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Jaewoong Choi
Korea Institute for Advanced Study
chjw1475@kias.re.kr

Geonho Hwang, Hyunsoo Cho, Myungjoo Kang∗

Seoul National University
{hgh2134,hscho100,mkang}@snu.ac.kr

ABSTRACT

The ideally disentangled latent space in GAN involves the global representation of
latent space with semantic attribute coordinates. In other words, considering that
this disentangled latent space is a vector space, there exists the global semantic
basis where each basis component describes one attribute of generated images. In
this paper, we propose an unsupervised method for finding this global semantic
basis in the intermediate latent space in GANs. This semantic basis represents
sample-independent meaningful perturbations that change the same semantic at-
tribute of an image on the entire latent space. The proposed global basis, called
Fréchet basis, is derived by introducing Fréchet mean to the local semantic pertur-
bations in a latent space. Fréchet basis is discovered in two stages. First, the global
semantic subspace is discovered by the Fréchet mean in the Grassmannian manifold
of the local semantic subspaces. Second, Fréchet basis is found by optimizing a
basis of the semantic subspace via the Fréchet mean in the Special Orthogonal
Group. Experimental results demonstrate that Fréchet basis provides better seman-
tic factorization and robustness compared to the previous methods. Moreover, we
suggest the basis refinement scheme for the previous methods. The quantitative
experiments show that the refined basis achieves better semantic factorization while
constrained on the same semantic subspace given by the previous method.

1 INTRODUCTION

Generative Adversarial Networks (GANs, (Goodfellow et al., 2014)) have achieved impressive
success in high-fidelity image synthesis, such as ProGAN (Karras et al., 2018), BigGAN (Brock
et al., 2018), and StyleGANs (Karras et al., 2019; 2020a;b; 2021). Interestingly, even when a GAN
model is trained without any information about the semantics of data, its latent space often represents
the semantic property of data (Radford et al., 2016; Karras et al., 2019). To understand how GAN
models represent the semantics, several studies investigated the disentanglement (Bengio et al., 2013)
property of latent space in GANs (Goetschalckx et al., 2019; Jahanian et al., 2019; Plumerault et al.,
2020; Shen et al., 2020). Here, a latent space in GAN is called disentangled if there exists an optimal
basis of the latent space where each basis coefficient corresponds to one disentangled semantics
(generative factor).

One approach to studying the disentanglement property is to find meaningful latent perturbations that
induce the disentangled semantic variation on generated images (Ramesh et al., 2018; Härkönen et al.,
2020; Shen & Zhou, 2021; Choi et al., 2022b). This approach can be interpreted as investigating
how the semantics are represented around each latent variable. We classify the previous works on
meaningful latent perturbations into local and global methods depending on whether the proposed
perturbation is sample-dependent or sample-ignorant. In this work, we focus on the global methods
(Härkönen et al., 2020; Shen & Zhou, 2021). If the latent space is ideally disentangled, the optimal
semantic basis becomes the global semantic perturbation that represents a change in the same
generative factor on the entire latent space. In this regard, these global methods are attempts to
find the best-possible semantic basis on the target latent space. Throughout this work, the semantic
subspace represents the subspace generated by the corresponding semantic basis.
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Figure 1: Overview of Fréchet basis. The global semantic subspace Ss is defined as the Fréchet
mean of intrinsic tangent spaces TwiWdW

wi
in the Grassmannian manifold Gr(dW ,RdW̃ ). Fréchet

basis Bs is discovered by selecting the optimal basis of Ss using the Fréchet mean in the Special
Orthogonal Group.

In this paper, we propose an unsupervised method for finding the global semantic perturbations
in a latent space in GAN, called Fréchet Basis. Fréchet Basis is based on the Fréchet mean on
the Riemannian manifold. Fréchet mean is a generalization of centroid to the general metric space
(Fréchet, 1948) and the Riemannian manifold is the metric space (Lee, 2013). In particular, Fréchet
Basis is discovered in two steps (Fig 1). First, we find the global semantic subspace Ss of latent
space as Fréchet mean in the Grassmannian manifold (Boothby, 1986) of the intrinsic tangent spaces.
Here, the intrinsic tangent space represent the local semantic subspace (Choi et al., 2022b). Second,
Fréchet basis Bs is discovered by selecting the optimal basis of Ss via Fréchet mean in the Special
Orthogonal Group (Lang, 2012). Our experiments show that Fréchet basis provides better semantic
factorization and robustness compared to the previous unsupervised global methods. Moreover, the
second step in finding Fréchet basis provides the basis refinement scheme for the previous global
methods. In our experiments, the basis refinement achieves better semantic factorization than the
previous methods while keeping the same semantic subspace. Our contributions are as follows:

1. We propose unsupervised global semantic perturbations, called Fréchet basis. Fréchet basis
is discovered by introducing Fréchet mean to the local semantic perturbations.

2. We show that Fréchet basis achieves better semantic factorization and robustness compared
to the previous global approaches.

3. We propose the basis refinement scheme, which optimizes the semantic basis on the given
semantic subspace. We can refine the previous global approaches by applying the basis
refinement on their semantic subspaces.

2 RELATED WORKS AND BACKGROUND

Latent Perturbation for Image Manipulation The latent space of GANs often represents the
semantics of data even when the model is trained without the supervision of the semantic attributes.
Early approaches to understanding the semantic property of latent space showed that the vector
arithmetic on latent space leads to the semantic arithmetic on the image space (Radford et al., 2016;
Upchurch et al., 2017). In this regard, a line of research has been conducted to find meaningful
latent perturbations that perform image manipulation in disentangled semantics. We categorize the
previous works into local and global methods according to sample dependency. The local method
finds meaningful perturbations for each latent variable for one semantic attribute, e.g., Ramesh et al.
(2018), Latent Mapper in StyleCLIP (Patashnik et al., 2021), Attribute-conditioned normalizing
flow in StyleFlow (Abdal et al., 2021), Local image editing in Zhu et al. (2021), and Local Basis
(Choi et al., 2022b). By contrast, the global methods offer the sample-independent meaningful
perturbations for each latent space, e.g., Global directions in StyleCLIP (Patashnik et al., 2021),
GANSpace (Härkönen et al., 2020), and SeFa (Shen & Zhou, 2021). Among them, StyleCLIP is a
supervised method requiring text descriptions of each generated image to train CLIP model (Radford
et al., 2021). Throughout this paper, we investigate unsupervised methods such as GANSpace and
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SeFa. GANSpace (Härkönen et al., 2020) suggested the principal components of latent space obtained
by performing PCA as global meaningful perturbations. SeFa (Shen & Zhou, 2021) proposed the
singular vectors of the first weight matrix as global disentangled perturbations.

Unsupervised global disentanglement score The disentanglement of latent space is expressed as
the correspondence between the semantic attributes of data and the axes of latent space. Because the
definition of disentanglement depends on attributes, most of the existing disentanglement metrics
for latent spaces are supervised ones, e.g., DCI score (Eastwood & Williams, 2018), β-VAE metric
(Higgins et al., 2017), and FactorVAE metric (Kim & Mnih, 2018). They require the attribute
annotations of generated images. This requirement restricts the broad applicability of disentanglement
evaluation on real datasets. To address this restriction, Choi et al. (2022a) proposed an unsupervised
global disentanglement score, called Distortion. Distortion metric measures the variation of tangent
space on the learned latent manifold W . Hence, Distortion metric relies purely on the geometric
property of the latent space and does not require attribute labels.

Background Choi et al. (2022b) suggested a framework for analyzing the semantic property of
intermediate latent space by its local geometry. This analysis is performed on the learned latent
manifold W = f(Z), where f denotes the subnetwork f from the input noise space Z to the target
latent space. Here, we assume Z is the entire Euclidean space, i.e., Z = RdZ for some dZ . Note
that this is satisfied for the usual Gaussian prior p(z) = N (0, IdZ ). Choi et al. (2022b) proposed
a method for finding the k-dimensional local approximation Wk

w of W around w = f(z) ∈ W .
This local approximation Wk

w is discovered by the low-rank approximation problem of dfz and this
solution is given by SVD. Then, Wk

w is given as follows: For the i-th singular vector uz
i ∈ RdZ ,

vw
i ∈ RdW , and i-th singular value σz

i ∈ R of dfz with σz
1 ≥ · · · ≥ σz

m and m = min(dZ , dW),

dfz(u
z
i ) = σz

i · vw
i for ∀i, Local Basis(w = f(z)) = {vw

i }1≤i≤n, (1)

Wk
w =

{
f

(
z+

∑
i

ti · uz
i

)
| ti ∈ (−ϵi, ϵi), for 1 ≤ i ≤ k

}
, (2)

TwWk
w = span{vw

i : 1 ≤ i ≤ k}. (3)

Choi et al. (2022b) showed that the codomain singular vectors, called Local Basis (Eq 1), serve as the
local semantic perturbations around w. In this respect, the tangent space at w represents the local
semantic subspace because it is spanned the local semantic perturbations (Eq 3).

Upon this framework, Choi et al. (2022a) proposed the intrinsic local dimension estimation scheme
for the latent manifold W through the robust rank estimate (Kritchman & Nadler, 2008) of dfz.
Geometrically, the intrinsic local dimension represents the number of dimensions required to properly
approximate the denoised W . Choi et al. (2022a) showed that this local dimension corresponds to the
number of local semantic perturbations. Using this correspondence, Choi et al. (2022a) introduced the
unsupervised disentanglement score called Distortion. Distortion metric is defined as the normalized
variation of intrinsic tangent space on the latent manifold. The normalized variation is expressed as
the ratio of the distance between two tangent spaces at two random w ∈ W (Eq 4) to the distance
between two tangent spaces at two close w (Eq 5). The distance between tangent spaces is measured
by the dimension-normalized Geodesic Metric dkgeo Choi et al. (2022a) in Grassmannian manifold
Boothby (1986). Specifically, Distortion of W is defined as DW = Irand/Ilocal with

Irand = Ezi∼p(z),wi=f(zi)

[
dkgeo

(
Tw1

Wk
w1

, Tw2
Wk

w2

)
for k = min(k1, k2)

]
, (4)

Ilocal = Ez1∼p(z),|z2−z1|=ϵ

[
dkgeo

(
Tw1Wk

w1
, Tw2

Wk
w2

)
for k = min(k1, k2)

]
. (5)

where ki denotes the local dimension estimate at wi = f(zi). Interestingly, although Distortion
metric does not exploit any semantic information, Distortion metric provides a strong correlation
between the supervised disentanglement score and the global-basis-compatibility (Choi et al., 2022a).

3 FRÉCHET MEAN GLOBAL BASIS

In this section, we propose an unsupervised method for finding global linear perturbation directions
that make the same semantic manipulation on the entire latent space, called Fréchet basis. If we
have such global meaningful perturbations, the vector space representation of latent space along these
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semantic basis provides the global semantic representation of a model. The proposed scheme is based
on finding the Fréchet mean (Fréchet, 1948; Karcher, 1977) of the local disentangled perturbations.
The scheme is in two steps. First, the optimal subspace representing the global semantics is discovered
by the Fréchet mean in the Grassmannian manifold (Boothby, 1986) of intrinsic tangent spaces (Choi
et al., 2022b) on the target latent space. Second, the optimal basis is obtained as the Fréchet mean in
the Special Orthogonal Group (Lang, 2012) of the projected local disentangled perturbations.

3.1 METHOD

Notation Throughout this work, we follow the notation presented in Sec 2. Let W̃ = RdW̃ be a
ambient target latent space where we want to find global semantic perturbations. We analyze the
learned latent manifold W = f(Z) ⊂ W̃ embedded in this latent space, which is given as an image
of the subnetwork from the input noise Z to W̃ .

Motivation We investigate the problem of discovering global semantic perturbations through
the local geometry of learned latent manifold W . Recently, Choi et al. (2022a) discovered that
the intrinsic tangent space TwWk

w at each w ∈ W represents the local semantic variation of the
generated image from w. Specifically, the intrinsic local dimension at w, denoted as k in TwWk

w,
corresponds to the number of local semantic perturbations. The top-k components of Local Basis
Choi et al. (2022b) are these local semantic perturbations and are the basis vectors of TwWk

w (Eq 3).
Hence, the intrinsic tangent space TwWk

w describes the local semantic variation of an image because
it is spanned by the local meaningful perturbations.

In this regard, we interpret the global semantic variation as the mean of these local semantic variations.
One of the most popular methods for defining the mean of subspaces is through Fréchet mean
(Marrinan et al., 2014). Fréchet mean is a generalization of the mean in vector space to the general
metric space. The mean of vectors is the minimizer of the sum of squared distances to each vector.
Similarly, Fréchet mean µfr in the metric space X with metric d is defined as the minimizer of
squared metrics, i.e., for x1, x2, . . . , xn ∈ X ,

µfr = argmin
µ∈X

∑
1≤i≤n

d (µ, xi)
2
. (6)

In particular, a Riemannian manifold is an example of metric space where we can introduce the
Fréchet mean (Lou et al., 2020). In this work, we utilize the Grassmannian manifold (Boothby, 1986)
to find the subspace of latent space for the global semantic representation and the Special Orthogonal
Group (Lang, 2012) to choose the optimal basis on it.

3.1.1 GLOBAL SEMANTIC SUBSPACE

Our goal is to find a Riemannian manifold where we can embed these intrinsic tangent spaces
{Twi

Wki
wi

}1≤i≤n describing local semantic variations at each wi. The Grassmannian manifold
Gr(k, V ) denotes the set of k-dimensional linear subspaces of vector space V (Boothby, 1986).
Hence, these tangent spaces can be embedded to one Grassmannian manifold Gr

(
dW ,RdW̃

)
by

matching their dimensions to the dimension of learned latent manifold dW . Specifically, we match the
dimensions of tangent spaces by refining or extending them to the subspaces spanned by the top-dW
components of Local Basis (Eq 3). This is equivalent to approximating W with the dW -dimensional
local estimate WdW

w at all w ∈ W (Eq 2). We estimate the layer-wise dimension dW of learned latent
manifold W by averaging local dimensions {ki}1≤i≤n of n i.i.d. samples,

Twi
WdW

wi
= span{vwi

i : 1 ≤ i ≤ dW} ∈ Gr
(
dW ,RdW̃

)
, (7)

where vwi
i denotes Local Basis at wi (Eq 1). Then, we define the global semantic subspace Ss of

W as the Fréchet mean on Gr
(
dW ,RdW̃

)
with the geodesic metric dgeo (Ye & Lim, 2016):

Ss = argmin
µ∈Gr(dW ,RdW̃ )

∑
1≤i≤n

dgeo
(
µ, TwiWdW

wi

)2
. (8)

Here, the geodesic metric dgeo is defined as dgeo(W,W ′) =
(∑k

i=1 θ
2
i

)1/2
for W,W ′ ∈ Gr(k,Rn)

where θi denotes the i-th principal angle between W and W ′. That is, θi = cos−1(σi(M
⊤
W MW ′))
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where MW ∈ Rn×k denotes the column-wise concatenation of orthonormal basis for W . For
optimization, we used the gradient descent algorithm in the Pymanopt (Townsend et al., 2016).

3.1.2 GLOBAL SEMANTIC BASIS

The aim of this work is to find global meaningful perturbations that represent the disentangled
semantics. However, the global semantic subspace Ss is discovered by solving an optimization
problem in the Grassmannian manifold, the set of subspaces. We need an additional step to find a
specific basis on Ss. In particular, we utilize the Fréchet mean on the Special Orthogonal Group.

Why Special Orthogonal Group Let the columns of MS ,M
′
S ∈ RdW̃×dW be the two distinct

orthonormal basis of Ss. Then, there exists an orthogonal matrix O ∈ RdW×dW , i.e., O⊤O =
OO⊤ = I , which satisfies M ′

S = MSO. Therefore, finding the optimal basis of Ss is equivalent to
finding the orthogonal matrix O given the initial MS . The Special Orthogonal Group SO(n) consists
of n × n orthogonal matrices with determinant +1 (Lang, 2012). Note that the determinant of an
arbitrary orthogonal matrix is +1 or −1. We consider SO(n) instead of the orthogonal matrices
for two reasons. First, our task is independent of the flipping ((−1)-multiplication) of each basis
component. The positive perturbation along v is identical to the negative perturbation along −v. The
flipping of a basis component in M ′

S leads to the flipping of the corresponding column in O. This
results in the (−1)-multiplication at the determinant of O. Therefore, without loss of generality, we
may assume that O is a special orthogonal matrix. Second, the Orthogonal Group is disconnected
while the Special Orthogonal Group is connected. Hence, the Orthogonal Group is inadequate for
finding the Fréchet mean, which is optimized by the gradient descent algorithm.

Basis Refinement We propose the optimization scheme for finding the global semantic basis from
the global semantic subspace Ss. Here, we denote the column-wise concatenation of local semantic
basis at each wi as Mwi

∈ RdW̃×dW , i.e., each column is the top-dW Local Basis at w ∈ W . Note
that the column space of Mwi

is the local semantic subspace Twi
WdW

wi
. Likewise, MS refers to an

initial orthonormal basis of Ss. As an overview, the proposed scheme is as follows:

(i) Project each local semantic basis to the dW -dimensional global semantic subspace Ss.

(ii) Project these projected local semantic basis to SO(dW).

(iii) Find the Fréchet mean O in SO(dW) and embed O back to the ambient space RdW̃ .

Before the above optimization, we preprocess each local semantic basis at wi, i.e., the columns of
Mwi

, to be positively aligned to each column of MS , i.e., ⟨Mwi
[:, i], MS [:, i]⟩ > 0 for all i. (i) As

a first step, we project each local semantic basis at wi onto the global semantic subspace Ss, i.e.,
M⊤

S Mwi
. (ii) Then, the matrix of projected local semantic basis M⊤

S Mwi
∈ RdW×dW is projected

to SO(dW)1. The projection on the orthogonal group Po and the proposed projection on the Special
Orthogonal Group Pso can be obtained via SVD. (See the appendix for proof.): Let X = UΣV ⊤ be
a SVD of X ∈ RdW×dW ,

Pso(X) = U diag (1, 1, . . . , 1,det (Po(X))) V ⊤ where Po(X) = UV ⊤. (9)

(iii) Finally, we find the optimal orthogonal matrix O, that transforms the initial basis MS to the
global semantic basis Bs, via Fréchet mean of projected local semantic basis {Pso

(
M⊤

S Mwi

)
}i ⊂

SO(dW).

Bs = MSO where O = argmin
µ∈SO(dW)

∑
1≤i≤n

d
(
µ, Pso

(
M⊤

S Mwi

))2
. (10)

Here, the Riemannian metric on SO(dW) is defined as d(X1, X2) = ∥ Skew
(
log(X⊤

1 X2)
)
∥F for

X1, X2 ∈ SO(dW) where log denotes a matrix logarithm and Skew refers to the skew-symmetric
component of a matrix, i.e., Skew(X1) = 1

2

(
X1 −X⊤

1

)
. As in the Grassmannian manifold, we

utilized the Pymanopt (Townsend et al., 2016) implementation for finding the Fréchet mean on
SO(dW). Then, the global semantic basis Bs is obtained as the embedding of Fréchet mean O to
RdW̃ , i.e., Bs = MSO. We call this global semantic basis Bs Fréchet Basis.

1This projection is underdetermined for the matrix with determinant 0 because of the subspace generated by
singular vectors with σ = 0. Because these matrixes are measure-zero set, this did not happen in practice.
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(b) StyleGAN2-e - ρ = −0.91

Figure 2: Correlations of L2-Distortion (↓) to FID gap (↓) and DCI (↑) when θpre = 0.005.
L1-Distortion shows the correlations of 0.98 to FID-Gap in StyleGAN2-cat and of -0.91 to DCI in
StyleGAN2-e. (See the appendix for full correlation results in six models.)

3.2 FRÉCHET BASIS AS L2-DISTORTION MINIMIZER

The Fréchet basis can be interpreted as the minimizer of the unsupervised disentanglement metric,
Distortion (Choi et al., 2022a). Distortion metric is based on the inconsistency of intrinsic tangent
spaces. Specifically, Distortion metric DW is the ratio between the inconsistency at two random
w ∈ W and at two close w ∈ W , i.e., DW = Irand/Ilocal (Eq 4 and 5). Here, the intrinsic
tangent space represents the local semantic variations. From this point of view, the Distortion-based
global semantic subspace SD would be a representative of these tangent spaces that minimize the
inconsistency to each tangent space.

SD = argmin
µ≤RdW̃

Iglobal(µ) with Iglobal(µ) = Ez∼p(z),w=f(z)

[
dkgeo

(
µk, TwWk

w

) ]
, (11)

where µ is a subspace of RdW̃ , k refers to the local dimension at w and µk denotes the k-dimensional
refinement of µ. The Fréchet basis assumes that the entire latent manifold W is approximated with
dW -dimensional local estimate at all w ∈ W . Under this assumption, Iglobal(µ) becomes

Iglobal(µ) =
(
1/
√

dW

)
· Ez∼p(z),w=f(z)

[
dgeo

(
µ, TwWdW

w

) ]
for µ ∈ Gr(dW ,RdW̃ ). (12)

The comparison with Eq 8 shows that the global semantic subspace by Fréchet mean Ss can be
interpreted as L2-Distortion minimizer, i.e., d2geo instead of dgeo. Although the original L1-Distortion
was proven to provide high correlations with the global-basis-compatibility and the supervised
disentanglement score, L2-Distortion was not tested (Choi et al., 2022a). Therefore, we evaluated
whether L2-Distortion is also a meaningful metric to verify the validity of minimizing it. Following
the experiments in Choi et al. (2022a), we assessed the global-basis-compatibility by the FID (Heusel
et al., 2017) Gap between Local Basis and GANSpace (Härkönen et al., 2020) under the same
perturbation intensity. Also, DCI score (Eastwood & Williams, 2018) is adopted as the supervised
disentanglement score. We utilized 40 binary attribute classifiers pre-trained on CelebA (Liu et al.,
2015) to annotate the 10k generated images. Figure 2 demonstrates that L2-Distortion achieves high
correlations comparable to the original Distortion score in the global-based compatibility and DCI.
These results prove that our framework of minimizing L2-Distortion by Fréchet mean is also valid.

4 EXPERIMENTS

4.1 FRÉCHET BASIS AS GLOBAL SEMANTIC PERTURBATIONS

We evaluate the Fréchet basis as the global semantic perturbations on the intermediate layers of the
mapping network in various StyleGAN models (Karras et al., 2019; 2020b). For each StyleGAN
model, we used the layers from 3rd to 8th because the local dimension estimate is rather unstable for
the 1st and 2nd layers depending on the preprocessing hyperparameter θpre (Choi et al., 2022a). We
chose these intermediate layers for evaluation because they are diverse and properly disentangled
latent spaces. In this manner, the Fréchet basis can be tested on six latent spaces for each pre-trained
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(a) Bald - Fréchet Basis (b) Bald - GANSpace (v21, 2-4)

(c) Light Position - Fréchet Basis (d) Light Position - GANSpace (v28, 8)

Figure 3: Comparison of Semantic Factorization between Fréchet basis and GANSpace. (vi, l1-l2)
denotes the layer-wise edit along the i-th GANSpace component at the l1-l2 layers. The image
traversals are performed on StyleGAN2-FFHQ (Fig 3a, 3b) and StyleGAN2-LSUN cat (Fig 3c, 3d).

StyleGAN model. In this section, all Fréchet basis are discovered using 1,000 i.i.d. samples of
Local Basis with θpre = 0.01. The max iteration is set to 200 when optimizing Fréchet mean with
Pymanopt. The evaluation is performed on two properties: Semantic Factorization and Robustness.
Fréchet basis is compared with GANSpace (Härkönen et al., 2020) and SeFa (Shen & Zhou, 2021)
because these two methods are also unsupervised global basis (Sec 2). Note that GANSpace and
Fréchet basis can be applied to arbitrary latent space, but SeFa is only applicable to W-space (Karras
et al., 2019), i.e., the last layer of the mapping network in StyleGANs.

Semantic Factorization In Fig 3 and 4, we evaluated the semantic factorization of Fréchet basis.
Figure 3 shows how the image changes as we perturb the latent variable along each global basis. For
a fair comparison, we took the annotated basis in GANSpace (Härkönen et al., 2020) and compared
those with Fréchet basis on W-space of three StyleGAN models. Because GANSpace performs layer-
wise edits, we matched the set of layers, where the perturbed latent variable is fed, in the synthesis
network as annotated. The corresponding Fréchet basis component is selected by the cosine-similarity.
Each subfigure shows the three images traversed with the same global basis, perturbation intensity,
and the set of perturbed layers. The original image is placed at the center. Hence, these subfigures
also show the semantic consistency of the global basis. In StyleGAN2 trained on FFHQ, GANSpace
shows image failure on the left side and semantic inconsistency on the third row (not representing
hairy on the left) (Fig 3b). In StyleGAN2 trained on LSUN-cat (Yu et al., 2015), GANSpace presents
entangled semantic manipulation (Fig 3d). The latent traversal along GANSpace changes the light
position as annotated, but also darkens the striped pattern of cats. On the other hand, Fréchet basis
achieves better semantic factorization without showing those problems (Fig 3a and 3c). (See the
appendix G for additional examples of other attributes and datasets. Also, since Fréchet basis is an
average of Local Basis, we compared these two methods and GANSpace in the appendix F.)

For the quantitative comparison of semantic factorization, we compared DCI as in Sec 3.2. DCI is a
supervised disentanglement metric that assesses the axis-wise alignment of semantics. Hence, we
measured DCIs of the latent space representations with two global basis, GANSpace and Fréchet
basis. Specifically, we converted a latent variable w ∈ RdW̃ into the dW -dimensional representation
with each global basis: For a dW -dimensional global basis {vglobal

i }1≤i≤dW ,

Representation of w with {vglobal
i }1≤i≤dW =

(
w · vglobal

1 , w · vglobal
2 , . . . , w · vglobal

dW

)
. (13)

Figure 4 presents the DCI results. StyleGAN2-e denotes the config-e model of StyleGAN2 (Karras
et al., 2020b), and all three models are trained on FFHQ (Karras et al., 2019). The intrinsic dimension
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Figure 4: Quantitative Comparison of Semantic Factorization. DCI score (↑) is a supervised
disentanglement metric that evaluates the axis-wise alignment of semantics. Fréchet basis outperforms
GANSpace when a point is located above the black line. (The black line illustrates y = x.)
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Figure 5: Quantitative Comparison of Robustness. The image fidelity under the latent traversal is
evaluated by FID (↓). Fréchet basis performs better when a point is placed below the black line.

of each latent space is estimated with θpre = 0.01 (Choi et al., 2022a). In all latent spaces except for
the 5-th layer in StyleGAN2-e, the latent space achieves a higher DCI score when represented with
Fréchet basis. This quantitative result shows that Fréchet basis provides a better semantic factorization
along each basis component at the same latent space.

Robustness We tested the robustness of Fréchet basis by comparing the image fidelity under the
latent perturbation. For each global basis, we evaluated FID (Heusel et al., 2017) of 50k i.i.d. latent
perturbed images. The perturbation direction is selected to be the 1st component for the GANSpace.
In Fréchet basis, we chose the component with the highest cosine-similarity to the 1st component of
GANSpace. The perturbation intensity is 2 in StyleGAN1, and 5 in StyleGAN2-e and StyleGAN2.
The FID scores of the latent spaces in three models are provided in Fig 5. (See the appendix for FID
scores under various perturbations intensity.) We think this higher robustness is because the global
semantic subspace Ss is the Fréchet mean of the intrinsic tangent spaces of learned latent manifold.
The strong robustness of traversing along the tangent space at each latent variable was observed in
Choi et al. (2022b). Therefore, traversing along Fréchet basis can be interpreted as traversing along
the mean of these locally robust perturbation directions, because Fréchet basis is a basis of Ss.

4.2 BASIS REFINEMENT BY FRÉCHET MEAN Table 1: Basis Refinement by Fréchet
mean.

Global Basis FID (↓) DCI (↑)
Fréchet basis 7.49 0.350
GANSpace 8.90 0.312
GANSpace-refine 8.63 0.336

SeFa 11.79 0.307
SeFa-refine 7.89 0.337

Fréchet basis consists of two parts: finding the global
semantic subspace Ss and selecting the global semantic
basis Bs from the discovered semantic subspace. In par-
ticular, the second step can be utilized to refine a given
global basis from previous methods. We ran this basis re-
finement on the subspace generated by the existing global
methods, GANSpace and SeFa. This experiment reveals
the contribution of the second step.

Let Sglobal be the dW -dimensional semantic subspace gen-
erated by the global basis {vglobal

i }1≤i≤dW . Then, we optimized the constrained-optimal global basis
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Figure 6: Geodesic Interpolation from Fréchet basis (i = 1) to GANSpace (i = 7).

Bglobal in Sglobal via Sec 3.1.2. Table 1 shows FID and DCI scores of Fréchet basis, GANSpace,
GANSpace refinement, SeFA, and SeFa refinement in W-space of StyleGAN2 trained on FFHQ.
These two scores are evaluated in the same manner as in Sec 4.1 with the perturbation intensity 2
for FID. Most importantly, Fréchet basis achieves the best FID and DCI. Also, the basis refinement
monotonically improves the two scores of the two previous methods, GANSpace and SeFa. The
comparison with the previous global method and its refinement proves the contribution of basis
optimization. Also, the superior performance of Fréchet basis over the two refinements shows the
contribution of subspace optimization.

4.3 GEODESIC INTERPOLATION ON GRASSMANNIAN MANIFOLD

We further investigate the optimality of global semantic subspace Ss by analyzing the interpolation
from Ss to GANSpace subspace SGS . Similar to Sec 4.2, this experiment examines the contribution
of the first step in Fréchet basis. In the Grassmannian manifold Gr(k,Rn), there exists at least one
length-minimizing geodesic between any two subspaces in Gr(k,Rn). Moreover, there is an explicit
parametrization of this length-minimizing geodesic (Eq 14) (Chakraborty & Vemuri, 2015). For
X ,Y ∈ Gr(k,Rn), let X,Y ∈ Rn×k be the column-wise concatenation of their orthonormal basis.
Then, the length-minimizing geodesic Γ(X ,Y, t) from X to Y is defined as:

Γ (X ,Y, t) = span{ (XV cos(Θt) + U sin(Θt))V ⊤ } for t ∈ [0, 1], (14)
where X⊤Y is non-singular, (Y −XX⊤Y )(X⊤Y )−1 = UΣV ⊤ is the thin SVD, and Θ = arctanΣ.
Note that the last V ⊤ multiplication is unnecessary as the subspace. However, we added it to match
the basis to X at t = 0. We used this geodesic to perform the interpolation and extrapolation from Ss

to SGS :
Si = Γ (X ,Y, (i− 1)/n) for i = 0, 1, . . . , n+ 2. (15)

with n = 6. Note that i = 0, n+ 2 represent the extrapolations of t = (−1/n), 1 + (1/n). Because
the above interpolation is performed on a subspace-scale, we conducted the basis refinement (Sec 4.2)
for each interpolation subspace Si to find the interpolation basis Bi. Figure 6 presents the geodesic
metric dgeo in the Grassmannian manifold for each interpolation subspace to GANSpace and Fréchet
basis (Fig 6a), and the DCI score evaluated at each interpolation basis Bi (Fig 6b) on W-space of
StyleGAN2-FFHQ. First, Fig 6a shows that Si performs interpolation from Fréchet basis at i = 0 to
GANSpace at i = 7. This interpolation is linear in the Grassmannian metric dgeo. Second, the DCI
score at each interpolation basis Bi are presented in Fig 6b. Fréchet basis at i = 0 achieves the best
DCI score among the interpolation basis. Note that the DCI score of original GANSpace without
refinement is 0.312 (Tab 1), which is lower than the score after refinement at i = 7 as in Sec 4.2.

5 CONCLUSION

In this paper, we proposed the unsupervised global semantic basis on the intermediate latent space
in a GAN, called Fréchet basis. Fréchet basis is discovered by utilizing the Fréchet mean on the
Grassmannian manifold and the Special Orthogonal Group. Our experiments demonstrate that Fréchet
basis achieves better semantic factorization and robustness than the previous unsupervised global
methods. In addition, we suggest the basis refinement scheme using the Fréchet mean. Given the
same semantic subspace generated by the previous global methods, the refined basis attains better
semantic factorization and robustness.
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A PROJECTION ONTO SPECIAL ORTHOGONAL GROUP

In this section, we provide proof for the projection of an invertible matrix A ∈ GL(n) onto the
special orthogonal group SO(n). Formally, the set of invertible matrices GL(n), orthogonal group
O(n), and special orthogonal group SO(n) are defined as follows:

GL(n) := {A ∈ Rn×n : det(A) ̸= 0}, (16)

O(n) := {A ∈ Rn×n : A⊤A = AA⊤ = I}. (17)

SO(n) := {A ∈ Rn×n : A⊤A = AA⊤ = I, det(A) = 1}. (18)

For a non-invertible matrix, the projection onto SO(n) is not uniquely defined because of the
subspace generated by singular vectors with σ = 0. However, the set of non-invertible matrices has
measure-zero in the set of n × n matrices Rn×n. Thus, this did not happen in practice during the
Fréchet basis optimization.
Theorem 1. The following optimization problem, i.e., the projection of A ∈ GL(n) onto the Special
Orthogonal Group SO(n),

argmin
X∈SO(n)

∥X −A∥F where A ∈ GL(n), (19)

has a solution
Pso(A) = X∗ = U diag

(
1, 1, . . . , 1,det

(
UV ⊤)) V ⊤ (20)

where A = UΣV ⊤ is the Singular Value Decomposition (SVD) of A with the projection onto
orthogonal group Po(A) = UV ⊤. (The projection is unique if we assume σ1 > σ2 > . . . > σn > 0
where {σi}1≤i≤n denote the singular values of A.)

Proof. 1. If Po(A) = UV ⊤ ∈ SO(n), done. (∵ SO(n) ⊂ O(n) and det (Po(A))) = 1).

2. If Po(A) = UV ⊤ /∈ SO(n), i.e., det(A) < 0,

∥X −A∥2F = ∥I −X⊤A∥2F = n− 2 tr(X⊤A) + tr(A⊤A). (21)

For any skew-symmetric matrix K, define f(t) as

f(t) = −2 tr(A⊤XetK), for t ∈ R. (22)

Note that XetK ∈ SO(n) and tr(A⊤A) is given. Therefore, if X is the minimizer of ∥X − A∥F ,
we have f ′(0) = −2 tr(A⊤XK) = 0 for all skew-symmetric K. Thus, A⊤X is symmetric.

Without loss of generality, we may assume that A = U0Σ0V
⊤
0 , X = U0X

′V ⊤
0 for some U0, V0 ∈

SO(n) where Σ0 is the diagonal matrix as Σ in SVD but Σ0 might have the negative elements.
This decomposition can be obtained by flipping the singular vectors in U, V of SVD to make
U0, V0 ∈ SO(n) and letting X ′ = U⊤

0 XV0. Explicitly, from det(A) < 0,

U0 = U diag (1, . . . , 1,det (U)) , V0 = V diag (1, . . . , 1,det (V )) ,

Σ0 = diag (σ1, . . . , σn−1,−σn) .
(23)

Then, since X⊤A =
(
A⊤X

)⊤
,

X⊤A = V0 (X
′)
⊤
Σ0V

⊤
0 is symmetric and has negative determinant. (24)

Therefore, (X ′)
⊤
Σ0 is also symmetric and thus diagonalizable.

∥X −A∥2F = ∥I −X⊤A∥2F = ∥I − V0 (X
′)
⊤
Σ0V

⊤
0 ∥2F

= ∥I − (X ′)
⊤
Σ0∥2F =

∑
i

(1− λi)
2
,

(25)

where λi denotes the i-th eigenvalue of (X ′)
⊤
Σ0 with |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Note that since

X ′ = U⊤
0 XV0 ∈ SO(n), the i-th singular value σi of A satisfies σi = |λi|. Moreover, an odd

number of signed singular values in Σ0 is negative because det(A) < 0. Also, det((X ′)
⊤
Σ0) =

det(X⊤A) < 0 implies that an odd number of eigenvalues is negative. Hence, ∥X − A∥F is
minimized when λi = σi for 1 ≤ i ≤ n− 1 and λn = −σn. If X ′ is the diagonal matrix satisfying
this condition, X = U diag (1, 1, . . . , 1,−1) V ⊤. Lemma 1 proves that when σ1 > σ2 > . . . > σn

is satisfied, the uniqueness of X ′ is guaranteed.
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Lemma 1. Let X ′ ∈ SO(n) and Σ0 = diag (σ1, . . . , σn−1,−σn) with σ1 > . . . > σn−1 > σn > 0.

If Y = (X ′)
⊤
Σ0 is symmetric, X ′ is a diagonal matrix. (26)

Proof. Since Y is symmetric, it is diagonalizable with the orthogonal matrix P ∈ O(n).

Y = (X ′)
⊤
Σ0 = PDP t. (27)

We interpret these two decompositions Y = (X ′)
⊤
Σ0I = PDP t as two SVD-like representations

of Y because (X ′)
⊤ ∈ SO(n) and I⊤ = I . The ordered singular vectors in the domain of Y

are uniquely determined as the basis for each eigenspace of Y ⊤Y . Note that if the dimension of
eigenspace is bigger than 1, there is a freedom of choosing a basis in it.

From Σ0, the possible eigenvalues of Y are {±σi}1≤i≤n and the eigenvalues of Y ⊤Y are {σ2
i }1≤i≤n.

Therefore, since the standard basis {ei}1≤i≤n of Rn are the domain singular vectors of Y from
Y = (X ′)

⊤
Σ0I and Y is diagonalizable,

Y (ei) =

{
σiei for 1 ≤ i ≤ n− 1 (∵ σ1 > . . . > σn−1 > 0)

−σnen for i = n (∵ σn−1 > σn > 0).
(28)

Hence, the standard basis are also the codomain singular vectors of Y , which implies that X ′ is
diagonal.

B IMPLEMENTATION DETAIL

In this section, we summarize the hyperparameters for Frechet basis presented in the experimental
results in Section 4.

• Preprocossing hyperparameter θpre for local dimension estimation Choi et al. (2022a):
θpre = 0.01.

• Global Semantic Subspace Optimization
– Number of samples n = 1000.
– Max iteration in Frechet mean Optimization using Pymanopt Townsend et al. (2016)

= 1, 000.
– Max time in Frechet mean Optimization using Pymanopt = 2, 000.

• Global Semantic Basis Optimization
– Number of samples n = 1000.
– Max iteration in Frechet mean Optimization using Pymanopt = 200.
– Max time in Frechet mean Optimization using Pymanopt = 10, 000.
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C FULL CORRELATION RESULTS OF L2-DISTORTION
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(a) StyleGAN2-Cat - ρ = 0.95
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(b) StyleGAN2-e - ρ = 0.75
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(c) StyleGAN2 - ρ = 0.73

Figure 7: Correlation between L2-Distortion metric (↓) and FID gap (↓) when θpre = 0.005.
The correlations ρ are 0.98 for StyleGAN2-cat, 0,73 for StyleGAN2-e, and 0.70 for StyleGAN2 in
L1-Distortion.
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(a) StyleGAN1 - ρ = −0.72
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(b) StyleGAN2-e - ρ = −0.91
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Figure 8: Correlation between L2-Distortion metric (↓) and DCI (↑) when θpre = 0.005. The
correlations ρ are 0.98, 0,73, and 0.70 for StyleGAN2-cat, StyleGAN2-e, and StyleGAN2 for L1-
Distortion.
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D QUANTITATIVE COMPARISON OF ROBUSTNESS (FID) FOR VARIOUS
PERTURBATION INTENSITY
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(b) I = 1.5

10 15 20 25 30
GANSpace FID

10

15

20

25

30

Fr
éc

he
t B

as
is

 F
ID

3
4
5
6
7
8

(c) I = 2.0
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(d) I = 2.5

Figure 9: Quantitative Comparison of Robustness between GANSpace and Fréchet basis on
StylGAN1-FFHQ (Karras et al., 2019) for various perturbation intensity I . The perturbation intensity
I is measured by the L2-norm on each latent space. The image fidelity under the latent traversal is
evaluated by FID (↓). The black line indicates where two FIDs are equal.
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(b) I = 4.0
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(c) I = 5.0
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(d) I = 6.0

Figure 10: Quantitative Comparison of Robustness between GANSpace and Fréchet basis on
StylGAN2-e-FFHQ (Karras et al., 2020b) for various perturbation intensity I . The image fidelity
under the latent traversal is evaluated by FID (↓). The black line indicates where two FIDs are equal.
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(b) I = 3.0
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(c) I = 4.0
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(d) I = 5.0

Figure 11: Quantitative Comparison of Robustness between GANSpace and Fréchet basis on
StylGAN2-FFHQ (Karras et al., 2020b) for various perturbation intensity I . The image fidelity under
the latent traversal is evaluated by FID (↓). The black line indicates where two FIDs are equal.
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E ABLATION STUDY ON THE OTHER MEANS OF GRASSMANNIAN MANIFOLD

In this section, we conducted an ablation study on defining the global semantic subspace in the
Grassmanifold. In particular, we compared the Fréchet mean Fréchet (1948); Marrinan et al. (2014)
and extrinsic mean Srivastava & Klassen (2002) of the Grassmannian manifold. The extrinsic mean
µE is defined as the minimizer of squared extrinsic metrics dE , i.e., for x1, . . . , xn ∈ Gr(k,Rn),

µE = argmin
µ∈X

∑
1≤i≤n

dE (µ, xi)
2
, where dE (µ, xi) = dΦ (Φ(µ),Φ(xi)) , (29)

where Φ denotes an appropriate embedding of Gr(k,Rn). Following Marrinan et al. (2014), we
set the embedding Φ to be the corresponding projection Pxi

, i.e., Φ(xi) = Pxi
= M⊤

xi
Mxi

where
Mxi ∈ Rn×k indicates the column-wise concatenation of an orthonormal basis of xi. Also, the
Frobenius norm is adopted for dΦ.
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(b) FID (↓) with I = 3.0

Figure 12: Ablation study on the means of Grassmannian manifold on StyleGAN2-FFHQ.
Extrinsic basis is a variant of Fréchet basis where the global semantic basis is discovered by the
extrinsic mean of the Grassmannian manifold. In both scores, our Fréchet basis outperforms Extrinsic
basis in 5 out 6 intermediate layers in the mapping network.
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F COMPARISON TO LOCAL BASIS

F.1 QUANTITATIVE COMPARISON

In this section, we introduced a new experiment to quantitatively compare semantic factorization
between Fréchet basis and Local Basis Choi et al. (2022b). Intuitively, this experiment measures
the average of local DCI scores. To be more specific, consider n-samples {zi}1≤i≤n ⊂ Z of input
Gaussian noise. (We set n = 100) Then, take m-samples from the neighborhood of each zi and map
them to the target latent space W = f(Z), where f denotes the subnetwork from Z to W:

wi,j = f(zi + ϵi,j) where ϵi,j ∼ N (0, σ2I) and wi = f(zi), (30)

for sufficiently small σ > 0. (We set m = 1, 000 and σ = 0.5) Then, we measure DCI score for each
neighborhood of wi, i.e., {wi,j}1≤j≤m, after representing these latent variables with each semantic
basis as in Eq 13 (Fréchet basis and Local Basis at wi). The averages of these local DCI scores
are compared between Fréchet basis and Local Basis. Below, we included the evaluated scores on
W-space of StyleGAN2, StyleGAN2-config-e, and StyleGAN1 trained on FFHQ. Note that the
overall DCI scores are higher than Fig 4 because it is easier for a semantic basis to satisfy semantic
consistency on the local region than on the entire latent space. As in the qualitative examples, Fréchet
basis outperforms Local Basis in the quantitative assessment.

Table 2: Quantitative Comparison of Semantic Factorization by Local DCI (↑). Local DCI score
is evaluated at W-space of each StyleGAN model.

Model Fréchet Basis Local Basis
StyleGAN2 0.740 0.665
StyleGAN2-e 0.726 0.704
StyleGAN1 0.733 0.677

F.2 QUALITATIVE COMPARISON

(a) GANspace (b) Fréchet Basis (c) Local Basis

Figure 13: Comparison of Latent Traversals on StyleGAN2-FFHQ. We used the annotated
GANSpace on the semantics of ”Bald”. The corresponding Fréchet Basis and Local Basis are chosen
by the cosine similarity. The traversal images along GANSpace are more deteriorated than the other
two bases. The red box indicates where the image deterioration occurred.
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(a) GANspace (b) Fréchet Basis (c) Local Basis

Figure 14: Comparison of Latent Traversals on StyleGAN2-LSUN Church. We used the annotated
GANSpace on the semantics of ”Clouds”. The corresponding Fréchet Basis and Local Basis are
chosen by the cosine similarity. Some traversal examples along Local Basis do not show the annotated
semantic variations compared to the other two bases. In the yellow box, no clouds appeared. In the
red box, clouds appeared in all images.

(a) GANspace (b) Fréchet Basis (c) Local Basis

Figure 15: Comparison of Latent Traversals on StyleGAN2-LSUN Horse. We used the annotated
GANSpace on the semantics of ”White horse”. The traversal images of GANspace and Local Basis
in the yellow box are less affected than that of Frechet Basis.
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(a) GANspace (b) Fréchet Basis (c) Local Basis

Figure 16: Comparison of Latent Traversals on StyleGAN2-LSUN Car. We used the annotated
GANSpace on the semantics of ”Side to Front”. The traversal images of Local Basis are not affected
by perturbations.
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G ADDITIONAL SEMANTIC FACTORIZATION COMPARISON

(a) Bald - Fréchet Basis (b) Bald - GANSpace (v21, 2-4)

Figure 17: Comparison of Semantic Factorization on StyleGAN2-FFHQ between Fréchet basis
and GANSpace. (vi, l1-l2) denotes the layer-wise edit along the i-th GANSpace component at the
l1-l2 layers.
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(a) Smile - Fréchet Basis (b) Smile - GANSpace (v36, 4-5)

(c) Makeup - Fréchet Basis (d) Makeup - GANSpace (v0, 8-10)

(e) Bright BG vs FG - Fréchet Basis (f) Bright BG vs FG - GANSpace (v13, 8)

(g) Happy frizzy hair - Fréchet Basis (h) Happy frizzy hair - GANSpace (v21, 0-4)

Figure 18: Comparison of Semantic Factorization on StyleGAN2-FFHQ between Fréchet basis
and GANSpace. (vi, l1-l2) denotes the layer-wise edit along the i-th GANSpace component at the
l1-l2 layers.
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(a) Image contrast - Fréchet Basis (b) Image contrast - GANSpace (v37, 7-15)

(c) Coloring - Fréchet Basis (d) Coloring - GANSpace (v11, 5-6)

(e) Fluffiness - Fréchet Basis (f) Fluffiness - GANSpace (v27, 2-4)

(g) Sun direction - Fréchet Basis (h) Sun direction - GANSpace (v15, 8)

Figure 19: Comparison of Semantic Factorization between Fréchet basis and GANSpace. (vi,
l1-l2) denotes the layer-wise edit along the i-th GANSpace component at the l1-l2 layers. The image
traversals are performed on StyleGAN2 (LSUN Car, Horse, Cat, and Church).
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(a) Smile - Fréchet Basis (b) Smile - GANSpace (v44, 3)

(c) Smile - Fréchet Basis (d) Smile - GANSpace (v44, 3)

Figure 20: Comparison of Semantic Factorization between Fréchet basis and GANSpace. (vi,
l1-l2) denotes the layer-wise edit along the i-th GANSpace component at the l1-l2 layers. The image
traversals are performed on StyleGAN1-FFHQ.

(a) Glasses - StyleGAN1, FFHQ (b) Smile - StyleGAN1, FFHQ

Figure 21: Comparison of Supervised method (InterfaceGAN) and Unsupervised methods
(GANspace, Fréchet Basis). The first row shows the results of supervised method (InterfaceGAN
(Shen et al., 2020)), the second row shows GANspace results, and the last shows our traversing results
along Fréchet Basis.
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