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Abstract
Transformers have emerged as the dominant archi-
tecture in the field of deep learning, with a broad
range of applications and remarkable in-context
learning (ICL) capabilities. While not yet fully
understood, ICL has already proved to be an in-
triguing phenomenon, allowing transformers to
learn in context—without requiring further train-
ing. In this paper, we further advance the under-
standing of ICL by demonstrating that transform-
ers can perform full Bayesian inference for com-
monly used statistical models in context. More
specifically, we introduce a general framework
that builds on ideas from prior fitted networks
and continuous normalizing flows and enables
us to infer complex posterior distributions for
models such as generalized linear models and
latent factor models. Extensive experiments on
real-world datasets demonstrate that our ICL ap-
proach yields posterior samples that are similar in
quality to state-of-the-art MCMC or variational
inference methods that do not operate in con-
text. The source code for this paper is available
at https://github.com/ArikReuter/
ICL_for_Full_Bayesian_Inference

1. Introduction
In-context learning (ICL) has become a fundamental prin-
ciple in natural language processing (NLP) with large lan-
guage models (LLMs) as ubiquitous in-context learners.
The core principle of ICL is that a system adapts to a given
task based on information provided in its context. This en-
ables the system to address complex problems, such as ques-
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tion answering or text summarization, using a fixed model
without requiring any gradient-based fine-tuning, simply by
referencing the context. Thereby, ICL enables the genera-
tion of real-time solutions through a localized understanding
of data without explicit re-training (Dong et al., 2022; Garg
et al., 2022).

A fundamental benefit of ICL with LLMs is its versatility.
Almost every NLP task involving small data can be solved in
context using LLMs, while the performance often surpasses
existing baselines (Touvron et al., 2023; OpenAI, 2023; Anil
et al., 2023). Additionally, achieving this performance can
be very straightforward, requiring only suitably formulated
prompts in natural language. Excellent results across a broad
variety of tasks, combined with fast inference times and
ease of usability, have made in-context learning a machine
learning tool employed by millions of people (Eloundou
et al., 2023).

Furthermore, ICL has recently shown remarkable promise
for regression and classification tasks involving tabular data,
with tabular prior-data fitted networks (TabPFNs) dominat-
ing benchmarks alongside minimal prediction time (Holl-
mann et al., 2022; 2025; Hoo et al., 2024; Robertson et al.,
2024). While the internet serves as a suitable source for
the massive data needed to train in-context learners on text,
TabPFNs demonstrate that training on purely synthetic data
facilitates the development of in-context learners for tabular
data.

While PFNs perform Bayesian inference, they target a uni-
variate, typically discrete, posterior predictive distribution.
In numerous applications, however, high-dimensional and
continuous posteriors P z|x of (latent) variables z given
data x play a key role.1 This includes areas such as health-
care (Kyrimi et al., 2021; Abdullah et al., 2022; Etzioni &
Kadane, 1995), physics (Gebhard et al., 2025; Brehmer &
Cranmer, 2022; Dax et al., 2024), and neuroscience (Lueck-
mann et al., 2017; Sohn & Narain, 2021). We use the notion
of full Bayesian inference for methods yielding potentially
complex and high-dimensional posterior distributions—in
contrast to, for instance, methods that yield only the pos-

1We do not assume any specific form of z. That is, there can
be a single zj associated with each data point xj in x, but the case
where a single “global” z governs the behavior of each xj in x is
equally included in this notation.
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“Summarize this text: Once upon
a time there was a girl named...”

“Summary: The
fairytale is about...”
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(a) ICL for text summarization using LLMs.

Dataset x

x1 x2 . . . xK

. . .

. . .

(b) ICL for full Bayesian inference.

Figure 1: (a) An LLM generates a summary s1, s2, . . . of a text t1, t2, . . . , tK through autoregressive sampling while
referring to the context using masked self-attention. (b) A dataset x is processed with a transformer encoder. Subsequently,
cross attention allows generating samples from the posterior conditioned on x in context using a diffusion transformer
(decoder). The samples are generated by solving a neural differential equation defining a continuous normalizing flow.

terior predictive or point estimates of the posterior as, for
example Hollmann et al. (2022). However, performing full
Bayesian inference can be challenging, even for relatively
simple models such as generalized linear models (GLMs;
Nelder & Wedderburn, 1972). Two common issues when
performing full Bayesian inference include (a) slow infer-
ence time, particularly when using sampling-based methods
(Sommer et al., 2025; 2024), and (b) model misspecification.
Although potentially restrictive modeling assumptions are
often necessary to make Bayesian inference efficient or even
feasible, they can lead to suboptimal predictive performance
(Wang & Blei, 2019; Walker, 2013).

In this paper, we address the following question: Can
we leverage in-context learning to effectively perform full
Bayesian inference? In doing so, we aim to obtain an in-
context learner that can perform the mapping x 7→ P z|x for
a specific probabilistic model, and, analogous to LLMs, (a)
allows for the rapid generation of samples from a posterior
of interest during deployment and (b) can flexibly adapt to
a broad range of inputs, thereby overcoming issues arising
from model misspecification. More specifically, our ap-
proach combines a TabPFN encoder (Hollmann et al., 2022)
and a diffusion transformer-decoder (Peebles & Xie, 2023)
that is trained via flow matching (Lipman et al., 2022).

We present the results of our in-context learning approach on
extensive real-world and synthetic datasets in Section 4 and
discuss the challenges and the transformative potential of
in-context learning for full Bayesian inference in Section 5.

To summarize, our main contributions are as follows:

1. We develop, train, and examine a model that yields
samples from the posterior distribution P z|x given data
x as context without any (explicit) parameter updates or
parametric assumptions about the posterior.

2. To achieve this, we propose to use synthetic samples
from the joint distribution Px,z in order to train a large
transformer model that performs ICL regarding the pos-
terior P z|x, and provide a general framework to ana-
lyze the circumstances that enable learning P z|x purely
through samples from Px,z .

3. We then analyze the efficacy of our approach for GLMs
and latent factor models, namely Gaussian mixture mod-
els (GMMs) and factor analysis (FA). For these appli-
cations, we show that including the “prior” used for
TabPFNs results in reliably inferring posterior distribu-
tions on real-world data.

4. In a variety of experiments, we demonstrate that this ap-
proach yields posterior samples that are very similar to
those from a Hamiltonian Monte Carlo sampler. Further-
more, we find that the quality of the samples from our
ICL approach is preferable, when compared to various
popular VI techniques that do not operate in context.

5. Finally, we conduct ablation studies of our approach,
examining, for instance, alternative diffusion objectives
and Gaussian approximations in place of flow matching,
the model’s performance on out-of-distribution data, and
the impact of problem dimensionality.
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2. Related Work
Beyond the perspective of prior-data fitted networks, the
contribution of this work can be summarized from the view-
points of recent work on in-context learning, amortized
Bayesian inference, and, simulation-based inference.

In-Context Learning. ICL is a special case of meta-
learning (Hospedales et al., 2021) characterized by using
a large pre-trained model in order to learn from a context
dataset without explicitly updating task-specific parameters.
Several recent lines of work investigate the in-context learn-
ing capabilities of transformers (Garg et al., 2022; Ahuja
et al., 2023; Wang et al., 2024; Chan et al., 2022).

Garg et al. (2022) show that a model similar to GPT-2 can
implicitly implement various interesting function classes in
context. More specifically, the model learns to reproduce the
predictions of different statistical models such as (sparse)
linear functions, decision trees, and even two-layer neural
networks. This approach can be extended to multiple fam-
ilies of functions and even mixtures of tasks (Ahuja et al.,
2023). Kirsch et al. (2022) investigate ICL as a general prin-
ciple for meta-learning. However, the results by Garg et al.
(2022) and Ahuja et al. (2023) are restricted to relatively
small problem scales and scalar-valued predictions instead
of multivariate posterior distributions. Additionally, the ex-
periments are conducted exclusively on simulated data. In
contrast, our results show that (large) transformer models
can effectively learn multivariate posterior distributions over
latent variables in context on real-world datasets. Further-
more, the focus on latent-variable models naturally steers
our investigation toward unsupervised in-context learning,
where the primary objective is to uncover the underlying
structure of the data rather than to make predictions based
on input-target paris presented in the context.

Concurrently, Mittal et al. (2025a) conduct a comparative
analysis of amortized in-context Bayesian posterior estima-
tion methods, ablating over different optimization objectives
and architectural choices, and also reporting results on out-
of-distribution performance and flow-matching methods.
They focus on evaluating the posterior mean and down-
stream predictive performance, whereas we evaluate full
posterior distributions. In an analogous setup, Mittal et al.
(2025b) assess the effectiveness of learning point estimates
versus learning entire distributions in context for the goal of
predictive performance.

Amortized Inference. Amortized inference is a central
paradigm in the field of variational inference (Kingma, 2013;
Zhai et al., 2018; Kim et al., 2018; Margossian & Blei,
2023). A commonly used idea here is to model the posterior
distribution P z|x of latent variables z given a dataset x
via a factorized density p(z|x) ≈

∏K
j=1 qθ(zj |hϕ(xj)). In

contrast to our more general assumption, each datapoint
xj in x is assumed to have a corresponding latent variable
zj . While the parameter θ determines global aspects of the
variational distribution, the function hϕ is shared for all xj

and thus amortized across data x. Variational autoencoders
(Kingma, 2013; Rezende et al., 2014) and neural processes
(Garnelo et al., 2018a;b; Rudner et al., 2018) are important
model classes based on amortized inference.

In comparison, our ICL approach amortizes its parameters
on the level of datasets, such that a single functional re-
lationship is learned for a set D ⊂ (X × Z)N of datasets.
From this point of view, D = {(xi, zi)}Ni=1 comprising N
datasets xi ∈ X and the corresponding latent variables
zi ∈ Z can be seen as a “meta-dataset” for which we per-
form amortized inference. This is similar in nature to the
setup by Le et al. (2017), who use recurrent neural net-
works to “compile” inference based on execution traces of
probabilistic programs by training on simulated data.

Unlike in amortized variational inference, we do not use
the notion of an evidence lower bound (Blei et al., 2017) or
even the Kullback-Leibler divergence to learn the posterior,
but utilize ideas that also appear in the context of simulation-
based inference.

Simulation-Based Inference. Analogously to latent vari-
able models, some scientific simulations, for instance in neu-
roscience or astrophysics (Fan & Markram, 2019; Schmit &
Pritchard, 2018), allow to draw samples from the joint dis-
tribution Px,z of data and latent variable of interest. Amor-
tized posterior inference in this context is referred to as
simulation-based inference (SBI; Cranmer et al., 2020). Sev-
eral recent approaches focus on using neural networks to
directly infer aspects of the likelihood p(x|z), the poste-
rior P z|x or the joint distribution Px,z . More specifically,
techniques based on discrete normalizing flows (Dax et al.,
2021) or flow-matching (Wildberger et al., 2024) are used
to approximate the posterior P z|x, while (Gloeckler et al.,
2024) propose to use a transformer-based diffusion model in
order to approximate the joint distribution Px,z . In recent
work, Vetter et al. (2025) directly a pre-trained TabPFN to
auto-regressively sample P z|x leveraging ICL.

From a simulation-based inference viewpoint, we demon-
strate that sample-based posterior estimation can be used
for full Bayesian inference in complex scenarios arising in
commonly used latent variable models, and demonstrate the
effectiveness of this approach on real-world datasets.

3. In-Context Learning for Full Bayesian
Inference

Bayesian inference is a tool of central importance for count-
less applications. However, exact posterior inference can
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become computationally expensive when using sampling-
based methods (Hastings, 1970; Hoffman et al., 2014; Be-
tancourt, 2017) and even impossible when relying on fully
factorized VI methods, which can incur substantial approxi-
mation errors (Bishop et al., 2002; Blei, 2012; Margossian
& Blei, 2023). Amortized variational inference can alleviate
those issues but typically requires the development of spe-
cialized and complex modeling frameworks (Kingma, 2013;
Srivastava & Sutton, 2017; Garnelo et al., 2018b; Lin et al.,
2021). Another issue with variational inference arises from
having to choose a variational distribution. While insuffi-
cient flexibility in this respect can lead to overly simplistic
posteriors, a too flexible variational distribution might over-
fit the given data (Cremer et al., 2018).

We propose a simple and effective solution based on ideas
from ICL, which can be seen as conducting amortized infer-
ence on a dataset level. Training a model on a potentially
unlimited amount of synthetic datasets yields an in-context
learner that can not only approximate a vast, almost arbitrar-
ily large, class of distributions but is also highly efficient
when used for sampling. Furthermore, this does not incur
the same issues with overly or insufficiently flexible distri-
bution assumptions that are present in VI. More specifically,
empirical results show that a major strength of TabPFN, for
instance, is its ability to adapt flexibly to the complexity of
the problem at hand, thus removing the need for extensive
hyperparameter tuning (Hollmann et al., 2022).

In the following, we describe a sufficient general condi-
tion, as well as a specific framework that allows to train
probabilistic in-context learners on simulated data.

The idea underlying the proposed approach is founded on
two observations relating to full Bayesian inference and the
working principle of PFNs: First, many Bayesian models
have a generative formulation that allows the simulation of
arbitrarily large amounts of training samples from the joint
distribution Px,z . We assume that samples from Px,z com-
prise a dataset x = {xj}Kj=1 containingK samples xj ∈ X
and a corresponding (latent) variable z ∈ Z .2 This joint
distribution Px,z corresponds to the “prior” in PFNs and
allows the training of a large neural network that implicitly
learns to perform Bayesian inference. Second, Bayesian
inference is especially useful for smaller datasets x that can
be processed in a single forward pass. This makes an entire
dataset a viable context for Bayesian ICL.

More specifically, the central goal is to develop a method
allowing to infer the posterior distribution P z|x of latent
variables z ∈ Z , given observations x ∈ X using ICL.
From a supervised-learning perspective, we thus aim to

2We do not assume any specific form of z. That is, there can
be a single zj associated with each data point xj in x, but the case
where a single “global” z governs the behavior of each xj in x is
equally included in this notation.

directly learn the mapping f0 : X → M(Z),x 7→ P z|x,
whereM(Z) is the space of all probability measures. There-
fore, we want a model fθ(x) = Q

z|x
θ for the posterior

to be as close as possible to the true posterior P z|x =
f0(x). We measure “closeness” w.r.t. some divergence d :
M(Z)×M(Z)→ [0,∞). When considering the expected
divergence over data samples x ∼ Px, this gives rise to
the following objective: Rθ := Ex∼p(x) [d (fθ(x), f0(x))],
which can also be directly expressed as

Rθ = Ex∼p(x)

[
d
(
Q

z|x
θ , P z|x

)]
. (1)

Note that we use the notion of a divergence d loosely to refer
to any measure of similarity of two distributions. Although
Rθ itself is usually intractable, specific choices of d and
the use of the joint distribution Px,z make Equation (1)
accessible via

∼
Rθ:= Ex,z∼p(x,z) [Ld(x, z, θ)] , (2)

where the loss function Ld depends on d and the structure
of Qz|x

θ (discussed in detail later). Performing empirical
risk minimization for

∼
Rθ with samples from the joint dis-

tribution Px,z then corresponds to learning to approximate
P z|x. The model for the posterior P z|x is thereby only
implicitly defined by the joint distribution Px,z . While this
requires the ability to sample from Px,z , drawing samples
from the joint distribution is often a weak requirement in
terms of model specification that immediately follows from
specifying the generative process of a model. Furthermore,
a simple sufficient condition that follows directly from the
law of total expectation implies the equivalence ofRθ and
∼
Rθ:

Proposition 1. Let d(Qz|x
θ , P z|x) =

∫
γ
(
Q

z|x
θ

)
dP z|x

for some measurable functional γ :M(Z)→ R.
ThenRθ =

∼
Rθ with Ld(x, z, θ) = γ

(
Q

z|x
θ

)
.

For instance, choosing d to be the forward Kullback-Leibler
divergence dKL(Q

z|x
θ , P z|x) = DKL [p(·|x)||qθ(·|x)] im-

plies that LdKL(x, z, θ) = − log qθ(z|x) + const. (Müller
et al., 2021). In this case, minimizing

∼
Rθ thus directly cor-

responds to performing maximum likelihood inference on
samples from Px,z .

3.1. Defining the Form of the Posterior

To learn the posterior distribution P z|x in context, we use
the framework of flow matching (Lipman et al., 2022). More
specifically, we utilize continuous normalizing flows (CNFs)
to specify and ultimately sample from P z|x. CNFs, cur-
rently excelling in the field of image synthesis (Esser et al.,
2024), do not only allow to flexibly learn almost arbitrary
distributions, but are also found to be more sample-efficient
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in training than for instance diffusion objectives (Lipman
et al., 2022; Wildberger et al., 2024). Furthermore, unlike
discrete normalizing flows (Papamakarios et al., 2021a),
CNF objectives do not limit the architecture of the used neu-
ral network, allowing to incorporate complex conditioning
on the data x in addition to flexibly modeling the posterior,
which is a crucial aspect of our ICL framework. Refer to
Appendix D for more information on CNFs.

3.1.1. NORMALIZING FLOWS

The key idea of modeling a distribution P z|x with normal-
izing flows (see, e.g., Papamakarios et al., 2021b), which
are the basis of CNFs, is to assume that P z|x is the result of
“pushing forward” a simple base distribution PB into P z|x

using a conditional flow ψθ(·|x):

P z|x ≈ [ψθ(·|x)]♯PB. (3)

Therefore, one assumes that samples from P z|x are gener-
ated by first drawing z(0) ∼ PB, and then applying ψθ(·|x),
such that ψθ(z

(0)|x) ∼ P z|x. The base distribution PB
is commonly set to be a standard normal distribution, i.e.,
PB = N (0, I). The conditional flow ψθ(·|x) is the object
to be learned, such that our model of P z|x is defined as
Q

z|x
θ := [ψθ(·|x)]♯PB.

3.1.2. CONTINUOUS NORMALIZING FLOWS

In flow matching (Lipman et al., 2022), which we will use
to obtain an in-context learner for full Bayesian inference,
the normalizing flow ψθ(·|x) is implicitly defined via a
(conditional) vector field vθt,x of an ordinary differential
equation (ODE):

d

dt
ψθ,t(z|x) = vθt,x(ψθ,t(z|x)), ψθ,0(z|x) = z, (4)

where 0 ≤ t ≤ 1. The first condition d
dtψθ,t(z|x) =

vθt,x(ψθ,t(z|x)) means that vθt,x describes the change in
ψθ,t(z|x) at time t, and the second condition ψθ,0(z|x) =
z implies that initially the flow is just the identity. The fam-
ily of vector fields vθt,x is parameterized by a neural network
whose parameters θ will be learned. In order to ultimately
compute the flow vθ1,x, that yields Qz|x

θ = [ψθ,1(·|x)]♯PB,
a numerical ODE solver can be used to forward-solve the
ODE, which ultimately corresponds to evaluating ψ1,x at
a data point z(0) ∼ PB. This construction implies very
generic assumptions regarding the structure of Qz|x, which
include the existence of a density of the target distribu-
tion wrt. the Lebesgue measure, and the assumption that
P z|x can be represented by a mixture distribution over the
marginal probability paths at time point t = 1 (Lipman
et al., 2022). Please note that the mathematical understand-
ing of Flow Matching, its properties and assumptions, are
still actively researched (Wildberger et al., 2024).

Assuming Gaussian conditional probability paths with an
optimal-transport mean- and variance-function (Lipman
et al., 2022), one obtains the following discrepancy measure
dCFM between Qz|x

θ := [ψθ,1(·|x)]♯PB and P z|x:

dCFM

(
Q

z|x
θ , P z|x

)
:=

E
[∣∣∣∣∣∣vθt,x(γt(z(1)|z(0)))− (z(1) − ωz(0))

∣∣∣∣∣∣2
2

]
, (5)

where the expectation is taken w.r.t. to three random vari-
ables: a uniform time-step t ∼ U([0, 1]), samples from
the base distribution z(0) ∼ PB, and samples from the
ground-truth conditional distribution z(1) ∼ P z|x. We de-
fine γt(z(1)|z(0)) := (1− ωt)z(0) + tz(1).

We refer to (Wildberger et al., 2024) for mathematical results
on the relationship of dCFM and the (forward) Kullback-
Leibler divergence. The hyperparameter ω = 1 − σmin,
where σmin is the variance at time t = 1 in the Gaussian
conditional probability paths, appears to have negligible in-
fluence when set to a value sufficiently close to one (Lipman
et al., 2022).3

In order to make optimizing

Ex∼p(x)

[
dCFM

(
Q

z|x
θ , P z|x

)]
(6)

tractable, and thus train our in-context learner, we make
use of the sufficient condition in Proposition 1. Thus, the
divergence dCFM admits the re-formulation as an objective
∼
Rθ using samples from the joint distribution Px,z . We can
therefore optimize

∼
Rθ using N independent and identically

distributed (i.i.d.) samples ti ∼ U([0, 1]) from the time-
distribution, z(0)

i ∼ PB from the base distribution, and
(z

(1)
i ,xi) ∼ Px,z from the joint distribution. With this, we

obtain the following objective function used for the training
of the ICL models:

R̂θ =

N∑
i=1

∣∣∣∣∣∣vθti,xi
(γti(z

(1)
i |z

(0)
i )) + z

(1)
i − ωz(0)

i

∣∣∣∣∣∣2
2

(7)

3.2. Sampling from the Joint Distribution

In order to learn a model that can perform posterior in-
ference according to Section 3.1, we require to sample
(x, z) ∼ Px,z . Given p(x, z) = p(x|z)p(z), this is al-
ways possible as long as one can draw samples from P z and
then from Px|z . Hence, this is a relatively weak require-
ment allowing for a broad variety of priors and observation
models. More specifically, for ICL, we generate a training
dataset D which comprises i.i.d. samples {(xi, zi)}Ni=1 re-
sulting from sampling zi ∼ P z and then xi ∼ Px|zi . We

3In our experiments, we follow (Wildberger et al., 2024) and
set ω := 1− 10−4 for all experiments.
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use this simple yet fundamental and very general template
to generate samples from the joint Px,z for GLMs, factor
analysis (FA), and Gaussian mixture models (GMMs) in
our later applications. Please refer to Appendix A for more
details on the data generating processes.

3.3. The Architecture

In order to implement the idea of learning full Bayesian
inference in context, we extend ideas of diffusion trans-
formers (Peebles & Xie, 2023), where the conditioning on
the time t is implemented via adaptive layer norm (adaLN)
blocks initialized as the identity function. As we potentially
require complex conditioning on the data x, an additional
transformer encoder is added. The input to the decoder is a
vector in the form (1− ωt)z(0) + tz(1), which is treated as
a sequence with length one and processed by a transformer
decoder without self-attention, but the adaLN blocks. There-
fore, the decoder has an equivalent interpretation as a multi-
layer perceptron with skip-connections, cross-attention, and
adaptive layer normalization. For the final processing in the
decoder, only conditional feedforward layers with adaptive
layer normalization are used. This corresponds exactly to
the architecture of the decoder before, albeit without cross
attention. We call this part an “MLP with Conditioning”.
Samples for the time t ∈ [0, 1] are mapped onto a condi-
tioning vector using several fully connected layers, which
yields a richer representation of t that is well-suited as an
input to the adaLN blocks. Figure 2 depicts of the resulting
architecture.

3.4. Implementing Flow Matching

During the training phase, a tuple (z(1),x) is drawn from
the distribution P z,x. Additionally, a time step t ∼ U [0, 1]
and a sample z(0) is drawn from the base distribution PB,
which is a standard Gaussian for all our applications. Sub-
sequently, the ground-truth conditional flow ψ(z(0)|x) =
(1− ωt)z(0) + tz(1) is computed, pushing forward PB into
P z|x up to time-point t. The transformer encoder processes
x and the decoder takes the representation of the encoder
into account in order to output vθt,x(ψ(z

(0)|x)). This output
should match the vector field that describes how the ground-
truth flow ψ(z(0)|x) continues at time t. The discrepancy to
the ground-truth vector field is measured with the MSE-loss
in Equation (7).

In the sampling phase, we are given x and the goal is to
sample from P z|x. To do so, first a vector z(0) ∼ PB is
drawn. The data x is passed through the encoder. The
decoder defines a function that maps a time-point t and a
vector ν onto a vector field: (t,ν) 7→ vθt,x(ν) taking x into
account. This function is given to an ODE-solver in order
to forward-solve the corresponding ODE with boundary
conditions 0 ≤ t ≤ 1.

Encoder

x

MLP

t(1− ωt)z(0) + tz(1)

Norm
Scale and Shift

Cross Attention

Scale

+

Norm
Scale and Shift

Feed Forward

Scale

+

MLP with Conditioning

vθt,x((1− ωt)z(0) + tz(1))

Nlayers×

Figure 2: Architecture to perform ICL for full Bayesian
inference. A relatively large transformer encoder, similar to
that in TabPFN (Hollmann et al., 2022) processes a dataset
x and yields a representation used in the decoder. The
decoder outputs a vector field defining a flow for a given
input vector conditioned on the encoder output and the time.
We condition on the time in each cross-attention and each
feed-forward block. Please note that the size of the parts
of the architecture does not correspond to the number of
allocated parameters in this figure.

4. Experiments
To show that the proposed methodology is not just an ab-
stract concept, we derive exemplary use cases that demon-
strate how well ICL is able to keep up with MCMC and VI
approaches in practice.

For this, we will use two prominent statistical modeling
classes, namely generalized linear models (GLMs) and la-
tent factor models. For the latent factor models, we consider
factor analysis (FA) and Gaussian mixture models (GMMs).

Modeling Scenarios. We use seven different scenarios
for the GLMs, where we vary the prior distribution on the
parameters, the conditional distribution of the response, and
whether an intercept is included. For FA, we vary the form
of the priors and dimensionalities of variables leading to
four different scenarios. For the GMMs, we investigate
different dimensionalities as well as prior configurations
also in four different scenarios. We refer to Appendix A for
details on the model structure and scenarios.
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Table 1: Summarized results for GLMs. Average perfor-
mance of VI methods and our ICL approach on 50 synthetic
and 17 real-world datasets across 7 different GLM scenarios.
Comparison to the analytical solution when available and
HMC otherwise. Lower is better for all metrics. The best
average result is marked in bold.

Model
Synthetic Real-World

C2ST MMD W2 C2ST MMD W2

LA 1.000 2.770 2.049 1.000 2.091 0.849
VI: Diagonal 0.869 1.586 1.742 0.819 0.583 0.529
VI: Full 0.714 1.016 1.601 0.668 0.116 0.374
VI: Structured 0.711 0.929 1.580 0.664 0.109 0.370
VI: IAF 0.784 1.648 2.349 0.732 0.516 0.680
ICL (ours) 0.657 0.183 0.556 0.648 0.090 0.387

For our experiments, we train a separate model from scratch
for each GLM, GMM, and FA scenario using synthetic
samples from the joint distribution Px,x; i.e. we train seven
separate models to cover the GLM scenarios, six separate
models for the FA scenarios and four separate models for
the GMM scenarios. Please refer to Appendix B for more
details.

Datasets. We evaluate the methods on 50 synthetic
datasets and 17 real-world datasets from a benchmark suite
for tabular regression problems proposed by Grinsztajn et al.
(2022). We refer to Appendix C for more details on the
preprocessing of the datasets.

Methods. Apart from a comparison with a gold standard,
we compare our ICL approach to a Laplace approximation
(LA; Daxberger et al., 2021) and different established VI
methods based on automatic differentiation VI (Kucukel-
bir et al., 2017). For the variational distribution, we use a
normal distribution with 1) a diagonal and 2) a full covari-
ance matrix, as well as 3) a structured normal distribution
with linear dependencies between the latent variables, and
4) an approach based on inverse autoregressive flows (IAF;
Kingma et al., 2016). Appendix F includes a discussion
regarding the hyperparameters of all considered methods.

Evaluation Process. For every synthetic and real-world
dataset, 1000 posterior samples from each method are com-
pared against samples from the analytical solution, if avail-
able, or from a Hamiltonian Monte Carlo (HMC) sampler
with a NUTS kernel (Hoffman et al., 2014) as the gold
standard. If posteriors are unimodal, we run a single chain.
In the multimodal case, we use three times the number of
modes as the number of Markov chains.

Evaluation Metrics. Three metrics are employed to com-
pare samples from different approximations of the poste-

Table 2: Results for GLMs. Real-world Evaluation on 17
datasets: Linear regression with a gamma prior on the coef-
ficients β, and an inverse gamma prior on the variance σ2

of the responses (scenario 5). Comparison to HMC samples.
All results within two standard errors of the best average
result are marked in bold.

Model C2ST MMD W2

LA 1.000 (± 0.000) 1.982 (± 0.126) 0.623 (± 0.084)
VI: Diagonal 0.810 (± 0.036) 0.441 (± 0.252) 0.384 (± 0.089)
VI: Full 0.711 (± 0.038) 0.148 (± 0.093) 0.279 (± 0.056)
VI: Structured 0.705 (± 0.032) 0.140 (± 0.081) 0.269 (± 0.045)
VI: IAF 0.777 (± 0.106) 0.684 (± 0.939) 0.625 (± 0.525)
ICL (ours) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

rior distribution. The first metric is a classifier 2-sample
test (C2ST; Lueckmann et al., 2021; Lopez-Paz & Oquab,
2016), where the ROC-AUC score of a random forest classi-
fier, trained to distinguish between samples from the gold
standard and the method in question, is utilized. For random
forest, we use default hyperparameters, as defined in Scikit-
learn (Pedregosa et al., 2011) and 10-fold cross-validation.
We use a random forest with the given hyperparameters as a
highly performative classifier in order to detect small devia-
tions in distributions, even though this incurs the risk that
the C2ST quickly saturates at a value of one, especially in
high-dimensional cases. The second metric is the maximum
mean discrepancy (MMD) between the two distributions
(gold-standard and each tested method) with an exponential
kernel (Gretton et al., 2012). The third metric is the empir-
ical Wasserstein-2 distance (W2; Givens & Shortt, 1984)
of the two distributions, as implemented in the POT library
(Flamary et al., 2021).

4.1. Generalized Linear Models

Across seven different variants of GLMs, we find that ICL
yields samples that have overall the highest agreement with
the gold standard (see Table 1). Specifically on the synthetic
datasets, the C2ST, MMD andW2 metrics indicate that the
posterior distribution can be approximated more accurately
with ICL than via variational inference.

Particularly in cases where the posterior has a shape deviat-
ing from a normal distribution, ICL and HMC agree more
closely than VI. For instance, in the case where a gamma
prior, i.e. a skewed distribution, is used on the coefficients
of a regression model, we find that ICL substantially outper-
forms VI both on synthetic and real-world data (see Table 2).
On the real-world data, ICL still matches the performance
of VI methods and has the best (or not significantly worse
than the best) performance in terms of C2ST in four out of
seven cases (see Table 2). Please refer to Appendix I for the
detailed experimental results summarized in Table 1.
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Table 3: Summarized results for FA. Average performance
of VI methods and our ICL approach on 50 synthetic and
17 real-world datasets across 6 different FA scenarios. Com-
parison to HMC samples. Lower is better for all metrics.
The best average result is marked in bold.

Model
Synthetic Real-World

C2ST MMD W2 C2ST MMD W2

LA 1.000 4.115 2.543 1.000 4.127 0.597
VI: Diagonal 0.999 3.321 1.998 0.960 1.220 0.288
VI: Full 0.993 3.222 1.955 0.950 1.173 0.281
VI: Structured 0.995 3.404 2.079 0.955 1.189 0.283
VI: IAF 0.987 3.226 1.973 0.902 0.969 0.251
ICL (ours) 0.568 0.057 0.409 0.751 0.673 0.583

4.2. Factor analysis

On the factor analysis tasks, ICL has notably lower dissim-
ilarity scores compared to the gold standard than all other
considered methods in the synthetic evaluation (Table 3).
Notably, an average C2ST score of 0.568 is remarkably
close to the theoretical lower bound of 0.5. Regarding the
real world datasets, C2ST and MMD indicate that our ICL
approach yields samples most similar to the reference, while
the average W2 score is substantially higher. We hypoth-
esize that this discrepancy in the metrics might be caused
by numerical issues when computing the empiricalW2 dis-
tance. Furthermore, the relatively high number of latent
variables in comparison to the limited number of data-points
can yield overly flexible assumptions on the variational pos-
terior causing the VI methods to overfit. See Appendix I for
the detailed experimental results summarized in Table 3.

4.3. Gaussian Mixture Models

Full Bayesian inference for GMMs is more challenging than
for GLMs or FA. First, the generative process of GMMs
involves discrete assignments to clusters, which poses a
challenge not only for NUTS, but especially for VI methods.
Second, the dimensionality of the posterior samples can be
relatively large since for diagonal normal distributions, each
component of the mixture has a mean and a variance param-
eter per dimension. Finally, the considered GMMs are not
identifiable leading to multi-modal posterior distributions,
which are impossible to perfectly approximate with com-
monly used VI methods based on Gaussian approximations.

Due to this inherent difficulty of the GMM scenarios, we
find the overall performances of all models to be worse than
in the GLM and FA cases. In particular, the C2ST metric is
almost saturated for the VI approaches and has a value of
around 83 percent for ICL (Table ??). The MMD andW2

metrics also indicate that ICL yields samples with higher
agreement with the reference than the other approaches on
synthetic data. A plot of the marginals of the posterior

Table 4: Summarized Results for GMMs. Average perfor-
mance of VI methods and our ICL approach on 50 synthetic
and 17 real-world datasets across 4 different GMM scenar-
ios. Comparison to HMC samples in all cases. The best
average result is marked in bold.

Model
Synthetic Real-World

C2ST MMD W2 C2ST MMD W2

LA 1.000 3.916 8.324 1.000 3.385 12.740
VI: Diagonal 0.994 2.676 7.938 0.992 2.182 11.633
VI: Full 0.995 2.556 7.947 0.987 2.143 11.696
VI: Structured 0.994 2.595 7.929 0.988 2.129 11.521
VI: IAF 0.985 2.308 7.489 0.957 1.845 11.541
ICL (ours) 0.825 0.706 4.348 0.881 1.051 10.691

shows high agreement between the posterior distributions
of both HMC and ICL while VI is incapable of perfectly
approximating a bimodal distribution and exhibits typical
mode-seeking behavior (Figure 3). Note that also the VI
approach based on inverse autoregressive flows, which in
theory allows flexible modeling of a wide range of posterior
shapes, fails to learn the bi-modality accurately from the
limited number of 50 data points in this GMM scenario. This
demonstrates the strength of our ICL approach in flexibly
learning distributions agnostic of the provided sample size.
Please refer to Appendix I for the detailed experimental
results summarized in Table 4.

4.4. Ablations and Further Experimental Results

In this subsection, we present various ablations concerning
our ICL approach to full Bayesian inference. Due to limited
space, most of the results are deferred to the appendix.

Alternatives to Flow Matching. Appendix L contains
results from an ablation study using diffusion objectives
instead of flow matching, while Appendix K investigates
the use of a multivariate Gaussian to parametrize Qz|x

θ . The
empirical results from these ablations strongly indicate that
flow matching is essential for achieving a close approxi-
mation of the gold-standard posterior in the scenarios we
consider.

Dimensionality. In addition, we investigate the effect of
the dimensionality K of the latent variable z ∈ RK for all
seven different GLM scenarios. The key takeaway from
our results is that for K = 20 and K = 50, the ICL ap-
proach performs comparably to the other methods in terms
of sample similarity to HMC, but does not outperform them.
Please refer to Appendix O for more details. We hypothe-
size that a key reason for the failure to detect meaningful
differences between the methods in high dimensions is due
to the curse of dimensionality affecting our metrics.
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Figure 3: Density plots for the marginals of the posterior
for GMM scenario 1. Comparison to HMC samples on a
synthetic dataset whose density is depicted as a dotted line.
Only the marginals of the first two components of the mean
and the variance are shown. The density of the posterior
obtained via HMC is depicted as a dotted line. While the
ICL method aligns with the gold-standard HMC, the VI
methods have a lower level of agreement and exhibit mode-
seeking behaviour.

Out-of-distribution Performance. We further investigate
the robustness of our method under mild distribution shifts
in Appendix N. Our results indicate that the performance
of our ICL method remains relatively stable for small dis-
tribution shifts, but increasingly degrades for a larger gap
between the training and testing distribution.

Predictive Performance. Additionally, we evaluate our
ICL method and all variational approaches with respect to
the predictive performance of the considered GLM setups
in Appendix J. Results confirm the strong performance of
variational inference methods in terms of point prediction,
especially for high dimensionalities, while the ICL method
is generally competitive.

Architecture. Appendix M discusses results regarding
the effect of using an MLP-based architecture. Our experi-
mental findings confirm that the transformer-based encoder
performs significantly better than an equally sized MLP
encoder.

The Classifier in the C2ST Metric. Finally, we validate
the choice of a random forest classifier for the C2ST metric
(Appendix Q). We find that employing a nonlinear neural
network and utilizing a random forest yields an overall anal-
ogous picture in terms of the performance of all methods.

5. Discussion
This paper explores in-context learning for the purpose of
full Bayesian inference in latent variable models. We pro-
pose to use conditional flow matching as a generic and
flexible framework to approximate posterior distributions
and an architecture that utilizes a transformer encoder for po-
tentially complex conditioning on the data. We find that our
ICL approach yields a closer approximation of the posterior
than several state-of-the-art variational inference methods
across different datasets and model setups. This does not
only hold for synthetic, but also real-world tabular datasets.

Limitations. While our experiments indicate the effective-
ness of ICL as a Bayesian inference method, it requires an
extensive up-front training routine on modern GPU hard-
ware. Despite ICL being consistently faster at inference
time than the considered HMC methods, the overall compu-
tational burden to train our approach is much higher.

Furthermore, the goal of this work is to show that ICL can
effectively learn full Bayesian inference. Our experiments
therefore focus on relatively simple posterior distributions
where we can compare against established methods, such as
HMC. Additionally, increased dimensionality of the prob-
lems considered poses a challenge to both the ICL method
and the metrics we employ. Further, as with many other
ICL approaches, large datasets as a context can become
computationally very expensive.

Outlook and Future Work. Despite its vast up-front com-
putational cost, ICL has not only proven fundamentally
transformative in the field of NLP (Brown et al., 2020; Tou-
vron et al., 2023), but has recently started to transform the
field of tabular machine learning (Hollmann et al., 2022).
Exploring the frontiers of ICL in terms of full Bayesian
inference, starting from the feasibility results of this work,
might therefore lead to similarly fertile territories.

Although ICL performs well even when trained on data that
may differ from real-world distributions, its flexibility is
limited by the structure of the training data. If the synthetic
data is highly unrealistic, ICL may fail— much like any
model with a misspecified hypothesis space that imposes an
unsuitable inductive bias.

While flexible state-of-the-art sampling-based methods,
such as HMC, serve as an efficient and highly effective
reference in terms of inference for standard and statistical
methods discussed in this paper, the proposed ICL approach
is fundamentally more general in nature. In particular, any
probabilistic model for which a generative process is con-
ceivable can be fitted using our ICL approach—the potential
for fitting models beyond the horizon of standard Bayesian
methods is therefore manifold.
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Appendix

A. Data-generating Processses
This section contains more details on the data generating processes of the latent variable models we fit via ICL.

A.1. Generalized Linear Models

In this section we expand the description and explanation regarding GLMs from Section 3.2. GLMs are among the most
commonly used statistical models with myriads of applications (Nelder & Wedderburn, 1972; Fahrmeir et al., 2013). In the
context of GLMs, we assume that the response y follows a distribution P y|u depending on the linear predictor η := u⊤β
and an additional parameter σ2. We denote the covariates as u, the regression coefficients as β, and use σ2 for the variance
of the response. The mean of P y|u depends on the linear predictor via a link function g, such that g (E[y|u]) = u⊤β.
Ultimately, the density of distribution of the response y depending on the linear predictor and the additional parameter is
denoted by p(y|g

(
u⊤β

)
, σ2). To showcase the flexibility of our framework, we experiment with different priors P β on the

regression coefficients, Pσ2

on the parameter σ2, and also different parametric distributions of the response. Additionally,
to include covariates u that resemble practically relevant tabular data in the generative process, allowing for meaningful
inference on real-world datasets, we utilize samples from the Tab-PFN “prior” for Pu.

GLMs belong to the framework of latent variable models defined by data x and (latent) variables z, where the data comprises
covariates and response x := (u, y). The variables of interest are the coefficients z := β. This yields the following
generative process for a set of synthetic samples D := {(xi, zi)}Ni=1 from Px,z:

We consider seven different GLM scenarios by varying the structure of the prior distributions and the conditional distribution
of the response (Table 5). In particular, we consider a normalN (0, 1) prior, a Laplace(0, 1) and a gamma Ga(1, 1) prior that
factorizes over the coefficients βj contained in β = (β1, . . . , βp). In two cases we include an intercept in the model using a
normal prior N (0, 9) with a relatively large variance. We consider regression cases with a normally distributed response
N (u⊤β, σ2), a Bernoulli distributed response Bin(1, sigmoid(u⊤β)), i.e. logistic regression, and a response following
a gamma distribution Ga(σ−2 exp (u⊤β), σ−2 exp(2u⊤β)). In the last case, we set exp(u⊤β) to be the mean and σ2 to
be the conditional variance of the response. An inverse gamma prior IG(5, 2) is used on the variance σ2 for each scenario
except the logistic regression. We fix the number of covariates and thus also the dimensionality of β at p = 5 and set the
number of data points per dataset to K = 50.

Algorithm 2 Generation of synthetic data for GLMs

Require: Number of datasets N , number of samples per dataset K, distributions Pβ, Pσ2

, Pu,
Ensure: A dataset D of input-output pairs (xi, zi) for i = 1, . . . , N .

1: Initialize D ← ∅
2: for i = 1→ N do
3: Draw βi ∼ Pβ

4: Draw σ2
i ∼ Pσ2

5: for j = 1→ K do
6: Draw ui,j ∼ Pu

7: Draw yi,j ∼ p
(
y
∣∣ g−1

(
u⊤
i,jβi

)
, σ2

i

)
8: end for
9: Set xi :=

(
(ui,j , yi,j)

)K
j=1

10: Set zi := βi

11: Update D ← D ∪ {
(
xi, zi

)
}

12: end for
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Table 5: Distribution of variables for the considered GLM scenarios.

Scenario βi,j βi,0 σ2
i yi,j |(ui,j ,βi, β0,i, σ

2
i )

Scenario 1 N (0, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2 N (0, 1) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 3 Laplace(0, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 4 Laplace(0, 1) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 5 Ga(1, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 6 N (0, 1) - - Bin(1, sigmoid(u⊤
i,jβi))

Scenario 7 N (0, 1) - IG(5, 2) Ga(σ−2
i exp (u⊤

i,jβi), σ
−2
i exp(2u⊤

i,jβi))

A.2. Factor Analysis

The goal of factor analysis is to explain data x in terms of latent, typically lower-dimensional, factors z (Lawley & Maxwell,
1962; Rummel, 1988). In the Bayesian setting, one assumes a prior P z on the latent variable z, a prior PW on the factor
loading matrix W and additional priors PΨ and Pµ on the covariance matrix and the mean vector. The conditional
distribution P z|x of the data given z has mean E[z|x] = Wz + µ and covariance matrix Cov[z|x] = Ψ. In the case
where P z and P z|x are Gaussian, one can set P z = N (0, I) and assume a diagonal covariance matrix Ψ without loosing
expressiveness of the model (Murphy, 2023). We make the assumption that W is lower triangular with positive entries
on the diagonal in order to ensure identifiability of the model (Lopes & West, 2004). Additionally, we assume that the
distributions µ, Ψ and PW fully factorize. In order to ensure that the diagonal of W is positive, we consider absolute
values in the generative process. Algorithm 3 details the data generating process.

Table 6 summarizes the different configurations for FA. We assume a Gaussian prior on the mean components, and an
inverse gamma prior on the elements of the diagonal covariance matrix Ψ. For the factor loading matrix W , independent
normal and Laplace priors are investigated. Furthermore, we use a normal prior on the latent factors zi in five cases and a
Laplace prior in one case. We vary the number of samples K per dataset x, the dimensionality P of each data point, as well
as the dimensionality zdim.

Table 6: Distribution and dimensionalitites of variables for the considered FA scenarios.

Scenario K P µi,j Ψi,j,j Wi,j,k zi,j zdim
Scenario 1 50 3 N (0, 1) IG(5, 1) N (0, 1) N (0, 1) 3
Scenario 2 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 10) N (0, 1) 3
Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 3) N (0, 1) 3
Scenario 4 25 15 N (0, 0.1) IG(5, 2) N (0, 3) N (0, 1) 5
Scenario 5 25 5 N (0, 0.1) IG(5, 2) Laplace(0, 3) N (0, 1) 3
Scenario 6 25 5 N (0, 0.1) IG(5, 2) N (0, 3) Laplace(0, 1) 3

Algorithm 3 Generation of synthetic data for FA

Require: Number of datasets N , number of samples K, and distributions Pµ, PΨ, PW , P z .
Ensure: A dataset D containing (xi, zi) for i = 1, . . . , N .

1: Initialize D ← ∅
2: for i = 1→ N do
3: Draw µi ∼ Pµ

4: Draw Ψi ∼ PΨ

5: Draw Wi ∼ PW

6: Draw zi ∼ P z

7: for j = 1→ K do
8: Draw xi,j ∼ N

(
Wi zi + µi, Ψi

)
9: end for

10: Update D ← D ∪ {
(
xi, zi

)
}

11: end for
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A.3. Gaussian Mixture Models

Table 7: Distribution and dimensionalitites of variables for the considered GMM scenarios.

Scenario K M L ϕi σ2
i,m,l µi,m,l|σ2

i,m,l

Scenario 1 50 5 1 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2 25 3 3 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 3 50 3 5 Dir(0.5) IG(5, 2) N (0, 5σ2
i,m,l)

Scenario 4 50 3 3 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

In GMMs one assumes that the data of interest is generated by a convex combination ofM (multivariate) normal distributions,
such that p(x|z) =

∑M
m=1 ϕmpm(x), where the probability vector ϕ = (ϕ1, . . . , ϕM ) comprises the mixture weights and

pm denotes the m-th mixture component. We consider pm to take the form of a diagonal Gaussian with mean vector µm

and covariance matrix with diagonal elements σ2
m. We assume a prior Pϕ on ϕ, a prior Pσ2

on the variances of each
component and a prior Pµ|σ2

for the means that depends on the variance of the respective component. More specifically,
we assume a symmetric Dirichlet prior on ϕ such that Pϕ = Dir(αDir) and an independent inverse gamma distribution as
prior on each component σ2

m of σ2
m. The prior on each component of µi,m ∈ RL is then given by an independent normal

distribution Pµ|σ2
i,m,l = N (0, λσ2

i,m,l). We use ωi,j to denote the assignment of datapoint j a component. Algorithm 4
details the data generating process and Table 7 summarizes the different setups regarding the prior distributions.

Algorithm 4 Generation of synthetic data for a GMM.

Require: Number of datasets N , mixture dimension parameters M , L, number of samples K, and distributions
Pϕ, Pσ2

, Pµ|σ2

.
Ensure: A dataset D containing (xi, zi) for i = 1, . . . , N .

1: Initialize D ← ∅
2: for i = 1→ N do
3: Draw ϕi ∼ Pϕ

4: for m = 1→M do
5: for l = 1→ L do
6: Draw σ2

i,m,l ∼ Pσ2

7: Draw µi,m,l ∼ Pµ|σ2
i,m,l

8: end for
9: end for

10: for j = 1→ K do
11: Draw ωi,j ∼ Cat

(
ϕi

)
12: Draw xi,j ∼ N

(
µi,ωi,j ,σ

2
i,ωi,j

)
13: end for
14: Set zi :=

( (
σ2
i,m,l, µi,m,l

))
m=1,...,M
l=1,...,L

15: Update D ← D ∪
{
(xi, zi)

}
16: end for
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B. Generating Realistic Data
While we assume a data-generating process such as the one in Algorithm 2, this is not necessarily the data-generating
process that produces the data in the model’s application as an in-context learner. Even when the generative process Px,z

underlying a statistical model is sophisticated and complex in nature, model misspecification is inevitable in almost every
practical application. While mismatches between the real data-generating processes and model assumptions can lead to
various problems in traditional Bayesian modeling (Grünwald & van Ommen, 2017), the question of model misspecification
plays a somewhat different and yet an especially central role for our ICL approach.

More specifically, the ICL model learns the relationship between P z|x and a datapoint x exclusively based on synthetic
samples from the marginal Px implied by the statistical model with generative process Px,z . Given a real-world dataset
x∗ ∼ Px∗

, model misspecification in terms of Px∗
implies that the in-context learner needs to infer the posterior based on

out-of-distribution data, where the problem is aggravated the more unrealistic Px is.

To be able to access a reference or ground truth distribution, the data generating processes in our experiments need to
match the structure of the GLM, FA and GMM approaches. While the generative processes of FA and GMMs directly
prescribe how all parts of the data are generated, this can potentially cause a discrepancy between synthetically generated
and real-world datasets. However, our empirical results (Section 4.1) demonstrate that the in-context learner can generalize
to real-world data despite the discrepancy to the simulated datasets.

In the aforementioned GLM case, the distribution of the covariates Pu does not affect the structure of P z|x in the data
generating process (cf. Algorithm 2). We can therefore use a flexible prior Pu such as the TabPFN-“prior” (Hollmann et al.,
2022) to generate covariates u and thereby effectively tackle the issue of model specification.

C. Preprocessing of the Real-world Datasets
The real-world datasets considered for the evaluation of all methods are proposed in a benchmark study by Grinsztajn
et al. (2022). We standardize all features, scale and shift the target such that it has the mean and variance implied by the
prior structure of the respective generative model. Furthermore, for the GLM scenarios, we apply a Yeo-Johnson transform
on the target variable (Yeo & Johnson, 2000) before applying the scaling. In cases where the number of features in the
real-world dataset exceeds that of our scenario, we select those features with the most distinct values in the original dataset
and randomly sub-sample the appropriate number of samples from the real-world datasets for our experiments.

D. Background on Conditional Flow-matching
Flow matching, initially used in image synthesis leverages normalizing flows (Papamakarios et al., 2021b) to model
arbitrary distributions. Continuous normalizing flows (Lipman et al., 2022) have emerged as a potent tool for modeling
complex distributions. For example, recent advancements have shown its effectiveness in state-of-the-art image generation,
outperforming diffusion-based methods in likelihood and sample quality on ImageNet (Lipman et al., 2022). Techniques
like FlowTurbo have accelerated class-conditional and text-to-image generation, setting new benchmarks (Zhao et al., 2024).
Additionally, applying flow matching in latent spaces of pretrained autoencoders has enhanced computational efficiency
and scalability for high-resolution image synthesis (Dao et al., 2023). Similarly, flow-based models have been successfully
applied to protein structure prediction, improving accuracy and efficiency in modeling complex protein conformations (Yim
et al., 2024; 2023).

In the area of simulation-based inference, Wildberger et al. (2024) introduce the idea of using continuous normalizing
flows in order to efficiently approximate complex posterior distributions. In particular, they apply the framework to the
field of gravitational-wave inference, substantially outperforming approaches based on discrete flows. Furthermore, they
demonstrate good performance on the existing SBI-Benchmark (Lueckmann et al., 2021) using a simple MLP-based
architecture.

E. Relationship of our approach to density estimation methods
An alternative to flow matching for parameterizing our model Qz|x would be explicit (conditional) density estimation.
While knowledge of the explicit density of a distribution can be useful for downstream tasks, we would like to reemphasize
that we consider the problem of full Bayesian inference via sampling from the posterior in this paper.
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Popular explicit density estimation methods include i-DODE (Zheng et al., 2023), which proposes several techniques
for improving maximum likelihood estimation from diffusion ordinary differential equations (ODEs), including velocity
parameterization and techniques for variance reduction, leading to faster convergence. Additionally,in (Sahoo et al., 2024)
log-likelihood estimation is improved by casting the learned diffusion process as a variational posterior that yields a
tighter evidence lower bound on the actual likelihood. (Lienen et al., 2025) propose a novel generative model using
iterative Gaussian posterior inference and empirically demonstrate that it yields strong results in log-likelihood estimation.
Furthermore, Salazar (2023) use variational inference to learn Bayesian regression trees, which could be used for multivariate
density estimation.

Note that it is, in principle, also possible to recover the explicit density of Qz|x, which is parametrized in the Flow Matching
Framework that is used for our approach (Wildberger et al., 2024).

F. Hyperparameters, Software and Computational Setup
In this section, we detail the hyperparameters, used software and computational setups for all our experiments.

F.1. ICL

To ensure maximum comparability across different experiments, we fix the hyperparameters for all ICL experiments: For
the architecture of the model introduced in Section 3.3, we use the following configuration: The dimensionality of encoder
representations is set to 512 and is expanded to 1024 in the feed-forward blocks. We use 8 heads and 8 encoder layers with
a dropout rate of 0.1. For the decoder part we also use 512 as the dimensionality of the representations and 1024 as the
intermediate representation in the feed-forward layers and a dropout rate of 0.1. Furthermore, 3 simple fully connected
layers with adaLN conditioning are used for final processing in the decoder. For the time conditioning, we use 3 simple fully
connected layers to map the scalar-valued time t onto a 512 dimensional conditioning vector that is used for the adaLN
blocks in the decoder. This yields a model of around 43.1 million parameters. We use no tokenization for either the encoder
or the decoder and simple embedding layers to map the encoder- and decoder-input onto the feed-forward dimensions.

We use an Adam optimizer (Kingma, 2014) with a cosine learning rate schedule (Loshchilov & Hutter, 2016), where the
maximum learning rate is 5 · 10−4, the final division factor is 104 and 10 percent of the epochs are used for warm-up. We
use a weight decay parameter of 10−5 and a batch size of 1024 and gradient clipping with a maximum gradient norm of
one. We use in total 75 million synthetic samples for all scenarios. Of the total number, half, i.e. 37.5 million, are used for
training and 10 percent for validation and the remaining 40 percent for testing. Note that we observe convergence of the loss
usually much earlier than after this training duration, but fix the number of samples for consistency across experiments. A
single L4 GPU is used for the GLM scenarios and a single A100 GPU for the FA and GMM cases.

To solve the ODE for the sample generation, dopri5 (Dormand & Prince, 1980) as implemented in Torchdiffeq (Chen, 2018)
is used in the adjoint version. We set the relative and absolute tolerance to 10−7. The σmin parameter in the CNF-loss is set
to 10−4.

F.2. HMC

We use HMC with a NUTS kernel (Hoffman et al., 2014) as a reference for all experiments where no analytical solution
is available. We set the number of burn-in samples to 500 and use one chain for all uni-modal problems and three times
the number of potential modes in all other cases. More specifically, we use M × 3 chains for all GMM scenarios. The
Pyro implementation of NUTS is used for the GLM scenarios (Bingham et al., 2019) and the conceptually identical, albeit
computationally faster implementation in Numpyro for the FA and GMM cases (Phan et al., 2019).

F.3. VI

For the variational inference methods, we utilize automatic guide generation based on the ground-truth data-generating
processes (Kucukelbir et al., 2017). Pyro is used for the implementation of the probabilistic programs, which we also use to
sample the synthetic training data, for the automatic guide generation, and for the implementation of the actual VI methods
(Bingham et al., 2019). Default hyperparameters, as well as an Adam optimizer (Kingma, 2014) with a learning rate of
10−2 is used for all methods except for AutoIAF where a learning rate of 10−3 is used. We perform 2000 full-batch gradient
update steps for each method.
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Figure 4: Learning curves for GLM sce-
nario 1 with a Normal Prior on the coef-
ficients β and an Inverse Gamma prior
on σ2.

Figure 5: Learning curves for GMM
scenario 1 with M = 5 components,
K = 50 datapoints and L = 1 dimen-
sions.

Figure 6: Learning curves for GMM
scenario 3 with M = 3 components,
K = 50 datapoints and L = 5 dimen-
sions.

G. Runtimes
We use a single L4 GPU for generating samples based on our ICL approach and HMC in the GLM scenarios, a single A100
for our ICL approach and HMC in the FA and GMM scenarios, and an Intel(R) Xeon(R) CPU @ 2.20GHz CPU with two
virtual cores and 40 gigabytes of RAM for the VI methods. Across all considered GLM scenarios, pre-training takes on
average 14.89 hours with a standard error of 18.01 minutes. For the FA scenarios, on average 3.95 hours with a standard
error of 11.38 minutes is used for pretraining and for the GMM scenarios 10.63 with a standard error of 72.88 minutes.

When applied in order to generate samples for a new dataset, the benchmarked VI methods have, as expected the lowest
runtime. The Laplace approximation is the fastest of all methods, while our ICL appraoch has consistently a lower runtime
compared to HMC. Overall, the ICL method takes around 2 minutes on the GLM tasks, around 30 seconds in the FA
scenarios and less than 2 minutes for the inference regarding the GMM tasks.

This difference is especially pronounced in the FA and GMM scenarios. Please note that the runtime of the ICL method
also fundamentally depends on the used precision for solving the underlying differential equation where we use a relatively
high relative and absolute precision of 10−7. Decreasing this value might lead to significantly faster inference time while
maintaining sample quality.
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Table 8: Runtime Metrics for all GLM, FA, and GMM Scenarios
Scenario Method Mean Runtime (s)

GLM

Laplace Approximation 10.48 (±0.25)
VI: DiagonalNormal 12.02 (±0.26)
VI: MultivariateNormal 13.70 (±0.29)
VI: Structured Normal 19.81 (±0.98)
VI:IAF 15.44 (±0.30)
HMC 120.24 (±13.94)
ICL (ours) 107.79 (±17.36)

FA

Laplace Approximation 17.85 (±0.21)
VI: DiagonalNormal 20.94 (±0.66)
VI: MultivariateNormal 20.84 (±0.28)
VI: Structured Normal 36.17 (±0.61)
VI:IAF 23.75 (±0.38)
HMC 248.26 (±57.88)
ICL (ours) 31.49 (±4.97)

GMM

Laplace Approximation 27.52 (±0.40)
VI: DiagonalNormal 29.74 (±0.57)
VI: MultivariateNormal 30.50 (±0.41)
VI: Structured Normal 42.44 (±0.44)
VI:IAF 33.39 (±0.49)
HMC 239.67 (±32.71)
ICL (ours) 93.88 (±10.47)

H. Ablation: Different Learning Rates for VI
To investigate the role of the learning rate parameter for the benchmarked VI methods, we record the performance for
learning-rate values of 10−2, 10−3 and 10−4 across a prototypical GLM, a FA and a GMM scenario, where we use 10
synthetic and 10 real-world datasets. In summary, while we find the VI methods to often be quite robust to the choice of
the learning rate, those results also confirm our choice of setting the learning rate to 10−2 for the Laplace approximation,
variational inference with a diagonal normal distribution, a multivariate normal distribution and a structured normal
distribution, and to a value of 10−3 for the VI approach with inverse autoregressive flows.

For the GLM-scenario, we find in terms of the C2ST metric that VI with an ordinary multivariate normal distribution and VI
with a structured normal distribution and a learning rate of 10−2 are the best models on the synthetic data. While MMD also
indicates that this learning rate yields ideal results for those models, VI with inverse auoregressive flows has good values
across the different learning rates with the minimum for 10−3. TheW2 metric indicates a similar tendency.

Regarding the learning rate for the FA scenario, one can first see that no single learning rate seems to dominate substantially
given the variance of the results. However, on the synthetic data for the Laplace approximation, as well as VI with a diagonal
normal distribution, a multivariate normal and a structured normal distribution, the lowest average result is obtained for a
learning rate of 10−2, while for VI with inverse autoregressive flows the best performance is obtained when the learning rate
equals 10−3. The real-world results are the best for VI with a structured normal distribution and a learning rate of 10−2.

For the GMM scenario, we find that VI with a diagonal, structured and ordinary normal distribution obtain the best results,
namely for learning rates of 10−2 and 10−3, taking the variance into account. Just considering the averages leads to the
conclusion that 10−2 is the best choice here. The results on the real-world data confirm that 10−2 is the optimal choice for
VI with a diagonal normal and ordinary multivariate normal, while VI with inverse autoregressive flows has good results
across all choices regarding the learning rate.
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Table 9: Results of VI methods with different learning rates on 10 synthetic and 10 real-world datasets: Linear regression
with a normal prior on the coefficients β and an inverse gamma prior on the variance σ2 (scenario 1). Comparison to HMC
samples. All results within two standard errors of the best average result are marked in bold.

Model LR Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)
Laplace Approximation 1e-2 1.000 (± 0.000) 2.342 (± 0.390) 2.121 (± 0.100) 1.000 (± 0.000) 2.134 (± 0.107) 2.095 (± 0.062)
Laplace Approximation 1e-3 1.000 (± 0.000) 2.341 (± 0.389) 2.121 (± 0.100) 1.000 (± 0.000) 2.133 (± 0.108) 2.095 (± 0.062)
Laplace Approximation 1e-4 1.000 (± 0.000) 2.341 (± 0.389) 2.121 (± 0.100) 1.000 (± 0.000) 2.133 (± 0.108) 2.095 (± 0.062)

VI: DiagonalNormal 1e-2 0.892 (± 0.074) 0.921 (± 0.374) 1.411 (± 0.174) 0.889 (± 0.062) 0.819 (± 0.343) 1.339 (± 0.190)
VI: DiagonalNormal 1e-3 0.966 (± 0.024) 1.588 (± 0.540) 1.672 (± 0.203) 0.981 (± 0.017) 1.685 (± 0.331) 1.739 (± 0.139)
VI: DiagonalNormal 1e-4 0.971 (± 0.010) 1.572 (± 0.300) 1.666 (± 0.081) 0.849 (± 0.030) 0.575 (± 0.127) 1.221 (± 0.098)

VI: MultivariateNormal 1e-2 0.725 (± 0.064) 0.523 (± 0.242) 1.114 (± 0.261) 0.625 (± 0.051) 0.470 (± 0.066) 0.918 (± 0.119)
VI: MultivariateNormal 1e-3 0.964 (± 0.008) 1.455 (± 0.327) 1.617 (± 0.100) 0.853 (± 0.052) 0.634 (± 0.266) 1.238 (± 0.151)
VI: MultivariateNormal 1e-4 0.984 (± 0.005) 1.848 (± 0.324) 1.773 (± 0.079) 0.899 (± 0.020) 0.807 (± 0.094) 1.345 (± 0.079)

VI: Structured Normal 1e-2 0.734 (± 0.063) 0.541 (± 0.254) 1.119 (± 0.264) 0.670 (± 0.047) 0.467 (± 0.086) 1.060 (± 0.130)
VI: Structured Normal 1e-3 0.882 (± 0.042) 0.719 (± 0.315) 1.335 (± 0.149) 0.776 (± 0.045) 0.473 (± 0.081) 1.064 (± 0.131)
VI: Structured Normal 1e-4 0.890 (± 0.027) 0.710 (± 0.290) 1.347 (± 0.138) 0.771 (± 0.049) 0.468 (± 0.078) 1.062 (± 0.128)
VI: IAF 1e-2 0.840 (± 0.036) 0.502 (± 0.262) 1.272 (± 0.170) 0.614 (± 0.045) 0.455 (± 0.048) 0.957 (± 0.105)
VI: IAF 1e-3 0.797 (± 0.065) 0.485 (± 0.556) 1.169 (± 0.313) 0.619 (± 0.036) 0.469 (± 0.064) 0.989 (± 0.124)
VI: IAF 1e-4 0.803 (± 0.068) 0.475 (± 0.535) 1.162 (± 0.291) 0.612 (± 0.034) 0.457 (± 0.055) 0.977 (± 0.113)

Table 10: Results of VI methods with different learning rates on 10 synthetic and 10 real-world datasets: Factor analysis
with Gaussian priors on the weights and the latents and K = 25 datapoints, P = 5 features, and dimensionality of the
latents zdim = 3 (scenario 3). Comparison to HMC samples. All results within two standard errors of the best average result
are marked in bold.

Model LR Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)
Laplace Approximation 1e-2 1.000 (± 0.000) 3.449 (± 0.821) 1.773 (± 0.539) 1.000 (± 0.000) 2.703 (± 0.312) 0.362 (± 0.017)
Laplace Approximation 1e-3 1.000 (± 0.000) 4.288 (± 0.853) 2.263 (± 0.732) 1.000 (± 0.000) 2.896 (± 0.238) 0.376 (± 0.022)
Laplace Approximation 1e-4 1.000 (± 0.000) 4.252 (± 0.611) 2.122 (± 0.430) 1.000 (± 0.000) 2.805 (± 0.181) 0.368 (± 0.017)

VI: DiagonalNormal 1e-2 0.998 (± 0.002) 2.880 (± 1.046) 1.457 (± 0.559) 0.944 (± 0.008) 1.022 (± 0.067) 0.230 (± 0.010)
VI: DiagonalNormal 1e-3 0.998 (± 0.002) 2.973 (± 0.834) 1.465 (± 0.540) 0.941 (± 0.006) 0.997 (± 0.056) 0.229 (± 0.010)
VI: DiagonalNormal 1e-4 1.000 (± 0.001) 3.416 (± 0.761) 1.602 (± 0.437) 0.943 (± 0.009) 0.997 (± 0.057) 0.229 (± 0.010)

VI: MultivariateNormal 1e-2 0.993 (± 0.007) 2.969 (± 1.089) 1.506 (± 0.659) 0.929 (± 0.007) 0.957 (± 0.048) 0.224 (± 0.010)
VI: MultivariateNormal 1e-3 0.996 (± 0.004) 3.140 (± 0.910) 1.570 (± 0.625) 0.934 (± 0.009) 0.971 (± 0.054) 0.225 (± 0.010)
VI: MultivariateNormal 1e-4 0.997 (± 0.007) 3.464 (± 0.791) 1.639 (± 0.426) 0.934 (± 0.005) 0.962 (± 0.049) 0.225 (± 0.010)

VI: Structured Normal 1e-2 0.998 (± 0.002) 3.005 (± 0.871) 1.481 (± 0.504) 0.947 (± 0.005) 1.003 (± 0.066) 0.230 (± 0.009)
VI: Structured Normal 1e-3 0.999 (± 0.001) 3.244 (± 0.665) 1.619 (± 0.559) 0.948 (± 0.007) 1.033 (± 0.078) 0.232 (± 0.009)
VI: Structured Normal 1e-4 0.999 (± 0.001) 3.119 (± 0.612) 1.487 (± 0.400) 0.943 (± 0.007) 0.998 (± 0.056) 0.229 (± 0.010)

VI: IAF 1e-2 0.939 (± 0.040) 2.836 (± 0.293) 1.247 (± 0.297) 0.944 (± 0.008) 1.518 (± 0.048) 1.332 (± 0.027)
VI: IAF 1e-3 0.927 (± 0.047) 2.758 (± 0.342) 1.195 (± 0.331) 0.949 (± 0.009) 1.560 (± 0.031) 1.392 (± 0.024)
VI: IAF 1e-4 0.842 (± 0.038) 2.862 (± 0.296) 1.281 (± 0.292) 0.943 (± 0.008) 1.493 (± 0.039) 1.302 (± 0.039)
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Table 11: Results of VI methods with different learning rates on 10 synthetic and 10 real-world datasets: Gaussian Mixture
Model with K = 50 datapoints, L = 1 features (univariate case), M = 5 components, λ = 3, and αdir = 1 (scenario 1).
Comparison to HMC samples.All results within two standard errors of the best average result are marked in bold.

Model LR Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)
Laplace Approximation 1e-2 1.000 (± 0.000) 4.380 (± 1.386) 4.838 (± 1.521) 1.000 (± 0.000) 4.588 (± 1.229) 6.813 (± 1.697)
Laplace Approximation 1e-3 1.000 (± 0.000) 3.893 (± 1.433) 4.010 (± 1.233) 1.000 (± 0.000) 4.699 (± 1.193) 6.986 (± 0.981)
Laplace Approximation 1e-4 1.000 (± 0.000) 4.463 (± 1.117) 4.610 (± 1.027) 1.000 (± 0.000) 4.710 (± 1.205) 6.995 (± 0.869)

VI: DiagonalNormal 1e-2 0.979 (± 0.138) 1.370 (± 1.394) 3.522 (± 1.634) 0.985 (± 0.030) 2.384 (± 1.318) 6.202 (± 1.747)
VI: DiagonalNormal 1e-3 0.990 (± 0.096) 1.454 (± 1.454) 3.650 (± 1.743) 0.999 (± 0.002) 3.026 (± 0.977) 6.959 (± 0.890)
VI: DiagonalNormal 1e-4 1.000 (± 0.001) 2.390 (± 1.177) 4.903 (± 1.278) 0.998 (± 0.007) 2.830 (± 1.001) 7.007 (± 0.987)

VI: MultivariateNormal 1e-2 0.978 (± 0.119) 1.351 (± 1.410) 3.474 (± 1.604) 0.987 (± 0.024) 2.375 (± 1.304) 6.189 (± 1.761)
VI: MultivariateNormal 1e-3 0.980 (± 0.089) 1.476 (± 1.480) 3.681 (± 1.734) 0.997 (± 0.008) 2.808 (± 1.014) 6.964 (± 0.944)
VI: MultivariateNormal 1e-4 1.000 (± 0.001) 2.114 (± 1.140) 4.532 (± 1.187) 0.997 (± 0.007) 2.799 (± 1.012) 6.963 (± 0.950)

VI: Structured Normal 1e-2 0.958 (± 0.129) 1.246 (± 1.615) 3.225 (± 1.701) 1.000 (± 0.001) 2.911 (± 0.753) 6.675 (± 1.403)
VI: Structured Normal 1e-3 0.979 (± 0.092) 1.593 (± 1.561) 3.395 (± 1.440) 0.998 (± 0.007) 2.882 (± 1.070) 6.968 (± 0.941)
VI: Structured Normal 1e-4 1.000 (± 0.001) 2.270 (± 1.133) 4.733 (± 1.162) 0.997 (± 0.009) 2.802 (± 1.012) 6.953 (± 0.948)

VI: IAF 1e-2 0.998 (± 0.003) 1.539 (± 0.691) 8.371 (± 0.750) 0.987 (± 0.022) 1.376 (± 0.799) 8.082 (± 1.352)
VI: IAF 1e-3 0.997 (± 0.004) 1.443 (± 0.564) 8.517 (± 0.820) 0.988 (± 0.020) 1.304 (± 0.855) 8.425 (± 1.281)
VI: IAF 1e-4 0.997 (± 0.004) 1.602 (± 0.628) 7.888 (± 0.783) 0.987 (± 0.020) 1.380 (± 0.848) 7.729 (± 1.322)
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I. Detailed Experimental Results
In this section, we describe our experimental results in detail, discussing how different scenarios for GLMs, FA and GMMs
affect the performance of different approaches.

I.1. Generalized Linear Models

Figure 7: Density plots for first three the marginals of the posterior in a GLM with a gamma prior on the coefficients β, and
an inverse gamma prior on the variance σ2 of the responses. The data is part of the Miami housing 2016 dataset.

Table 45 contains detailed results regarding the performance of the proposed ICL and the reference VI approaches. In
summary, we find that on the synthetic data, our ICL method has the overall best performance, or a performance not
significantly worse than that of the best model, with respect to the C2ST metric.4 More specifically, ICL significantly
outperforms all other models in 5 out of seven cases w.r.t. the C2ST and also the MMD metric. While theW2 metric exhibits
a larger variance, it also indicates that on the synthetic data, ICL yields the significantly best result in those 5 cases.

On the real-world data, the differences between ICL and VI are less pronounced, and ICL attains the best average result
without any other model within two standard errors in three scenarios in terms of the C2ST metric. ICL is among those
models not significantly worse than the best in four cases with respect to the C2ST metric, in six cases in terms of the MMD
metric, and also in six cases in terms ofW2.

In scenario 1, which is a linear regression scenario with a normal prior on the coefficients β and an inverse gamma prior
on the variance σ2, ICL and HMC show a similarly large agreement with the analytical solution. Furthermore, the VI
approaches with an ordinary multivariate normal distribution, a structured normal distribution as well as the approach based
on inverse autoregressive flows also show a large agreement with the analytical solution, which is to be expected since
scenario 1 is has a conjugate prior structure yielding a multivariate t-distribution for the posterior of the coefficients (Murphy,
2023).

Scenario 2 and scenario 4 are those where an intercept is included in the generative structure of the GLM. The notably
superior performance of the ICL approach in those two cases might be explained by its ability to model distributions with
substantially different variances in different dimensions better than VI. Similarly, the posterior in scenario 5 is determined
by the gamma prior on the coefficients leading to a (slightly) skewed posterior distribution, which might explain the good
relative performance of ICL. See Figure 7 for a plot of the marginals of the posterior in this scenario on the Miami housing
2016 dataset.

Finally, scenarios 6 and 7 demonstrate the versatility of the ICL method in terms of posterior inference for logistic regression
and regression with a gamma response.

4We refer to a difference that is larger than two standard deviations as “significant”.
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Table 12: Generalized Linear Models: Evaluation on 50 synthetic and 17 real-world datasets for seven different scenarios.
All results within two standard errors of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 2.738 (± 0.721) 0.825 (± 0.279) 1.000 (± 0.000) 2.150 (± 0.323) 0.642 (± 0.124)
VI: DiagonalNormal 0.904 (± 0.076) 1.452 (± 0.984) 0.669 (± 0.301) 0.797 (± 0.083) 0.612 (± 0.511) 0.414 (± 0.152)
VI: MultivariateNormal 0.750 (± 0.128) 0.735 (± 0.733) 0.565 (± 0.292) 0.607 (± 0.070) 0.167 (± 0.196) 0.301 (± 0.123)
VI: Structured Normal 0.753 (± 0.126) 0.736 (± 0.737) 0.570 (± 0.310) 0.600 (± 0.070) 0.169 (± 0.214) 0.306 (± 0.131)
VI: IAF 0.777 (± 0.122) 0.864 (± 0.844) 0.725 (± 0.523) 0.683 (± 0.132) 0.440 (± 0.559) 0.503 (± 0.383)
HMC 0.745 (± 0.130) 0.722 (± 0.732) 0.569 (± 0.301) 0.595 (± 0.075) 0.173 (± 0.213) 0.321 (± 0.140)
ICL (ours) 0.765 (± 0.123) 0.767 (± 0.727) 0.585 (± 0.301) 0.614 (± 0.074) 0.175 (± 0.219) 0.310 (± 0.138)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 4.853 (± 2.333) 5.770 (± 5.946) 1.000 (± 0.000) 2.572 (± 0.206) 0.809 (± 0.149)
VI: DiagonalNormal 0.957 (± 0.091) 3.906 (± 2.679) 5.628 (± 6.092) 0.892 (± 0.044) 0.847 (± 0.389) 0.530 (± 0.175)
VI: MultivariateNormal 0.910 (± 0.131) 3.407 (± 2.781) 5.584 (± 6.104) 0.820 (± 0.031) 0.243 (± 0.148) 0.408 (± 0.118)
VI: Structured Normal 0.908 (± 0.119) 3.139 (± 2.763) 5.480 (± 6.164) 0.824 (± 0.023) 0.215 (± 0.110) 0.392 (± 0.109)
VI: IAF 0.968 (± 0.063) 4.416 (± 2.473) 7.474 (± 6.235) 0.888 (± 0.067) 0.921 (± 0.860) 0.942 (± 0.733)
ICL (ours) 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 2.203 (± 0.997) 1.170 (± 0.949) 1.000 (± 0.000) 1.841 (± 0.185) 0.729 (± 0.175)
VI: DiagonalNormal 0.866 (± 0.101) 1.069 (± 1.150) 0.846 (± 0.747) 0.797 (± 0.083) 0.526 (± 0.361) 0.480 (± 0.207)
VI: MultivariateNormal 0.656 (± 0.131) 0.445 (± 1.061) 0.660 (± 0.737) 0.560 (± 0.035) 0.032 (± 0.028) 0.249 (± 0.069)
VI: Structured Normal 0.653 (± 0.125) 0.421 (± 0.993) 0.659 (± 0.736) 0.552 (± 0.028) 0.027 (± 0.015) 0.239 (± 0.055)
VI: IAF 0.751 (± 0.148) 0.939 (± 1.349) 0.964 (± 0.924) 0.673 (± 0.141) 0.399 (± 0.543) 0.563 (± 0.433)
ICL (ours) 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 3.511 (± 2.025) 2.166 (± 1.722) 1.000 (± 0.000) 2.011 (± 0.058) 0.993 (± 0.144)
VI: DiagonalNormal 0.968 (± 0.036) 2.798 (± 2.255) 2.065 (± 1.745) 0.916 (± 0.040) 0.928 (± 0.339) 0.732 (± 0.181)
VI: MultivariateNormal 0.855 (± 0.123) 1.648 (± 2.052) 1.853 (± 1.745) 0.771 (± 0.017) 0.087 (± 0.030) 0.539 (± 0.070)
VI: Structured Normal 0.847 (± 0.116) 1.505 (± 1.978) 1.889 (± 1.883) 0.769 (± 0.012) 0.083 (± 0.018) 0.543 (± 0.070)
VI: IAF 0.942 (± 0.077) 3.029 (± 2.210) 3.554 (± 2.715) 0.833 (± 0.069) 0.636 (± 0.756) 0.978 (± 0.600)
ICL (ours) 0.753 (± 0.049) 0.171 (± 0.153) 0.631 (± 0.294) 0.762 (± 0.015) 0.105 (± 0.046) 0.597 (± 0.104)

Scenario 5

Laplace Approximation 1.000 (± 0.000) 2.060 (± 0.472) 0.797 (± 0.577) 1.000 (± 0.000) 1.982 (± 0.126) 0.623 (± 0.084)
VI: DiagonalNormal 0.866 (± 0.085) 0.954 (± 1.022) 0.651 (± 0.549) 0.810 (± 0.036) 0.441 (± 0.252) 0.384 (± 0.089)
VI: MultivariateNormal 0.765 (± 0.100) 0.537 (± 1.019) 0.633 (± 1.067) 0.711 (± 0.038) 0.148 (± 0.093) 0.279 (± 0.056)
VI: Structured Normal 0.758 (± 0.098) 0.447 (± 0.818) 0.572 (± 0.816) 0.705 (± 0.032) 0.140 (± 0.081) 0.269 (± 0.045)
VI: IAF 0.814 (± 0.105) 0.953 (± 1.165) 0.881 (± 1.067) 0.777 (± 0.106) 0.684 (± 0.939) 0.625 (± 0.525)
ICL (ours) 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

Scenario 6

Laplace Approximation 1.000 (± 0.000) 2.026 (± 0.027) 1.612 (± 0.162) 1.000 (± 0.000) 1.993 (± 0.032) 1.299 (± 0.106)
VI: DiagonalNormal 0.724 (± 0.060) 0.185 (± 0.082) 0.787 (± 0.078) 0.703 (± 0.039) 0.147 (± 0.063) 0.637 (± 0.089)
VI: MultivariateNormal 0.534 (± 0.018) 0.014 (± 0.006) 0.581 (± 0.074) 0.538 (± 0.019) 0.016 (± 0.007) 0.466 (± 0.029)
VI: Structured Normal 0.536 (± 0.016) 0.014 (± 0.005) 0.583 (± 0.071) 0.536 (± 0.019) 0.017 (± 0.009) 0.469 (± 0.033)
VI: IAF 0.542 (± 0.026) 0.031 (± 0.031) 0.613 (± 0.092) 0.535 (± 0.015) 0.015 (± 0.006) 0.467 (± 0.031)
ICL (ours) 0.532 (± 0.019) 0.016 (± 0.008) 0.590 (± 0.066) 0.556 (± 0.017) 0.035 (± 0.015) 0.504 (± 0.038)

Scenario 7

Laplace Approximation 1.000 (± 0.000) 3.559 (± 1.933) 1.347 (± 1.067) 1.000 (± 0.000) 2.016 (± 0.080) 0.763 (± 0.174)
VI: DiagonalNormal 0.938 (± 0.074) 2.536 (± 2.097) 1.142 (± 0.993) 0.936 (± 0.024) 1.029 (± 0.255) 0.579 (± 0.181)
VI: MultivariateNormal 0.814 (± 0.181) 1.999 (± 2.283) 1.033 (± 0.969) 0.741 (± 0.020) 0.093 (± 0.025) 0.391 (± 0.074)
VI: Structured Normal 0.824 (± 0.177) 1.891 (± 2.127) 1.041 (± 0.934) 0.734 (± 0.025) 0.072 (± 0.019) 0.385 (± 0.065)
VI: IAF 0.939 (± 0.091) 2.707 (± 1.712) 1.590 (± 0.820) 0.864 (± 0.093) 0.830 (± 0.697) 1.064 (± 0.616)
ICL (ours) 0.700 (± 0.116) 0.317 (± 0.355) 0.400 (± 0.286) 0.773 (± 0.048) 0.294 (± 0.457) 0.559 (± 0.256)
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I.2. Factor Analysis

Table 46 contains detailed results regarding FA for 50 synthetic and 17 real-world datasets across 6 different scenarios. We
find that overall the ICL method has a very high agreement with the gold standard HMC reference with scores of more than
than 56 percent in five scenarios on the synthetic data. In comparison, the C2ST metric is almost saturated for all considered
VI methods. For MMD andW2 the ICL method is again the best.

The real-world datasets show a similar picture except for scenario 4 where C2ST and MMD indicate that VI with inverse
autoregressive flows performs best. TheW2 metric, however exhibits a relatively large variance in those cases and does not
yield significant results regarding the best performance.

Table 13: Factor Analysis: Evaluation on 50 synthetic and 17 real-world datasets for six different scenarios. All results
within two standard errors of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 3.459 (± 1.553) 1.987 (± 1.363) 1.000 (± 0.000) 2.487 (± 0.454) 0.875 (± 0.036)
VI: DiagonalNormal 1.000 (± 0.001) 4.695 (± 1.488) 2.865 (± 1.681) 0.979 (± 0.008) 1.283 (± 0.225) 0.625 (± 0.058)
VI: MultivariateNormal 0.998 (± 0.003) 4.163 (± 1.473) 2.603 (± 1.959) 0.966 (± 0.010) 1.213 (± 0.260) 0.608 (± 0.047)
VI: Structured Normal 0.997 (± 0.004) 4.655 (± 1.189) 2.700 (± 1.333) 0.979 (± 0.010) 1.231 (± 0.132) 0.611 (± 0.041)
VI: IAF 0.953 (± 0.104) 3.992 (± 2.089) 2.750 (± 1.838) 0.849 (± 0.075) 0.772 (± 0.335) 0.503 (± 0.063)
ICL (ours) 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 3.687 (± 1.661) 1.954 (± 1.129) 1.000 (± 0.000) 1.690 (± 0.182) 0.598 (± 0.058)
VI: DiagonalNormal 0.998 (± 0.002) 3.135 (± 1.482) 1.629 (± 0.938) 0.975 (± 0.010) 1.156 (± 0.068) 0.496 (± 0.052)
VI: MultivariateNormal 0.989 (± 0.009) 2.945 (± 1.019) 1.482 (± 0.683) 0.951 (± 0.025) 0.764 (± 0.053) 0.421 (± 0.052)
VI: Structured Normal 0.984 (± 0.031) 3.790 (± 1.572) 2.106 (± 1.429) 0.958 (± 0.025) 1.001 (± 0.126) 0.465 (± 0.056)
VI: IAF 0.966 (± 0.066) 3.523 (± 1.340) 2.153 (± 0.968) 0.799 (± 0.058) 0.462 (± 0.226) 0.342 (± 0.070)
ICL (ours) 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 4.137 (± 0.932) 2.188 (± 1.011) 1.000 (± 0.000) 3.653 (± 0.183) 0.473 (± 0.026)
VI: DiagonalNormal 0.999 (± 0.002) 3.339 (± 0.985) 1.722 (± 0.870) 0.951 (± 0.007) 1.114 (± 0.080) 0.245 (± 0.016)
VI: MultivariateNormal 0.994 (± 0.007) 3.189 (± 0.960) 1.644 (± 0.859) 0.945 (± 0.007) 1.085 (± 0.082) 0.242 (± 0.015)
VI: Structured Normal 0.997 (± 0.003) 3.159 (± 0.968) 1.614 (± 0.793) 0.942 (± 0.009) 1.084 (± 0.071) 0.242 (± 0.018)
VI: IAF 0.990 (± 0.011) 3.145 (± 1.203) 1.705 (± 0.990) 0.928 (± 0.015) 1.022 (± 0.093) 0.235 (± 0.018)
ICL (ours) 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 4.354 (± 0.572) 3.339 (± 0.932) 1.000 (± 0.000) 6.617 (± 0.259) 0.598 (± 0.135)
VI: DiagonalNormal 1.000 (± 0.000) 3.396 (± 0.591) 2.420 (± 0.720) 0.977 (± 0.003) 1.499 (± 0.066) 0.096 (± 0.003)
VI: MultivariateNormal 0.999 (± 0.001) 3.447 (± 0.567) 2.479 (± 0.848) 0.973 (± 0.008) 1.484 (± 0.097) 0.096 (± 0.005)
VI: Structured Normal 1.000 (± 0.000) 3.421 (± 0.610) 2.481 (± 0.884) 0.973 (± 0.007) 1.474 (± 0.078) 0.095 (± 0.004)
VI: IAF 0.999 (± 0.001) 3.269 (± 0.552) 2.307 (± 0.779) 0.961 (± 0.018) 1.337 (± 0.142) 0.092 (± 0.005)
ICL (ours) 0.684 (± 0.060) 0.198 (± 0.141) 0.918 (± 0.246) 0.988 (± 0.003) 1.764 (± 0.026) 1.248 (± 0.008)

Scenario 5

Laplace Approximation 1.000 (± 0.000) 4.456 (± 0.785) 2.608 (± 0.946) 1.000 (± 0.000) 4.559 (± 0.494) 0.663 (± 0.127)
VI: DiagonalNormal 0.999 (± 0.002) 3.520 (± 1.073) 2.012 (± 0.886) 0.944 (± 0.010) 1.007 (± 0.129) 0.261 (± 0.036)
VI: MultivariateNormal 0.995 (± 0.007) 3.472 (± 1.021) 1.982 (± 0.814) 0.930 (± 0.017) 0.964 (± 0.111) 0.255 (± 0.038)
VI: Structured Normal 0.998 (± 0.005) 3.369 (± 1.044) 1.916 (± 0.852) 0.934 (± 0.011) 0.996 (± 0.133) 0.259 (± 0.035)
VI: IAF 0.992 (± 0.012) 3.166 (± 0.967) 1.761 (± 0.671) 0.910 (± 0.011) 0.892 (± 0.094) 0.247 (± 0.037)
ICL (ours) 0.535 (± 0.016) 0.021 (± 0.011) 0.279 (± 0.060) 0.886 (± 0.017) 1.207 (± 0.101) 1.002 (± 0.042)

Scenario 6

Laplace Approximation 1.000 (± 0.000) 3.942 (± 0.971) 2.624 (± 1.682) 1.000 (± 0.000) 3.319 (± 0.196) 0.377 (± 0.020)
VI: DiagonalNormal 0.998 (± 0.002) 3.214 (± 1.072) 2.209 (± 1.543) 0.949 (± 0.008) 1.196 (± 0.093) 0.210 (± 0.011)
VI: MultivariateNormal 0.991 (± 0.013) 3.056 (± 1.237) 2.189 (± 1.698) 0.938 (± 0.009) 1.121 (± 0.075) 0.205 (± 0.012)
VI: Structured Normal 0.997 (± 0.005) 3.279 (± 1.071) 2.276 (± 1.787) 0.944 (± 0.006) 1.161 (± 0.066) 0.208 (± 0.012)
VI: IAF 0.989 (± 0.029) 3.027 (± 0.910) 1.936 (± 1.060) 0.865 (± 0.027) 0.822 (± 0.106) 0.179 (± 0.015)
ICL (ours) 0.543 (± 0.021) 0.023 (± 0.015) 0.345 (± 0.173) 0.666 (± 0.020) 0.200 (± 0.034) 0.224 (± 0.014)
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I.3. Gaussian Mixture Models

We summarize the results of the ICL approach and the different VI methods regarding the GMM scenarios in Table 47. First,
one can note that on the synthetic data, the ICL approach has a much lower C2ST score for scenario 1 and scenario 2 than
the other methods. However, for scenarios 3 and 4, C2ST saturates, or at least almost saturates for all approaches. The
MMD metric, however, shows that ICL not only has a high agreement with HMC in scenarios 1 and 2, but that it attains the
significantly best result in scenarios 3 and 4 as well. This is supported by theW2 metric, which has the significantly lowest
values for ICL in scenarios 2,3 and 4.

Analogously, on the real-world data, MMD shows that ICL is the best approach in all four scenarios without any other
model coming into the two standard-deviation range. While the C2ST score is the lowest in scenario 1 and scenario 2 for
ICL, it saturates for cases 3 and 4.

Table 14: Gaussian Mixture Models: Evaluation on 50 synthetic and 17 real-world datasets for six different scenarios. All
results within two standard errors of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 3.367 (± 1.030) 4.341 (± 2.018) 1.000 (± 0.000) 3.374 (± 0.941) 6.440 (± 1.994)
VI: DiagonalNormal 0.988 (± 0.013) 1.175 (± 1.189) 2.961 (± 1.669) 0.995 (± 0.006) 1.919 (± 1.217) 5.145 (± 2.489)
VI: MultivariateNormal 0.988 (± 0.013) 1.135 (± 1.149) 2.926 (± 1.651) 0.994 (± 0.007) 2.007 (± 1.367) 5.379 (± 2.845)
VI: Structured Normal 0.987 (± 0.015) 1.126 (± 1.145) 2.944 (± 1.663) 0.993 (± 0.009) 1.943 (± 1.359) 5.313 (± 2.737)
VI: IAF 0.989 (± 0.013) 1.017 (± 1.036) 3.104 (± 1.523) 0.995 (± 0.010) 1.888 (± 1.051) 5.402 (± 2.310)
ICL (ours) 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 2.864 (± 0.607) 5.407 (± 2.320) 1.000 (± 0.000) 2.928 (± 0.438) 7.228 (± 1.323)
VI: DiagonalNormal 0.989 (± 0.024) 1.425 (± 0.829) 4.933 (± 2.379) 0.998 (± 0.003) 1.525 (± 0.356) 6.091 (± 0.931)
VI: MultivariateNormal 0.991 (± 0.021) 1.532 (± 0.940) 5.119 (± 2.521) 0.999 (± 0.002) 1.619 (± 0.269) 6.258 (± 0.872)
VI: Structured Normal 0.992 (± 0.017) 1.487 (± 0.899) 5.085 (± 2.530) 0.999 (± 0.002) 1.580 (± 0.337) 6.241 (± 0.960)
VI: IAF 0.992 (± 0.021) 1.319 (± 0.854) 5.265 (± 2.534) 0.998 (± 0.004) 1.256 (± 0.320) 6.201 (± 0.892)
ICL (ours) 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 3.631 (± 1.362) 16.387 (± 19.604) 1.000 (± 0.000) 3.009 (± 0.768) 37.034 (± 7.178)
VI: DiagonalNormal 0.996 (± 0.011) 2.127 (± 1.479) 16.864 (± 19.301) 0.992 (± 0.018) 2.429 (± 0.516) 35.355 (± 6.608)
VI: MultivariateNormal 0.997 (± 0.009) 2.076 (± 1.388) 16.938 (± 19.636) 0.993 (± 0.016) 2.427 (± 0.510) 35.312 (± 6.655)
VI: Structured Normal 0.995 (± 0.017) 2.049 (± 1.462) 16.723 (± 19.093) 0.993 (± 0.016) 2.301 (± 0.549) 34.217 (± 5.461)
VI: IAF 0.994 (± 0.018) 1.675 (± 1.049) 14.311 (± 9.266) 0.993 (± 0.017) 2.148 (± 0.528) 34.336 (± 5.398)
ICL (ours) 1.000 (± 0.000) 0.582 (± 0.280) 8.708 (± 4.945) 1.000 (± 0.000) 1.869 (± 0.342) 33.230 (± 8.095)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 6.260 (± 1.427) 13.497 (± 29.702) 1.000 (± 0.000) 5.924 (± 1.145) 12.400 (± 4.313)
VI: DiagonalNormal 1.000 (± 0.002) 3.958 (± 1.641) 12.068 (± 21.301) 1.000 (± 0.000) 3.879 (± 1.061) 11.080 (± 3.341)
VI: MultivariateNormal 1.000 (± 0.002) 3.875 (± 1.691) 12.150 (± 22.198) 1.000 (± 0.000) 3.896 (± 1.057) 11.112 (± 3.321)
VI: Structured Normal 1.000 (± 0.001) 3.661 (± 1.717) 12.195 (± 22.874) 0.996 (± 0.016) 3.822 (± 1.302) 11.368 (± 4.216)
VI: IAF 1.000 (± 0.002) 3.536 (± 1.597) 12.015 (± 20.884) 1.000 (± 0.000) 3.471 (± 1.036) 11.421 (± 3.233)
ICL (ours) 1.000 (± 0.000) 2.451 (± 0.868) 8.333 (± 4.202) 1.000 (± 0.000) 2.518 (± 0.694) 11.938 (± 2.956)
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J. Evaluating Predictive Performance
In this section, we discuss the results of our ICL approach in terms of predictive performance. In scenarios one to four,
TabPFN gives the best overall performance, which is expected since it is not limited to the GLM structure. Besides that, the
MAP approach obtains consistently the best results, while our ICL method performs on par (scenarios 1,2,3) or better than
(scenario 4) compared to the fully Bayesian methods on the real-world data. On the synthetic data there is no significant
difference to the other fully Bayesian methods, except for the real-world data in scenario where HMC is clearly the best
method. In scenario 5 (gamma prior on the regression coefficients), the in-context learner performs significantly worse than
all other methods, while this difference is less pronounced in scenario 7. In scenario 6, TabPFN also has a substantially
better performance than all other methods. The MAP approach performs on average better than all fully Bayesian methods,
which themselves do not differ significantly.

Table 15: Evaluating the predictive performance across 50 synthetic and 17 real-world datasets for scenarios 1-4 in terms
of Root Mean Squared Error (RMSE). The best result among all fully Bayesian methods is marked in bold. For the
fully Bayesian approaches, we use the posterior mean as a point estimate for the response. MAP denotes the predictive
performance of the model with the maximum a posteriori estimate for the latents.

Scenario Model RMSE Real-World (↓) RMSE Synthetic (↓)

Scenario 1

HMC 0.591 (± 0.023) 0.510 (± 0.040)
Laplace Approximation 0.594 (± 0.023) 0.510 (± 0.040)
VI: DiagonalNormal 0.591 (± 0.023) 0.509 (± 0.040)
VI: MultivariateNormal 0.591 (± 0.023) 0.510 (± 0.040)
VI: Structured Normal 0.629 (± 0.017) 0.555 (± 0.039)
VI: IAF 0.593 (± 0.023) 0.510 (± 0.040)
ICL (ours) 0.593 (± 0.020) 0.524 (± 0.038)

MAP 0.555 (± 0.024) 0.491 (± 0.038)
TabPFN 0.483 (± 0.036) 0.453 (± 0.036)

Scenario 2

HMC 0.559 (± 0.023) 0.556 (± 0.049)
Laplace Approximation 0.561 (± 0.022) 0.557 (± 0.049)
VI: DiagonalNormal 0.560 (± 0.023) 0.557 (± 0.049)
VI: MultivariateNormal 0.559 (± 0.023) 0.556 (± 0.049)
VI: Structured Normal 0.604 (± 0.016) 0.685 (± 0.054)
VI: IAF 0.563 (± 0.023) 0.557 (± 0.049)
ICL (ours) 0.561 (± 0.019) 0.653 (± 0.049)

MAP 0.513 (± 0.023) 0.522 (± 0.048)
TabPFN 0.449 (± 0.034) 0.498 (± 0.047)

Scenario 3

HMC 0.684 (± 0.027) 0.512 (± 0.040)
Laplace Approximation 0.688 (± 0.026) 0.516 (± 0.040)
VI: DiagonalNormal 0.686 (± 0.027) 0.513 (± 0.040)
VI: MultivariateNormal 0.685 (± 0.027) 0.512 (± 0.040)
VI: Structured Normal 0.733 (± 0.016) 0.607 (± 0.043)
VI: IAF 0.686 (± 0.027) 0.512 (± 0.040)
ICL (ours) 0.690 (± 0.023) 0.588 (± 0.045)

MAP 0.646 (± 0.028) 0.495 (± 0.039)
TabPFN 0.556 (± 0.041) 0.462 (± 0.037)

Scenario 4

HMC 0.642 (± 0.027) 0.559 (± 0.051)
Laplace Approximation 0.737 (± 0.048) 2.457 (± 0.493)
VI: DiagonalNormal 0.751 (± 0.038) 2.046 (± 0.399)
VI: MultivariateNormal 0.690 (± 0.037) 2.155 (± 0.454)
VI: Structured Normal 0.686 (± 0.015) 3.019 (± 0.545)
VI: IAF 0.643 (± 0.027) 1.751 (± 0.422)
ICL (ours) 0.649 (± 0.023) 1.464 (± 0.151)

MAP 0.626 (± 0.038) 2.377 (± 0.529)
TabPFN 0.522 (± 0.037) 0.496 (± 0.047)
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Table 16: Evaluating the predictive performance across 50 synthetic and 17 real-world datasets for scenarios 5 and 7 in
terms of Root Mean Squared Error (RMSE). The best result among all fully Bayesian methods is marked in bold. For the
fully Bayesian approaches, we use the posterior mean as a point estimate for the response. MAP denotes the predictive
performance of the model with the maximum a posteriori estimate for the latents.

Scenario Model RMSE Real-World (↓) RMSE Synthetic (↓)

Scenario 5

HMC 0.699 (± 0.022) 0.490 (± 0.036)
Laplace Approximation 0.699 (± 0.022) 0.491 (± 0.036)
VI: DiagonalNormal 0.702 (± 0.022) 0.491 (± 0.036)
VI: MultivariateNormal 0.698 (± 0.021) 0.491 (± 0.036)
VI: Structured Normal 1.507 (± 0.089) 0.741 (± 0.053)
VI: IAF 0.699 (± 0.022) 0.490 (± 0.036)
ICL (ours) 0.769 (± 0.020) 0.701 (± 0.049)

MAP 0.658 (± 0.022) 0.471 (± 0.035)
TabPFN 0.534 (± 0.040) 0.442 (± 0.035)

Scenario 7

HMC 0.953 (± 0.015) 0.719 (± 0.041)
Laplace Approximation 0.950 (± 0.016) 0.719 (± 0.041)
VI: DiagonalNormal 0.954 (± 0.015) 0.718 (± 0.041)
VI: MultivariateNormal 0.953 (± 0.015) 0.718 (± 0.041)
VI: Structured Normal 1.082 (± 0.026) 1.028 (± 0.118)
VI: IAF 0.954 (± 0.014) 0.720 (± 0.041)
ICL (ours) 1.019 (± 0.017) 0.765 (± 0.041)

MAP 0.945 (± 0.017) 0.686 (± 0.048)
TabPFN 0.817 (± 0.040) 0.654 (± 0.039)

Table 17: Evaluating the predictive performance across 50 synthetic and 17 real-world datasets for scenarios 5 and 7 in terms
of accuracy (Acc.). The best result among all fully Bayesian methods is marked in bold. For the fully Bayesian approaches,
we use the posterior mean as a point estimate for the response. MAP denotes the predictive performance of the model with
the maximum a posteriori estimate for the latents.

Scenario Model Acc. Real-World (↑) Acc. Synthetic (↑)

Scenario 6

HMC 0.694 (± 0.028) 0.546 (± 0.015)
Laplace Approximation 0.692 (± 0.027) 0.547 (± 0.015)
VI: DiagonalNormal 0.700 (± 0.028) 0.546 (± 0.015)
VI: MultivariateNormal 0.691 (± 0.029) 0.546 (± 0.015)
VI: Structured Normal 0.686 (± 0.028) 0.546 (± 0.015)
VI: IAF 0.689 (± 0.029) 0.545 (± 0.015)
ICL (ours) 0.688 (± 0.027) 0.545 (± 0.015)

MAP 0.723 (± 0.025) 0.610 (± 0.016)
TabPFN 0.862 (± 0.021) 0.673 (± 0.011)
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K. Ablation: Using a Gaussian Approximation
In this section, we present results on using a Gaussian approximation instead of Flow Matching to parameterize the
approximation of the posterior.

The key takeaway from these results is that the in-context learning approach performs substantially better with Flow
Matching (Lipman et al., 2022) than when a Gaussian approximation of the posterior is employed.

Table 18: Generalized Linear Models: Comparing the in-context learner with a Gaussian approximation, fitted via the
forward KL-divergence, to the proposed flow matching method. Evaluation on 50 synthetic and 17 real-world datasets
for seven different scenarios. If one method is by more than two standard errors better than the other, it is marked in
bold. Overall, the ICL + Flow Matching method clearly outperforms the Gaussian approximation, fitted via the forward
KL-divergence,: it yields significantly better results (according to the two-standard-error criterion) in 6 out of 7 scenarios on
synthetic datasets and in all 7 scenarios on real-world datasets, across at least two of the three considered metrics (C2ST,
MMD, orW2). In addition, the flow matching method consistently achieves lower or comparable standard errors, indicating
more stable and reliable performance across datasets.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 ICL + Gaussian 0.845 (± 0.213) 1.601 (± 1.213) 2.024 (± 0.874) 0.980 (± 0.007) 1.715 (± 0.295) 1.976 (± 0.238)
ICL + Flow Matching 0.765 (± 0.123) 0.767 (± 0.727) 0.585 (± 0.301) 0.614 (± 0.074) 0.175 (± 0.219) 0.310 (± 0.138)

Scenario 2 ICL + Gaussian 0.941 (± 0.056) 1.000 (± 0.953) 1.943 (± 0.657) 0.969 (± 0.013) 1.490 (± 0.310) 2.068 (± 0.259)
ICL + Flow Matching 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 ICL + Gaussian 0.907 (± 0.138) 1.779 (± 1.363) 4.713 (± 1.560) 0.985 (± 0.006) 1.526 (± 0.198) 4.144 (± 0.438)
ICL + Flow Matching 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 4 ICL + Gaussian 0.989 (± 0.011) 3.544 (± 0.343) 23.035 (± 6.549) 0.990 (± 0.003) 3.858 (± 0.061) 13.601 (± 0.427)
ICL + Flow Matching 0.753 (± 0.049) 0.171 (± 0.153) 0.631 (± 0.294) 0.762 (± 0.015) 0.105 (± 0.046) 0.597 (± 0.104)

Scenario 5 ICL + Gaussian 0.962 (± 0.037) 1.444 (± 1.640) 3.299 (± 1.614) 0.991 (± 0.005) 1.666 (± 0.387) 2.963 (± 0.239)
ICL + Flow Matching 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

Scenario 6 ICL + Gaussian 0.909 (± 0.048) 1.020 (± 0.505) 1.515 (± 0.358) 0.939 (± 0.047) 1.799 (± 0.751) 1.904 (± 0.541)
ICL + Flow Matching 0.532 (± 0.019) 0.016 (± 0.008) 0.590 (± 0.066) 0.556 (± 0.017) 0.035 (± 0.015) 0.504 (± 0.038)

Scenario 7 ICL + Gaussian 0.970 (± 0.030) 2.169 (± 1.473) 1.707 (± 0.480) 0.993 (± 0.006) 2.390 (± 0.414) 1.362 (± 0.152)
ICL + Flow Matching 0.700 (± 0.116) 0.317 (± 0.355) 0.400 (± 0.286) 0.773 (± 0.048) 0.294 (± 0.457) 0.559 (± 0.256)
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Table 19: Factor Analysis: Comparing the in-context learner with a Gaussian approximation, fitted via the forward KL-
divergence, to the proposed flow matching method. Evaluation on 50 synthetic and 17 real-world datasets for seven
different scenarios. If one method is by more than two standard errors better than the other, it is marked in bold. The flow
matching approach shows favorable performance in the majority of cases. Specifically, it achieves statistically significant
improvements in all 6 scenarios on synthetic data and in 5 out of 6 scenarios on real-world data. Notably, it often reduces
discrepancy measures such as MMD and Wasserstein-2 distance by a large margin. In addition, the variability of the flow
matching estimates is generally lower, leading to more reliable and consistent results across different datasets. In scenario 4,
the Gaussian in-context learner learned a singular covariance matrix.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 ICL + Gaussian 0.974 (± 0.028) 1.838 (± 0.778) 1.450 (± 0.607) 0.589 (± 0.015) 0.080 (± 0.010) 0.459 (± 0.017)
ICL + Flow Matching 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 ICL + Gaussian 0.835 (± 0.040) 0.813 (± 0.276) 1.250 (± 0.316) 0.889 (± 0.027) 0.778 (± 0.109) 1.074 (± 0.073)
ICL + Flow Matching 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 ICL + Gaussian 0.826 (± 0.035) 0.826 (± 0.226) 1.210 (± 0.239) 0.942 (± 0.008) 1.466 (± 0.078) 1.317 (± 0.038)
ICL + Flow Matching 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

Scenario 4 ICL + Gaussian 0.870 (± 0.043) 0.706 (± 0.218) 1.635 (± 0.297) 0.999 (± 0.001) 2.025 (± 0.017) 2.013 (± 0.019)
ICL + Flow Matching 0.684 (± 0.060) 0.198 (± 0.141) 0.918 (± 0.246) 0.988 (± 0.003) 1.764 (± 0.026) 1.248 (± 0.008)

Scenario 5 ICL + Gaussian 0.838 (± 0.029) 0.831 (± 0.219) 1.248 (± 0.249) 0.944 (± 0.009) 1.477 (± 0.073) 1.316 (± 0.031)
ICL + Flow Matching 0.535 (± 0.016) 0.021 (± 0.011) 0.279 (± 0.060) 0.886 (± 0.017) 1.207 (± 0.101) 1.002 (± 0.042)

Scenario 6 ICL + Gaussian 0.837 (± 0.030) 0.831 (± 0.219) 1.248 (± 0.249) 0.944 (± 0.008) 1.477 (± 0.073) 1.316 (± 0.031)
ICL + Flow Matching 0.543 (± 0.021) 0.023 (± 0.015) 0.345 (± 0.173) 0.666 (± 0.020) 0.200 (± 0.034) 0.224 (± 0.014)

Table 20: Gaussian Mixture Models: Comparing the in-context learner with a Gaussian approximation, fitted via the
forward KL-divergence, to the proposed flow matching method. Evaluation on 50 synthetic and 17 real-world datasets
for seven different scenarios. If one method is by more than two standard errors better than the other, it is marked in
bold. While the differences are less clear-cut than in the previous models, ICL + Flow Matching demonstrates favorable
performance in several scenarios, particularly for the Wasserstein-2 distance and MMD. Notably, its advantage is most
visible in lower-dimensional settings (Scenario 1 and 2), where it consistently improves upon the Gaussian approximation,
fitted via the forward KL-divergence, across most metrics. However, as the dimensionality increases, the performance gap
tends to narrow, and in some cases, the inherent variability of the datasets, especially for the Gaussian approximation, fitted
via the forward KL-divergence,, makes it difficult to conclusively determine a clear winner. Nonetheless, the flow matching
approach often achieves smaller standard errors and lower discrepancy measures, underlining its potential for more stable
modeling.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 ICL + Gaussian 0.926 (± 0.029) 0.555 (± 0.452) 2.586 (± 0.560) 0.957 (± 0.034) 0.765 (± 0.958) 3.717 (± 1.709)
ICL + Flow Matching 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 ICL + Gaussian 0.985 (± 0.010) 0.761 (± 0.227) 5.022 (± 0.945) 0.999 (± 0.001) 0.801 (± 0.256) 7.525 (± 1.513)
ICL + Flow Matching 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 ICL + Gaussian 0.998 (± 0.002) 0.829 (± 0.241) 11.536 (± 2.365) 1.000 (± 0.000) 1.500 (± 0.251) 26.242 (± 4.171)
ICL + Flow Matching 1.000 (± 0.000) 0.582 (± 0.280) 8.708 (± 4.945) 1.000 (± 0.000) 1.869 (± 0.342) 33.230 (± 8.095)

Scenario 4 ICL + Gaussian 0.998 (± 0.001) 6.314 (± 0.449) 13.404 (± 0.609) 0.997 (± 0.001) 2.770 (± 1.201) 22.596 (± 5.717)
ICL + Flow Matching 1.000 (± 0.000) 2.451 (± 0.868) 8.333 (± 4.202) 1.000 (± 0.000) 2.518 (± 0.694) 11.938 (± 2.956)
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L. Ablation: Using a Diffusion Objective
To validate choosing the flow matching objective with optimal transport (OT) paths resulting in the objective in equation
Equation (7), we also conduct experiments using a diffusion-objective with variance preserving paths introduced by Song
et al. (2020). We choose three selected GLM, FA and GMM scenarios with the same 50 synthetic and 17 real-world datasets
for each scenario as in the other benchmarks.

L.1. Diffusion with Flow-Matching

First, we use the diffusion objective learned via flow matching, as described in (Lipman et al., 2022), where we choose the
same hyperparameters as (Lipman et al., 2022).

Table 21: GLMs: Comparison of the OT flow matching and the VP diffusion objective on 50 synthetic and 17 real-world
datasets for three different scenarios. All results within two standard errors of the best average result for each scenario are
marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 2 Diffusion paths + FM 0.961 (± 0.040) 1.525 (± 0.777) 3.354 (± 1.333) 0.961 (± 0.016) 1.347 (± 0.365) 2.025 (± 0.270)
OT paths 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 Diffusion paths + FM 0.903 (± 0.111) 1.080 (± 0.564) 1.733 (± 0.408) 0.936 (± 0.013) 1.002 (± 0.203) 1.442 (± 0.103)
OT paths 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 5 Diffusion paths + FM 0.691 (± 0.074) 0.211 (± 0.143) 0.708 (± 0.233) 0.681 (± 0.038) 0.182 (± 0.093) 0.554 (± 0.090)
OT paths + FM 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

In summary, the empirical results demonstrate that using the OT paths consistently outperforms the VP diffusion objective
across all scenarios for both GLMs and FAs. For GLMs, OT paths achieve significantly lower C2ST values in all scenarios.
In Scenario 2, OT paths reduce C2ST from 0.961 to 0.839 on synthetic data and from 0.961 to 0.768 on real-world data.
Similarly, in Scenario 3, OT paths achieve substantial improvements, with C2ST dropping from 0.903 to 0.611 on synthetic
data and from 0.936 to 0.576 on real-world data. This trend is complemented by consistent improvements in other metrics
such asW2, where OT paths often achieve reductions by over 50%.

Table 22: FA: Comparison of the OT flow matching and the VP diffusion objective on 50 synthetic and 17 real-world
datasets for three different scenarios. All results within two standard errors of the best average result for each scenario are
marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 Diffusion paths + FM 0.622 (± 0.043) 0.207 (± 0.121) 0.692 (± 0.192) 0.595 (± 0.012) 0.089 (± 0.011) 0.475 (± 0.019)
OT paths + FM 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 Diffusion paths + FM 0.826 (± 0.036) 0.768 (± 0.238) 1.219 (± 0.276) 0.878 (± 0.028) 0.793 (± 0.154) 1.056 (± 0.084)
OT paths + FM 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 Diffusion paths + FM 0.751 (± 0.048) 0.387 (± 0.216) 0.834 (± 0.163) 0.944 (± 0.008) 1.514 (± 0.056) 1.332 (± 0.028)
OT paths + FM 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

For FA, the performance gap in C2ST remains notable. In Scenario 1, OT paths achieve the best results on synthetic data,
reducing C2ST from 0.622 to 0.552, while also delivering improvements inW2 (0.289 compared to 0.692). On real-world
datasets, OT paths maintain competitive results, matching or exceeding the performance of diffusion paths. The advantage
is even more pronounced in Scenario 2, where OT paths consistently lead across all metrics, with a particularly striking
reduction in MMD on synthetic data (0.017 compared to 0.768) and strong results for C2ST on real-world data (0.622 vs.
0.878). Similarly, in Scenario 3, OT paths achieve the lowest C2ST values, with synthetic results improving from 0.751 to
0.537 and real-world results from 0.944 to 0.609.

In the case of Gaussian Mixture Models (GMMs), the empirical results indicate that the OT paths generally outperform the
VP diffusion objective across most scenarios and metrics, though the differences are not always statistically significant in
pair-wise comparisons. For example, in Scenario 1, OT paths achieve notably better results for C2ST on both synthetic and
real-world datasets, with reductions from 0.924 to 0.760 and from 0.958 to 0.847, respectively. Similarly, forW2, OT paths
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Table 23: GMMs: Comparison of the OT flow matching and the VP diffusion objective on 50 synthetic and 17 real-world
datasets for three different scenarios. All results within two standard errors of the best average result for each scenario are
marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 Diffusion paths + FM 0.924 (± 0.024) 0.241 (± 0.381) 2.195 (± 1.431) 0.958 (± 0.030) 0.890 (± 0.912) 5.328 (± 2.544)
OT paths + FM 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 Diffusion paths + FM 0.942 (± 0.020) 0.213 (± 0.187) 2.748 (± 0.659) 0.984 (± 0.012) 0.411 (± 0.162) 5.397 (± 1.458)
OT paths + FM 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 Diffusion paths + FM 1.000 (± 0.000) 0.582 (± 0.280) 8.708 (± 4.945) 1.000 (± 0.000) 1.869 (± 0.342) 33.230 (± 8.095)
OT paths + FM 0.999 (± 0.001) 0.267 (± 0.154) 7.234 (± 2.974) 1.000 (± 0.000) 1.155 (± 0.258) 26.956 (± 3.114)

Figure 8: Marginal distribution for GLM scenario 2 (left) and GMM scenario 1 (right). The in-context learner is trained
with a diffusion objective using VP paths.

exhibit better performance on real-world data (4.054 vs. 5.328). In Scenario 2, OT paths maintain a consistent advantage
in metrics such as C2ST andW2. For instance, synthetic data shows a C2ST improvement from 0.942 to 0.812, while
real-world data improves from 0.984 to 0.937. The OT paths also achieve lower MMD on synthetic data (0.159 vs. 0.213),
supporting their effectiveness in this scenario. For Scenario 3, OT paths achieve better results forW2 on both synthetic and
real-world data, reducing it from 8.708 to 7.234 and from 33.230 to 26.956, respectively.

L.2. Diffusion with Score-Matching

Second, we compare the results of using OT paths with flow matching to the results obtained when using VP paths and score
matching. We use the score matching objective introduced by Song & Ermon (2019) and maintain the VP hyperparameters
from Lipman et al. (2022) that we previously used for the diffusion objective with flow matching.

We find that, across all three considered GLM scenarios, using OT paths and flow matching yields substantially better results
than using Diffusion VP paths and score matching, where the score-matching objective sometimes yields results comparable
to those obtained using a Laplace approximation. We observe similar overall results for FA and GMMs, although the effect
is less pronounced. Note that the inferiority of score matching compared to flow matching is consistent with findings by
Lipman et al. (2022) and Dax et al. (2024), who also report that flow matching produces more stable and less noisy training
trajectories.

The large quantity of noise in the diffusion objective might prevent the model from learning complex conditioning on
datasets x, which is arguably the main challenge for performing in-context learning for the posteriors of latent variable
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models. We find visually that using the diffusion objective leads to a form of collapse where the model only learns a
constant posterior distribution Qz|x

θ that has a relatively large variance and is centered around zero, while largely ignoring
the conditioning on x (Please refer to figure 8).

Table 24: GLMs: Comparison of the OT flow matching and the VP diffusion objective with score matching on 50 synthetic
and 17 real-world datasets for three different scenarios. All results within two standard errors of the best average result for
each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 2 Diffusion paths + SM 0.996 (± 0.011) 4.121 (± 1.625) 8.761 (± 4.415) 0.998 (± 0.002) 1.574 (± 0.906) 8.483 (± 1.580)
OT paths + FM 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 Diffusion paths + SM 0.965 (± 0.075) 2.466 (± 1.224) 3.947 (± 1.323) 0.994 (± 0.002) 2.018 (± 0.206) 3.301 (± 0.260)
OT paths + FM 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 5 Diffusion paths + SM 0.998 (± 0.002) 3.163 (± 0.651) 8.684 (± 1.135) 0.999 (± 0.001) 3.004 (± 0.056) 8.547 (± 0.177)
OT paths + FM 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

Table 25: FA: Comparison of the OT flow matching and the VP diffusion objective with score matching on 50 synthetic and
17 real-world datasets for three different scenarios. All results within two standard errors of the best average result for each
scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 Diffusion paths + SM 0.880 (± 0.024) 0.875 (± 0.134) 1.787 (± 0.155) 0.906 (± 0.007) 0.845 (± 0.026) 1.723 (± 0.029)
OT paths + FM 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 Diffusion paths + SM 0.932 (± 0.022) 1.459 (± 0.128) 2.798 (± 0.141) 0.980 (± 0.008) 1.772 (± 0.065) 2.927 (± 0.085)
OT paths + FM 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 Diffusion paths + SM 0.925 (± 0.021) 1.747 (± 0.382) 3.028 (± 0.646) 0.989 (± 0.003) 2.101 (± 0.050) 2.882 (± 0.050)
OT paths + FM 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

Table 26: GMMs: Comparison of the OT flow matching and the VP diffusion objective with score matching on 50 synthetic
and 17 real-world datasets for three different scenarios. All results within two standard errors of the best average result for
each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 Diffusion paths + SM 1.000 (± 0.001) 1.412 (± 0.365) 7.038 (± 0.655) 0.998 (± 0.002) 1.574 (± 0.906) 8.483 (± 1.580)
OT paths + FM 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 Diffusion paths + SM 1.000 (± 0.000) 1.275 (± 0.240) 6.621 (± 1.091) 1.000 (± 0.000) 1.032 (± 0.163) 7.931 (± 0.748)
OT paths + FM 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 Diffusion paths + SM 1.000 (± 0.000) 1.337 (± 0.476) 10.877 (± 5.262) 1.000 (± 0.000) 2.277 (± 0.245) 24.269 (± 3.841)
OT paths + FM 0.999 (± 0.001) 0.267 (± 0.154) 7.234 (± 2.974) 1.000 (± 0.000) 1.155 (± 0.258) 26.956 (± 3.114)
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M. Ablation: Using an MLP-based Encoder
To further justify choosing a transformer encoder in our ICL approach, we conduct an ablation study comparing the
performance of our original ICL method with the performance obtained when the transformer encoder is replaced by
an MLP with batch normalization (Ioffe, 2015) and skip-connections. To ensure a fair comparison, we use an MLP
encoder with a hidden dimension of 1250 to give the overall model approximately the same number of parameters as in
the transformer-based approach. Concretely, our MLP-approach has 43.3 million parameters compared to 43.1 million
parameters with the transformer encoder. We choose three selected GLM, FA and GMM scenarios with 50 synthetic and 17
real-world datasets for each scenario.

In summary, we find that the transformer encoder yields consistently better, results than the mlp encoder across all scenarios.
While the difference is especially pronounced for the GLM scenarios, the difference become smaller for FA and GMMs.

Table 27: GLMs: Comparison when using an MLP-based encoder and a transformer encoder on 50 synthetic and 17
real-world datasets for three different scenarios.

Scenario Type of Encoder
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 2 MLP 0.942 (± 0.093) 1.783 (± 1.048) 2.503 (± 0.814) 0.968 (± 0.012) 1.528 (± 0.394) 2.271 (± 0.315)
Transformer 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 MLP 0.957 (± 0.075) 2.236 (± 1.218) 2.681 (± 1.130) 0.972 (± 0.012) 1.658 (± 0.450) 2.076 (± 0.427)
Transformer 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 5 MLP 0.845 (± 0.115) 1.066 (± 0.859) 1.166 (± 0.996) 0.890 (± 0.055) 1.223 (± 0.791) 1.102 (± 0.383)
Transformer 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

In Table 27, the transformer encoder consistently outperforms the MLP encoder across all metrics and scenarios. In Scenario
2, C2ST drops from 0.942 (MLP) to 0.839 (Transformer) on synthetic data and from 0.968 to 0.768 on real-world data.
Similarly,W2 improves significantly, decreasing from 2.503 to 1.111 on synthetic data and from 2.271 to 0.411 on real-world
data. In Scenario 3, transformers achieve substantial improvements, reducing C2ST from 0.957 (MLP) to 0.611 on synthetic
data and from 0.972 to 0.576 on real-world data. W2 also sees notable reductions, dropping from 2.681 to 0.423 on synthetic
data and from 2.076 to 0.257 on real-world data. Finally, in Scenario 5, transformers maintain their superiority, achieving
reductions in C2ST from 0.845 (MLP) to 0.621 on synthetic data and from 0.890 to 0.610 on real-world data. Improvements
inW2 are similarly remarkable, with reductions from 1.166 to 0.299 on synthetic data and from 1.102 to 0.242 on real-world
data.

Table 28: FA: Comparison when using an MLP-based encoder and a transformer encoder on 50 synthetic and 17 real-world
datasets for three different scenarios.

Scenario Type of Encoder
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 MLP 0.579 (± 0.015) 0.017 (± 0.006) 0.364 (± 0.029) 0.634 (± 0.014) 0.013 (± 0.004) 0.331 (± 0.010)
Transformer 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 MLP 0.562 (± 0.038) 0.037 (± 0.042) 0.308 (± 0.097) 0.632 (± 0.068) 0.182 (± 0.407) 0.339 (± 0.174)
Transformer 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 MLP 0.539 (± 0.025) 0.023 (± 0.022) 0.278 (± 0.116) 0.680 (± 0.019) 0.268 (± 0.044) 0.253 (± 0.017)
Transformer 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

For the factor analysis cases (Table 28), the transformer encoder still has better average performances even though the
differences are substantially less pronounced than for the GLMs. In Scenario 1, transformers slightly outperform MLPs,
reducing C2ST from 0.579 to 0.552 on synthetic data and from 0.634 to 0.606 on real-world data. W2 also sees moderate
improvements, dropping from 0.364 to 0.289 on synthetic data and from 0.331 to 0.265 on real-world data. In Scenario 2,
the advantage of the transformer encoder remains consistent, with C2ST decreasing from 0.562 (MLP) to 0.542 on synthetic
data and from 0.632 to 0.622 on real-world data. W2 also improves slightly, dropping from 0.308 to 0.244 on synthetic
data and from 0.339 to 0.287 on real-world data. Scenario 3 shows the smallest differences, where transformers marginally
improve C2ST from 0.539 (MLP) to 0.537 on synthetic data and from 0.680 to 0.609 on real-world data. For W2, the
reductions are minor but consistent, dropping from 0.278 to 0.259 on synthetic data and from 0.253 to 0.179 on real-world
data.
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Table 29: GMMs: Comparison when using an MLP-based encoder and a transformer encoder on 50 synthetic and 17
real-world datasets for three different scenarios.

Scenario Type of Encoder
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 MLP 0.873 (± 0.045) 0.242 (± 0.363) 2.203 (± 1.098) 0.917 (± 0.067) 0.891 (± 1.150) 4.528 (± 2.701)
Transformer 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 MLP 0.921 (± 0.035) 0.291 (± 0.205) 2.870 (± 0.710) 0.992 (± 0.005) 0.399 (± 0.127) 5.505 (± 1.144)
Transformer 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 MLP 0.999 (± 0.000) 0.438 (± 0.181) 11.502 (± 9.719) 1.000 (± 0.000) 1.001 (± 0.149) 26.282 (± 3.731)
Transformer 0.999 (± 0.001) 0.267 (± 0.154) 7.234 (± 2.974) 1.000 (± 0.000) 1.155 (± 0.258) 26.956 (± 3.114)

For the Gaussian Mixture Models (GMMs), the results indicate a more mixed performance where the transformer still
performs slightly better (Table 29): In Scenario 1, transformer encoders slightly outperform MLPs on synthetic data, with
C2ST improving from 0.873 (MLP) to 0.760 andW2 decreasing slightly from 2.203 to 2.095. However, on real-world
data, MLPs perform marginally better in terms of MMD, reducing it from 0.486 to 0.242, while transformers show minor
improvements inW2 from 4.528 to 4.054. In Scenario 2, transformers show a more noticeable advantage. On synthetic
data, C2ST improves from 0.921 (MLP) to 0.812, andW2 decreases significantly from 2.870 to 2.314. On real-world data,
transformers reduce C2ST from 0.992 to 0.937 and MMD from 0.399 to 0.282, along with a considerable improvement in
W2 from 5.505 to 3.947. In Scenario 3, the differences between the two encoders are relatively small but still favor the
transformers on synthetic data, withW2 decreasing from 11.502 (MLP) to 7.234. For real-world data, the results are nearly
identical for C2ST (1.000 for both) but show a slight increase inW2 for the transformer from 26.282 to 26.956. Overall, for
the GMMs, the transformer encoders demonstrate consistent improvements across scenarios for synthetic data, particularly
in Scenarios 1 and 2. However, for real-world data, the performance differences are less pronounced.
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Figure 9: Out-of-distribution (OOD) performance of the ICL method in GLM Scenario 2. The x-axis shows the distribution
shift between training and test distributions, quantified by C2ST. The y-axis displays the performance of the in-context
learner, evaluated via C2ST, MMD, and W2 distances against HMC samples — where higher values indicate worse
performance. OOD data is generated by gradually increasing the variance of the prior on the regression coefficients from an
initial value of 1.0 to

√
2, 1.7, 2, 2.5, and 3.5.

N. Robustness to Out-of-distribution Data
To investigate how our ICL approach behaves under mismatches between the distribution of synthetic training data and the
data used to infer the posterior, we conduct an ablation study by changing aspects of the distribution of training and testing
data.

In summary, the results in Tables 31, 33 and 35 show that our ICL approach is, in most cases, capable of robustly generalizing
beyond its specific pre-training distribution when various aspects of this distribution are changed. While the performance
sometimes decreases when a mismatch between training and testing data occurs, the drops in performance are almost always
modest and, in many cases, almost negligible.

N.1. GLM Scenarios

For scenario 2, we change the variance of the prior on the covariates from a value of V(βi,j) = 1 to V(βi,j) = 2 for
scenario 2.B and V(βi,j) = 4 for scenario 2.C. In scenarios 2.D and 2.E we change the scale parameter of the prior on the
variance σ2 of the noise—thereby changing its mean from E[σ2] = 0.5 to a value of E[σ2] ≈ 0.7071 for 2.D and E[σ2] = 1
for 2.E. The variance is changed from V[σ2] ≈ 0.0833 to V[σ2] ≈ 0.1667 and V[σ2] ≈ 0.333.

For scenarios 3.B and 3.C, the variance of the coefficients is doubled from scenario 3 to scenario 3.B and from 3.B to 3.C
again, analogously to scenarios 2.B and 2.C.0

For scenario 5, the rate parameter of the gamma distribution is changed. This leads to a decrease in the variance from
V(βi,j) = 1 to V(βi,j) = 0.5 for scenario 5.B and V(βi,j) = 0.25 for scenario 5.C. Notably, we also change the mean in
the distribution of the covariates from mean from E[βi,j ] = 1 to a value of E[βi,j ] ≈ 0.7071 for 2.D and E[βi,j ] = 0.5 for
2.E.

Table 30 shows that our ICL approach only exhibits modest degradation in performance when the variance of the coefficients
is doubled or quadruple while the mean stays the same (Scenarios 2.B, 2.C and 3.B, 3.C). Increasing the variance of the
noise term by a factor of two only has a small effect while multiplying it by four causes a drop in C2ST by 9.3%. However,
decreasing the variance of the gamma prior in scenario 5, combined with decreasing the mean, leads to a notable drop in
performance across all metrics.

N.2. FA Scenarios

To construct the mismatch between training and test distribution, we vary the variance of the factor loading Wi,j,k for
scenarios 1, 2 and 3. Concretely, the variance is doubled and quadrupled.

For the FA cases (refer to Table 33), there is a notable drop in performance in the first scenario when OOD data is used.
Please note that even in the most misspecified scenario (1.C), the performance, as measured in C2ST is still around ten

37



Can Transformers Learn Full Bayesian Inference In Context?

Table 30: Distribution of variables for the OOD analysis on GLM scenarios.

Scenario βi,j βi,0 σ2
i yi,j |(ui,j ,βi, β0,i, σ

2
i )

Scenario 2 N (0, 1) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2.B N (0, 2) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2.C N (0, 4) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2.D N (0, 1) N (0, 9) IG(5, 2
√
2) N (u⊤

i,jβi, σ
2
i )

Scenario 2.E N (0, 1) N (0, 9) IG(5, 4) N (u⊤
i,jβi, σ

2
i )

Scenario 3 Laplace(0, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 3.B Laplace(0,
√
2) - IG(5, 2) N (u⊤

i,jβi, σ
2
i )

Scenario 3.C Laplace(0, 2) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 5 Ga(1, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 5.B Ga(1,
√
2) - IG(5, 2) N (u⊤

i,jβi, σ
2
i )

Scenario 5.C Ga(1, 2) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Table 31: OOD Performance: Evaluation on 50 synthetic datasets for 8 different GLM scenarios. All results within two
standard errors of the non-OOD result for each scenario are marked in bold.

Scenario C2ST (↓) MMD (↓) W2 (↓)
Scenario 2 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300)
Scenario 2.B 0.809 (± 0.055) 0.410 (± 0.095) 2.250 (± 0.916)
Scenario 2.C 0.857 (± 0.105) 0.634 (± 0.318) 3.067 (± 1.759)

Scenario 2 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300)
Scenario 2.D 0.840 (± 0.109) 0.916 (± 1.123) 4.007 (± 3.261)
Scenario 2.E 0.932 (± 0.120) 1.556 (± 1.127) 4.850 (± 2.261)

Scenario 3 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348)
Scenario 3.B 0.667 (± 0.080) 0.210 (± 0.117) 1.172 (± 0.258)
Scenario 3.C 0.720 (± 0.108) 0.362 (± 0.248) 1.891 (± 0.678)

Scenario 5 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195)
Scenario 5.B 0.831 (± 0.121) 0.479 (± 0.200) 1.762 (± 0.541)
Scenario 5.C 0.920 (± 0.064) 0.753 (± 0.424) 3.159 (± 1.254)

percent better than the best VI method in this scenario (Table 46). While the absolute difference between performance on
the training distribution and the test distribution is very small for scenarios 2 and 3, the difference is still not within two
standard errors of the non-OOD performance because the standard error itself is quite small. The performance on the OOD
data is still better than all other VI methods (see Table 3).

N.3. GMM Scenarios

To generate several distinct OOD scenarios based on the generative processes of GMMs, we vary scenario 2 in various ways.
Note that the structure of the distributions is the same for all GMM scenarios—focusing on this specific scenario thus makes
sense when considering OOD generalization. First, in scenario 2.B, we decrease the symmetric parameter of the Dirichlet
prior on the assignments from 1 to 0.5 causing larger discrepancy in the number of points per cluster. In scenario 2.C we
make the opposite change.

In scenarios 2.D and 2.E we first double and then quadruple the variance of the prior on the per-component variances σi,m,l.
Finally, in scenarios 2.F and 2.G, the prior on the mean is made more dispersed compared to the training data.

On the GMM scenarios (Table 35), the sample quality obtained via ICL is surprisingly stable under various changes to the
data-generating process. It is relatively unsurprising that changing the Dirichlet prior, i.e., making the cluster more or less
uniform in their number of samples, might lead to cases the ICL method can generalize to relatively easily, as demonstrated
in scenarios 2.B and 2.C. The most pronounced drop in performance results from increasing the variance of the prior on the
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Table 32: Distribution of variables for the OOD analysis on the FA scenarios.

Scenario K P µi,j Ψi,j,j Wi,j,k zi,j zdim
Scenario 1 50 3 N (0, 1) IG(5, 1) N (0, 1) N (0, 1) 3
Scenario 1.B 50 3 N (0, 1) IG(5, 1) N (0, 2) N (0, 1) 3
Scenario 1.C 50 3 N (0, 1) IG(5, 1) N (0, 4) N (0, 1) 3

Scenario 2 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 10) N (0, 1) 3

Scenario 2.B 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 10 ·
√
2) N (0, 1) 3

Scenario 2.C 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 20) N (0, 1) 3

Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 3) N (0, 1) 3

Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 3 ·
√
2) N (0, 1) 3

Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 6) N (0, 1) 3

Table 33: OOD Performance: Evaluation on 50 synthetic datasets for 6 different FA scenarios. All results within two
standard errors of the non-OOD result for each scenario are marked in bold.

Scenario C2ST (↓) MMD (↓) W2 (↓)
Scenario 1 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083)
Scenario 1.B 0.826 (± 0.066) 0.656 (± 0.384) 0.929 (± 0.321)
Scenario 1.C 0.855 (± 0.060) 0.837 (± 0.494) 1.135 (± 0.461)

Scenario 2 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033)
Scenario 2.B 0.580 (± 0.069) 0.087 (± 0.191) 0.393 (± 0.291)
Scenario 2.C 0.589 (± 0.076) 0.089 (± 0.113) 0.446 (± 0.233)

Scenario 3 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088)
Scenario 3.B 0.544 (± 0.028) 0.030 (± 0.021) 0.285 (± 0.094)
Scenario 3.C 0.533 (± 0.025) 0.021 (± 0.015) 0.347 (± 0.152)

standard deviation of the components of the mixture model (scenario 2.E), while increasing the variance of the mean vector
relative to the standard deviation of the components has a less pronounced effect.
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Table 34: Distribution for the OOD analysis of the GMM scenarios.

Scenario K M L ϕi σ2
i,m,l µi,m,l|σ2

i,m,l

Scenario 2 25 3 3 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2.B 25 3 3 Dir(0.5) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2.C 25 3 3 Dir(2) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2.D 25 3 3 Dir(1) IG(5, 2 ·
√
2) N (0, 3σ2

i,m,l)

Scenario 2.E 25 3 3 Dir(1) IG(5, 4) N (0, 3σ2
i,m,l)

Scenario 2.F 25 3 3 Dir(1) IG(5, 2) N (0, 4σ2
i,m,l)

Scenario 2.G 25 3 3 Dir(1) IG(5, 2) N (0, 5σ2
i,m,l)

Table 35: OOD Performance: Evaluation on 50 synthetic datasets for 6 different GMM scenarios. All results within two
standard errors of the non-OOD result for each scenario are marked in bold.

Scenario C2ST (↓) MMD (↓) W2 (↓)
Scenario 2 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926)
Scenario 2.B 0.829 (± 0.050) 0.233 (± 0.161) 2.595 (± 0.998)
Scenario 2.C 0.816 (± 0.057) 0.149 (± 0.135) 2.272 (± 0.654)

Scenario 2 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926)
Scenario 2.D 0.812 (± 0.076) 0.148 (± 0.091) 2.557 (± 0.837)
Scenario 2.E 0.880 (± 0.057) 0.231 (± 0.109) 3.535 (± 1.003)

Scenario 2 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926)
Scenario 2.F 0.821 (± 0.076) 0.216 (± 0.214) 2.700 (± 1.044
Scenario 2.G 0.844 (± 0.046) 0.197 (± 0.124) 2.675 (± 0.552)
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O. Ablation: Dimensionality of the Problem
In this section, the effect of the dimensionality K of the latent variable z ∈ RK for the GLM scenarios is investigated.

In summary, our results show that forward-KL based VI and in particular MAP solutions perform strongly in terms of
predictive performance, which is in line with results first presented by Mittal et al. (2025b;a).

In table 36, we find that the advantages of the in-context learning approach to deteriorate for higher dimensionalities, with
the variational inference methods using a Gaussian approximation performing well for 20 dimensions. This finding is
line with work by Mittal et al. (2025b;a). For 50 dimensions we find that in many cases the used metrics do not allow to
significantly discriminate the performance of the different approaches. Note that the randomness in the results, especially
for higher dimensionalities, can in rare cases lead to better mean values. This is most likely not significant when taking the
standard error into account.

Similar to scenarios 1,2 and 3, we find that in scenarios 4,5 and 6 (Table 37) the advantages of the in-context learning
approach to deteriorate for higher dimensionalities, with the variational inference methods using a Gaussian approximation
performing well for 20 dimensions. For 50 dimensions we find that in many cases the used metrics do not allow to
significantly discriminate the performance of the different approaches. Note that the randomness in the results, especially
for higher dimensionalities, can in rare cases lead to better mean values. This is most likely not significant when taking the
standard error into account.

Finally, the results in Table 38 show that also for this scenario 7, the advantages of the in-context learning approach to
deteriorate for higher dimensionalities. However, in this specific scenario the in-context learner is not significantly different
from the VI methods in terms of C2ST and MMD for 20 dimensions. For 50 dimensions we find that the VI method
using IAF performs well, together with the in-context learning approach in terms of MMD while the C2ST score does not
indicate a clear winner andW2 favors the other methods. Note that the randomness in the results, especially for higher
dimensionalities, can in rare cases lead to better mean values. This is most likely not significant when taking the standard
error into account.
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Table 36: Generalized Linear Models: Ablation with respect to the dimensionality of the problem on 50 synthetic and 17
real-world datasets for scenarios 1,2 and 3. All results within two standard errors of the best average result for each scenario
are marked in bold. Due to the limitations of the number of features in the real-world data, we can only use 5 datasets for 20
and one dataset for 50 dimensions.

Scenario Dim. Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 5

Laplace Approximation 1.000 (± 0.000) 2.738 (± 0.721) 0.825 (± 0.279) 1.000 (± 0.000) 2.150 (± 0.323) 0.642 (± 0.124)
VI: DiagonalNormal 0.904 (± 0.076) 1.452 (± 0.984) 0.669 (± 0.301) 0.797 (± 0.083) 0.612 (± 0.511) 0.414 (± 0.152)
VI: MultivariateNormal 0.750 (± 0.128) 0.735 (± 0.733) 0.565 (± 0.292) 0.607 (± 0.070) 0.167 (± 0.196) 0.301 (± 0.123)
VI: Structured Normal 0.753 (± 0.126) 0.736 (± 0.737) 0.570 (± 0.310) 0.600 (± 0.070) 0.169 (± 0.214) 0.306 (± 0.131)
VI: IAF 0.777 (± 0.122) 0.864 (± 0.844) 0.725 (± 0.523) 0.683 (± 0.132) 0.440 (± 0.559) 0.503 (± 0.383)
HMC 0.745 (± 0.130) 0.722 (± 0.732) 0.569 (± 0.301) 0.595 (± 0.075) 0.173 (± 0.213) 0.321 (± 0.140)
ICL (ours) 0.765 (± 0.123) 0.767 (± 0.727) 0.585 (± 0.301) 0.614 (± 0.074) 0.175 (± 0.219) 0.310 (± 0.138)

Scenario 1 20

Laplace Approximation 1.000 (± 0.000) 2.237 (± 0.024) 3.252 (± 1.172) 1.000 (± 0.000) 2.206 (± 0.021) 2.792 (± 0.339)
VI: DiagonalNormal 0.843 (± 0.204) 1.056 (± 0.869) 2.976 (± 0.927) 0.983 (± 0.019) 1.217 (± 0.463) 2.406 (± 0.348)
VI: MultivariateNormal 0.789 (± 0.140) 0.714 (± 0.351) 2.774 (± 0.995) 0.768 (± 0.120) 0.180 (± 0.159) 2.064 (± 0.306)
VI: Structured Normal 0.792 (± 0.109) 0.708 (± 0.153) 2.703 (± 1.069) 0.668 (± 0.080) 0.168 (± 0.071) 2.052 (± 0.275)
VI: IAF 0.832 (± 0.196) 0.847 (± 1.016) 4.015 (± 0.415) 0.939 (± 0.024) 0.508 (± 0.200) 3.140 (± 0.290)
ICL (ours) 0.849 (± 0.171) 0.844 (± 0.905) 4.564 (± 0.622) 0.970 (± 0.020) 0.724 (± 0.287) 4.250 (± 0.312)

Scenario 1 50

Laplace Approximation 1.000 (± 0.000) 2.401 (± 0.282) 5.152 (± 2.268) 1.000 (± nan) 2.339 (± nan) 6.642 (± nan)
VI: DiagonalNormal 0.812 (± 0.197) 0.956 (± 1.016) 5.541 (± 2.356) 0.915 (± nan) 0.508 (± nan) 6.200 (± nan)
VI: MultivariateNormal 0.839 (± 0.148) 0.926 (± 0.682) 5.514 (± 2.370) 0.905 (± nan) 0.790 (± nan) 6.258 (± nan)
VI: Structured Normal 0.823 (± 0.160) 0.844 (± 0.480) 5.752 (± 2.098) 0.910 (± nan) 1.122 (± nan) 6.898 (± nan)
VI: IAF 0.820 (± 0.182) 0.814 (± 0.987) 6.696 (± 1.207) 0.938 (± nan) 0.256 (± nan) 6.869 (± nan)
ICL (ours) 0.787 (± 0.217) 1.015 (± 1.255) 8.278 (± 0.821) 0.979 (± nan) 0.413 (± nan) 8.368 (± nan)

Scenario 2 5

Laplace Approximation 1.000 (± 0.000) 4.853 (± 2.333) 5.770 (± 5.946) 1.000 (± 0.000) 2.572 (± 0.206) 0.809 (± 0.149)
VI: DiagonalNormal 0.957 (± 0.091) 3.906 (± 2.679) 5.628 (± 6.092) 0.892 (± 0.044) 0.847 (± 0.389) 0.530 (± 0.175)
VI: MultivariateNormal 0.910 (± 0.131) 3.407 (± 2.781) 5.584 (± 6.104) 0.820 (± 0.031) 0.243 (± 0.148) 0.408 (± 0.118)
VI: Structured Normal 0.908 (± 0.119) 3.139 (± 2.763) 5.480 (± 6.164) 0.824 (± 0.023) 0.215 (± 0.110) 0.392 (± 0.109)
VI: IAF 0.968 (± 0.063) 4.416 (± 2.473) 7.474 (± 6.235) 0.888 (± 0.067) 0.921 (± 0.860) 0.942 (± 0.733)
ICL (ours) 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 2 20

Laplace Approximation 1.000 (± 0.000) 2.314 (± 0.237) 3.069 (± 1.168) 1.000 (± 0.000) 2.222 (± 0.018) 2.847 (± 0.305)
VI: DiagonalNormal 0.904 (± 0.168) 1.292 (± 0.937) 2.863 (± 0.919) 0.990 (± 0.009) 1.277 (± 0.452) 2.483 (± 0.318)
VI: MultivariateNormal 0.851 (± 0.134) 0.492 (± 0.547) 2.694 (± 0.916) 0.843 (± 0.069) 0.243 (± 0.170) 2.166 (± 0.266)
VI: Structured Normal 0.697 (± 0.065) 0.070 (± 0.099) 2.497 (± 0.993) 0.655 (± 0.031) 0.029 (± 0.025) 2.191 (± 0.271)
VI: IAF 0.916 (± 0.110) 1.062 (± 1.076) 4.191 (± 0.623) 0.952 (± 0.025) 0.515 (± 0.242) 3.331 (± 0.371)
ICL (ours) 0.955 (± 0.057) 1.131 (± 1.035) 4.945 (± 0.836) 0.968 (± 0.020) 0.724 (± 0.278) 4.356 (± 0.302)

Scenario 2 50

Laplace Approximation 1.000 (± 0.000) 2.437 (± 0.271) 5.728 (± 1.358) 1.000 (± nan) 2.350 (± nan) 5.620 (± nan)
VI: DiagonalNormal 0.853 (± 0.182) 0.787 (± 0.687) 6.224 (± 1.225) 0.996 (± nan) 1.080 (± nan) 5.426 (± nan)
VI: MultivariateNormal 0.878 (± 0.150) 0.688 (± 0.620) 6.206 (± 1.244) 0.994 (± nan) 0.791 (± nan) 5.305 (± nan)
VI: Structured Normal 0.865 (± 0.081) 0.186 (± 0.169) 5.874 (± 1.233) 0.819 (± nan) 0.093 (± nan) 5.660 (± nan)
VI: IAF 0.909 (± 0.130) 0.649 (± 0.650) 7.465 (± 0.335) 0.985 (± nan) 0.426 (± nan) 6.426 (± nan)
ICL (ours) 0.972 (± 0.039) 0.741 (± 0.713) 8.313 (± 0.608) 0.971 (± nan) 0.405 (± nan) 7.718 (± nan)

Scenario 3 5

Laplace Approximation 1.000 (± 0.000) 2.203 (± 0.997) 1.170 (± 0.949) 1.000 (± 0.000) 1.841 (± 0.185) 0.729 (± 0.175)
VI: DiagonalNormal 0.866 (± 0.101) 1.069 (± 1.150) 0.846 (± 0.747) 0.797 (± 0.083) 0.526 (± 0.361) 0.480 (± 0.207)
VI: MultivariateNormal 0.656 (± 0.131) 0.445 (± 1.061) 0.660 (± 0.737) 0.560 (± 0.035) 0.032 (± 0.028) 0.249 (± 0.069)
VI: Structured Normal 0.653 (± 0.125) 0.421 (± 0.993) 0.659 (± 0.736) 0.552 (± 0.028) 0.027 (± 0.015) 0.239 (± 0.055)
VI: IAF 0.751 (± 0.148) 0.939 (± 1.349) 0.964 (± 0.924) 0.673 (± 0.141) 0.399 (± 0.543) 0.563 (± 0.433)
ICL (ours) 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 3 20

Laplace Approximation 1.000 (± 0.000) 2.726 (± 1.116) 4.127 (± 1.927) 1.000 (± 0.000) 2.234 (± 0.092) 3.589 (± 0.519)
VI: DiagonalNormal 0.912 (± 0.134) 1.704 (± 1.467) 3.933 (± 1.574) 0.983 (± 0.014) 1.298 (± 0.443) 3.147 (± 0.557)
VI: MultivariateNormal 0.863 (± 0.113) 0.937 (± 1.174) 3.754 (± 1.650) 0.796 (± 0.099) 0.268 (± 0.226) 2.645 (± 0.466)
VI: Structured Normal 0.768 (± 0.109) 0.302 (± 0.518) 3.151 (± 1.663) 0.722 (± 0.073) 0.131 (± 0.141) 2.579 (± 0.399)
VI: IAF 0.908 (± 0.133) 1.657 (± 1.476) 5.543 (± 1.120) 0.936 (± 0.041) 0.548 (± 0.341) 3.678 (± 0.670)
ICL (ours) 0.902 (± 0.076) 1.053 (± 0.782) 6.206 (± 0.783) 0.932 (± 0.019) 0.635 (± 0.183) 5.281 (± 0.317)

Scenario 3 50

Laplace Approximation 1.000 (± 0.000) 2.700 (± 0.789) 8.841 (± 1.691) 1.000 (± nan) 2.348 (± nan) 7.049 (± nan)
VI: DiagonalNormal 0.870 (± 0.127) 1.154 (± 1.321) 9.180 (± 1.513) 0.997 (± nan) 1.393 (± nan) 6.791 (± nan)
VI: MultivariateNormal 0.896 (± 0.101) 1.027 (± 1.157) 9.175 (± 1.555) 0.998 (± nan) 1.092 (± nan) 6.667 (± nan)
VI: Structured Normal 0.873 (± 0.112) 0.539 (± 0.667) 9.118 (± 1.538) 0.958 (± nan) 0.420 (± nan) 6.665 (± nan)
VI: IAF 0.869 (± 0.124) 0.751 (± 0.939) 9.917 (± 0.870) 0.971 (± nan) 0.417 (± nan) 7.411 (± nan)
ICL (ours) 0.931 (± 0.062) 0.784 (± 0.884) 10.063 (± 0.930) 0.965 (± nan) 0.347 (± nan) 8.482 (± nan)

42



Can Transformers Learn Full Bayesian Inference In Context?

Table 37: Generalized Linear Models: Ablation with respect to the dimensionality of the problem on 50 synthetic and 17
real-world datasets for scenarios 4, 5 and 6. All results within two standard errors of the best average result for each scenario
are marked in bold. Due to the limitations of the number of features in the real-world data, we can only use 5 datasets for 20
and one dataset for 50 dimensions.

Scenario Dim. Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 4 5

Laplace Approximation 1.000 (± 0.000) 3.511 (± 2.025) 2.166 (± 1.722) 1.000 (± 0.000) 2.011 (± 0.058) 0.993 (± 0.144)
VI: DiagonalNormal 0.968 (± 0.036) 2.798 (± 2.255) 2.065 (± 1.745) 0.916 (± 0.040) 0.928 (± 0.339) 0.732 (± 0.181)
VI: MultivariateNormal 0.855 (± 0.123) 1.648 (± 2.052) 1.853 (± 1.745) 0.771 (± 0.017) 0.087 (± 0.030) 0.539 (± 0.070)
VI: Structured Normal 0.847 (± 0.116) 1.505 (± 1.978) 1.889 (± 1.883) 0.769 (± 0.012) 0.083 (± 0.018) 0.543 (± 0.070)
VI: IAF 0.942 (± 0.077) 3.029 (± 2.210) 3.554 (± 2.715) 0.833 (± 0.069) 0.636 (± 0.756) 0.978 (± 0.600)
ICL (ours) 0.753 (± 0.049) 0.171 (± 0.153) 0.631 (± 0.294) 0.762 (± 0.015) 0.105 (± 0.046) 0.597 (± 0.104)

Scenario 4 20

Laplace Approximation 1.000 (± 0.000) 4.929 (± 1.611) 8.863 (± 3.796) 1.000 (± 0.000) 3.196 (± 0.841) 5.186 (± 1.533)
VI: DiagonalNormal 0.988 (± 0.060) 4.418 (± 2.013) 9.364 (± 4.281) 0.997 (± 0.007) 3.095 (± 1.417) 6.098 (± 2.435)
VI: MultivariateNormal 0.986 (± 0.054) 3.388 (± 1.907) 7.910 (± 4.070) 0.893 (± 0.087) 0.534 (± 0.469) 3.175 (± 0.751)
VI: Structured Normal 0.954 (± 0.076) 2.254 (± 1.515) 7.475 (± 4.224) 0.727 (± 0.034) 0.074 (± 0.070) 2.877 (± 0.379)
VI: IAF 0.987 (± 0.059) 3.258 (± 1.415) 9.865 (± 3.515) 0.955 (± 0.030) 0.629 (± 0.308) 4.098 (± 0.341)
ICL (ours) 0.978 (± 0.038) 1.185 (± 0.720) 11.335 (± 1.378) 0.972 (± 0.018) 0.668 (± 0.199) 9.937 (± 0.466)

Scenario 4 50

Laplace Approximation 1.000 (± 0.000) 6.695 (± 1.329) 12.323 (± 4.091) 1.000 (± nan) 5.491 (± nan) 7.518 (± nan)
VI: DiagonalNormal 0.965 (± 0.084) 2.395 (± 1.958) 12.022 (± 3.673) 0.996 (± nan) 4.368 (± nan) 6.951 (± nan)
VI: MultivariateNormal 0.984 (± 0.054) 5.395 (± 1.847) 12.141 (± 3.079) 1.000 (± nan) 5.146 (± nan) 9.002 (± nan)
VI: Structured Normal 0.982 (± 0.026) 4.261 (± 1.191) 11.126 (± 3.396) 0.869 (± nan) 3.181 (± nan) 7.065 (± nan)
VI: IAF 0.981 (± 0.048) 4.609 (± 1.412) 12.567 (± 3.131) 0.988 (± nan) 3.558 (± nan) 7.849 (± nan)
ICL (ours) 0.960 (± 0.045) 3.792 (± 0.758) 14.071 (± 0.894) 0.974 (± nan) 3.443 (± nan) 12.546 (± nan)

Scenario 5 5

Laplace Approximation 1.000 (± 0.000) 2.060 (± 0.472) 0.797 (± 0.577) 1.000 (± 0.000) 1.982 (± 0.126) 0.623 (± 0.084)
VI: DiagonalNormal 0.866 (± 0.085) 0.954 (± 1.022) 0.651 (± 0.549) 0.810 (± 0.036) 0.441 (± 0.252) 0.384 (± 0.089)
VI: MultivariateNormal 0.765 (± 0.100) 0.537 (± 1.019) 0.633 (± 1.067) 0.711 (± 0.038) 0.148 (± 0.093) 0.279 (± 0.056)
VI: Structured Normal 0.758 (± 0.098) 0.447 (± 0.818) 0.572 (± 0.816) 0.705 (± 0.032) 0.140 (± 0.081) 0.269 (± 0.045)
VI: IAF 0.814 (± 0.105) 0.953 (± 1.165) 0.881 (± 1.067) 0.777 (± 0.106) 0.684 (± 0.939) 0.625 (± 0.525)
ICL (ours) 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

Scenario 5 20

Laplace Approximation 1.000 (± 0.000) 2.367 (± 0.555) 2.780 (± 1.271) 1.000 (± 0.000) 2.200 (± 0.041) 2.444 (± 0.619)
VI: DiagonalNormal 0.938 (± 0.098) 1.153 (± 0.954) 2.552 (± 1.147) 0.967 (± 0.012) 0.547 (± 0.233) 1.973 (± 0.452)
VI: MultivariateNormal 0.929 (± 0.082) 0.710 (± 0.768) 2.473 (± 1.145) 0.928 (± 0.016) 0.250 (± 0.079) 1.776 (± 0.399)
VI: Structured Normal 0.909 (± 0.082) 0.397 (± 0.442) 2.246 (± 1.244) 0.924 (± 0.018) 0.202 (± 0.094) 1.775 (± 0.430)
VI: IAF 0.934 (± 0.092) 1.325 (± 1.161) 4.899 (± 1.320) 0.980 (± 0.016) 0.892 (± 0.404) 3.593 (± 0.597)
ICL (ours) 0.961 (± 0.046) 1.330 (± 1.125) 5.084 (± 1.297) 0.981 (± 0.014) 1.162 (± 0.461) 4.804 (± 0.578)

Scenario 5 50

Laplace Approximation 1.000 (± 0.000) 2.582 (± 0.606) 5.765 (± 1.540) 1.000 (± nan) 2.322 (± nan) 3.485 (± nan)
VI: DiagonalNormal 0.925 (± 0.074) 0.925 (± 1.056) 6.461 (± 1.877) 0.972 (± nan) 0.186 (± nan) 3.251 (± nan)
VI: MultivariateNormal 0.934 (± 0.064) 0.825 (± 0.972) 6.404 (± 1.882) 0.969 (± nan) 0.165 (± nan) 3.223 (± nan)
VI: Structured Normal 0.927 (± 0.068) 0.481 (± 0.588) 6.420 (± 1.970) 0.961 (± nan) 0.072 (± nan) 3.324 (± nan)
VI: IAF 0.925 (± 0.069) 0.792 (± 0.975) 8.458 (± 0.864) 0.996 (± nan) 0.519 (± nan) 4.645 (± nan)
ICL (ours) 0.998 (± 0.002) 0.762 (± 0.987) 8.195 (± 0.820) 1.000 (± nan) 0.984 (± nan) 7.288 (± nan)

Scenario 6 5

Laplace Approximation 1.000 (± 0.000) 2.026 (± 0.027) 1.612 (± 0.162) 1.000 (± 0.000) 1.993 (± 0.032) 1.299 (± 0.106)
VI: DiagonalNormal 0.724 (± 0.060) 0.185 (± 0.082) 0.787 (± 0.078) 0.703 (± 0.039) 0.147 (± 0.063) 0.637 (± 0.089)
VI: MultivariateNormal 0.534 (± 0.018) 0.014 (± 0.006) 0.581 (± 0.074) 0.538 (± 0.019) 0.016 (± 0.007) 0.466 (± 0.029)
VI: Structured Normal 0.536 (± 0.016) 0.014 (± 0.005) 0.583 (± 0.071) 0.536 (± 0.019) 0.017 (± 0.009) 0.469 (± 0.033)
VI: IAF 0.542 (± 0.026) 0.031 (± 0.031) 0.613 (± 0.092) 0.535 (± 0.015) 0.015 (± 0.006) 0.467 (± 0.031)
ICL (ours) 0.532 (± 0.019) 0.016 (± 0.008) 0.590 (± 0.066) 0.556 (± 0.017) 0.035 (± 0.015) 0.504 (± 0.038)

Scenario 6 20

Laplace Approximation 1.000 (± 0.000) 2.247 (± 0.006) 4.158 (± 0.243) 1.000 (± 0.000) 2.240 (± 0.007) 3.714 (± 0.127)
VI: DiagonalNormal 0.747 (± 0.138) 0.136 (± 0.123) 3.460 (± 0.361) 0.836 (± 0.053) 0.203 (± 0.086) 2.977 (± 0.112)
VI: MultivariateNormal 0.621 (± 0.016) 0.016 (± 0.002) 3.564 (± 0.290) 0.608 (± 0.017) 0.015 (± 0.003) 3.101 (± 0.115)
VI: Structured Normal 0.599 (± 0.015) 0.012 (± 0.002) 3.592 (± 0.267) 0.584 (± 0.028) 0.012 (± 0.002) 3.120 (± 0.107)
VI: IAF 0.625 (± 0.040) 0.019 (± 0.009) 3.572 (± 0.266) 0.636 (± 0.021) 0.020 (± 0.005) 3.106 (± 0.128)
ICL (ours) 0.747 (± 0.148) 0.163 (± 0.144) 4.063 (± 0.184) 0.928 (± 0.030) 0.463 (± 0.162) 4.425 (± 0.314)

Scenario 6 50

Laplace Approximation 1.000 (± 0.000) 2.291 (± 0.003) 6.742 (± 0.362) 1.000 (± nan) 2.293 (± nan) 6.587 (± nan)
VI: DiagonalNormal 0.761 (± 0.138) 0.087 (± 0.083) 6.909 (± 0.743) 0.905 (± nan) 0.175 (± nan) 6.403 (± nan)
VI: MultivariateNormal 0.797 (± 0.100) 0.069 (± 0.055) 6.956 (± 0.736) 0.891 (± nan) 0.110 (± nan) 6.473 (± nan)
VI: Structured Normal 0.647 (± 0.017) 0.013 (± 0.002) 7.218 (± 0.506) 0.654 (± nan) 0.013 (± nan) 6.890 (± nan)
VI: IAF 0.639 (± 0.038) 0.014 (± 0.006) 7.204 (± 0.463) 0.692 (± nan) 0.024 (± nan) 6.887 (± nan)
ICL (ours) 0.742 (± 0.178) 0.115 (± 0.124) 7.713 (± 0.120) 0.935 (± nan) 0.203 (± nan) 7.846 (± nan)
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Table 38: Generalized Linear Models: Ablation with respect to the dimensionality of the problem on 50 synthetic and 17
real-world datasets for scenario 7. All results within two standard errors of the best average result for each scenario are
marked in bold. Due to the limitations of the number of features in the real-world data, we can only use 5 datasets for 20
and one dataset for 50 dimensions.

Scenario Dim. Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 7 5

Laplace Approximation 1.000 (± 0.000) 3.559 (± 1.933) 1.347 (± 1.067) 1.000 (± 0.000) 2.016 (± 0.080) 0.763 (± 0.174)
VI: DiagonalNormal 0.938 (± 0.074) 2.536 (± 2.097) 1.142 (± 0.993) 0.936 (± 0.024) 1.029 (± 0.255) 0.579 (± 0.181)
VI: MultivariateNormal 0.814 (± 0.181) 1.999 (± 2.283) 1.033 (± 0.969) 0.741 (± 0.020) 0.093 (± 0.025) 0.391 (± 0.074)
VI: Structured Normal 0.824 (± 0.177) 1.891 (± 2.127) 1.041 (± 0.934) 0.734 (± 0.025) 0.072 (± 0.019) 0.385 (± 0.065)
VI: IAF 0.939 (± 0.091) 2.707 (± 1.712) 1.590 (± 0.820) 0.864 (± 0.093) 0.830 (± 0.697) 1.064 (± 0.616)
ICL (ours) 0.700 (± 0.116) 0.317 (± 0.355) 0.400 (± 0.286) 0.773 (± 0.048) 0.294 (± 0.457) 0.559 (± 0.256)

Scenario 7 20

Laplace Approximation 1.000 (± 0.000) 3.581 (± 2.147) 3.365 (± 1.583) 1.000 (± 0.000) 2.213 (± 0.024) 2.539 (± 0.378)
VI: DiagonalNormal 0.887 (± 0.184) 2.819 (± 2.732) 3.637 (± 1.371) 0.996 (± 0.005) 1.734 (± 0.314) 2.348 (± 0.423)
VI: MultivariateNormal 0.881 (± 0.164) 2.265 (± 2.573) 3.524 (± 1.392) 0.916 (± 0.085) 0.766 (± 0.535) 2.043 (± 0.516)
VI: Structured Normal 0.850 (± 0.162) 1.667 (± 2.266) 3.186 (± 1.315) 0.849 (± 0.105) 0.391 (± 0.244) 1.880 (± 0.367)
VI: IAF 0.867 (± 0.184) 1.629 (± 1.584) 4.875 (± 1.239) 0.986 (± 0.007) 0.895 (± 0.361) 4.096 (± 0.319)
ICL (ours) 0.867 (± 0.185) 1.428 (± 1.352) 4.836 (± 1.032) 0.982 (± 0.010) 0.820 (± 0.324) 4.177 (± 0.368)

Scenario 7 50

Laplace Approximation 1.000 (± 0.000) 4.768 (± 1.171) 6.573 (± 1.038) 1.000 (± nan) 2.312 (± nan) 5.270 (± nan)
VI: DiagonalNormal 0.771 (± 0.191) 3.263 (± 1.853) 6.919 (± 1.257) 1.000 (± nan) 2.237 (± nan) 5.417 (± nan)
VI: MultivariateNormal 0.816 (± 0.154) 3.245 (± 1.793) 6.978 (± 1.226) 0.997 (± nan) 2.117 (± nan) 5.781 (± nan)
VI: Structured Normal 0.795 (± 0.171) 3.126 (± 1.677) 6.918 (± 1.260) 1.000 (± nan) 1.879 (± nan) 5.461 (± nan)
VI: IAF 0.769 (± 0.189) 2.534 (± 0.894) 7.895 (± 0.843) 0.994 (± nan) 0.584 (± nan) 7.626 (± nan)
ICL (ours) 0.732 (± 0.216) 2.451 (± 0.790) 7.787 (± 0.661) 0.980 (± nan) 0.411 (± nan) 7.461 (± nan)

P. Comparison to SGLD
Besides comparing the samples from our ICL approach to samples from various VI methods, we additionally compare it
against samples generated via stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011). We run SGLD with
a learning rate of 10−3 for the GLM and GMM cases and a learning rate of 10−4 for FA and use 1000 gradient steps for
warmup and partition the data into ten minibatches. We implement the preconditioning method introduced by (Li et al.,
2016) for more stable sampling behavior. Despite the preconditioning, SGLD consistently fails for GLMs scenario 7 because
the sampler diverges causing singular covariance matrices. To facilitate running SGLD for the GMMs, which also include
discrete variables, we marginalize over the discrete variables.

In summary, we find that ICL yields samples with much higher quality than SGLD compared to the gold standard HMC
samples across almost all scenarios on both synthetic and real-world data. The poor sample quality with SGLD is expected
given that numerous theoretical and empirical findings confirm that, while SGLD is computationally very cheap, it is
substantially outperformed by, for instance, HMC, in terms of sample quality, which is especially pronounced when the
posterior distributions are complex and parameters are correlated (Chen et al., 2014; Mangoubi & Vishnoi, 2019; Izmailov
et al., 2021; Brosse et al., 2018) .

For GLMs (Table 42), ICL achieves significantly better results, with notable improvements in C2ST. In Scenario 1, synthetic
C2ST drops from 0.992 to 0.765 and real-world C2ST from 0.980 to 0.614. Similarly, Scenario 3 shows substantial gains,
with synthetic C2ST improving from 0.997 to 0.611 and real-world C2ST from 0.983 to 0.576. These trends extend to
metrics likeW2, where ICL yields consistent reductions.

For FA (Table 43), ICL also achieves superior performance, particularly in Scenarios 1 and 2. For example, in Scenario 1,
synthetic C2ST decreases from 0.996 to 0.552, accompanied by improvements inW2 from 1.776 to 0.289. Scenario 2 sees
further enhancements, with synthetic MMD dropping from 2.950 to 0.017 and real-world C2ST improving from 0.995 to
0.622.

For GMMs (Table 44), ICL demonstrates a clear advantage in most scenarios. In Scenario 1, ICL reduces synthetic C2ST
from 1.000 to 0.760 and real-worldW2 from 6.510 to 4.054. Scenario 2 shows synthetic C2ST improving from 1.000 to
0.812, and MMD from 3.046 to 0.159. While in scenarios 3, ICL has a singificantly lower MMD score on the synthetic data,
the other differences are not significant.
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Table 39: Evaluating the predictive performance across 50 synthetic and 17 real-world datasets in GLM scenario 2 for
different dimensionalities. All results within two standard errors of the best average result for each scenario are marked
in bold. Due to the limitations of the number of features in the real-world data, we can only use 5 datasets for 20 and
one dataset for 50 dimensions. We find that the quality of the samples by the in-context learner, when evaluated based
on predictive performance, decreases consistently with an increase in the dimensionality of the problem. Note that the
randomness in the results, especially for higher dimensionalities, can in rare cases lead to better mean values. This is most
likely not significant when taking the standard error into account.

Scenario Dim. Model RMSE Real-World (↓) RMSE Synthetic (↓)

Scenario 2 5

HMC 0.559 (± 0.023) 0.556 (± 0.049)
Laplace Approximation 0.561 (± 0.022) 0.557 (± 0.049)
VI: DiagonalNormal 0.560 (± 0.023) 0.557 (± 0.049)
VI: MultivariateNormal 0.559 (± 0.023) 0.556 (± 0.049)
VI: Structured Normal 0.604 (± 0.016) 0.685 (± 0.054)
VI: IAF 0.563 (± 0.023) 0.557 (± 0.049)
ICL (ours) 0.561 (± 0.019) 0.653 (± 0.049)

MAP 0.513 (± 0.023) 0.522 (± 0.048)
TabPFN 0.449 (± 0.034) 0.498 (± 0.047)

Scenario 2 20

HMC 0.682 (± 0.029) 0.536 (± 0.041)
Laplace Approximation 0.682 (± 0.030) 0.538 (± 0.040)
VI: DiagonalNormal 0.680 (± 0.029) 0.539 (± 0.041)
VI: MultivariateNormal 0.685 (± 0.029) 0.537 (± 0.041)
VI: Structured Normal 0.746 (± 0.019) 0.681 (± 0.041)
VI: IAF 0.683 (± 0.029) 0.539 (± 0.041)
ICL (ours) 0.777 (± 0.011) 1.122 (± 0.078)

MAP 0.578 (± 0.025) 0.472 (± 0.039)
TabPFN 0.470 (± 0.044) 0.446 (± 0.038)

Scenario 2 50

HMC 0.669 (± nan) 0.713 (± 0.060)
Laplace Approximation 0.594 (± nan) 0.878 (± 0.068)
VI: DiagonalNormal 0.582 (± nan) 0.870 (± 0.065)
VI: MultivariateNormal 0.729 (± nan) 0.764 (± 0.066)
VI: Structured Normal 0.922 (± nan) 1.116 (± 0.074)
VI: IAF 0.695 (± nan) 0.770 (± 0.060)
ICL (ours) 1.256 (± nan) 2.343 (± 0.230)

MAP 0.301 (± nan) 0.398 (± 0.047)
TabPFN 0.235 (± nan) 0.570 (± 0.053)
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Table 40: Evaluating the predictive performance across 50 synthetic and 17 real-world datasets in GLM scenario 2 for
different dimensionalities. All results within two standard errors of the best average result for each scenario are marked
in bold. Due to the limitations of the number of features in the real-world data, we can only use 5 datasets for 20 and
one dataset for 50 dimensions. We find that the quality of the samples by the in-context learner, when evaluated based on
predictive performance, decreases consistently with an increase in the dimensionality of the problem.

Scenario Dim. Model RMSE Real-World (↓) RMSE Synthetic (↓)

Scenario 3 5

HMC 0.684 (± 0.027) 0.512 (± 0.040)
Laplace Approximation 0.688 (± 0.026) 0.516 (± 0.040)
VI: DiagonalNormal 0.686 (± 0.027) 0.513 (± 0.040)
VI: MultivariateNormal 0.685 (± 0.027) 0.512 (± 0.040)
VI: Structured Normal 0.733 (± 0.016) 0.607 (± 0.043)
VI: IAF 0.686 (± 0.027) 0.512 (± 0.040)
ICL (ours) 0.690 (± 0.023) 0.588 (± 0.045)

MAP 0.646 (± 0.028) 0.495 (± 0.039)
TabPFN 0.556 (± 0.041) 0.462 (± 0.037)

Scenario 3 20

HMC 1.030 (± 0.045) 0.621 (± 0.046)
Laplace Approximation 1.053 (± 0.047) 0.755 (± 0.052)
VI: DiagonalNormal 1.035 (± 0.043) 0.734 (± 0.053)
VI: MultivariateNormal 1.033 (± 0.039) 0.705 (± 0.055)
VI: Structured Normal 1.095 (± 0.045) 1.033 (± 0.063)
VI: IAF 1.026 (± 0.045) 0.653 (± 0.047)
ICL (ours) 1.770 (± 0.048) 2.160 (± 0.217)

MAP 0.861 (± 0.038) 0.581 (± 0.050)
TabPFN 0.654 (± 0.062) 0.475 (± 0.039)

Scenario 3 50

HMC 0.858 (± nan) 0.645 (± 0.051)
Laplace Approximation 0.866 (± nan) 0.865 (± 0.083)
VI: DiagonalNormal 0.788 (± nan) 0.870 (± 0.084)
VI: MultivariateNormal 0.819 (± nan) 0.778 (± 0.066)
VI: Structured Normal 0.812 (± nan) 1.040 (± 0.103)
VI: IAF 0.802 (± nan) 0.846 (± 0.078)
ICL (ours) 1.686 (± nan) 3.477 (± 0.604)

MAP 0.539 (± nan) 0.618 (± 0.054)
TabPFN 0.322 (± nan) 0.534 (± 0.038)
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Table 41: Evaluating the predictive performance across 50 synthetic and 17 real-world datasets in GLM scenario 2 for
different dimensionalities. All results within two standard errors of the best average result for each scenario are marked
in bold. Due to the limitations of the number of features in the real-world data, we can only use 5 datasets for 20 and
one dataset for 50 dimensions. We find that the quality of the samples by the in-context learner, when evaluated based on
predictive performance, decreases consistently with an increase in the dimensionality of the problem.

Scenario Dim. Model RMSE Real-World (↓) RMSE Synthetic (↓)

Scenario 5 5

HMC 0.699 (± 0.022) 0.490 (± 0.036)
Laplace Approximation 0.699 (± 0.022) 0.491 (± 0.036)
VI: DiagonalNormal 0.702 (± 0.022) 0.491 (± 0.036)
VI: MultivariateNormal 0.698 (± 0.021) 0.491 (± 0.036)
VI: Structured Normal 1.507 (± 0.089) 0.741 (± 0.053)
VI: IAF 0.699 (± 0.022) 0.490 (± 0.036)
ICL (ours) 0.769 (± 0.020) 0.701 (± 0.049)

MAP 0.658 (± 0.022) 0.471 (± 0.035)
TabPFN 0.534 (± 0.040) 0.442 (± 0.035)

Scenario 5 20

HMC 1.527 (± 0.055) 0.553 (± 0.044)
Laplace Approximation 1.585 (± 0.065) 0.586 (± 0.043)
VI: DiagonalNormal 1.554 (± 0.058) 0.586 (± 0.042)
VI: MultivariateNormal 1.530 (± 0.058) 0.564 (± 0.043)
VI: Structured Normal 2.109 (± 0.156) 1.054 (± 0.067)
VI: IAF 1.548 (± 0.057) 0.562 (± 0.043)
ICL (ours) 3.545 (± 0.288) 1.626 (± 0.140)

MAP 1.254 (± 0.027) 0.464 (± 0.035)
TabPFN 0.668 (± 0.064) 0.413 (± 0.032)

Scenario 5 50

HMC 1.626 (± nan) 0.521 (± 0.028)
Laplace Approximation 1.541 (± nan) 0.655 (± 0.040)
VI: DiagonalNormal 1.576 (± nan) 0.639 (± 0.041)
VI: MultivariateNormal 1.659 (± nan) 0.592 (± 0.035)
VI: Structured Normal 2.076 (± nan) 1.018 (± 0.102)
VI: IAF 1.706 (± nan) 0.627 (± 0.040)
ICL (ours) 10.319 (± nan) 1.458 (± 0.193)

MAP 1.318 (± nan) 0.416 (± 0.018)
TabPFN 0.330 (± nan) 0.443 (± 0.024)

Table 42: SGLD vs. ICL: Evaluation on 50 synthetic and 17 real-world datasets for six different GLM scenarios. All results
within two standard errors of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 SGLD 0.992 (± 0.015) 2.846 (± 1.411) 1.951 (± 0.917) 0.980 (± 0.013) 2.191 (± 1.183) 0.865 (± 0.438)
ICL (ours) 0.765 (± 0.123) 0.767 (± 0.727) 0.585 (± 0.301) 0.614 (± 0.074) 0.175 (± 0.219) 0.310 (± 0.138)

Scenario 2 SGLD 0.999 (± 0.004) 5.650 (± 1.762) 8.295 (± 5.629) 0.994 (± 0.006) 2.699 (± 1.093) 1.289 (± 0.454)
ICL (ours) 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 SGLD 0.997 (± 0.008) 3.320 (± 1.595) 3.011 (± 1.036) 0.983 (± 0.013) 2.152 (± 1.194) 0.935 (± 0.523)
ICL (ours) 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 4 SGLD 1.000 (± 0.000) 6.626 (± 1.215) 15.674 (± 8.100) 0.994 (± 0.006) 2.927 (± 1.564) 1.606 (± 1.022)
ICL (ours) 0.753 (± 0.049) 0.171 (± 0.153) 0.631 (± 0.294) 0.762 (± 0.015) 0.105 (± 0.046) 0.597 (± 0.104)

Scenario 5 SGLD 0.999 (± 0.003) 3.308 (± 1.728) 2.216 (± 1.247) 1.000 (± 0.000) 4.012 (± 1.413) 0.996 (± 0.406)
ICL (ours) 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

Scenario 6 SGLD 0.998 (± 0.001) 2.681 (± 0.565) 2.419 (± 0.510) 0.998 (± 0.002) 2.845 (± 0.590) 1.851 (± 0.319)
ICL (ours) 0.532 (± 0.019) 0.016 (± 0.008) 0.590 (± 0.066) 0.556 (± 0.017) 0.035 (± 0.015) 0.504 (± 0.038)
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Table 43: SGLD vs. ICL: Evaluation on 50 synthetic and 17 real-world datasets for six different FA scenarios. All results
within two standard errors of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 SGLD 0.996 (± 0.006) 2.883 (± 1.552) 1.776 (± 0.694) 0.995 (± 0.003) 2.676 (± 0.710) 1.608 (± 0.381)
ICL (ours) 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 SGLD 0.997 (± 0.003) 2.950 (± 0.786) 1.892 (± 0.533) 0.995 (± 0.003) 2.517 (± 0.583) 1.500 (± 0.268)
ICL (ours) 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 SGLD 0.998 (± 0.005) 3.662 (± 1.099) 2.086 (± 0.919) 0.956 (± 0.025) 1.580 (± 0.819) 0.311 (± 0.108)
ICL (ours) 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

Scenario 4 SGLD 1.000 (± 0.000) 4.127 (± 0.635) 3.047 (± 0.972) 0.950 (± 0.021) 1.520 (± 0.512) 0.141 (± 0.031)
ICL (ours) 0.684 (± 0.060) 0.198 (± 0.141) 0.918 (± 0.246) 0.988 (± 0.003) 1.764 (± 0.026) 1.248 (± 0.008)

Scenario 5 SGLD 0.999 (± 0.001) 3.465 (± 0.939) 1.981 (± 0.938) 0.962 (± 0.024) 1.945 (± 1.383) 0.393 (± 0.243)
ICL (ours) 0.535 (± 0.016) 0.021 (± 0.011) 0.279 (± 0.060) 0.886 (± 0.017) 1.207 (± 0.101) 1.002 (± 0.042)

Scenario 6 SGLD 0.997 (± 0.004) 3.395 (± 1.199) 2.358 (± 1.458) 0.950 (± 0.040) 2.177 (± 1.643) 0.342 (± 0.224)
ICL (ours) 0.543 (± 0.021) 0.023 (± 0.015) 0.345 (± 0.173) 0.666 (± 0.020) 0.200 (± 0.034) 0.224 (± 0.014)

Table 44: SGLD vs. ICL: Evaluation on 50 synthetic and 17 real-world datasets for four different GMM scenarios. All
results within two standard errors of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 SGLD 1.000 (± 0.001) 2.629 (± 0.868) 3.279 (± 1.330) 1.000 (± 0.000) 3.421 (± 0.877) 6.510 (± 1.763)
ICL (ours) 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 SGLD 1.000 (± 0.000) 3.046 (± 1.041) 6.015 (± 4.265) 1.000 (± 0.000) 2.487 (± 0.521) 6.858 (± 1.618)
ICL (ours) 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 SGLD 1.000 (± 0.000) 4.631 (± 1.169) 23.247 (± 30.646) 1.000 (± 0.000) 2.655 (± 0.437) 26.356 (± 2.699)
ICL (ours) 1.000 (± 0.000) 0.582 (± 0.280) 8.708 (± 4.945) 1.000 (± 0.000) 1.869 (± 0.342) 33.230 (± 8.095)

Scenario 4 SGLD 1.000 (± 0.000) 3.464 (± 1.098) 6.995 (± 5.554) 1.000 (± 0.000) 2.555 (± 0.494) 9.477 (± 3.432)
ICL (ours) 1.000 (± 0.000) 2.451 (± 0.868) 8.333 (± 4.202) 1.000 (± 0.000) 2.518 (± 0.694) 11.938 (± 2.956)
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Q. Evaluation the choice of classifier for the C2ST metric
In this section, we validate the choice of the classifier for the C2ST metric by comparing the ROC characteristic of a random
forest (our default choice) and a neural network in distinguishing posterior samples. In summary, we find that despite minor
differences, the two metrics yield the same overall results. Across all scenarios, both Random Forest (RF) and Neural
Network NN classifiers yield quite consistent rankings of model performance with only insubstantial deviations in terms of
the big picture. In particular, ICL is consistently among the top-performing approaches under both evaluation metrics. Out
of the 14 total scenario–domain combinations (7 scenarios × 2 dataset types), the RF and NN metrics identify the same
best-performing model in 12 cases.
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Table 45: Generalized Linear Models: Comparison of C2ST scores with a Random Forest (RF) and a Neural Network (NN).
For the NN we follow the setup of Lueckmann et al., 2021. Evaluation across seven distinct scenarios on 50 synthetic and
17 real-world datasets. All results within two standard errors of the best average result in each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST RF (↓) C2ST NN (↓) C2ST RF (↓) C2ST NN (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 0.998 (± 0.000) 1.000 (± 0.000) 0.998 (± 0.000)
VI: DiagonalNormal 0.904 (± 0.076) 0.857 (± 0.001) 0.797 (± 0.083) 0.803 (± 0.004)
VI: MultivariateNormal 0.750 (± 0.128) 0.780 (± 0.002) 0.607 (± 0.070) 0.713 (± 0.004)
VI: Structured Normal 0.753 (± 0.126) 0.781 (± 0.002) 0.600 (± 0.070) 0.705 (± 0.004)
VI: IAF 0.777 (± 0.122) 0.793 (± 0.002) 0.683 (± 0.132) 0.746 (± 0.006)
HMC 0.745 (± 0.130) 0.777 (± 0.002) 0.595 (± 0.075) 0.702 (± 0.004)
ICL (ours) 0.765 (± 0.123) 0.712 (± 0.002) 0.614 (± 0.074) 0.701 (± 0.004)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 0.998 (± 0.000) 1.000 (± 0.000) 0.998 (± 0.000)
VI: DiagonalNormal 0.957 (± 0.091) 0.883 (± 0.002) 0.892 (± 0.044) 0.851 (± 0.003)
VI: MultivariateNormal 0.910 (± 0.131) 0.860 (± 0.002) 0.820 (± 0.031) 0.815 (± 0.003)
VI: Structured Normal 0.908 (± 0.119) 0.859 (± 0.002) 0.824 (± 0.023) 0.817 (± 0.003)
VI: IAF 0.968 (± 0.063) 0.889 (± 0.001) 0.888 (± 0.067) 0.849 (± 0.004)
ICL (ours) 0.839 (± 0.072) 0.824 (± 0.001) 0.768 (± 0.033) 0.789 (± 0.003)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 0.998 (± 0.000) 1.000 (± 0.000) 0.998 (± 0.000)
VI: DiagonalNormal 0.866 (± 0.101) 0.838 (± 0.002) 0.797 (± 0.083) 0.803 (± 0.004)
VI: MultivariateNormal 0.656 (± 0.131) 0.733 (± 0.002) 0.590 (± 0.035) 0.685 (± 0.003)
VI: Structured Normal 0.653 (± 0.125) 0.731 (± 0.002) 0.582 (± 0.028) 0.681 (± 0.003)
VI: IAF 0.751 (± 0.148) 0.780 (± 0.002) 0.673 (± 0.141) 0.741 (± 0.006)
ICL (ours) 0.611 (± 0.070) 0.710 (± 0.001) 0.576 (± 0.027) 0.693 (± 0.003)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 0.998 (± 0.000) 1.000 (± 0.000) 0.998 (± 0.000)
VI: DiagonalNormal 0.968 (± 0.036) 0.889 (± 0.001) 0.916 (± 0.040) 0.863 (± 0.003)
VI: MultivariateNormal 0.855 (± 0.123) 0.832 (± 0.002) 0.771 (± 0.017) 0.790 (± 0.002)
VI: Structured Normal 0.847 (± 0.116) 0.828 (± 0.002) 0.769 (± 0.012) 0.789 (± 0.002)
VI: IAF 0.942 (± 0.077) 0.876 (± 0.001) 0.833 (± 0.069) 0.821 (± 0.004)
ICL (ours) 0.753 (± 0.049) 0.781 (± 0.001) 0.762 (± 0.015) 0.786 (± 0.002)

Scenario 5

Laplace Approximation 1.000 (± 0.000) 0.998 (± 0.000) 1.000 (± 0.000) 0.998 (± 0.000)
VI: DiagonalNormal 0.866 (± 0.085) 0.838 (± 0.002) 0.810 (± 0.036) 0.810 (± 0.003)
VI: MultivariateNormal 0.765 (± 0.100) 0.787 (± 0.002) 0.711 (± 0.038) 0.760 (± 0.003)
VI: Structured Normal 0.758 (± 0.098) 0.784 (± 0.002) 0.705 (± 0.032) 0.757 (± 0.003)
VI: IAF 0.814 (± 0.105) 0.812 (± 0.002) 0.777 (± 0.106) 0.793 (± 0.005)
ICL (ours) 0.621 (± 0.063) 0.715 (± 0.001) 0.610 (± 0.045) 0.710 (± 0.003)

Scenario 6

Laplace Approximation 1.000 (± 0.000) 0.998 (± 0.000) 1.000 (± 0.000) 0.998 (± 0.000)
VI: DiagonalNormal 0.724 (± 0.060) 0.767 (± 0.001) 0.703 (± 0.039) 0.756 (± 0.003)
VI: MultivariateNormal 0.534 (± 0.018) 0.672 (± 0.001) 0.538 (± 0.019) 0.674 (± 0.002)
VI: Structured Normal 0.536 (± 0.016) 0.673 (± 0.001) 0.536 (± 0.019) 0.673 (± 0.002)
VI: IAF 0.542 (± 0.026) 0.676 (± 0.001) 0.535 (± 0.015) 0.672 (± 0.002)
ICL (ours) 0.532 (± 0.019) 0.671 (± 0.001) 0.556 (± 0.017) 0.653 (± 0.002)

Scenario 7

Laplace Approximation 1.000 (± 0.000) 0.998 (± 0.000) 1.000 (± 0.000) 0.998 (± 0.000)
VI: DiagonalNormal 0.938 (± 0.074) 0.874 (± 0.001) 0.936 (± 0.024) 0.873 (± 0.003)
VI: MultivariateNormal 0.814 (± 0.181) 0.812 (± 0.002) 0.741 (± 0.020) 0.775 (± 0.003)
VI: Structured Normal 0.824 (± 0.177) 0.817 (± 0.002) 0.734 (± 0.025) 0.772 (± 0.003)
VI: IAF 0.939 (± 0.091) 0.874 (± 0.002) 0.864 (± 0.093) 0.837 (± 0.005)
ICL (ours) 0.700 (± 0.116) 0.721 (± 0.002) 0.773 (± 0.048) 0.751 (± 0.003)
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Table 46: Factor Analysis: Comparison of C2ST scores using a Random Forest (RF) and a Neural Network (NN) classifier
across six different scenarios on 50 synthetic and 17 real-world datasets. For the NN we follow the setup of Lueckmann et
al., 2021. All results within two standard errors of the best average result in each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST RF (↓) C2ST NN (↓) C2ST RF (↓) C2ST NN (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 1.000 (± 0.001) 0.997 (± 0.000) 0.979 (± 0.008) 0.950 (± 0.001)
VI: MultivariateNormal 0.998 (± 0.003) 0.960 (± 0.000) 0.966 (± 0.010) 0.944 (± 0.001)
VI: Structured Normal 0.997 (± 0.004) 0.959 (± 0.000) 0.979 (± 0.010) 0.950 (± 0.001)
VI: IAF 0.953 (± 0.104) 0.937 (± 0.001) 0.849 (± 0.075) 0.885 (± 0.003)
ICL (ours) 0.552 (± 0.028) 0.737 (± 0.000) 0.606 (± 0.038) 0.764 (± 0.001)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 0.998 (± 0.002) 0.960 (± 0.000) 0.975 (± 0.010) 0.948 (± 0.001)
VI: MultivariateNormal 0.989 (± 0.009) 0.955 (± 0.000) 0.951 (± 0.025) 0.936 (± 0.001)
VI: Structured Normal 0.984 (± 0.031) 0.953 (± 0.000) 0.958 (± 0.025) 0.940 (± 0.001)
VI: IAF 0.966 (± 0.066) 0.944 (± 0.001) 0.799 (± 0.058) 0.860 (± 0.002)
ICL (ours) 0.542 (± 0.006) 0.732 (± 0.000) 0.622 (± 0.032) 0.772 (± 0.001)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 0.999 (± 0.002) 0.960 (± 0.000) 0.951 (± 0.007) 0.936 (± 0.001)
VI: MultivariateNormal 0.994 (± 0.007) 0.958 (± 0.000) 0.945 (± 0.007) 0.933 (± 0.001)
VI: Structured Normal 0.997 (± 0.003) 0.959 (± 0.000) 0.942 (± 0.009) 0.932 (± 0.001)
VI: IAF 0.990 (± 0.011) 0.987 (± 0.000) 0.928 (± 0.015) 0.925 (± 0.001)
ICL (ours) 0.537 (± 0.023) 0.729 (± 0.000) 0.609 (± 0.019) 0.765 (± 0.001)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 1.000 (± 0.000) 0.997 (± 0.000) 0.977 (± 0.003) 0.949 (± 0.000)
VI: MultivariateNormal 0.999 (± 0.001) 0.960 (± 0.000) 0.973 (± 0.008) 0.947 (± 0.001)
VI: Structured Normal 1.000 (± 0.000) 0.997 (± 0.000) 0.973 (± 0.007) 0.947 (± 0.001)
VI: IAF 0.999 (± 0.001) 0.960 (± 0.000) 0.961 (± 0.018) 0.941 (± 0.001)
ICL (ours) 0.684 (± 0.060) 0.803 (± 0.001) 0.988 (± 0.003) 0.955 (± 0.000)

Scenario 5

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 0.999 (± 0.002) 0.960 (± 0.000) 0.944 (± 0.010) 0.933 (± 0.001)
VI: MultivariateNormal 0.995 (± 0.007) 0.958 (± 0.000) 0.930 (± 0.017) 0.926 (± 0.001)
VI: Structured Normal 0.998 (± 0.005) 0.960 (± 0.000) 0.934 (± 0.011) 0.928 (± 0.001)
VI: IAF 0.992 (± 0.012) 0.957 (± 0.000) 0.910 (± 0.011) 0.916 (± 0.001)
ICL (ours) 0.535 (± 0.016) 0.728 (± 0.000) 0.886 (± 0.017) 0.904 (± 0.001)

Scenario 6

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 0.998 (± 0.002) 0.960 (± 0.000) 0.949 (± 0.008) 0.935 (± 0.001)
VI: MultivariateNormal 0.991 (± 0.013) 0.956 (± 0.000) 0.938 (± 0.009) 0.930 (± 0.001)
VI: Structured Normal 0.997 (± 0.005) 0.959 (± 0.000) 0.944 (± 0.006) 0.933 (± 0.001)
VI: IAF 0.989 (± 0.029) 0.955 (± 0.000) 0.865 (± 0.027) 0.893 (± 0.001)
ICL (ours) 0.543 (± 0.021) 0.732 (± 0.000) 0.666 (± 0.020) 0.794 (± 0.001)
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Table 47: Gaussian Mixture Models: Comparison of C2ST scores using a Random Forest (RF) and a Neural Network (NN)
classifier across six distinct scenarios on 50 synthetic and 17 real-world datasets. All results within two standard errors of
the best average result in each scenario are marked in bold. For the NN we follow the setup of Lueckmann et al., 2021. Both
RF and NN classifiers yield consistent rankings, with ICL emerging as the top method in scenarios with more pronounced
model mismatch.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST RF (↓) C2ST NN (↓) C2ST RF (↓) C2ST NN (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 0.988 (± 0.013) 1.012 (± 0.000) 0.995 (± 0.006) 0.996 (± 0.001)
VI: MultivariateNormal 0.988 (± 0.013) 1.012 (± 0.000) 0.994 (± 0.007) 0.993 (± 0.001)
VI: Structured Normal 0.987 (± 0.015) 0.982 (± 0.000) 0.993 (± 0.009) 0.992 (± 0.001)
VI: IAF 0.989 (± 0.013) 0.983 (± 0.000) 0.995 (± 0.010) 0.996 (± 0.001)
ICL (ours) 0.760 (± 0.092) 0.825 (± 0.001) 0.847 (± 0.082) 0.869 (± 0.003)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 0.989 (± 0.024) 0.983 (± 0.000) 0.998 (± 0.003) 0.997 (± 0.001)
VI: MultivariateNormal 0.991 (± 0.021) 0.991 (± 0.000) 0.999 (± 0.002) 1.002 (± 0.001)
VI: Structured Normal 0.992 (± 0.017) 0.988 (± 0.000) 0.999 (± 0.002) 1.002 (± 0.001)
VI: IAF 0.992 (± 0.021) 0.988 (± 0.000) 0.998 (± 0.004) 0.997 (± 0.001)
ICL (ours) 0.812 (± 0.061) 0.851 (± 0.001) 0.937 (± 0.041) 0.915 (± 0.002)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 0.996 (± 0.011) 1.004 (± 0.000) 0.992 (± 0.018) 0.988 (± 0.001)
VI: MultivariateNormal 0.997 (± 0.009) 1.007 (± 0.000) 0.993 (± 0.016) 0.992 (± 0.001)
VI: Structured Normal 0.995 (± 0.017) 0.996 (± 0.000) 0.993 (± 0.016) 0.992 (± 0.001)
VI: IAF 0.994 (± 0.018) 0.993 (± 0.000) 0.993 (± 0.017) 0.992 (± 0.001)
ICL (ours) 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: DiagonalNormal 1.000 (± 0.002) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: MultivariateNormal 1.000 (± 0.002) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
VI: Structured Normal 1.000 (± 0.001) 0.997 (± 0.000) 0.996 (± 0.016) 1.004 (± 0.001)
VI: IAF 1.000 (± 0.002) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
ICL (ours) 1.000 (± 0.000) 0.997 (± 0.000) 1.000 (± 0.000) 0.997 (± 0.000)
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