This appendix contains further derivations in Appendix A
and details on the experiments in Appendix B. Moreover,
we will summarize the notation used in the paper.

General Notation Scalars are written lowercase (e.g.,
x, y) vectors are written lowercase bold (e.g., x,y) and
matrices are written uppercase bold (e.g., X,Y ). Further-
more, the following is used for general mathematical ob-
jects.

n Number of data points, e.g., size of training set
p Number of dimensions / features
J Depth of a finite Pólya tree

xi ith observation
X random variable
θ Parameter

P(X) Power set including empty set
1[·] Indicator function
R Reals
B Booleans

(X,X ) sample space
A measurable subset of X
Π A partition

PT(c, ρ,Π) A Pólya tree
c > 0 Control parameter
ρ(·) Prior parameter
Gθ CDF of a parametric distribution
gθ PDF of a parametric distribution
G A draw from a Pólya tree

Notation on Probabilistic Circuits The following nota-
tion is used for objects related to probabilistic circuits.

G Graph, i.e., computational graph
ψ Scope function

S,P,L Sum, Product and Leaf node (respectively)
N Generic node, i.e., a sum, product of leaf node
N Set of nodes

wS,N Edge weight from S to N

A MATHEMATICAL DETAILS

A.1 MIXTURE OF MULTIVARIATE PÓLYA TREES

In this work, we consider a mixture of multivariate Pólya
trees (MPT) given as:

x1, . . . ,xn | G ∼ G (4)

G | θ ∼ PTJp (c, ρ,Πθ) (5)

θ ∼ p(θ) (6)

whereG followsGθ on sets of Πθ and MPT has the paramet-
ric location-scale distribution Gθ as centering distribution.

In particular, we will assume that gθ(·) is the PDF of a
Normal distribution denoted as φθ. Further, we denote the
Normal CDF parameterized by µ,Σ as Φµ,Σ(·) and, in the
case of a standard Normal, we use φ0 and Φ0 respectively.
Note that, we have that E[Y ] = µ, Cov[Y ] = Σ, and
p(Y ∈ A) =

∫
A
φµ,Σ(x) dx where A ⊂ Rd.

To compute the likelihood of a vector x ∈ Rp, one first
needs to find the path (sets of sub-regions) x falls into. For
this, we define the following function:

kθ(j, d, z) = min{b2jΦ0(zd) + 1, 2j}c (7)

which selects the sub-region at each level j ∈ 1, . . . , J
respective to each dimension d ∈ 1, . . . , p. Given:

kθ(j,z) =

 kθ(j, 1, z)
...

kθ(j, d, z)

 (8)

we can compute the probabilities:

pX (k) =

J∏
j=1

Xej(dk12j−Je...dkd2j−Je) (9)

which allows us to obtain the likelihood given as:

p(x | X , µ,Σ) = 2JdpX (kθ(J,Σ
−1/2(x− µ)))

det(Σ)−1/2φ0(Σ−1/2(x− µ)). (10)

We first reparameterize x to evaluate the mixture of MPTs
using a standard Normal as the centring distribution. In
practice, all computations are performed in log-space to
ensure numerical stability.



A.1.1 Bayesian Probabilistic Circuit construction of a
Mixture of Multivariate Pólya trees

To model a mixture of MPTs, we define G recursively as
follows:

G = G̃1:p(X ) (11)

G̃d1:d2(A) = Gd1:d2(A)

+
∑

Ai∈Π(A)

G̃d1:si(A
i
d1:si)

× G̃si+1:d2(Aisi+1:d2) (12)

Gd1:d2(A) | θ ∼ PT
Jd2−d1

d1:d2
(c, ρ,Gθ, A) (13)

where Π(A) denotes a partition of A into disjoint sub-sets,
si denotes a splitting variable associated to each to each
Ai, and as before θ ∼ p(θ). Note that the splitting variable
might be different for each product node in the model.

Note that now, the likelihood function is also recursively
given. Let Jd be the number of layers if the input domain
has d ≤ p dimensions. Then we have that:

p(x | X , µ,Σ) = f1:p(X ,Σ−1/2(x− µ))

det(Σ)−1/2φ0(Σ−1/2(x− µ)), (14)

with

fd1:d2(A, z) = 2Jd2−d1pA(kθ(Jd2 , z))∑
Ai∈Π(A)

f(Aid1:si , zd1:si)× f(Aisi+1:d2 , zsi+1:d2).

(15)

Similar to before, we reparameterize x to evaluate the
Bayesian PC using a standard Normal as centring distri-
bution and perform all computations in log-space.

B EXPERIMENTS

To evaluate the proposed approach, we used two syn-
thetic data sets, both of which are generated based on the
implementation provided in https://github.com/
wildart/NMoons.jl.

Two Moons: The two moons data set uses ntrain = 400
training samples generated with noise ε = 0.1 and repulse
(−0.25,−0.25). The test set is base on ntest = 200 samples
generated with increased noise of ε = 0.3 and the same
repulse.

Two Circles: The two circles data set uses ntrain = 400
training samples generated with noise ε = 0.1 and transla-
tion of (−0.25,−0.25). The test set is base on ntest = 200
samples generated with increased noise of ε = 0.3 and the
same translation.

B.1 EXPERIMENTAL SETUP

All experiments are based on the generative models de-
scribed in Appendix A.1 and use a Normal density as the
base distribution.

For simplicity we did not sample V (or w) and θ jointly,
but instead used a fixed sample of θ1, . . . , θT generated by
injecting random noise, i.e.,

µt = µ̄+ ε, ε ∼ N(0, 1) (16)
σt = 2σ̄t + ε, ε ∼ U(0, 0.5) (17)

where µ̄ is the sample mean and σ̄2 the sample variance.
Moreover, we assumed that the base distribution has diag-
onal covariance structure, simplifying the computations.

B.2 QUANTITATIVE COMPARISION

To quantitatively compare finite mixtures of MPTs to
Bayesian PCs, we assessed the Kullback–Leibler (KL) di-
vergence from the posterior expectation of a mixture of
MPTs to the posterior expectation of a Bayesian PC and
compared the test log-likelihood for posterior draws of both
models. The results are found in Fig. 3 and Fig. 4 respect-
ively. Fig. 5 shows an additional visualisation comparing
the computational costs and approximation quality.

To compute the KL divergences, we estimated the diver-
gence using Monte Carlo (MC) integration using 100k
samples. For comparison, we also estimated the entropy
of the posterior expectation of a mixture of MPTs estimated
based on the same 100k samples. We did not systematically
assess the variance, but found that 100k samples are suffi-
cient to obtain consistent results across multiple reruns. To
estimate the test log-likelihoods, we used ten random draws
from the posterior and averaged across the draws.

In all experiments, we assessed the performance for varying
values of the control parameter c. Note that the parameter
c controls how much the Pólya tree (or the deterministic
Bayesian PC) can deviate from the centring distribution
(larger c means less deviation is allowed). Larger values
of c require a larger number of observations to let the data
overwhelm the effect of the centring distribution.

B.3 QUALITATIVE COMPARISON

Fig. 6 shows 2D density function draws from a finite mixture
of MPTs and draws from a Bayesian PC for different values
of J2 and different values of the control parameter c. In
all cases, J = 9 ≈ log2(ntrain), J1 = J − J2 and ρ(j) =
j2. We can observe that draws from a Bayesian PC with
small J2 result in grid-like density functions with strong
discontinuities and values of J2 = 4 or greater provide
visually similar density draws to those generated from a
finite mixture of MPTs.

https://github.com/wildart/NMoons.jl
https://github.com/wildart/NMoons.jl
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Figure 5: Average approximation error of the test set log-likelihoods for draws of a Bayesian probabilistic circuit compared
to draws from a mixture of MPTs with c = 1. Red lines show the fraction of RVs used in the Bayesian probabilistic circuit,
reflecting the computational and memory costs compared to a mixture of MPTs.
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Figure 6: Comparison of 2D density function draws from a finite mixture of multivariate Pólya trees and draws from a
Bayesian probabilistic circuit for different values of J2 and different values of c. The top three rows show results on the two
moons data set, and the bottom rows show results on the two circles data set. Brighter colours indicate a higher probability.
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