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ABSTRACT

Fair clustering has become a socially significant task with the advancement of
machine learning and the growing demand for trustworthy Al. Group fairness en-
sures that the proportions of each sensitive group are similar in all clusters. Most
existing fair clustering methods are based on the K -means clustering and thus
require the distance between instances and the number of clusters to be given in
advance. To resolve this limitation, we propose a fair Bayesian model-based clus-
tering called Fair Bayesian Clustering (FBC). We develop a specially designed
prior which puts its mass only on fair clusters, and implement an efficient MCMC
algorithm. The main advantage of FBC is its flexibility in the sense that it can infer
the number of clusters, can process data where the choice of a reasonable distance
is difficult (e.g., categorical data), and can reflect a constraint on the sizes of each
cluster. We illustrate these advantages by analyzing real-world datasets.

1 INTRODUCTION

With the rapid development of machine learning-based technologies, algorithmic fairness has been
considered as an important social consideration when making machine learning-based decisions.
Among diverse tasks combined with algorithmic fairness, fair clustering (Chierichetti et al., [2017)
has received much interest, which ensures that clusters maintain demographic fairness across sensi-
tive attributes such as gender or race. However, most of existing fair clustering methods can be seen
as modifications of K -means clustering algorithms, and thus they require (i) the number of clusters
to be fixed and (ii) the distance between two instances given a priori, limiting their adaptability to
various kinds of real-world datasets, where the optimal number of clusters is unknown and/or it is
hard to define a reasonable distance (e.g., categorical data).

In this paper, we aim to develop a fair clustering algorithm based on a mixture model, which is
not limited to such requirements. An important advantage of our proposed algorithm is that it can
be applied to both cases when the number of clusters is known (fixed) and unknown. To infer the
unknown number of clusters, we treat the number of clusters as a parameter to be inferred. Specifi-
cally, we propose a fair Bayesian mixture model and develop an MCMC algorithm to approximate
the posterior distribution of the number of clusters as well as the cluster centers and cluster assign-
ments. Figure |1| presents an example where the choice of the number of clusters under the fairness
constraint a priori would be difficult in practice.

Among standard (fairness-agnostic) clustering approaches, various Bayesian models that can infer
the number of clusters have been proposed including mixture models with unknown components
(Richardson & Greenl [1997; Nobile & Fearnside, 2007; McCullagh & Yang, |2008; Miller & Har-
rison, [2018)) and mixture of Dirichlet process models (Ferguson, |1973;|Antoniakl 1974} |[Escobar &
‘West, [1995; [Neall, [2000). For fair Bayesian mixture models, we first modify the standard Bayesian
mixture model so that a prior concentrates on fair mixture models (called the fair prior) and so does
the posterior distribution. In general, however, computation of the posterior on a constraint param-
eter space would be computationally demanding and frequently infeasible if the constraint is not
designed carefully (Brubaker et al.,|2012; Sen et al.,[2018; [Duan et al., [2020).

To address this challenge, we develop a fair prior based on the idea of matching instances from dif-
ferent sensitive groups. An important advantage is that our proposed fair prior does not involve any
explicit constraint on the parameters and thus posterior approximation by an MCMC algorithm can
be done without much difficulty. The idea of ‘matching’ has already been successfully implemented
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for fair supervised learning (Kim et al.| 2025a) and non-Bayesian fair clustering (Chierichetti et al.,
2017; Kim et al., 2025b)), but it is the first attempt for Bayesian clustering.

Our main contributions are summarized as follows:

© We propose a definition of the fair mixture model and develop a novel MCMC algorithm
to approximate the posterior distribution of fair mixture models, called Fair Bayesian Clus-
tering (FBC).

<o Experimentally, we show that FBC (i) is competitive to existing non-Bayesian fair cluster-
ing methods when the number of clusters is given, (ii) can infer a proper number of clusters
well when the number of clusters is unknown, (iii) can use both continuous and categorical
data, and (iv) can infer fair clusters under certain constraints on the sizes of each cluster.
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Figure 1: Toy example comparing two Bayesian clustering methods with and without consider-
ing fairness. MFM (Mixture of Finite Mixtures (Miller & Harrison, 2018))) is a standard Bayesian
method that infers K. Data are synthetically generated from the 6-component Gaussian mixture
dataset (see Sectionfor details), and MFM infers K = 6, whereas the optimal number of clusters
obtained by FBC is K = 3. This example indicates that the choice of K by use of fairness-agnostic
clustering algorithms would be misleading for fair clustering.

1.1 RELATED WORKS

Fair clustering Given a pre-specified sensitive attribute (e.g., gender or race), the concept of fair
clustering is first introduced by Chierichetti et al. (2017)), with the aim of ensuring that the proportion
of each sensitive group within each cluster matches the overall proportion in the entire dataset. This
fairness criterion is commonly referred to as group fairness, and is also known as proportional fair-
ness. Recently, several algorithms have been developed to maximize clustering utility under fairness
constraints: [Chierichetti et al.|(2017)); Backurs et al.|(2019)) transform training data to fair representa-
tions to achieve fairness guarantee prior to clustering, Kleindessner et al.| (2019); Ziko et al.| (2021));
Li et al.| (2020); Zeng et al.[(2023) incorporate fairness penalties directly during the clustering pro-
cess, andBera et al.|(2019); Harb & Lam)|(2020) refine cluster assignments with fixed pre-determined
cluster centers. These methods, however, require the number of clusters to be given in advance. This
limitation, i.e., the lack of fair clustering algorithms that are adaptive to the unknown number of
clusters, serves as the motivation for this study. In addition, model-based clustering can be applied
to data for which a meaningful distance is difficult to define (e.g., categorical data).

Bayesian model-based clustering The mixture model is a model-based clustering approach,
where each instance (or observation) is assumed to follow a mixture of parametric distributions
independently (Ouyang et al.| 2004} |[Reynolds et al., 2009). Popular examples of parametric distri-
butions are the Gaussian (Maugis et al., 2009; |Yang et al.| 2012} Zhang et al., [2021), the student-t
(Peel & McLachlan, 2000), the skew-normal (Lin et al., | 2007), and the categorical (Pan & Huang,
2014; McLachlan & Peel, 2000)).

Bayesian approaches have been popularly used for inference of model-based clustering since they
can infer the number of clusters as well as cluster centers. There are several well-defined Bayesian
model-based clustering with unknown number of clusters including Mixture of Finite Mixtures
(MFM) (Richardson & Green, [1997; [Nobile & Fearnsidel [2007; McCullagh & Yang, 2008; [Miller
& Harrison, 2018) and Dirichlet Process Mixture (DPM) (Ferguson, (1973; |Antoniak, (1974; [Esco-
bar & West, |1995; Neall 2000). There also exist various MCMC algorithms for MFM and DPM,
such as Reversible Jump Markov Chain Monte Carlo (RIMCMC) (Richardson & Green, |1997)) and
Jain-Neal split-merge algorithm (Jain & Neal, 2004).
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2 FAIR MIXTURE MODEL FOR CLUSTERING

We consider group fairness, as it is one of the most widely studied notions of fairness (Chierichetti
et al.,|2017;Backurs et al., [ 2019;|Ziko et al.,[2021} L1 et al.,[2020; |Zeng et al.,|2023} Bera et al., 2019;
Harb & Lam, 20205 Kim et al., [2025b). For simplicity, we only consider a binary sensitive attribute,
but provide a method of treating a multinary sensitive attributes in Section |C} Let s € {0,1} be a
binary sensitive attribute known a priori. We define two sets of instances (observed data) from the
two sensitive groups as D(*) = {Xi(s) : Xi(s) € X CR4}7:, for s € {0,1}, where X is the support
of X, ng is the number of instances in the sensitive group s, and d is the number of features. Let
D := D U DM be the set of the entire instances.

Standard mixture model The standard finite mixture model (Ouyang et al.,|2004; Reynolds et al.,
2009; Maugis et al., [2009; |Yang et al., 2012; Zhang et al., 2021) without fairness is given as

id d
D S Z (-16%) (1
where n := ng+n; and X; := XZ.(O) fori e {1,...,n0} and XZ( )n fori € {no+1,...,n0+n1}.
In view of clustering, K is considered to be the number of clusters, 7w := (Trk)szl € Sk (the K-

dimensional simplex) are the proportions of instances belonging to the k" cluster, and f(-|0}) is the
density of instances in the k" cluster.

An equivalent representation of the above model can be made by introducing latent variables Z; €
[K],¢ € [n] as the following. Note that the latent variable Z; takes the role of the cluster assignment
of X; for all i € [n]. That is, when Z; = k, we say that X; belongs to the k™ cluster.

AT/ i Categorical () 2)
XilZi ~ f(:02z,) 3)

Fair mixture model To define a fair mixture model, we first generalize the formulation of the
standard finite mixture model in Equations (2) and (3)) by considering the dependent latent variables,

which we call the generalized finite mixture model in this paper. Let Z := (Z1, ..., Z,). Then, the
generalized finite mixture model is defined as:
Z~G() @)
XilZi ~ f(:10z,) (5)

where G, i.e., the joint distribution of Z, has its support on [K]™ When G is equal to
Categorical(m)" (i.e., Z;, Vi € [n] independently follows Categorical(ﬂ')) the generalized mixture
model becomes the standard finite mixture model in Equations (2)) and (3).

We also define the (group) fairness level of Z:

no

A(Z Z S 1z k)/no—iﬂ(Z](.l) =k)/n1| €0,1] (6)

klzl j=1

where Z(O) Z;fori e {1,...,n0} and Z(l) Zjin, for j € {1,...,n1}. We say that Z is fair
with fairness level € if Z € ZF air where ZF ar—{Z:A(Z) < e} In turn, for a given generalized
mixture model, if the support G is conﬁned on ZFr we say it is fair with level e. Note that the
notion of A has been already implemented in previous works (Kim et al.l[2025b). See Section
for more details.

2.1 CHOICE OF G FOR PERFECT FAIRNESS: A(Z) =0

The art of Bayesian analysis of the fair mixture model is to parameterize GG such that posterior
inference becomes computationally feasible. For example, we could consider Categorical()™ (the
distribution of independent Z;) restricted to Zgai’ as a candidate for G. While developing an MCMC
algorithm for this distribution would not be impossible, but it would be quite challenging.



Under review as a conference paper at ICLR 2026

In this section, we propose a novel distribution for G in the perfectly fair (i.e., A(Z) = 0) mixture
model with which a practical MCMC algorithm for posterior inference can be implemented. To
explain the main idea of our proposed G, we first consider the simplest case of balanced data where
ng = nq in Section We then discuss how to handle the case of ng % n; in Section|2.1.2

2.1.1 CASEOF ng = ny

Let n := ng = nj. A key observation is that any fair Z corresponds to a matching map between
[7] and [72] (a permutation on [7]), which is stated in Proposition [2.1| with its proof in Section
Figure 2|illustrates the relationship between a fair Z and a matching map T : [n] — [7].

Proposition 2.1. Z € Z[*" < There exists a matching map T such that Z J(-l) = Z,g_?()j) , Vi € [q).

We utilize the above proposition to define a fair distribution G. The main idea is that G assigns two
matched data to a same cluster once a matching map is given. To be more specific, the proposed

distribution is parametrized by 7w and T, which is defined by Z, (0) , Z,%O) i Categorical(7r) and
Z j(-l) = Z,(r() - Itis easy to see that G is perfectly fair. We write G( |7r T) for such a distribution.

Denote ZF(T) as the support of G(-|r, T). Note
that ZF1(T) C Zfr so one might worry that

Dp©®

the support of G(- |7r T) is too small. Proposition (2% = z)1
22.1] however, implies that Uper ZF7(T) = 2k, (20 - 292
where 7T is the set of all matching maps, and thus we

can put a prior mass on Z{*" by putting a prior on T ( 7y = Z(l))
(as well as 7) accordingly. (2 = Z(l))

A crucial benefit of the proposed G is that w and T

are not intertwined, hence they can be selected in- Figure 2: An example of fair Z
dependently. As a result, we can find a fair mixture when 7 = 4, where T is given as
model without any additional parameter constraints. (T(1), T(2), T(3),T(4)) = (3,4,1,2).

It is noteworthy that, conditional on T, the fair mix-

ture model can be written similarly to the standard mixture model in Equations (4] and (3) as :

(2,...,2”) ~ Categorical ()" ?
0 1 0) ind
X0y XS 1250 ™ £ 023, v

2.1.2 CASE OF ng # ny

Without loss of generality, we assume that ng < nj such that ny = Sng+r for nonnegative integers
B and 7 < ngy. We first consider the case of » = 0 because we can modify G for the balanced
case easily. When 7 # 0, the situation is complicated since there is no one-to-one correspondence
between fairness and matching map, and thus we propose a heuristic modification.

Case of r = 0: A function T from [n] to [ng] is called a matching map if (i) it is onto and (ii)
|T~1(i)] = B foralli € [ng]. Let T be the set of all matching maps. Then, we have Proposition
which is similar to Proposition [2.1] for the balanced case. See Section [A]for its proof.

Proposition 2.2. Z € Z5%" <= There exists a matching map T s.t. Z(l) ,(I9() ),Vj € [nq].

For given w# € Sk and T € T, we define a fair distribution G(-|w,T) as Z(O) ..,Zﬁ? it
Categorical () and Z ](_1) Z, (0() - Similar to the balanced case, we have UTGTZFa‘T(T) = Zkar,

Case of » > 0 : It can be shown (see Proposition[A.T]in Section [A]for the proof) that for a given
fair Z € Z54 there exists a function T from [n1] to [no} such that it is onto, |T~1(i)| is either 3
orf+1 and |RT\ =7, where R = {i : |T~!(i)| = B+ 1}. Let T be the set of all such matching
maps (functions satisfying these conditions).

A difficulty arises since the converse is not always true. To resolve this difficulty, we propose a
heuristic modification of the definition of ‘fairness of Z’. Let R be a subset of [ng] with |R| = 7,
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and let T be a subset of 7 such that R = R. Then, we say that Z is fair if there exists T € Tp

1) _ (0
such that Zj = ZT(j).
would be small when |C’,§0) |/no ~ |C’,(€O) NR|/r.

Note that a fair Z may not belong to Z5*" but the violation of fairness

In this paper, we consider two feasible candidates for R: (i) a random subset of [ng] and (ii) the
index of samples closest to the cluster centers obtained by a certain clustering algorithm to D(®)
with K = r. Finally, we can define G(-|w,T) for m € Sk and T € Tg similarly to that for the
balanced case. See Section[ATlfor the detailed discussion and the motivation of the two candidates.
Our numerical studies in Section [5.4] confirm that the two proposed choices of R work quite well.

2.2 CHOICE OF G FOR NON-PERFECT FAIRNESS: A(Z) > 0

Once w € Sk and T € Ty are given, we can modify G(-|m, T) to have a distribution whose
support is included in ZF". The main idea of the proposed modification is to select 7 many samples
from D) and to assign independent clustering labels to them instead of matching them to the
corresponding samples in D(®). Let E be a subset of [n;] with |E| = m. We consider a latent

variable T : [n1] — [no] that is an arbitrary function from [n1] to [ng]. Then, we let ZJ(.l) = Z,(l?()j)
for j € [n1]\ E and Zj(l) = Z’(l?o)(j) for j € E. In other words, D(!) is masked by E : (i) the masked

data in E are assigned by T, (ii) while the unmasked data in [n] \ E are still assigned by T. It
can be shown that the support of the distribution G(-|m, T, Tg, E) belongs to ZF4r with ¢ = m/n;,
provided that r = 0. See Proposition[A.3]in Section[A]for the theoretical proof.

3 FAIR BAYESIAN MODELING

We first propose a fair mixture model based on Equations (7)) and (8) as:

7|K ~ Dirichletg (v,...,7),y >0 9

7| " Categorical(-|m), Vi € [no] (10)
79 vie ]\ E

Z§” _ { (TOS” ? [l \ (11)
ZTO(j)’ Viek

XZ‘(O)|Z¢(O) ~ f(‘|92.(0>)aX,7('1)|ZJ(‘1) ~ F(10zm) (12)

In this model, @ = (61, 60-,...), E, T and Ty as well as the number of clusters K are the parameters
to be inferred. Aprior, we assume that each parameter is independent: K ~ pg(-), E ~ pg(:), T ~

pr(-), To ~ p,(+), and 61,05 . .. M.

Prior for K For K, we consider K ~ pg(-), where px is a probability mass function on
{1,2,...}. In this study, we use Geometric(x),x € (0,1) for px following (Miller & Harrison,
2018), where « is a hyperparameter. Further, we could consider a hierarchical prior for x as well to
reduce the dependency of posterior to the selection of « (see Section [D]for details).

Prior for & Usually, we choose a conjugate distribution of f(:|0) for H. For example, when f(-|6)
is the density of the Gaussian distribution, and # consists of the mean vector and diagonal covariance
matrix as § = (u, A"') € R x RY, where pr = ()9, and A = (X;)9_,. We set \; = X for
all j € [d] where (u;,\),j € [d] is independent and follow A ~ Gamma(a, b) for some a, b and
pilA ~ N(0,A71), j € [d] for H.

Prior for T, Ty,and £ Motivated by (Volkovs & Zemel,|2012), we construct a prior of T with its
support Tx based on the energy defined in Definition [3.1| below. The energy of a random matching
map T is defined as below, which measures the similarity between two matched data. See Sec-
tion [E.2| for the choice of D in Definition For the prior, we let pr(T) < e(T)I(T € Tg). For
Ty, we use the uniform distribution on II,,. For E, we use the uniform distribution on [n; : m],
where [n1 : m] is the collection of all subsets of [n1] with size m.
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Deﬁnition 3.1 (Energy of a matching map). Let D : X x X — R, be a given distance and
= {T : [m] — [no]}. Given T € II,, the energy of T is defined by e(T) = e(T;7) :=

exp ( Z ( ) ()’ X (1)) /mq T) , where 7 > 0 is a pre-specified temperature constant.

3.1 EQUIVALENT REPRESENTATIONS

We here present the equivalent representations of Equations (9) to (I2), which enable practical im-
plementation of an MCMC inference algorithm. The proof could be done by modifying the proof
of Miller & Harrison| (2018)), but we present the detailed proofs in Propositions [B.T|to [B.3] of Sec-
tion [B.2] for the readers’ sake.

Model For a given partition C of [ng], an equivalent generative model to the proposed fair mixture
model in Equations (9) to (12) is:

iid.

¢ ~ H,ceC (13)
VR f(loe) ice (14

(1) ind (|¢e) Vje[m]\EstT(j)ec
Xj { ( ‘d)(’) Vj € Es.t TO(]) cc (15)

Priors The prior for C in this equivalent representation is pc(C|T,To,E) = pc(C) =

kf ng) —
Vo (8 TLcc 1. where = [C1. Vi (6) = S52, ootk e (). (YR)™) = (y-bmg—1)1/ (k-

)‘ and k() = k!/(k —t)!. See Miller & Harrison| (2018) for the derivation. The prior of (T, Ty, E)
remains the same as the prior in Section 3]

When K is unknown and treated as a random variable, we use the following equivalent repre-
sentation of the proposed fair Bayesian mixture model, as done in Miller & Harrison| (2018).
When K is known as k., we only need to modify px in the prior for C. In specific, we modify
pr (k) = 1(k = k.) in V,,,(¢), and the others remain the same.

4 INFERENCE ALGORITHM: FBC

We develop an MCMC algorithm for the equivalent representations of the proposed fair Bayesian
mixture model in Section Here, we denote ¢ as the mixture parameters to be sampled (i.e.,
® = C when H is conjugate, or & = (C, ¢») when H is non-conjugate, where ¢ := (¢, : ¢ € C)).

The posterior sampling of (T, Ty, E, ®) ~ p(T, Ty, E, ®|D) is done by a Gibbs sampler: (i) sam-
pling (T, Ty, E) ~ p(T, Ty, E|®,D), and (ii) sampling & ~ p(®|T, Ty, E, D). We name the
proposed MCMC inference algorithm as Fair Bayesian Clustering (FBC). In the subsequent two
subsections, we explain how to sample (T, Ty, E) and ® from their conditional posteriors, respec-
tively, by using a Metropolis-Hastings (MH) algorithm. We also discuss the extension of FBC for
handling a multinary sensitive attribute in Section[C| with experiments on a real dataset.

STEP 1> Sampling (T, T, E) ~ p(T, Ty, E|®, D)

* (Proposal) For the proposal distribution of (T, T(, E’) from (T, Ty, E), we first assume that
T — T/, Top — T; and E — E’ are independent. For the proposal of T — T’, we randomly
select two indices i1 and is from [n4], and define:

T(j) forj ¢ [na] \ {i1,i2}
T'(j) := { T(ia) forj =i (16)
T(Zl) fOI'j = ig.

We swap only two indices to guarantee T € Tg. For Ty — T{,, we randomly select an index
J' € [nq], then set T((j') = i where ¢ ~ Unif([ng]) and T((j) = To(j) for j # j'. For
E — E’, we randomly swap two indices, one from E and the other from [n4] \ E. See Figure [f]
in Section for an illustration of the proposal.
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* (Acceptance / Rejection) As the randomness in the proposal of T’, T and E’ does not depend
on T, Ty and E, the proposal density ratio ¢((T’, T(, E') — (T, To, E))/q((T, Ty, E) —
(T, T, E)) is equal to 1. Hence, the acceptance probability of a proposal (T’, Ty, E’) is

a(T/, Ty, E') = min {1,e(T")L(D; ®, T, Ty, E') /e(T)L(D; ®, T, Ty, E)}.  (17)
See Section [B.1]for the calculation details of the acceptance probability. We repeat the MH sam-
pling of (T, T{, E’) multiple times before sampling ®, which helps accelerate convergence.
In our experiments, we perform this repetition 10 times. This additional computation is mini-
mal, even for large datasets, since the acceptance probability requires calculating the likelihood

only for instances whose assigned clusters change. The maximum number of such instances with
changed clusters is 4 (2 for T, 1 for T}, and 1 for E).

STEP 2 > Sampling ® ~ p(®|T, Ty, E,D) Sampling from p(®|T, Ty, E, D) can be done simi-
lar to the sampling algorithm for the standard mixture model when (T, Ty, E) is given. Specifically,
we mimic the procedure of Miller & Harrison|(2018)), which utilizes DPM inference algorithms from
Neal (2000); MacEachern & Miiller| (1998)). See Section@]for details of this sampling step.

We empirically confirm the convergence of this two-step MCMC algorithm in Section

5 EXPERIMENTS

In this section, we empirically show that FBC (i) performs competitive to existing baselines in
terms of the trade-off between clustering utility and fairness level; (ii) infers the number of clusters
K reasonably well; (iii) is easily applicable when data contain both continuous and categorical
variables; (iv) can perform well under certain constraints on the cluster sizes.

Datasets and performance measures We analyze three real benchmark datasets: ADULT (Becker
& Kohavil [1996), BANK (Moro et al.,[2014), and DIABETES (Smith et al.| [1988)). All features in the
datasets are continuous and so we use the Gaussian mixture model. We standardize all features of
data to have zero mean and unit variance. Note that the three datasets include binary class labels.

For clustering utility, we consider the Cost (i.e., the average distance to the center of the assigned
cluster from each data point), which is defined as: Cost := E,ﬁil ox.eo, 1Xi = i ll*/n, where
Cy = C’,(fo) U C,(Cl) is the set of data assigned to the k™ cluster. Here, i), := > x,ec, Xi/|Ck| de-
notes the center of the k™ cluster. We additionally consider a density-based measure NLD (Negative
Log Density). For baseline methods, we fit Gaussian for each cluster, then compute the weighted
sum of negative log-likelihood. For FBC, we report the negative log posterior density for NLD. As
the datasets include binary class labels, we also evaluate Acc (classification accuracy). To calculate

Acc, we assign labels as follows: for each cluster, we set the label of every element to the cluster’s
majority label. Lower Cost / Lower NLD / Higher Acc imply a better clustering utility.

For fairness level, we consider two measures: (i) A(Z) defined in Equation and (ii) the bal-
ance (Bal) defined as Bal := ming¢[x] Baly, where Baly := min{|C’,io)|/|C’k1)|, |C,(€1) \/|C,(€0) |}
which is popularly considered in recent fair clustering literature (Backurs et al.l [2019; |Ziko et al.,
20215 [Esmaeili et al., 2021 Kim et al., [2025b). We abbreviate A(Z) by A in this section. See
Section[EI]for details about the datasets and measures.

Baselines and implementation details For a fairness-agnostic method, we consider the Mixtures
of Finite Mixtures (MFM) algorithm proposed by (Miller & Harrison, |2018). For baseline fair clus-
tering methods, we consider several existing non-Bayesian approaches: SFC (Backurs et al.,|2019),
VEC (Ziko et al.,[2021)), and FCA (Kim et al.,[2025b). SFC is the first fair clustering method based on
fairlets, VFC is an in-processing approach by adding a fairness regularizer, and FCA is a recent work
using the matching map for fair K-means clustering. Whenever r > 0, we set R (in Section [2.1.2)
as a random subset of [ng] of size 7. Omitted experimental details are given in Section

5.1 FAIR CLUSTERING PERFORMANCE (KNOWN K)

Comparison of FBC to existing fair clustering algorithms We investigate whether FBC yields
reasonable clustering results compared to baselines when K is fixed at k., by assessing the trade-
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off between utility (Cost, NLD, and Acc) and fairness (A and Bal). That is, we set px (k) =
I(K = k.) in FBC. We run each algorithm to achieve the maximum fairness (e.g., A = 0) for a fair
comparison. Table I shows the results, suggesting that FBC is competitive to the baselines when K
is fixed at k, = 10. Detailed comparisons are given as follows.

First, compared to SFC and VFC: FBC yields superior utility than SFC (i.e., lower Cost and NLD
and higher Acc) in almost all cases, while both methods achieve near-perfect fairness; FBC attains
a higher level of fairness than VFC in every case (lower A and higher Bal), with only slight losses
in utility; indeed, on ADULT dataset, FBC even achieves higher accuracy.

Second, compared to FCA: FBC performs highly competitive utility and fairness, whereas FCA and
FBC are conceptually similar in the sense that both are based on matching map. Although FCA
directly minimizes cost whereas FBC focuses on the posterior density, it is surprising that FBC
attains competitive Costs. This result suggests that the matching map T in our MCMC inference
may be also optimal in frequentist-view of the Cost minimizing approach. Furthermore, Table[2]in
Section [E-3.1] shows that FBC requires less computation time (near 50% of FCA). This is because
FCA optimizes T by solving linear program at each iteration, while FBC searches T stochastically.

Table 1: Comparison of utility (Cost, NLD, Acc) and fairness (A, Bal) for k, = 10. See Table
in Section for the similar results for k,, = 2.

Dataset | Measure | SEC VFC FCA FBCV

Cost ({) | 3.129 1.702 1.869 1.954
UTILITY NLD({) 6.498 6.134 6.174  6.242
ADULT Acc () 0.763 0.765 0.785  0.781
A ) 0.006 0.039 0.001 0.001
Bal (1) 0.491 0.277 0493  0.491

Cost ({) | 2.868 1.552 1.785 1.787
UTILITY  NLD () 6.828 6.270 6357  6.302
BANK Acc () 0.893 0.893 0.891  0.890
Al 0.003 0.040 0.001 0.004
Bal () 0.647 0.513 0.648 0.615

Cost ({) | 5.115 3.077 3.441 3.757
UTILITY NLD (J) 9.381 8.946 9.033 9.088
DIABETES Acc (1) 0.656 0.724 0.690 0.693
A ) 0.057 0.217 0.004 0.013
Bal (1) 0.824 0.083 0.929 0.882

FAIRNESS

FAIRNESS

FAIRNESS

Fairness level control of FBC We also numerically confirm that the fairness level can be con-
trolled by m (the size of E). Figure[7]in Section [E]presents the trade-off between m and the fairness
levels A and Bal, showing that a smaller m usually results in a fairer clustering.

5.2 REASONABLE INFERENCE OF K (UNKNOWN K)

Adult Bank . _ Diabetes

-- Kby FBC --- Kby FBC

|
i
i
i
!
i
i
!
i
i
i
i
i
i
i
!
!
i
4

2 3 4 5 6 71 8 9 5 6 7 8 9

K

Figure 3: K vs. AGap(K) of FCA on (left) ADULT, (center) BANK, and (right) DIABETES datasets.
Red vertical dashed lines indicate the K inferred by FBC.

Cluster quality When K is unknown, FBC treats it as a random variable and infer as K = 4, 18,
and 4 for ADULT, BANK, and DIABETES datasets, respectively, and these are at the posterior modes
(Figure[8]in Section[E:3:2). To assess the optimality of the inferred K in view of cluster quality, we
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consider the Gap statistic (Tibshirani et al., 2002)), a well-known measure developed to determine
the optimal K based on within-cluster dispersions. We run FCA for various K, calculate the Gap
statistic for each K, and then plot AGap(K') = Gap(K ) —Gap(K —1) for K > 2 with Gap(2) = 0.
The elbow, i.e., the largest increase, occurs at the K inferred by FBC (see Figure E])

We further evaluate the trade-off performance compared to the baseline methods. That is, we run
baseline algorithms with K's inferred by FBC, then compare the trade-off performance. Table [5]in
Section [E.3.2) presents the results, suggesting that FBC is still competitive to the baselines.

Density estimation As FBC is a model-based approach, it can be used for not only clustering but
also density estimation. Similar to the Gap statistic, Figure |4| shows the difference ANLD(K) =
NLD(K') — NLD(K — 1) in posterior densities (on test data) for various K's in FBC, which suggests
that the inferred ones are optimal in view of density estimation (i.e., achieves the elbow in NLD on
the test data). More details are given in[E.3.2]

Adult BANK Diabetes

b N K by FBC 0.00

—0.005 ~0.02

-0.010 —0.04

_0.015 —0.06 -0.15
-0.08
-0020{ \/ 1 Ni/ -0.20 \ ,,,,,
—0.10 K by FBC K by FBC

5 6 7 17 18 19 20 21 3 4 5 6 7
K K K

ANLD(K)
ANLD(K)

Figure 4: K vs. ANLD(K) of FBC with fixed K on (left) ADULT, (center) BANK, and (right)
DIABETES datasets. Red vertical dashed lines indicate the K inferred by FBC.

5.3 FLEXIBILITIES OF FBC

Applicability to various data types FBC accommodates both continuous and categorical data as
long as the likelihood of the mixture model is defined. We empirically compare FBC with FairDen
(Krieger et al., [2025]), which likewise supports categorical data as well. Section @] details the
analysis, where Table [6] shows that (i) using both continuous and categorical data improves the
utility (Acc), highlighting the limitation of distance-based clustering methods that operate only on
continuous data; and (ii) FBC outperforms FairDen in terms of the fairness—utility trade-off.

Clustering under size constraints FBC can also flexibly work under cluster size constraints
(i.e., the upper bound of cluster size) with a slight modification to the inference algorithm. Sec-
tion details how we incorporate the size constraint in FBC; results in Table shows that under
the size constraint, FBC achieves lower Cost while attaining perfect fairness, outperforming the
post-processing method of Bera et al.| (2019).

5.4 ABLATION STUDIES

We conduct ablation studies on three topics: (i) Impact of the temperature constant 7 in the prior
of T defined in Definition [3.T} (ii) Validity of the two proposed heuristic approaches of selecting R
in Section 2.1.2} (iii) Influence of the covariance structure in the Gaussian mixture model. Details
and results are given in Section showing the robustness on 7 and R, and that using a more
complex covariance improves density estimation (lower NLD) while maintaining high fairness level.

6 CONCLUDING REMARKS

In this paper, we proposed a fair Bayesian mixture model for fair clustering with unknown number
of clusters and developed an efficient MCMC algorithm called FBC. A key advantage of FBC is its
ability to infer the number of clusters.

A problem not pursued in this work is the assignment of new data to the learned clusters. FBC
requires matched instances to be assigned to the same cluster, but the inferred matching map is only
available for the training data. To address this, one may approximate the learned matching map using
a parametric model and apply it to new test data. We leave this approach as future work.
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Ethics Statement The fairness notion we consider in this study, i.e., group (or proportional) fair-
ness, is widely examined in recent literature. All the datasets we consider are publicly available. We
believe this research can contribute to avoid discriminatory results in clustering, rather than creating
new ethical concerns.

Reproducibility Statement For theoretical results, we document full proofs and mathematical
definitions for the stated theorems, in Appendix. For experimental results, we state implementation
details across the main body and Appendix, and further include the source files in the supplementary
materials.
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APPENDIX

A  DETAILS AND THEORIES FOR SECTION [2]

A.1 HANDLING THE CASE OF r > (

As explained in Section 2.1.2] we need to resolve the issue that the matching map T does not
always corresponds to a fair Z € Zga“ , for the case of » > 0. That is, there exists Z that satisfies

Z;l) = Z,(r0 ()j) for some T € T but is not fair. In turn, a sufficient condition of Z with ZJ(I) = Z,(r0 ()j)

for some T € 7 to be fair is that |C’,(€0)\/n0 = |C’£0) N Ry|/r, where C,(CO) ={i: Zi(o) = k} for
k € [K] (see Proposition for the proof). That is, fairness of Z depends on both T and Z(®),
which would make the computation of the posterior inference expensive.

Let IP,,, and P, be the empirical distributions of {X i(o),i € [no]} and {Xl-(o),i € R}, respectively.
If P, (-) = Pr(-), we have |C\”|/no = |C\”) N R|/r, and thus any fair Z belongs to ZFar,
This observation suggests us to choose R such that {Xfo)?i € R} represents the original data

{Xi(o),i € [no]} well. Hence, as previously stated, we suggest two candidates of R, (i) a random
subset and (ii) cluster centers. For (ii), the cluster centers can be found by K-medoids algorithm.

D©® )13

)
(AR \D

Figure 5: An illustration on the modification for the case of » > 0. Orange-indicated points are
upsampled indices from [ng] to construct R.

A.2 PROOFS

Proposition Assume that ng = n; = 7. Then, we have: Z € Zf% <= There exists a
matching map T such that Z](»l) = Zr(&)j),Vj € [n].

Proof of Proposition[2.1} See the proof of Proposition [2.2] as this proposition is a special case of
Proposition[2.2} with 5 = 1. O

Proposition [2.2| Assume that n; = [ng for some positive integer 3. Then, we have: Z € ZFr
<= There exists a matching map T such that ZJ(.l) = Z,(J_EJ()j),Vj € [n4].

Proof of Proposition[2.2) ( = ) Recall that C’lio) ={i: ZZ-(O) =k} and C,il) ={j: ZJ(.U = k}.
Note that Z € ZFr implies ,B|C,(€0)| = \C’,gl)| for all k € [K]. Hence, for all k € [K], there exists
an onto map T, from C,il) to C,io) such that | T} '(i)] = B forall i € C’,(CO). Letting T(j) :=
Zszl T(H)I(5 € C,il)),j € [n1] concludes the proof.

13
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Vo= z2) forall j € [ny).

Then, we have ,6|C,g0)| \C(l | for all k € [K]. Hence, Y ., ]I(Z(O =k)/ng = |C’( |/no =

B\C£0)|/n1 = |Clgl)|/n1 =2 I ]( ) = k)/ny, which implies Z € ZFar, O

( <= ) Suppose that there exists a matching map T such that Z;

Propositions [A.T] and [A.2] below support the claims in Section 2.1.2] For enhanced readability, we
first recall some notations/assumptions:

*ny=Png+r.

¢ T : [n1] — [no] is a function such that it is onto, | T~ (4)| is either 3 or 3+ 1 and | Rt| = r,
where Rt = {i : |[T~1(i)] = 3+1}. Let T be the set of all such matching maps (functions
satisfying these conditions).

e Let Ry = {i : |[T71(i)| = B + 1} fora given T : [n1] — [no).
* For given Zi() i € [ng] and Z( ) j € [n1], we define C'(O) = {i: ZZ.(O) = k} and
oV ={j: 2" =k} fork e [K].

Proposition A.1. Assume that r > 0. For a given fair Z € ZE there exists a function T € T.

Proof of Proposition[A.]] Since Z € ZF for all k € [K] we have |C(1)| =" |C(0)|, which is an

integer. Let k* = arg miny, |C( | and o ‘C’”* | € N. Then, we can construct Ty : C,ﬁ? — C,ig)

so that exactly « elements of 9 have prelmage size B + 1, and the remaining \C(* | — a have size

B.

Next, for each [ # k*, set a; = 19 1 ¢ N; so that |C’(0)\

1 1
‘C(O)l l( )| ‘C( )| Define

oy = a; o, and similarly construct T : Cl(l) — Cl(o) so that exactly o points in C’l( ) have preimage

size 8 + 1, and the remaining |C(0)\ — ay have size f.

Finally, let T(j) := Zk 1 Te(HIG € C(l)) J € [n1]. Then, T is onto, each T}, has size 3 or
©)

B+1,and [Rp| =01 jax=aYr jar=a- |c?(%)\ = ‘SD l \(;L(%)I = 7, which completes the

proof. * * O

Proposition A.2. Assume that r > 0. For a given T, let Z with Z(l) Zé_?()]) jem]lIfFTeT
satisfied |Ck0)|/no = |Ck0) N Ry|/r for all k € K], we have that Z € ZEr.

Proof of Proposition[A2) Fix a k € [K]. By definition of Z that O\ = {j : Z\") = k} = {j :

Z,(lf)( = k}, we have that
el = YT = Y (B+16 € Ry)) =8I0V + Y N R .
iec® iec™

By the sufficient condition | C}(€0) NRr|=(r/ng) |C,(€0)| and since n; = Bng + 7, it follows that

r 0 Bng+r
1= 81071+ 107 = == 10 =
0 L

ni 0
Lo,
0

which concludes the proof. O
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A.3 FOR NON-PERFECT FAIRNESS

Proposition A.3. Assume that r = 0. Let T and T be the maps defined in Section|2.2|for a given
m < ny. Then, for any Z satisfying Z](l) = ZSIE)()j),j € [ni] \ E and Z](l) = Zflf)g(j),j € E, we
have that Z € ngl/rnl.

Proof of Proposition[A.3] We first note the following two facts: (i) Zszl |% > icino] ]I(Zi(o) =k)—
n% > jelna] ]I(Zr(lf)()j) = k)| = 0 for any given T due to the assumption » = 0. (ii) For any T
and T, there exist nonnegative integers my,...,mg with >, mj; = 2m such that for each F,

0 0
S sen WZly = k) = X e 125 ;) = k)| = my. Therefore,

K
1 1 (0) 1 (1)
A(Z)Zgznfzﬂ(zz‘ :k)_azﬂ(zj =k)
k=1 i€[no) J€[n1]
K
1 1 © 1 (1) 1 )
=52 n, 2 AT SR g 3 WA=k ) 2T =R
k=1 i€[no) JjEMIN\E JjEE
K
_ 1 1 0) _ 1 © _ 1 O
=32 o > 17z =k - > H(ZT(j)_k)_nTZH(ZTO(j)_k)
E=1"""C icln] j€lm\E JEE
K
1 1 0) 1 (0)
<52l 2 WA =k == Y Wy =)
—|No | L5 Ry
k=1 i€[no] J€[na]
K
1 1 o 1 o _
5 2 |n 2 Wy = k) = = D W2y = b)
k=1 jEE JjEE
s llN,,om
= 5, k:lmk—nl.
Thus A(Z) < m/ny,s0 Z € ngi/rnl' -

A.4 RELATIONSHIP BETWEEN A AND BAL

Two fairness measures - A and Bal - that we consider in this work are closely related, as proven in
Kim et al.| (2025b)). For readers’ sake, we provide a rigorous statement below.

Proposition A.4 (Proposition 4.2. of Kim et al.| (2025b)). Suppose ng < nj. For given cluster
. ) . 1 . S 1z =k)/n n
assignments Z; i € [no] and Z; 7, j € [n1], we have maxy¢ |k |W1):k)/n? -l <cA

This implies that the difference between balance and the

— o ni I
where ¢ = o MAX e K] SRR,
balance of perfect fairness (= ng/n1) is bounded by A.

Furthermore, experimental results in Section [5] also numerically support the use of A in the sense
that controlling A effectively controls Bal.
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B DETAILS OF FBC

B.1 DETAILS OF STEP 1 (SAMPLING T, Ty, F) IN SECTION[4]

In this section, we first provide a detailed explanation about the calculation of o/ (T, T(, E) in
Equation (7). First, we have that
O/(T/ / E/) _ p(T/, T6’ E/‘(I)v D)q((T,7 T67 E/) - (T’ To, E))
o p(T7T07E|(b7D)q((TaTO7E) - (T/7T107E/))
_ p(T', T, E")L(D; @, T, T, E')q((T', Ty, E') — (T, To, E))
p(Ta T07 E)E(Dv (1)7 T7 TOa E)Q((T7 TOa E)) - (T/a TlO? El))
_ e(T)L(D; @, T, T}, E')
B 6(T)£(D, (1)7 Ta T07 E) ,

where the last equality holds since
q((T/a TlO) El) - (T7 T, E)) = q((T7 Ty, E) - (T/’ T{)v El))
and p(T', T{, E')/p(T, Ty, E) = e(T’) /e(T), because the priors of T and E are uniform.

For the likelihood ratio, if we use a conjugate prior which enables the calculation of marginal likeli-
hood, we have

E(Dv (I>7 Tla T{)a El) _ HCEC m(XC|T/’ T67 El)

L(D;®, T, To,E) [[.ccm(Xe|T, Ty, E)’

where
X To B) = [ |TLrx®le)  T1 1xPled| Hao. as)
© |iec j€J(¢;T,To,E)

J(¢;T,To, E) :={j € E: To(j) €c}U{j € [m]\ E: T(j) € c} forc € Cand X = {XV
i€ctU {Xj(l) :j € J(¢; T, Ty, E)} for ¢ € C. For a non-conjugate H, we have

0 1
L(D;®, T, T, E) [Lec [Hi@ f(Xi( )|¢C)HjeJ(c;T’,T6,E’)f(X](’ )|¢c)]

L(D;®, T, To, E) [Tecc [Hia f(Xz'(O)|¢C) HjeJ(c;T,To,E) f(X](.l)\¢c)] .

Note that these calculations are derived from the equivalent representation in Section[3.1]

Next, we provide an illustration of the proposal from STEP 1 in Figure @ T’ of the green line is
randomly swapped from T of the blue line. T of the orange line is a random proposal. E’ of the
pink region is a random proposal of the given size. The final matching is visualized as the lines of
the final diagram.

(o] (] (o] (]

(o] [n4] @

Figure 6: An illustration of the proposal from STEP 1.
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B.2 DETAILS OF STEP 2 (SAMPLING ®) IN SECTION [4]

Here, we consider the following two cases. When m(X¢|T, Ty, E) can be easily computed (e.g.,
H is a conjugate prior), we sample C ~ p(C|D, T, Ty, E). Otherwise, when m(X¢|T, Ty, E) is
intractable, we sample (C, ¢) ~ p(C, ¢|D, T, Ty, E). If the marginal likelihood is computable, a
direct adaptation of Algorithm 3 from |Neal| (2000); MacEachern & Miiller| (1998) is applicable.
Otherwise, when the marginal likelihood is not computable, Algorithm 8 from Neal| (2000) can be
applied. Wherever the meaning is clear, we abbreviate J(c¢; T, T, E) by J(c) in this section.

Conjugate prior The modification of Algorithm 3 for FBC is described as below.

1. Initialize C = {[ng]} (i.e., a single cluster)

2. Repeat the following steps N times, to obtain N samples. For ¢ = 1,...,n9: Remove
element ¢ € [ng] and its matched elements in J({i}; T, Ty, E) := {j € E : To(j) =
i}U{j € [n1]\ E: T(j) =i} from C. Then, place them

* to ¢’ € C\ i with probability
m(X< UX1HT, Ty, E)

m(X¢|T, Ty, E)

where X1} .= {xV} U {X](-l) cje J({i})}
* to a new cluster with probability
Vo (t+ 1)
Vio (1)

where ¢ is a number of clusters when X {*} are removed.

Proposition B.1. The above modification of Algorithm 3 of\Neal| (2000)) is a valid Gibbs sampler.

o (I +7)

m(X 1T, Ty, E)

Proof of Proposition The posterior density can be formulated as follows:

p(C|D, T, Ty, E) x p(C) - p (x{?go,xf}gl |C,T,TO,E)
= Vno(t) H,Y(l(.l) . H m(XC|T7T0aE)

ceC ceC

To justify the proposed modification of Algorithm 3, we only need to calculate the probabilities
of placing Xi(o) and its matched elements {X ;1); Jj € J(c(4))}: () to an existing partition ¢/, or

)

(ii) to a new cluster. Let C_; be the collection of clusters where Xi(O and its matched elements

{X ](1) :j € J({i})} are removed from C. The calculation can be done as follows:

(i) to existing ¢’:

The term v(¢'!) in the prior term p(C) o< Vi (t) [T ce 7P changes to 411 for this
particular ¢. The marginal likelihood m (X <") changes to m (X< U X {i}) for this particular
¢’. Hence, we have the following conditional probability:
AUHD (X ¢ U X THT, Ty, E)
A1D m(X|T, To, E)
m(X¢ U XU}}|T, Ty, E)
m(X¢|T, Ty, E)

p(i = |C_;, D, T, To, E)

= (1¢1+)

(ii) to a new cluster:

The prior term Vy,, (t) [T cc 7P changes into Vy,, (t + 1) [T.cc 7'°/] 7. Hence, we have
the following conditional probability:
p(i — new|C,i, D, T, Ty, E)
Vo (+1) :
o (X T, Ty, E)
Vo (1)

17
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O

Non-conjugate prior When using a non-conjugate prior, we can use Algorithm 8§ instead of Algo-
rithm 3. The outline of implementation of Algorithm 8 for FBC can be formulated similar to those
of Algorithm 3, as below.

1. Initialize C = {[no]} (i.e., a single cluster) with ¢, .} ~ H.

2. Repeat the following steps N times, to obtain N samples. For ¢ = 1,...,n9: Remove
element i € [ng] and its matched elements in J({¢}) from C. Then, generate m independent
auxiliary variables oW, ... oM ~ H. Compute the assignment weights as:

we = (¢|+7) [ f@loe), deC\i,
rex{i}
S(t+1)
waux,h’:l H fx|¢h) hI:17"'7m7
m. V()
reX i}

where X {7} .= {Xi(o)} U {XJ(»U :j € J({i})} and t is a number of clusters when X {}
are removed. Then, place them
* tod € C\ ¢ with probability o w,, or
* to a new randomly chosen cluster h among m auxiliary components, with probability
X Wayx,h-
Then, discard all auxiliary variables which are not chosen.

Proposition B.2. The above modification of Algorithm 8 of|Neal| (2000) is a valid Gibbs sampler.

Proof of Proposition[B.2] To justify the proposed modification of Algorithm 8, we only need to
calculate the probabilities of replacing X {%}: (i) to an existing partition ¢/, or (ii) to a new cluster.

The calculation can be done as follows:

(1) to existing ¢’

The term ~{'D in the prior term p(C) o Vi, () Il.cc (D changes to 4{I¢'I+1) for this
particular ¢’. The likelihood is multiplied by [ [, x (i) f(2|¢c ) for this particular ¢’. Hence,
we have the following conditional probability:

,y(lc [+1)
p(l — C/|C,Z‘,D,T, To,E)

[T flse)

e X i}

=(Id1+) I flge).

(ii) to a new cluster: A new cluster & is chosen uniformly among the auxiliary m components.
Then, we have the following conditional probability by Monte-Carlo approximation:

Vo (t+ 1)
Vo (t)

Vi (t+1
— Bl [T ftake)| (o)

reXx{i}

ry Lol 1) "0”1 LS Stale™)

M sexin
m
= § Waux, h' -

h'=1

p(i = new|C_;,D, T, Ty, E) x v m(X{i}\T, Ty, E)

18
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From the fact that h is uniformly chosen among m-auxiliary components, we have the
conditional probability to a new cluster / as follows:

p(i = h|C_;, D, T, Ty, E) x p(i — h|i — new,-)p(i — new|C_;, D, T, Ty, E)
Waux,h
Waux,h'
Zh’ 1 Waux,h' h/zl

= Waux,h-
O]

The case when K is known When to perform FBC with fixed K, we only need to consider a point
mass prior for K. Let pi (K) = I(K = k) for some fixed k.. Then, we have:

Vaalt) = 3 i) =

: I(t < k).
= (yk)(mo)

For conjugate prior case:

* probability to an existing cluster remains the same.
* probability to a new cluster

Voo (41 » ,
Mm(X{lHT,TO,E) = (ks — t) m(X T, Ty, E).
Vino (t)
Hence, the probability to a new cluster vanishes when ¢ reaches k..
For non-conjugate prior case:
* probability to an existing cluster remains the same.

* probability to a new cluster

(ke =t [T rale™).

zeX i}

Hence, the probability to a new cluster vanishes when ¢ reaches k..

Proposition B.3. The above modifications of Algorithm 3, 8 of\INeal (2000) is a valid Gibbs sampler
for a finite mixture model with K = k..

Proof. Let B; = {j : Z\" = i}, and let C(Z) be the partition induced by Z. By Dirichlet-
multinomial conjugacy, we have:

L(ky) T2, TOE] +79) (el
pZZ/pZTl’dﬂ': = A
(&)= AT = Ty g + b C}}Z)
for Z € [k]".
Therefore, for any partition C of [n], we have:
p(C) = > p(Z)
Ze[k,]n0:C(Z)=C
—#{Z e k]™ C(Z) = (no) | IR
ceC
(f) (IC\
(’rLo H
ceC
where t = |C]. =

19
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B.3 PSEUDO-CODE OF THE OVERALL FBC ALGORITHM

Algorithm [T|below provides the pseudo-code of our proposed FBC algorithm.

Algorithm 1 FBC algorithm

1: Inputs: Data (D = D(© U DM)), Maximum number of iterations for inference (maxier).
2: Initialize ®©, T© (" E©)
3: for ¢t = 1 to max,, do

4:  (STEP 1) Propose (T’, T, E’) and compute the acceptance probability a(T’, T, E’)
5:  Sample u ~ Uniform(0, 1)

6: ifu < a(T, T, E) then

7: Accept) T® =T/, T = T}, E® = E/

8: else

9: Reject) T® = Tt T = TI~Y E® = pt-1
10:  endif
11:  (STEP 2) Sample ®(*) from posterior p(®|T®), T(()t)7 E® D)
12: end for

13: Return: Posterior samples { (<I>(t), T®, T, E(t)> }

MaXiter

t=1

20
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C EXTENSION OF FBC FOR A MULTINARY SENSITIVE ATTRIBUTE

This section explains that FBC can be modified for the case of a multinary sensitive attribute (i.e.,
the number of groups > 3). For simplicity, we consider three sensitive groups. Extension to more
than three groups can be done similarly.

Let D2 {X(2 "2 along with existing D(©), D). Assume that ng < min{n, no}. Similar to
the bmary sensitive case, we consider Ty : [n1] — [no] and T : [n2] — [no] as random matching
maps from D) to D) and from D) to D), respectively. We also consider arbitrary functions
To1 : [n1] — [no] and Tog : [n2] — [no] and arbitrary subsets E; € [n1], E2 € [ng] of sizes my

i.i.d.

and mg. Let C be a partition of [ng] induced by Z such that ZZ-(O) |7 "~ Categorical(-|7), Vi € [no].

Then, similar to Section @, we consider the generative model

b M Heec

X0 f(ge) i e

(1) ind {f(~|¢>c) Vi € [ni] \ E1s.t. T1(j) € ¢
J f|¢c) VJEElstT01()€C

(
¢ (2) ind {f(~|¢c) Vj € [no] \ B2 s.t. To(j) € ¢
J f(|¢c) V_} S E2 S.t. TQQ( ) €c

The inference algorithm can be also modified accordingly. Furthermore, A(Z) is also generalized

as follows. G

Fairness measure for a multinary sensitive attribute Let B be the number of sensitive groups.

Forb € {0,1,..., B — 1}, let n; be the number of samples in group b, and denote {Zi(b m
cluster assignments of group b. Then A(Z) is generalized as:

1 K
A(Z) = BT >

k=1 b=1

2, as the

B—1 no

1 © _ 128 =

— > I(Z, (Z; 0,1
o == Y )
The Bal is also generalized as: Bal := ming¢ (k) Baly where

b b
fote e i J1C1 1G]
e e o)

where C,gb) denotes the set of samples in group b assigned to the k™ cluster. Note that the above
formulation of A(Z) with B = 2 coincides with the definition of A(Z) in the binary sensitive
case, which is defined in Equation (6)). Proposition [C.1I| below further shows that FBC can control
the fairness level A(Z) for a multinary sensitive attribute.

Proposition C.1. Denote ng, ni, and ny as the number of samples in three sensitive groups. Let
T, : [n1] — [no] and T : [ng] — [no] be matching maps from groups 1 and 2 to group 0. Consider
arbitrary functions To1 : [n1] = [no], Toz2 : [n2] — [no] and arbitrary subsets E1 € [n1], Eq €
[n2] of sizes my and mo. Suppose that the assignment Z satisfies:

1 0 , 1 0 )
. Z](» ) = Z,(rl)(j)for] € [n1] \ Ey and Z](- ) = Z,(ro)l(j)forj € by,
. Z(Q) Z(O pforje [n2] \ E2 and Z( ) = ,(If)o)z(j)forj € Es.
Then, we have
1
A(Z><<ml+m2)

-2 ny N9

Proof of Proposition|C.1] We investigate all three pairs among the three groups: (0, 1), (0, 2), and
(1,2).
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(i) Between groups 0 and 1: Since Z j(-l) = Z,(l?l)(j) for j € [n1]\ E1, we have the following inequality

utilizing the proof of Proposition

ni

S SN - LSS -y < ™
o 3 ' i ’ '

n
h=1 1

N =
IN
|

(ii) Between groups 0 and 2: Similarly, we have
no

EK: 1 S 1z =k) - L iﬂ(z(” = k)| <2
o i3 b "2 i3 T .

n
h—=1 2

DN =
IA
|

Combining the two terms: Taking the average, we get:

AZ) = ﬁz INESBCARDEES SR

2 K no
n,
b—1 h—1 i=1 gt

O

Note that we use this extended approach for BANK dataset with three sensitive groups in our ex-
periments. See Section for the results showing that FBC works well for a multinary sensitive
attribute.
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D HIERARCHICAL PRIOR ON K WHEN K IS UNKNOWN

Here, we discuss how to consider a hierarchical prior on K, to make the sampling of K robust. A
simple idea is to consider a Beta prior on x, where the prior of K is Geometric(x). Then, we can
choose one from the following two options when considering posterior inference with varying x.
For simplicity, we utilize the x-marginalized version in our experiments.

Marginalize x One simple idea is to marginalize x, and consider the corresponding distribution
of K.

k ~ Beta(a, b)
K|k ~ Geometric(k)

We can marginalize the above hierarchy as follows:
pic(k) = [ prc(kli)p(r)a

- 1 (1 — el Ha71(1 _ K/)bfl .
_A (1-#) Blab) ¢

Bla+1,b+k—1)
B(a,b)

Approximately for large k, pr (k) ~ k~(¢+1), which makes E[K] < co when a > 1. Considering a
uniform prior for x is equivalent with Beta(1, 1), resulting in E[K] = cc.

Note that, this is a simple change of the prior of K, which does not affect the procedure of FBC at
all. That is, we just alter the term px as px.

Sample x  An alternative is to sample «. To do so, we need to investigate whether the sampling of
 can be well integrated to the current formulation of FBC. We have:

p(k|K) o< 64711 = 1) x k(1 — )KL = k21 — 5)"TE 2 <~ Beta(a + 1,0+ K — 1)
Then, the posterior of K given partition C can be yielded as:

()t

p(K|C, k) x k(1 — K)K_lw

Hence, we can define a similar term to V;, (¢) as:

K R = —1 (k)t
VR (t) = ];1 w(1—r)K k)

Finally, we get
p(Clr) = V() [T 70

ceC

We here can simply use a Gibbs sampler for « as well as other parameters. That is, we update s
from:
p(r|C) o p(r) V™) (2)

Note that this update requires a proper sampling algorithm such as the MH algorithm.

* Proposal: " ~ Beta(a’,b")
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E EXPERIMENTS

E.1

E.2

DATASETS

1. Toy dataset: We build a 2D toy dataset from a 6-component Gaussian mixture model with
unit covariance matrix I. For D(©), we draw 600 samples from each A/ ([—5, —30],15)/3+
N([-5,0],15)/3 + N([-5,30],13)/3 and Similarly for D", we draw 600 samples from
N([-5,-29.5],12)/3 + N([-5,0.5],15)/3 + N([-5,30.5],12)/3. As a result, the total
number of samples is 1200, with ng = ny; = 600.

2. ADULT: The adult income dataset is a collection of data consisting of several demographic
features including employment features. It is extracted from 1994 U.S. Census database
(Becker & Kohavil |1996). Sensitive group sizes are (10,771 / 21,790). We use 5 continu-
ous features (age, fnlwgt, education-num, capital-gain, hours-per-week). For the sensitive
attribute, we use the gender (male/female) attribute.

3. BANK: The bank marketing dataset is a collection of data from a Portuguese bank’s direct
marketing campaigns, each corresponding to an individual client contacted (Moro et al.|
2014). We use 6 continuous features (age, call duration, 3-month Euribor rate, number
of employees, consumer price index, and number of contacts during the campaign). For
two sensitive groups, we treat marital status as the sensitive attribute: categorized into
two groups (single/married) and exclude all ‘unknown’ entries. Sensitive group sizes are
(16,180 /24,928).

When considering three sensitive groups, following (Ziko et al., 2021)), we categorize the

marital status into three groups (single/married/divorced) and exclude all ‘unknown’ en-
tries. Sensitive group sizes are (4,612 / 11,568 / 24,928).

4. DIABETES: The diabetes dataset is a collection of data spanning five years, consisting of
various physical indicators (e.g., glucose concentration, blood pressure, BMI, etc., totaling
7 features) of Pima Indian womer]'| Sensitive group sizes are (372 / 396). It originates from
the National Institute of Diabetes and Digestive and Kidney Diseases (Smith et al., [1988]).
For the sensitive attribute, we use the binarized age attribute at the median value.

IMPLEMENTATION DETAILS

Algorithms

* Baseline methods: For MFM, we employ the Julia code of [Miller & Harrison| (2018)) with-
out modification, available on the authors’ GitHu Similarly, for SFC, VFC, FCA and
FairDen, we use the publicly released source codes provided by the authorg|[|F|F]

» FBC: We use a conjugate prior for H. For Gaussian mixture, we use the following conjugate
prior following Miller & Harrison| (2018). For 6, we set a = b = 1 in N (p;, )\]-_1), A~
Gamma(a, b), ;|\ ~ N(0,A\71). For T, we set the temperature 7 = 1.0. For fixed K
cases, we simply set v = 1 for the Dirichlet distribution. We repeat the step 1 for (1,10, 5)
for k. = 10 (for ADULT, BANK and DIABETES, respectively). We use 6000 burn-in epochs
and select a sample from the posterior mode among 4000 samples after burn-in for ADULT
and BANK, and we use 2000 burn-in epochs and select a sample from 2000 samples after
burn-in for DIABETES.

For unknown K cases, we consider xk ~ Beta(21,80) and v = (10.0,10.0,5.0) for the
Dirichlet distribution to prevent the cluster numbers explode (for ADULT, BANK and DIA-
BETES, respectively). We use 8000 burn-in epochs and select a sample from the posterior
mode among 2000 samples after burn-in for ADULT, 18000 burn-in epochs and select a
sample from 2000 samples after burn-in for BANK, and we use 8000 burn-in epochs and

"Diabetes: https://github.com/aasul4/Diabetes—Data-Set-UCI

MEM: https://github.com/jwmi/BayesianMixtures. jl
3SFC:|https://github.com/talwagner/fair clustering
*VEC:https://github.com/imtiazziko/Variational-Fair-Clustering
SFCA: https://github.com/kwkimonline/FCA

SFairDen: https://jugit.fz-juelich.de/ias-8/fairden
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select a sample from 2000 samples after burn-in for DIABETES. The choice is because,
when K is treated as a random variable, since the parameter space with unknown K is
much larger than that with fixed K. We also utilize the Jain-Neal split-merge sampler (Jain
& Neall, 2004) to enable faster mixing, following the setting of Miller & Harrison| (2018)).
For the choice of D in the energy, we use the Euclidean distance for continuous features
and the Gower distance (Gower, |1971) for mixed-type data (i.e., continuous + categorical)
which is a weighted sum of scaled euclidean distance and hamming distance (Hamming,
1950; Huang, (1998}, |[Zhang et al.,2000).

For faster convergence, we partially initialize T utilizing optimal transport. In detail, we
randomly sample some proportion from each (upsampled) D(*) and calculate the optimal
transport between them, while remains are randomly matched.

Performance measures

* NLD: For the baseline methods, NLD is computed as follows: we first estimate a mean for
each cluster and a single variance shared across all clusters/components, then compute the
negative log-likelihood of the data under this fitted mixture model.

* Acc: Even when the number of clusters differs from the number of class labels, we assign to
each cluster the ground-truth class that appears most frequently within that cluster (majority
vote). We then compute Acc as the fraction of samples whose predicted labels (from this
assignment) match their ground-truth class labels.

Hardwares

* The Julia language is used for running FBC.

* All our experiments are done through Julia 1.11.2, Python 3.9.16 with Intel(R) Xeon(R)
Silver 4310 CPU @ 2.10GHz and 128GB RAM.
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E.3 EXPERIMENTAL RESULTS

E.3.1 FAIR CLUSTERING PERFORMANCE (KNOWN K)

Comparison of FBC to existing fair clustering algorithms Table [2| compares the computation
time of FBC and FCA, which suggests that FBC requires less computation time than FCA, up to
50% faster.

Table 2: Averaged computation time (seconds) of FBC and FCA on five random trials for k., = 10.

Computation time \ ADULT BANK  DIABETES

FCA 1059.22  1365.32 26.71
FBC v 599.69  812.08 12.38

Similar to Table[I]in the main body, we investigate whether FBC yields reasonable clustering results
compared to baselines when K is fixed at k, = 2. We similarly run each algorithm to achieve the
maximum fairness (e.g., A ~ 0) for a fair comparison. Table [3] shows the results, suggesting that
FBC is competitive to the baselines when K is fixed at k, = 2.

Table 3: Comparison of utility (Cost, NLD, Acc) and fairness levels (A, Bal) for k, = 2.

Dataset | Measure | SEC VFC FCA FBCV

Cost ({) | 4397 4.248 4237 4.259
UTILITY  NLD (1) 6.684 7.129 6.658 6.688
ADULT Acc () 0.763 0.636 0.765  0.766
Al 0.000 0.041 0.000 0.000
Bal (1) 0494 0455 0494 0494

Cost () | 4.042 3.729 3919 3919
UTILITY  NLD (1) 7.739 7717 77746 7.758
BANK Acc (1) 0.733 0.720 0.680  0.681
A ) 0.003 0.084 0.000 0.002
Bal (D) 0.647 0571 0.649  0.647

Cost ({) | 6.621 5729 5733 5958
UTILITY  NLD (1) 9.838 9.752 9.753  9.707
DIABETES Acc () 0.613 0.638 0.633 0.697
A () 0.017 0.002 0.001 0.000
Bal (1) 0.884 0937 0937 0.939

FAIRNESS

FAIRNESS

FAIRNESS
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Fairness level control of FBC  Figure [7]shows the relationship between m and the fairness level,
showing that fairness level is well controlled by controlling m unless m is too large.
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Figure 7: (Top three) Trade-off between m (the size of F) and the fairness level A. Smaller A, fairer
the clustering. (Bottom three) Trade-off between m (the size of E) and the Bal. Larger Bal, fairer
the clustering.

Additional analysis: handling a multinary sensitive attribute (BANK) AWe analyze BANK with
three sensitive groups. Table[d] presents the performance comparison between VFC and FBC, show-
ing that FBC is competitive to VFC in terms of the utility—fairness trade-off. In particular, FBC
achieves better fairness levels (i.e., lower A and higher Bal), while its utility (Cost and Acc)
remains comparable.

Table 4: Utility (Cost, Acc) and fairness (A, Bal) on BANK for k, = 10.

K | Measure | VFC FBC/V
Cost () | 1.578  2.310
0 uriLity 4 | 0742 0891
A) 0.079  0.002
FAIRNESS Bal (T) 0.166 0.183
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E.3.2 REASONABLE INFERENCE OF K

Cluster quality Figure[8]draws the posterior distributions of K for the three datasets. The inferred
Ks for the three datasets are sampled from the posterior modes, and posterior distributions are well-
concentrated around the posterior modes.

Adult - posterior of the number of clusters Bank - posterior of the number of clusters Diabetes - posterior of the number of clusters

== Kby FBC ——— Kby FBC -==- Kby FBC

o o
o @
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o
2
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o
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o
o
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°
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1 2 3 4 5 6 7 1011121314151617181920212223 2425262728 o 1 2 3 4 5 6 7 8
Number of clusters Number of clusters Number of clusters

Figure 8: Posteriors of K on (left) ADULT, (center) BANK, and (right) DIABETES datasets.

Table [5] below shows that FBC still performs comparable to baseline methods when K is unknown
so inferred, in terms of fairness-utility trade-off.

Table 5: Utility (Cost, Acc) and fairness (A, Bal) on three datasets with inferred K.

Dataset | Measure | SEC VFC FCA FBCV
UTILITY Cost () | 4.045 3.317 3.033 4.364

ADULT (K = 4) Acc (D) 0.763 0.759 0.766 0.761
FAIRNESS A ) 0.001 0.031 0.000 0.000

Bal (1) 0.491 0443 0.494 0.494

UTILITY Cost ({) | 2,570 1.112 1.377 2.202

BANK (K = 18) Acc (1) 0.893 0.892 0.892 0.891
FAIRNESS A ) 0.003 0.063 0.001 0.006

Bal (1) 0.647 0466 0.644 0.612

UTILITY Cost (J) | 5771 4.858 4.646 5.381

DIABETES (K = 4) Acc (1) 0.656 0.656 0.702 0.682
FAIRNESS A ) 0.007 0.112 0.001 0.006

Bal (1) 0.824 0.671 0.938 0.875

Density estimation We further support the optimality of K inferred by FBC, in terms of density
estimation. To this end, we first split a given dataset into training/test with ratios 8:2, then run FBC
on the training dataset and compute the posterior density on the test dataset. The results are given in
Section [5.2)in the main body.
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E.3.3 FLEXIBILITY OF FBC: APPLICABILITY TO VARIOUS DATA TYPES

FBC can be applied to any variable type provided that the likelihood is defined. In this analysis, we
consider datasets which include both continuous variables and categorical variables.

Dataset construction For a baseline method, we consider FairDen, since it can also applied to both
continuous or categorical variables. Note that we use subsampled ADULT dataset in this analysis,
since FairDen requires high computational complexity when using the entire ADULT. In detail, it
requires building a full n X n similarity matrix between data points, calculating the Laplacian, and
performing eigen-decomposition under fairness constraints. Thus the computational complexity of
this pipeline is O(n?) in both time and memory, and involves fragile linear algebra, leading to
numerical instability as well as computational overhead when using the entire ADULT dataset.

That is, we randomly select 2,000 subsamples from the entire dataset. Note that the resulting
subsample contains 1,357 males and 643 females, so the maximum achievable value of Bal is
643/1357 ~ 0.474.

In addition to continuous features used in the main analysis, we consider 2 categorical features
(marital status and race with 7 and 5 categories, respectively).

FBC for mixed-type (continuous + categorical) data For continuous variables, we keep con-
sidering the Gaussian mixture. For categorical variables, we consider the mixture of independent
Multinoulli distributions, where each component f(-|6x) is the product of Multinoulli distribu-

tion. In other words, f(:|0x) ~ H?i‘j Cat(-; i ;), where ¢ j = (Prj1s---,Prj;) € [0,1]5.
Here, [; is the number of categories of the j-th categorical feature. We use the conjugate prior as
¢r,; ~ Dirichlet(c, . .., a) with v = 1.

Results The comparison results are provided in Table[6] For both FairDen and FBC, the additional
use of categorical variables improves Acc, compared to the results with the continuous variables
only. Note that we cannot measure Cost, which cannot be applied to categorical variables. However,
while the use of categorical variables reduces Bal and increases A in FairDen, FBC still achieves
nearly perfect fairness in terms of A and Bal for both cases, with and without categorical variables.
In summary, FBC outperforms FairDen for both cases, with and without categorical variables.

Table 6: Comparison of utility (Acc) and fairness (A, Bal) on subsampled ADULT for k, = 10.
Bold-faced results indicate the bests. ‘c’ denotes for the results with the use of continuous variables
only, and ‘cc’ denotes for the results with the use of both continuous and categorical variables.

Dataset | Measure | FairDen(c) FairDen(cc) FBC(c)v'  FBC(cc) v/
UTILITY Acc (1) 0.651 0.654 0.715 0.721
ADULT(SUB) Al 0.005 0.013 0.001 0.001
FAIRNESS o7y | 0466 0.451 0.472 0.473
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E.3.4 FLEXIBILITY OF FBC: CLUSTERING UNDER SIZE CONSTRAINTS

FBC algorithm under the cluster size constraint Consider a problem of searching fair clus-
ters under the constraint that the maximum size of each cluster should be bounded by M. For this
purpose, we can modify Algorithm 3 for FBC under the size constraint as:

1. Initialize C = {[no]} (i.e., a single cluster)

2. Repeat the following steps N times, to obtain N samples. For ¢ = 1,...,n9: Remove
element ¢ € [ng] and its matched elements in J({i}; T, T, E) := {j € E : To(j) =
i}U{j € [n1]\ E: T(j) =i} from C. Then, place them

* tod € C\ ¢ with probability

m(X¢ UX1HT, Ty, E)
m(X¢|T, Ty, E)

o (| +7) I(|c] < M)

where X {1 := (X V}yu{x{": j e J({i})}.

* to a new cluster with probability o< fyv’{/Lt(j)l)m(X{i} |T, Ty, E), where ¢ is a number
no\®

of clusters when X {#} are removed.

The modification of Algorithm 8 for FBC can be done similarly.

Experimental setup and Baseline method Given a@ > 1, we set the per-cluster upper bound

UI(I&)X(K ) = (a%] . That is, @ = 1 regularizes the sizes of all clusters to the uniform size of n/ K,
and larger o allows more relaxations.

As a baseline, we consider a post-processing fair clustering method proposed by (Bera et al.,[2019),
which aims to find fair assignments through solving a linear program with fixed pre-determined
cluster centers. Since the size constraint is also linear with respect to the assignments, we add it with
the parameter «, when solving the linear program.

Results We consider varying o« € {1.25,1.50,1.75}, whose corresponding cluster size upper
bounds are {4071,4885,5699}. Results under these size constraints are reported in Table [7| FBC
consistently outperforms the post-processing method of Bera et al.| (2019). Specifically, for Bera
et al.|(2019)), the constraint does not affect the fair assignment when « exceeds 1.5; in that case, the
optimal Cost for|Bera et al.|(2019) is 2.748 - higher than that of FBC. These findings demonstrate
the superiority of FBC for strictly size-constrained fair clustering.

Various size constrained clustering algorithms have been considered (Esmaeili et al., 2020; |[Zhu
et al.| [2010; [Hoppner & Klawonn, 2008)). We believe that FBC could be modified for such problems
without much hamper similarly to what we have done for the upper bound constraint.

Table 7: Results of utility (Cost), fairness (A, Bal), and statistics on cluster sizes (min size,
max size)on ADULT with k, = 10 under size constraints. « controls the size constraint.

o ‘ Measure ‘ Bera et al.|(2019) under size constraint with « FBC v
UTILITY  Cost ({) 2.829 2.481
A ) 0.002 0.001
125 | FAIRNESS 5 774 0.492 0.493
SIZES min / max 2,802 /4,071 219/4,070
UTILITY Cost ({) 2.748 2.451
A ) 0.000 0.001
1.50 | FAIRNESS 1" 0.494 0.485
SIZES min / max 2,802 /4,128 98 /4,885
UTILITY Cost () 2.748 2.439
A () 0.000 0.001
L75 | FAIRNESS o "3 0.494 0.491
SIZES min / max 2,802 /4,128 79 /5,699
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E.3.5 ABLATION STUDIES

Temperature 7 We analyze the impact of the temperature constant 7 in the prior of T defined in
Deﬁnition To do so, we set E = () and compare the utility (Cost) and fairness levels (Bal and
A) for various values of 7. Table 8| below reports the performance of FBC for different temperature
values 7 € {0.1,1.0,10.0}. Overall, varying 7 does not affect much to the performance of FBC.

Table 8: Comparison of K, Cost, Acc, A, and Bal for 7 € {0.1,1.0,10.0}.

-
Dataset Measure 0.1 1.0 10.0
K 4 4 4

Cost ({) | 4364 4364 4.364
ADULT Acc (D) 0.761 0.761 0.761

Al 0.000  0.000 0.000
Bal (1) 0.494 0494 0.494
K 18 18 18

Cost ({) | 2202 2.202 2.202
BANK Acc (1) 0.891 0.891 0.891

A 0.006 0.006 0.006
Bal (1) | 0.612 0612 0.612
K 4 4 4

Cost ({) | 5.381 5.381 5.381
DIABETES | Acc (1) 0.682 0.682 0.682
A () 0.006 0.006 0.006
Bal (1) 0.875 0.875 0.875

Choice of R when > 0 In this section, we compare the two choices of R in Section2.1.2} (i) a
random subset of [ng] and (ii) the index of samples closest to the cluster centers obtained by a certain
clustering algorithm to D(®) with K = r, which is considered in Section Table E]below pro-
vides the results, showing that the performance of the two approaches are not much different. Here,
we utilized K -medoids algorithm to yield the cluster centers from [ng]. Overall, we can conclude
that FBC is not sensitive to the choice of R and the two proposed heuristic approaches work well in
practice.

Table 9: Comparison of K, Cost, Acc, A, and Bal for the two heuristic approaches in Sec-
tion m ‘Random’ indicates the first approach (R = arandom subset of [ng]). and ‘Clustering’
indicates the second approach (R = centers obtained by a clustering algorithm).

R
Dataset Measure Random  Clustering
K 4 4
Cost ({) 4.364 4.364
ADULT Acc (D) 0.761 0.761
A 0.000 0.000
Bal (1) 0.494 0.494
K 18 18
Cost ({) 2.202 2.202
BANK Acc () 0.891 0.891
Al 0.006 0.006
Bal (1) 0.612 0.612
K 4 4
Cost ({) 5.381 5.381
DIABETES | Acc (1) 0.682 0.682
Al 0.006 0.006
Bal (1) 0.875 0.875
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Variation of covariance structure We examine how the covariance structure in the Gaussian
mixture model affects utility and fairness of FBC. Specifically, we compare the Unified covariance
used in the main analysis (a single scale parameter A shared across clusters and features) with a more
flexible one, Isotropic covariance (cluster-wise A;). To do so, we split the dataset into training/test
with 8:2 ratios, and calculate the performance on the test data. We also fix K = k, = 10 in this
analysis.

The results in Table [I0] give the following implications: (i) allowing cluster-specific covariances
improves density estimation i.e., lowers NLD, by capturing richer covariance variability; (i) Unified
offers lower Cost, since Cost assumes shared variances across clusters; (iii) fairness is achieved
well regardless of the covariance choice: both settings maintain near-perfect fairness (A ~ 0 and
high Bal).

Table 10: Comparison of utility (Cost, NLD, Acc) and fairness (A, Bal). K is fixed as K = k, =
10. Unified indicates the use of a single scale parameter and Iso indicates the use of cluster-specific
scale parameters.

Covariance
Unified Iso

Cost ({) 1.954 2272
NLD ({) 6.242  6.239
ADULT Acc (D) 0.781 0.775
Al 0.001  0.001
Bal (1) 0.491 0.492

Ccost (}) | 1.787  1.788
NLD () 6302  6.300
BANK Acc M) 0.890  0.888
A) 0.004  0.004
Bal () 0.615 0.614

Cost () 3.757 3.958
NLD ({) 9.088 9.076
DIABETES | Acc (1) 0.693  0.701
A ) 0.013 0.018
Bal () 0.882 0.800

Dataset Measure
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E.4 CONVERGENCE OF MCMC

We assess the convergence of the MCMC algorithm by monitoring (i) the autocorrelation function
of the inferred K and (ii) the negative log-likelihood (NLL) on training data (i.e., the observed
instances), over sampling iterations. As is done by |[Miller & Harrison|(2018)), the results in Figures |§|
and [I0] of Section [E.3.5]show that the MCMC algorithm converges well and finds good clusters.

K:

p(h) defined as

Adult - ACF on the number of clusters

As is done by Miller & Harrison/(2018)), in Figure|§|, we draw the autocorrelation function

p(h) = cort{(Ky, Kiqp),t =1,...},

where K is a posterior sample at iteration ¢. The autocorrelation functions amply support
that the proposed MCMC algorithm converges well.

Bank - ACF on the number of clusters

Diabetes - ACF on the number of clusters

%0 00
h

n

13 EY 1060 260 250 00

h

Figure 9: h vs. Autocorrelation functions for (left) DIABETES, (center) ADULT, and (right) BANK
datasets.

NLL: Figure[I0]draws the trace plots of the NLL on training data. Dramatic decreases of NLL are
observed which would happen when the MCMC algorithm moves one local optimum to
another local optimum. This supports the ability of FBC to explore high-posterior clusters
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Figure 10: Trace plots of NLL on (left) DIABETES, (center) ADULT, and (right) BANK datasets.
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