
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNLEARNING EVALUATION THROUGH SUBSET STA-
TISTICAL INDEPENDENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluating machine unlearning remains challenging, as existing methods typi-
cally require retraining reference models or performing membership inference at-
tacks—both rely on prior access to training configuration or supervision label,
making them impractical in realistic scenarios. Motivated by the fact that most
unlearning algorithms remove a small, random subset of the training data, we
propose a subset-level evaluation framework based on statistical independence.
Specifically, we design a tailored use of the Hilbert–Schmidt Independence Crite-
rion to assess whether the model outputs on a given subset exhibit statistical de-
pendence, without requiring model retraining or auxiliary classifiers. Our method
provides a simple, standalone evaluation procedure that aligns with unlearning
workflows. Extensive experiments demonstrate that our approach reliably distin-
guishes in-training from out-of-training subsets and clearly differentiates unlearn-
ing effectiveness, even when existing evaluations fall short.

1 INTRODUCTION

Machine Unlearning aims to remove the influence of specific training data samples from a trained
model. This capability is crucial for both adversarial-oriented unlearning, where backdoors or cor-
rupted knowledge introduced during training must be eliminated, and privacy-oriented unlearning,
where individuals may request their data be erased under data protection regulations such as the
“right to be forgotten” (Garg et al., 2020; BUKATY, 2019). To meet this need, recent works (Nguyen
et al., 2022; Xu et al., 2024) have developed various unlearning algorithms to eliminate the influence
of a subset of training data that needs to be forgotten, i.e., forgetting data, from a trained model.

One key challenge lies in verifying whether an unlearning process has been successful—especially
in realistic deployment settings where retraining from scratch is impractical. Existing unlearning
works often assess unlearning effectiveness by comparing metrics such as model utility (e.g., ac-
curacy) (Shen et al., 2024; Fan et al., 2024) and retraining time (Tarun et al., 2024; Zhang et al.,
2024) against a retrained model. In these evaluations, the closer the unlearned model resembles
the retrained model, the better its unlearning effectiveness. Nevertheless, this evaluation paradigm
suffers from a major limitation: it relies on access to a retrained model trained with remaining data
only, which defeats the purpose of developing a standalone, verifiably unlearned model.

Membership inference attacks (MIA) are often used to evaluate unlearning by testing whether a spe-
cific sample was seen during training. Existing MIAs rely on three main cues: 1) confidence scores,
assuming models assign higher confidence to training samples (Salem et al., 2019); 2) loss-based
criteria, using the empirical gap in training and held-out loss (Yang et al., 2016); and 3) auxiliary
classifiers trained on prediction vectors or hidden representations (Shokri et al., 2017). These meth-
ods require access to internal training statistics (e.g., loss distributions, confidence ranges) and often
rely on shadow models trained with the same data distribution or hyperparameters. Such assump-
tions rarely hold in post-hoc unlearning evaluation, where the original training setup or sufficient
data is unavailable (Chundawat et al., 2023), making it infeasible to reconstruct loss baselines or
train effective attacker models. Moreover, unlearning methods are typically required to remove a
small, random subset of the training data (5%–20%) (Nguyen et al., 2022; Xu et al., 2024), creating
two practical challenges: 1) limited data sample or label provide too few supervision to reliably train
auxiliary classifiers, and 2) per-sample cues like loss or confidence become statistically weak after
unlearning because the subset loses co-adaptation with the remaining data during unlearning. In this

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

context, pursuing accurate general per-sample inference is inefficient and misaligned with the un-
learning workflows. Instead, what matters is whether the subset as a whole retains any statistically
detectable signal of prior training. We therefore propose a shift from sample-wise MIA to subset-
level evaluation, where we test statistical dependence among the model outputs on a candidate for-
getting set. Our motivation stems from that training participation induces inter-sample dependencies
in the model’s internal representations due to shared gradient updates and co-adaptation. In contrast,
for data never seen during training, such inter-sample dependency should not arise.

In this work, we propose Split-half Dependence Evaluation (SDE) that evaluates the effectiveness of
unlearning by determining whether a given subset is in-training data based on statistical dependence
among the model’s outputs of the subset. Specifically, we adopt the Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al., 2005a; 2007), a widely used kernel-based measure well-suited for
high-dimensional data, and we novelly propose the split-half dependence test where a subset is split
into two halves, and the dependence between their activations is computed via HSIC. Our analysis
shows that the split-half dependence test catches the inner subset dependence with a shared sample
influence component introduced by the model’s training. Unlike existing unlearning evaluations,
our method: 1) enables unlearning evaluation without needing a retrained reference model; 2) does
not rely on auxiliary classifiers or additional model training, and 3) operates on data subsets rather
than individual samples, resulting in a simpler and more robust evaluation that better aligns with
the overarching goal of unlearning. Extensive experiments on the retrained models demonstrate that
our method can effectively identify the in- and out-of-training subsets. Experiments on existing
unlearning methods demonstrate that our method can verify unlearning success even in settings
where existing evaluations struggle to provide conclusive evidence.

Due to space constraints, we discuss related works—including unlearning evaluation, MIA, and
statistical independence—in Appendix B.

2 PRELIMINARIES

Let Dtr denote the original training dataset, and Dte denote the test dataset. Let h represent a neural
network model. Given an input x ∈ X , the h(x) is the final layer activation. Deep neural networks
may consist of many layers, so we use hℓ(x) ∈ Rdim to denote the activation from the ℓ-th layer
with the dimension of dim. Specifically, we use hp(x) to denote the activation from the penultimate
layer, since it is often used as the extracted feature of the input.

2.1 MACHINE UNLEARNING

In the context of machine unlearning, the forgetting data, Df ⊂ Dtr, is the subset of the training
data whose influence is intended to be removed. Correspondingly, the remaining data is denoted as
Dr = Dtr \ Df . Given a deep neural network model h with a specific architecture, we consider
three variants of the model in the context of unlearning. The original model hor is trained on Dtr.
The unlearned model hun is obtained by applying an unlearning algorithm to remove the influence
of Df . The retrained model hre is a special unlearned model, which is trained on Dr from scratch,
as it is usually used as the gold standard.

2.2 HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)

HSIC is a kernel-based statistical measure that quantifies the degree of dependence between two
random variables. Given two random variables X and Y , HSIC(X,Y) = ∥CXY ∥2HS, where CXY

is the cross-covariance operator between the reproducing kernel Hilbert spaces (RKHS) of X and
Y , and ∥ · ∥HS denotes the Hilbert-Schmidt norm. HSIC value is non-negative and continuous,
providing a meaningful scale: the closer HSIC is to zero, the more independent the two variables
are; higher values indicate stronger statistical dependence.

Empirically, the X and Y can be two sets of observations with the same sample size, i.e., |X| =
|Y | = n. Given a kernel function defined over their respective domains, the empirical form of HSIC
reduces to

HSIC(X,Y) =
1

(n− 1)2
Tr(KHLH),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where K and L are the kernel matrices for X and Y , respectively, and H is the centering matrix
H = I − 1

n11
T . Following (Gretton et al., 2007), we use the Gaussian RBF kernel as the default

choice throughout this paper.

3 METHOD

Our main motivation stems from when h is the result of a supervised training algorithm A and
trained on Dtr, i.e., h = A(Dtr), the learned parameters inherently depend on the training data. To
catch such dependence, a naive idea would be to directly compute the dependence between network
parameters and training data, e.g., HSIC(Dtr, h). However, this is problematic because h has
only one observation, as there is usually only one trained network, and it consists of millions of
parameters, making it statistically unreliable and computationally prohibitive.

Instead, we consider the dependence among h(xi)’s. Intuitively, we treat the deep neural network
h(·) as a complex transformation from the input space to the output space. If h consists of randomly
initialized parameters, i.e., a random transformation, then the outputs h(xi) and h(xj) for any two
samples xi, xj ∈ Dtr should remain independent. When h = A(Dtr), h(xi) implicitly depends
on xj through the learned parameters; hence, the outputs h(xi) and h(xj) are no longer indepen-
dent. In contrast, out-of-training samples (i.e., Dte) are not involved in shaping the parameters of
h, thus their activations should exhibit weaker statistical dependence. Motivated by this—and by
the fact that unlearning typically forgets a subset of the training data—we introduce the Split-half
Dependence Evaluation (SDE). Given a target subset, we split it into two random halves and mea-
sure the dependence between their representations. In later subsections, we empirically validate that
under our split-half evaluation, in-training subsets exhibit greater dependence than out-of-training
subsets. Appendix A presents an analysis showing that a shared, training-induced influence com-
ponent yields higher split-half dependence for in-training subsets, which can be reflected by a toy
experiment in the Appendix A.4. The overall algorithm is presented in Appendix C.

3.1 SPLIT-HALF DEPENDENCE OF A SET OF DATA

Given a target set of data S and a model h, we want to measure the dependence between the activa-
tions of samples in S on h. Specifically, we randomly divide S into two equal sets, S1 and S2, and
propose the Split-half Dependence H(S, h) by

H(S, h) = HSIC(h(S1), h(S2)), (1)

where S1 ∪ S2 = S,S1 ∩ S2 = ∅, and |S1| = |S2|. Since HSIC is a statistical metric, we follow the
practice of Gretton et al. (2007) to shuffle S2 200 times to calculate 200 HSIC values for estimating
the H(S, h) distribution. As motivated earlier, the dependence of in-training data (SIT ⊂ Dtr)
activations on a trained model hor should be significantly higher than that of out-of-training data
(SOOT ⊂ Dte), i.e., H(SIT , h) > H(SOOT , h).

1.0 1.5 2.0 2.5 3.0 3.5
1e 7

p=4.73e-11

H(IT, hor)
H(OOT, hor)

2 0 2 4 6
1e 16

p=7.95e-02

H(IT, hrand)
H(OOT, hrand)

Figure 1: Empirical H(S, h) distributions cal-
culated on in-training subset SIT and out-of-
training subset SOOT using two models: (left)
trained model hor and (right) randomly initial-
ized model hrand.

1.0 1.5 2.0 2.5 3.0 3.5
1e 7

D(tar, OOT, hor)=0.037
D(tar, IT, hor)=0.008

p = 4.73e-11

H(IT, hor)
H(tar, hor)
H(OOT, hor)

0.5 1.0 1.5 2.0 2.5
1e 7

D(tar, OOT, hre)=0.008
D(tar, IT, hre)=0.083

p = 1.60e-11

H(IT, hre)
H(tar, hre)
H(OOT, hre)

Figure 2: H(S, h) distributions on the origi-
nal model hor (left) and the retrained model hre

(right). The Star is in-training for hor but out-
of-training for hre. In the retrained model, the
Star becomes significantly closer to the SOOT

than the SIT in terms of HSIC.

We illustrate this difference by plotting the distributions of H(SIT , h) and H(SOOT , h) using both
the trained model hor and the randomly initialized model hrand. As shown in Figure 1, the split-half
dependence of the in-training subset SIT under the trained model hor is significantly higher than

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

that of the out-of-training subset SOOT . In contrast, under the randomly initialized model hrand,
the two distributions largely overlap, suggesting no distinguishable dependence signal.

To demonstrate the statistical significance, we further conduct a one-sided Mann–Whitney U-
test (Mann & Whitney, 1947), under the alternative hypothesis of H(SIT , h) > H(SOOT , h).
This U-test is chosen because it is non-parametric and directly tests our alternative hypothesis
H(SIT , h) > H(SOOT , h) with established statistical rigor. We reject the null hypothesis and ac-
cept this alternative if the p-value satisfies p < 0.01. As shown in Figure 1, the split-half dependence
distributions under the trained model hor differ substantially, with a p-value of 4.73×10−11 ≪ 0.01,
indicating that the in-training subsets exhibit significantly higher dependence than out-of-training
subsets. In contrast, under the randomly initialized model hrand, the distributions largely overlap,
yielding a non-significant p-value of 0.0795.

3.2 EVALUATING THE UNLEARNED MODEL VIA H(S, h)

Given the empirical observation that the H(S, h) distributions for in-training and out-of-training
data are statistically distinguishable under a trained model, we propose to leverage this property
to evaluate whether an unlearned model has successfully removed a particular subset from its in-
training set.

When evaluating an unlearned model hun, we are given a target subset from its forgetting data, i.e.,
Star ⊆ Df , and aim to determine whether it resembles in-training or out-of-training data from the
unlearned model’s perspective. To this end, we reserve a small subset of known in-training data
SIT ⊂ Dr and out-of-training data SOOT ⊂ Dte, referred to as the reference sets. In practice,
reference sets can be constructed from a small portion of the training and test data that is inten-
tionally retained for auditing or debugging purposes. We first obtain all three S’s split-half depen-
dence distributions, i.e., H(S, hun), and then compare H(Star, h

un) to the reference distributions
H(SIT , h

un) and H(SOOT , h
un). If H(Star, h

un) is significantly closer to H(SOOT , h
un), we

infer that the model exhibits behavior consistent with being trained without Star. Conversely, if it is
closer toH(SIT , h

un), we conclude that the hun is trained with Star. For presentation convenience,
we define D(SA,SB , h) to measure the distance between the split-half dependence distributions of
two subsets SA and SB under model h. Therefore, an unlearning is considered successful if

D(Star,SOOT , h
un) < D(Star,SIT , h

un), Star ⊆ Df . (2)

We adopt the Jensen–Shannon Divergence (JSD) (Fuglede & Topsøe, 2004) to compare the split-
half dependence distributions due to its favorable properties in our context. Compared to alternatives
such as KL divergence and Wasserstein distance, JSD is symmetric, bounded, and numerically stable
for empirical distributions with overlapping support. The choice of JSD simplifies the design of an
efficient Algorithm 2 and avoids potential instability issues. Specifically, if the JSD is applied,

D(SA,SB , h) := JSD
(
H(SA, h) ∥ H(SB , h)

)
. (3)

We conduct experiments with the hor and the retrained hre. As shown in Figure 2, the distribution
of H(Star, h

re) is closer to that of the SOOT than to the SIT , yielding D(Star,SOOT , h
re) <

D(Star,SIT , h
re). In contrast, when evaluated under the original model hor trained on the full

dataset, the H(Star, h
or) remains closer to the H(SIT , h

or). This supports that Eq. 2 provides a
practical signal for determining whether a group of samples was present in the model’s training data.

4 EXPERIMENT

This section is organized as follows: (1) We begin by conducting controlled experiments on re-
trained models, where we confirm that forgetting data is not involved in the model’s training pro-
cess. This allows us to verify that our proposed method can effectively distinguish between in- and
out-of-training subsets, and to investigate its robustness across different conditions from aspects of
model architectures, dataset scales, and representation layers. (2) We compare the proposed statisti-
cal independence-based method with commonly used distribution-based metrics. (3) We then apply
it to evaluate widely-used unlearning baselines. This enables us to compare their unlearning effec-
tiveness in a unified way. A computational cost analysis and corresponding experiment are included
in the Appendix G.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 CONTROLLED EXPERIMENTS ON RETRAINED MODELS

We conduct experiments on four benchmark datasets: SVHN (Netzer et al., 2011), CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and Tiny-ImageNet. We train two neural network classifiers,
the AllCNN (Springenberg et al., 2015) and ResNet-18 (He et al., 2016). The dataset configurations
and model architectures are summarized in Appendix D. Appendix E presents a case study applying
our method to evaluate a diffusion generative model. For every dataset-model setting, we train 5 re-
trained models with different random seeds to ensure the reliability of our results. We consider four
key aspects: (1) Kernel bandwidth σ: HSIC is kernel-based dependence measure, the kernel band-
width σ plays a crucial role in accurately estimating statistical dependence. (2) Impact of |Df | and
|S|: How does the size of the subset S and the proportion of forgetting data, i.e., R = |Df |/|Dtr|,
affect the method’s ability to detect it? (3) Layer-level robustness: Does the method remain valid
when evaluating features from internal layers (hℓ) instead of just the last layer? (4) Training-stage
robustness: Can our method reliably assess unlearning for models at different points in training,
e.g., across different epochs? These questions help establish the practical utility and robustness of
our method under various realistic scenarios, before applying it to unlearned models.

Protocol We construct a forgetting dataset Df by randomly sampling a portion of the original
training data Dtr, (i.e., |Df |

|Dtr| ∈ {5%, 10%, 20%}), and use the remaining data Dr = Dtr \ Df to
train a retrained model hre. From both Df and Dr, we then sample n ∈ {400, 1000, 2000} instances
repeatedly for m times to create m subsets from each. These 2m subsets serve as the evaluation
targets, with known labels indicating whether each subset originated from the training data of hre,
i.e., {(Si, 1)|Si ⊂ Dr} and {(Si, 0)|Si ⊂ Df}. We then apply our method to each target subset Si

to classify its in- or out-of-training status with Eq. 2. The classification F1 score over the 2m subsets
indicates how well our method can distinguish between in- and out-of-training data under the hre.

4.1.1 KERNEL BANDWIDTH σ

HSIC adopts the Gaussian kernel by default, defined as:

k(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
, (4)

where σ is the kernel bandwidth. A smaller σ results in a more localized kernel that is sensitive to
fine-grained differences between samples, which may amplify noise and lead to unstable estimates.
In contrast, a larger σ produces a smoother kernel, capturing broader structures but leading to higher
similarity across all sample pairs.

In this part, we investigate how sensitive our
method is to different values of σ and aim
to identify the effective operating range that
yields consistently high performance. We con-
sider two heuristics for selecting σ: the square
root of the activation dimension, i.e.,

√
dim,

and the widely adopted median heuristic based
on pairwise distances between samples. To
carry out this analysis, we use the output of
hp and uniformly sample 20 candidate values
of σ from a continuous range between 1 and
max(

√
dim,Median), and then evaluate the re-

sulting F1 score under each σ value.

0.2

0.4

0.6

0.8

1.0

F1 SV-AllCNN
C10-AllCNN
SV-ResNet18
C10-ResNet18
C100-ResNet18
Tiny-ResNet18

Figure 3: Effect of kernel bandwidth σ on F1
score. The solid lines show F1 score trends
across different σ values. Vertical dashed lines
indicate the heuristic of σ =

√
dim, while dot-

ted lines correspond to the median heuristic.

From Figure 3, we observe that the choice of kernel bandwidth σ has a significant impact on the
performance of our method. For most dataset-model combinations, the F1 score improves rapidly
with increasing σ and reaches a plateau within a moderate range. Notably, extremely small σ values
result in unstable or poor performance, likely due to overly localized kernels that are sensitive to
noise. Conversely, excessively large σ values may overly smooth the kernel, resulting in loss of
discriminative power and a decline in performance. Compared with the median heuristic (dotted
lines), the heuristic σ =

√
dim (dashed lines) generally falls within the high-performing regions,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

supporting its effectiveness as a practical choice. In the rest of the experiments, unless otherwise
specified, we use σ =

√
dim as the default choice.

4.1.2 IMPACT OF |S| AND R

We use the activation of the penultimate layer, denoted as hp(x), and evaluate models at the check-
point corresponding to 80% of the total training epochs. We experiment with forgetting ratios
R ∈ {5%, 10%, 20%} and target subset sizes |S| ∈ {400, 1000, 2000}.

Table 1: F1 score of distinguishing in/out-of-training status of target S, across the amount of Df

and the size of S.

R 5% 10% 20%

|S| 400 1000 2000 400 1000 2000 400 1000 2000

SV-AllCNN 0.62±0.14 0.74±0.08 0.83±0.09 0.50±0.21 0.62±0.06 0.73±0.12 0.72±0.03 0.82±0.08 0.90±0.06
C10-AllCNN 0.69±0.07 0.79±0.05 0.81±0.14 0.61±0.05 0.66±0.12 0.82±0.09 0.45±0.00 0.71±0.18 0.79±0.09
SV-ResNet18 0.71±0.09 0.91±0.01 0.93±0.07 0.63±0.10 0.78±0.09 0.85±0.14 0.90±0.03 0.96±0.02 0.97±0.05
C10-ResNet18 0.87±0.06 0.97±0.02 0.99±0.01 0.88±0.04 0.95±0.06 0.97±0.03 0.86±0.10 0.96±0.03 1.00±0.00
C100-ResNet18 0.99±0.01 1.00±0.00 1.00±0.00 0.97±0.05 1.00±0.00 1.00±0.00 0.99±0.01 1.00±0.00 1.00±0.00
Tiny-ResNet18 0.70±0.06 0.78±0.06 0.92±0.05 0.81±0.08 0.92±0.03 0.98±0.02 0.78±0.05 0.90±0.06 0.98±0.02

Table 1 reports the F1 score across various datasets, architectures, forgetting ratiosR, and test subset
sizes |S|. We observe the following consistent trends: 1) Larger S improves performance. Across
all settings, the F1 score improves as the target set size increases from 400 to 2000. This is expected,
as more samples provide more stable H(S, h) estimates and reduce variance in distribution compar-
isons. 2) Our method remains effective even with small R. While larger forgetting ratios R (e.g.,
from 5% to 20%) may introduce more changes in the model’s output, we observe that our method
already achieves competitive performance when R is as small as 5%. This indicates that even sub-
tle representation differences introduced by forgetting a small portion of the data can be detected
using our method, demonstrating the sensitivity and robustness of our approach. 3) Model and
dataset matter. Our method performs particularly well on ResNet-18 architectures (e.g., CIFAR-10
and CIFAR-100), achieving nearly perfect accuracy when |S| ≥ 1000 on CIFAR-100. In contrast,
performance is lower but still reasonable on AllCNN model.

4.1.3 LAYER-WISE GENERALITY

We use the checkpoint at 80% of the total training epochs, set |S| = 1000 and R =
10%. Beyond the final output h and the penultimate activations hp, we further exam-
ine intermediate representations to assess the generality of our method across different model
layers. For the AllCNN architecture, we select the output of four convolutional layers,[
conv2, conv4, conv6, conv8

]
, as intermediate activations. For ResNet-18, we use activations from

its four residual blocks—
[
Block1,Block2,Block3,Block4

]
. We use ℓ ∈ {1, 2, 3, 4} to index these

intermediate layers, ordered from early (closer to the input) to later layers. We present the dimen-
sionality of activations across layers in Appendix D.

From Figure 4, we observe that our method achieves better performance in deeper layers—such as
the penultimate layer hp and the final output h—exhibit higher distinguishability, as they encode
more task-specific information. Intermediate layer such as h4 also yields strong signals, particularly
on datasets like CIFAR-10 and CIFAR-100 with the ResNet-18 architecture, where the F1 remains
above 0.9. This demonstrates that our method is not confined to final-layer outputs but generalizes
well across representational levels. As expected, the F1 tends to decrease as we move to lower-level
layers closer to the input (e.g., h2 and h1), especially for shallower networks like AllCNN. This
is because earlier layers tend to capture general or low-level features that are less sensitive to the
presence or absence of specific samples in training. In summary, our layer-wise evaluation confirms
the versatility of the proposed approach, making it suitable for scenarios involving partial model
access, transfer learning, or layer-specific unlearning interventions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: F1 score of SDE across train-
ing progress. The performance of retrained
models at checkpoints is in Appendix D.

ckpt at 10% 20% 40% 80%

SV-AllCNN 0.49±0.02 0.51±0.13 0.58±0.17 0.62±0.06

C10-AllCNN 0.48±0.15 0.66±0.04 0.54±0.18 0.66±0.12

SV-ResNet18 0.58±0.12 0.77±0.05 0.79±0.05 0.78±0.09

C10-ResNet18 0.69±0.00 0.61±0.13 0.72±0.07 0.95±0.06

C100-ResNet18 0.59±0.06 0.60±0.11 0.88±0.07 1.00±0.00

Tiny-ResNet18 0.66±0.22 0.86±0.08 0.91±0.04 0.92±0.03

h hp h4 h3 h2 h1
0.0

0.2

0.4

0.6

0.8

1.0

F1

SV-AllCNN
C10-AllCNN
SV-ResNet18

C10-ResNet18
C100-ResNet18
Tiny-ResNet18

Figure 4: F1 score on activations of different in-
termediate layers. The x-axis labels from left to
right (h to h1) represent layers from output to in-
put. The reason for the missing bar (e.g., the green
bar at h2) is further discussed in Section 5.

4.1.4 TRAINING SUFFICIENCY

We investigate whether the training sufficiency of the model affects the effectiveness of our method.
In this experiment, we fix the forgetting ratio R = 10%, the target set size |S| = 1000, and use
the model’s penultimate layer activation hp(x) for evaluation. We evaluate our method using check-
points saved at 10%, 20%, 40%, and 80% of the total training epochs, respectively.

From Table 2, the effectiveness of our method improves as the model’s training progresses. For
example, on SVHN with ResNet18, the F1 increases from 0.58 at 10% training to 0.79 at 40%.
On CIFAR10 with ResNet18, the improvement is even more prominent—from 0.69 to 0.95. This
trend suggests that as the model undergoes more training, its internal representations better encode
the training data, leading to stronger inter-sample dependencies that our HSIC-based method can
capture. Conversely, when the model is under-trained (e.g., at 10%), the representations are not
sufficiently informative, making it harder to distinguish between in-training and out-of-training. We
also report the performance of retrained models on their respective tasks at these checkpoints in
Appendix D Table 7, from where we can observe that signs of overfitting emerge as early as the
20% training stage—even when the overall model performance is still suboptimal. For example,
under the CIFAR100-ResNet18 setting, the model achieves only 72.56% training accuracy, yet the
test accuracy is only 56.08%, revealing an early onset of generalization gap. This observation is also
consistent with a widely acknowledged finding in the MIA literature (Hu et al., 2022): models that
are more overfitted to their training data are generally more vulnerable to MIA attacks.

Notably, even at 20% of training, our method achieves F1 above 0.6 in most cases, indicating early
signs of distinguishable dependence. This shows that our method remains applicable even under
partially trained models.

4.2 COMPARISON WITH DISTRIBUTION DISTANCE METRICS

We compare the proposed statistical independence-based method against two commonly used
distribution-based metrics, Maximum Mean Discrepancy (MMD) and Wasserstein distance, to show
the advantage of statistical dependence-based methods. We continue to focus on the controlled re-
trained model and use the CIFAR-10 dataset with the ResNet-18 architecture. The evaluation task
remains the same as described in Section 4.1: determining whether a target subset Si is part of the
training data by comparing h(Si) with reference sets h(SIT) and h(SOOT). For distribution dis-
tance based metrics, Si is classified as in-training if h(Si) is closer to h(SIT) than to h(SOOT), and
vice versa for out-of-training.

Table 3: Comparison with distribution-based metrics

R 5% 10% 20%

|S| 400 1000 2000 400 1000 2000 400 1000 2000

MMD 0.63±0.07 0.65±0.09 0.87±0.12 0.45±0.21 0.70±0.13 0.87±0.14 0.63±0.03 0.72±0.08 0.89±0.11
Wasserstein 0.70±0.08 0.77±0.10 0.94±0.11 0.52±0.20 0.89±0.08 0.98±0.03 0.72±0.02 0.87±0.07 0.99±0.02

SDE (OURS) 0.87±0.06 0.97±0.02 0.99±0.01 0.88±0.04 0.95±0.06 0.97±0.03 0.86±0.10 0.96±0.03 1.00±0.00

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

According to Table 3, while both MMD and Wasserstein distance exhibit improved performance
with larger subset sizes, their accuracy varies significantly with different forgetting ratios and is
generally lower than SDE. Notably, SDE consistently achieves higher F1 scores across all settings,
even when the subset size is small (e.g., |S| = 400). This suggests that our statistical indepen-
dence–based approach is more robust than distance-based metrics, particularly when the size of the
subset is small. We believe that this advantage stems from SDE directly measuring inter-sample
dependency structures, rather than relying on marginal distributional shifts. Moreover, distribution-
based methods tend to suffer from higher variance and sensitivity to sample size, which may further
degrade their reliability in subset-level evaluation.

4.3 EVALUATING UNLEARNING METHODS

All experiments in the previous sections used the retrained model as a controlled object. In this sec-
tion, we evaluate unlearned models that come from several representative unlearning algorithms. We
consider several widely adopted unlearning baselines, including Random-label (Fan et al., 2024),
Unroll (Thudi et al., 2022), Salun (Fan et al., 2024), and Sparsity (Jia et al., 2023).

Unlearning Task: Given an original model hor trained on the full training dataset Dtr, we simu-
late sample-wise unlearning by randomly removing a subset of training data with unlearning ratios
R ∈ {5%, 10%, 20%}.

Evaluation Protocol: Given a target subset S of 1000 samples and reserved reference subsets of
the same size, SIT ⊂ Dr and SOOT ⊂ Dte, the evaluation task is to determine whether S is in- or
out-of-training data. For statistical significance, we sampled S ⊂ Df for 100 times and report the
number of subsets identified as in- or out-of-training. In this case, an effective unlearned model
should have more S identified as out-of-training and less as in-training, resulting in a higher
out-of-training rate (OTR). To demonstrate that our method is still effective on unlearned models,
we sample balanced 100 subsets from Dr and Dte as controlled targets and report the F1 score.
Noteworthy, the controlled target subsets are not required in practice.

Other Metrics: In addition to the OTR, which is based on our proposed method, we follow prior
sample-wise unlearning works’ experiments (Jia et al., 2023; Fan et al., 2024; Shen et al., 2024) and
report other commonly used metrics, including accuracies on training sets, as well as membership
inference attack success rate (ASR). Specifically, Accr and Accf denote the classification task ac-
curacy of the unlearned model on the remaining set Dr and forgetting set Df , respectively. These
accuracies are used to evaluate the unlearned models’ task utility. For the ASR, we also follow ex-
isting unlearning works (Fan et al., 2024; Jia et al., 2023) and adopt the prediction confidence-based
attack method MIA methods (Song et al., 2019; Yeom et al., 2018). According to prior works, a
desirable unlearning method should have all these metrics that are close to a retrained model.

Table 4: Evaluating unlearned models on CIFAR10-ResNet18 with R = 10%. Accr and Accf
denote unlearned models’ training accuracy on the Dr and Df , respectively. ASR refers to the
success rate of MIA. For these metrics, the closer to the retrained model’s the better. For our method,
the higher OTR indicates more effective unlearning.

Method Accr (%) Accf (%) ASR
h hp

F1 OTR (%) ↑ F1 OTR (%) ↑

Retrain 98.57±0.08 93.25±0.45 0.30±0.09 0.94±0.03 87.00±10.24 0.95±0.05 94.00±4.94

RandLabel 98.80±0.04 98.63±0.13 0.29±0.02 0.88±0.12 84.00±13.54 0.91±0.09 83.20±10.11
Unroll 99.36±0.05 99.21±0.11 0.30±0.12 0.88±0.04 3.00±2.19 0.90±0.07 4.40±4.03

Sparsity 92.72±0.93 90.56±0.82 0.42±0.09 0.62±0.15 50.80±22.61 0.59±0.16 53.80±24.19
SalUn 98.66±0.03 98.53±0.07 0.29±0.02 0.85±0.12 52.40±21.86 0.86±0.15 51.80±23.05

Results: Table 4 shows the results on CIFAR10-ResNet18 with R = 10%. A complete result
with R ∈ {5%, 10%, 20%} is shown in Appendix F. Except for the Sparsity method, our proposed
approach consistently achieves high F1 scores (mostly above 0.88), showing its effectiveness in cor-
rectly distinguishing whether a given subset S is in-training or out-of-training for unlearned models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The Retrain model shows very high OTR (87% for h and 94% for hp), indicating that many of the
forgetting subsets are indeed identified as out-of-training—a desirable property for a fully unlearned
model. From the ASR results, all methods except Sparsity exhibit similar membership inference re-
sistance compared to the Retrain (all around 0.3), making it difficult to judge their unlearning quality
solely from ASR. However, the OTR provides a clearer picture: the Random-label method shows
strong unlearning effectiveness, with 84% of forgetting subsets no longer recognized as in-training.
In contrast, the Unroll method has an extremely low OTR, suggesting that nearly all forgetting sub-
sets are still treated as in-training, indicating ineffective unlearning.

5 DISCUSSION AND LIMITATION

The selection of σ and kernel function Currently, our method relies on kernel-based HSIC to
capture statistical dependencies among samples. The choice of the RBF kernel and the bandwidth
parameter σ directly affects the sensitivity of our metric. As shown in Figure 3 and Figure 6, the
choice of kernel bandwidth σ critically affects the F1 score. While the heuristic σ =

√
dim works

reasonably well in classification settings, it fails to achieve the best results in diffusion experiments,
as seen in Figure 6. This indicates that simple heuristics may not generalize to all scenarios. More
adaptive or data-driven strategies for σ selection, or the design of alternative kernel functions tailored
to high-dimensional samples, may further improve the robustness and sensitivity of our evaluation
approach.

The selection of reference sets Our evaluation approach relies on reference sets, which can either
be 1) prepared by an authenticated third-party auditor and required to be involved in training or 2)
provided by the model owner and archived by the auditor. The choice of reference sets affects the
performance of our method. For example, the missing green bar at h2 in Figure 4 occurs because the
randomly selected reference sets SIT and SOOT fail to satisfy H(SIT , h) > H(SOOT , h) under the
U-test. Designing strategies for constructing optimal reference sets may be an important direction
for improving robustness.

Advantages of SDE We view SDE as a step toward practical unlearning assessment, particularly
in real deployment scenarios, for several reasons: (1) it requires no retrained reference models; (2)
it avoids auxiliary model training and supports flexible cross-layer evaluation; (3) it provides an
independence-based perspective rather than distribution-based criteria that can be gamed when di-
rectly optimized; and (4) its subset-level focus aligns more closely with existing practical unlearning
workflows.

Rethinking privacy-oriented unlearning evaluation Our experimental results reveal a critical
discrepancy between existing evaluation metrics and our proposed method. For example, in Table 4,
existing metrics would suggest that Unroll is effective, as it shows results close to the retrained
model. However, our evaluation clearly indicates that Unroll fails to remove the influence of for-
getting data, with most forgetting samples still identified as in-training. This discrepancy suggests
that relying solely on existing metrics may lead to overestimating the effectiveness of unlearning
methods, motivating a rethinking of how unlearning should be rigorously evaluated.

Unlearning vs. General forgetting While our approach effectively evaluates unlearning, it may
also capture general forgetting phenomena caused by representation drift or catastrophic forgetting.
Distinguishing intentional unlearning from natural model degradation is non-trivial and may require
incorporating temporal dynamics or additional verification signals.

Beyond a binary decision Our current evaluation distinguishes in-/out-of-training by compar-
ing a target subset against a reference set, which does not fully exploit that HSIC is a continuous
dependence measure. A promising direction is to quantify unlearning by comparing the depen-
dence of the same target subset Star ⊂ Df across different unlearned models. For example, if
H(Star, h

un1) < H(Star, h
un2), the unlearned model hun1 exhibits better unlearning than hun2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

We propose Split-half Dependence Evaluation (SDE) for evaluating machine unlearning based on
statistical dependence among the unlearned model’s output representations. By designing a tailored
use of the Hilbert–Schmidt Independence Criterion (HSIC), our method enables subset-level evalu-
ation without the need for retrained models or auxiliary classifiers. Our analysis shows the success
of SDE is because of a shared influence component that is introduced in training progress. Extensive
experiments on classification and diffusion-based generative models demonstrate that our approach
reliably identifies the in-training and out-of-training status of small data subsets and provides clear,
robust conclusions, even in scenarios where existing evaluations fail to offer decisive evidence.

REFERENCES

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In SP 2021,
2021.

PRESTON BUKATY. The California Consumer Privacy Act (CCPA): An implementation guide. IT
Governance Publishing, 2019. ISBN 9781787781320.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In SP
2015, 2015.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In CVPR 2020, 2020.

Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan S. Kankanhalli. Zero-shot
machine unlearning. IEEE Trans. Inf. Forensics Secur., 18:2345–2354, 2023.

Chang Dong, Zechao Sun, Guangdong Bai, Shuying Piao, Weitong Chen, and Wei Emma Zhang.
Trojantime: Backdoor attacks on time series classification. arXiv preprint arXiv:2502.00646,
2025.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In ICLR, 2024.

Bent Fuglede and Flemming Topsøe. Jensen-shannon divergence and hilbert space embedding. In
ISIT 2004, 2004.

Sanjam Garg, Shafi Goldwasser, and Prashant Nalini Vasudevan. Formalizing data deletion in the
context of the right to be forgotten. In Anne Canteaut and Yuval Ishai (eds.), EUROCRYPT 2020,
2020.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In Algorithmic Learning Theory, 2005a.

Arthur Gretton, Ralf Herbrich, Alexander J. Smola, Olivier Bousquet, and Bernhard Schölkopf.
Kernel methods for measuring independence. J. Mach. Learn. Res., 2005b.

Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, and Alexander J.
Smola. A kernel statistical test of independence. In NeurIPS 2007, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR 2016, 2016.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. Mem-
bership inference attacks on machine learning: A survey. ACM Comput. Surv., 2022.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
and Sijia Liu. Model sparsity can simplify machine unlearning. In NeurIPS, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peihai Jiang, Xixiang Lyu, Yige Li, and Jing Ma. Backdoor token unlearning: Exposing and de-
fending backdoors in pretrained language models. In AAAI 2025, 2025.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR 2019, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proc. NeurIPS, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML 2017, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (eds.), NeurIPS 2023, 2023.

Klas Leino and Matt Fredrikson. Stolen memories: Leveraging model memorization for calibrated
white-box membership inference. In USENIX 2020, 2020.

Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo Ma, Li Wang, and Jianfeng Ma. Backdoor
defense with machine unlearning. In IEEE INFOCOM 2022, 2022.

Yunhui Long, Lei Wang, Diyue Bu, Vincent Bindschaedler, XiaoFeng Wang, Haixu Tang, Carl A.
Gunter, and Kai Chen. A pragmatic approach to membership inferences on machine learning
models. In EuroS&P 2020, 2020.

Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is stochas-
tically larger than the other. The annals of mathematical statistics, 1947.

Neil G. Marchant, Benjamin I. P. Rubinstein, and Scott Alfeld. Hard to forget: Poisoning attacks on
certified machine unlearning. In AAAI 2022, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, 2011.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. CoRR, abs/2209.02299, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells III, and Alejan-
dro F. Frangi (eds.), MICCAI 2015, Lecture Notes in Computer Science, 2015.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
Ml-leaks: Model and data independent membership inference attacks and defenses on machine
learning models. In NDSS 2019, 2019.

Shaofei Shen, Chenhao Zhang, Yawen Zhao, Alina Bialkowski, Weitong Chen, and Miao Xu. Label-
agnostic forgetting: A supervision-free unlearning in deep models. In ICLR 2024, 2024.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In SP 2017, 2017.

Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, and Justin Bedo. Supervised
feature selection via dependence estimation. In Zoubin Ghahramani (ed.), ICML 2007, 2007.

Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of securing machine learning models
against adversarial examples. In ACM SIGSAC CCS 2019, 2019.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving
for simplicity: The all convolutional net. In Yoshua Bengio and Yann LeCun (eds.), ICLR 2015,
2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, and Mohan S. Kankanhalli. Fast yet effec-
tive machine unlearning. IEEE Trans. Neural Networks Learn. Syst., 2024.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling SGD: under-
standing factors influencing machine unlearning. In EuroS&P, 2022.

Yiwen Tu, Pingbang Hu, and Jiaqi W Ma. A reliable cryptographic framework for empirical machine
unlearning evaluation. In NeurIPS 2025, 2025.

Jie Xu, Zihan Wu, Cong Wang, and Xiaohua Jia. Machine unlearning: Solutions and challenges.
IEEE Trans. Emerg. Top. Comput. Intell., 2024.

Dingqi Yang, Daqing Zhang, and Bingqing Qu. Participatory cultural mapping based on collective
behavior data in location-based social networks. ACM Trans. Intell. Syst. Technol., 2016.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In IEEE CSF 2018, 2018.

Chenhao Zhang, Weitong Chen, Wei Emma Zhang, and Miao Xu. Countering relearning with
perception revising unlearning. In ACML 2024, 2024.

ETHICS STATEMENT

We acknowledge the ICLR Code of Ethics. This paper submission does not raise questions regarding
the Code of Ethics.

REPRODUCIBILITY STATEMENT

We will fully release the code of our algorithm to reproduce the experimental results. Experiments
use public datasets, and all the detailed experimental settings, including random seeds and hyperpa-
rameters, are reported in the paper in detail.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs solely for polishing the writing of the paper, including grammar correction and
phrasing alternatives for clarity and brevity. All content generated with the LLM was treated as
suggestions and was reviewed, edited, and verified by the authors, who take full responsibility for
the manuscript.

The LLM was NOT used in generating technical content; all technical content is author-generated
and author-validated.

A INSIGHTFUL ANALYSIS

In this section, we provide an insight into why the proposed Split-half Dependence Evaluation prov-
ably distinguishes subsets drawn from the training data (in-training, IT) from those never used in
training (out-of-training, OOT). Intuitively, training progress leaves a shared “influence footprint”
of each example in the learned parameters; this common component appears in both halves of an
IT subset, couples their representations, and yields a strictly positive HSIC. In contrast, OOT sub-
sets do not affect the training trajectory, contribute no shared influence, and their two halves remain
independent.

A.1 PRELIMINARIES

HSIC operator view. For random variables X,Y with RKHS features φ,ψ,

HSIC(X,Y) = ∥CXY ∥2HS, CXY = E
[
(φ(X)− µX)⊗ (ψ(Y)− µY)

]
.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Here ∥ · ∥HS denotes the Hilbert–Schmidt norm: for an operator A between Hilbert spaces,

∥A∥2HS =
∑
i

∥Aei∥2,

where {ei} is any orthonormal basis of the input space. Equivalently, if A admits a singular value
decomposition with singular values {σj}, then ∥A∥2HS =

∑
j σ

2
j .

Local linearization of representations. Around a reference parameter θ⋆,

hℓ(x; θ) = hℓ(x; θ⋆) + Jℓ(x)∆θ +Rℓ(x), Jℓ(x) = ∇θhℓ(x; θ)
∣∣
θ⋆
, (5)

with ∥Rℓ(x)∥ = o(∥∆θ∥).

Split-half cross-covariance. Given a target subset S with a random split into S1 and S2, we define

H(S, hℓ) = HSIC
(
hℓ(S1), hℓ(S2)

)
.

With characteristic kernels, HSIC can be expressed through the RKHS cross-covariance between
the two halves. Using the linearization Eq. 5, the dominant term is

CS1,S2 = E
[(
Jℓ(X)∆θ − EJℓ(X)∆θ

)
⊗
(
Jℓ(X

′)∆θ − EJℓ(X ′)∆θ
)]
, (6)

where X ∼ S1 and X ′ ∼ S2 are independent draws.

Influence decomposition of parameter shift. Under ERM with (mini-batch) SGD and mild reg-
ularity (Koh & Liang, 2017), the trained parameter admits the approximation

∆θ ≈ 1

n

∑
x∈Dtr

I(x), I(x) = −H−1∇θℓ(x, θ⋆), (7)

where H is a damped Hessian or a PSD curvature proxy. This holds as a first-order approximation
via influence functions.

A.2 CASE 1: IN-TRAINING SUBSET (S ⊆ Dtr)

In this case, the influence decomposition Eq. 7 can be refined as

∆θ =
1

n

∑
x∈S

I(x)︸ ︷︷ ︸
∆θS

+
1

n

∑
x∈Dtr\S

I(x)

︸ ︷︷ ︸
∆θrest

. (8)

Here ∆θS is the shared component contributed by S itself. Note that both halves S1 and S2 inherit
this same ∆θS , which creates correlation across the split.

Starting from the split-half cross-covariance Eq. 6 and the IT decomposition Eq. 8, write

∆θ = ∆θS +∆θrest.

AbbreviateA = Jℓ(X) andA′ = Jℓ(X
′), and their centered versions Ã = A−EA, Ã′ = A′−EA′.

Then Eq. 6 is

CS1,S2
= E

[
(A∆θ − EA∆θ)⊗ (A′∆θ − EA′∆θ)

]
= E

[
(Ã∆θ)⊗ (Ã′∆θ)

]
= E

[
(Ã(∆θS +∆θrest))⊗ (Ã′(∆θS +∆θrest))

]
= TSS + TSr + TrS + Trr, (9)

where the four blocks are

TSS = E[(Ã∆θS)⊗ (Ã′∆θS)], TSr = E[(Ã∆θS)⊗ (Ã′∆θrest)],

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

TrS = E[(Ã∆θrest)⊗ (Ã′∆θS)], Trr = E[(Ã∆θrest)⊗ (Ã′∆θrest)].

Condition on the fixed split so that ∆θS and ∆θrest are constant vectors, whileX ∼ S1 andX ′ ∼ S2

are independent. Then by independence,

E
[
U(X)⊗ V (X ′)

]
= E[U(X)]⊗ E[V (X ′)].

Hence
TSr = E[Ã∆θS]⊗ E[Ã′∆θrest] =

(
E[Ã]∆θS

)
⊗

(
E[Ã′]∆θrest

)
= 0,

and symmetrically TrS = 0. Moreover,

Trr = E[Ã∆θrest]⊗ E[Ã′∆θrest] = 0,

again because E[Ã] = 0 and E[Ã′] = 0 by centering. Therefore,

CS1,S2 = TSS = E
[
(Ã∆θS)⊗ (Ã′∆θS)

]
. (10)

Write ∆θS via the two halves:

∆θS =
1

n
(IS1

+ IS2
), IS1

=
∑
x∈S1

I(x), IS2
=

∑
x∈S2

I(x),

which are constant vectors given the split. Then

Ã∆θS =
1

n

(
ÃIS1 + ÃIS2

)
, Ã′∆θS =

1

n

(
Ã′IS1 + Ã′IS2

)
,

and Eq. 10 becomes

E
[
(Ã∆θS)⊗ (Ã′∆θS)

]
=

1

n2
E
[(
ÃIS1

+ ÃIS2

)
⊗

(
Ã′IS1

+ Ã′IS2

)]
=

1

n2

∑
a∈{S1,S2}

∑
b∈{S1,S2}

E
[
(ÃIa)⊗ (Ã′Ib)

]
. (11)

Since Ia, Ib are constant and we already work with the centered covariance (Ã = A − EA, Ã′ =
A′ − EA′), we can have

E
[
(Jℓ(X)∆θS)⊗ (Jℓ(X

′)∆θS)
]
=

1

n2

∑
a∈{S1,S2}

∑
b∈{S1,S2}

E
[
(Jℓ(X)Ia)⊗ (Jℓ(X

′)Ib)
]
, (12)

where IS1
=

∑
x∈S1

I(x) and IS2
=

∑
x∈S2

I(x) are constant vectors given the split.

Eq. 11 contains four terms: two “same-half” terms (a = b) and two “cross-half” terms (a ̸= b).
Conditioned on a fixed split, X ∼ S1 and X ′ ∼ S2 are independent, hence

E[Jℓ(X)⊗ Jℓ(X
′)] = E[Jℓ(X)]⊗ E[Jℓ(X ′)].

Therefore, after centering, each same-half term cancels:

E[(Jℓ(X)IS1)⊗ (Jℓ(X
′)IS1)]− E[Jℓ(X)IS1]⊗ E[Jℓ(X ′)IS1]︸ ︷︷ ︸

=0

,

E[(Jℓ(X)IS2
)⊗ (Jℓ(X

′)IS2
)]− E[Jℓ(X)IS2

]⊗ E[Jℓ(X ′)IS2
]︸ ︷︷ ︸

=0

.

Hence only the cross-half contributions remain:

E[(Jℓ(X)IS1
)⊗ (Jℓ(X

′)IS2
)] + E[(Jℓ(X)IS2

)⊗ (Jℓ(X
′)IS1

)]. (13)

These cross-terms are non-vanishing because the shared component

∆θS = 1
n (IS1

+ IS2
) ̸= 0

enters both halves (under non-degenerate Jℓ statistics). Consequently,

CIT
S1,S2

̸= 0 and H(SIT, hℓ) = ∥CIT
S1,S2

∥2HS > 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Intuition (IT case). Even though S1 and S2 are disjoint subsets, they are not independent once
S has influenced the parameters: both halves share the same “fingerprint” ∆θS in the model. This
induces a dependence across the split and guarantees a strictly positive HSIC.

A.3 CASE 2: OUT-OF-TRAINING SUBSET (S ∩ Dtr = ∅)

When S is completely unseen during training, it does not contribute to ∆θ. Formally,

∆θS = 0, ∆θ = ∆θrest.

Substituting into Eq. 6, we obtain

COOT
S1,S2

= E
[
(Jℓ(X)∆θrest − EJℓ(X)∆θrest)⊗ (Jℓ(X

′)∆θrest − EJℓ(X ′)∆θrest)
]
. (14)

By comparing with the Eq. 13 in the IT case, there is no shared ∆θS and cross-half influence in the
OOT case. Factorizing the constant vector ∆θrest, this becomes(

E[Jℓ(X)⊗ Jℓ(X
′)]− E[Jℓ(X)]⊗ E[Jℓ(X ′)]

)
(∆θrest ⊗∆θrest).

Since X ∼ S1 and X ′ ∼ S2 are independent draws from disjoint halves of an OOT set,

E[Jℓ(X)⊗ Jℓ(X
′)] = E[Jℓ(X)]⊗ E[Jℓ(X ′)], (15)

and the entire expression vanishes:

COOT
S1,S2

= 0, so H(SOOT , hℓ) = 0.

Intuition (OOT case). OOT subsets never influenced the learned parameters, so they do not inject
any shared component across the halves. After conditioning on the split, S1 and S2 are independent
samples with no common “training footprint”.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Training Epoch

0.005

0.010

0.015

0.020

0.025

0.030

H
(S

,h
) V

al
ue

s

Ssame

Scross

p-value

10 54

10 46

10 38

10 30

10 22

10 14

10 6

102

p-
va

lu
e

(H
(S

sa
m

e,
h)

>
H

(S
cr

os
s,

h)
)

Figure 5: H(S, h) distribution changes along the training epoch. The dashed gray line is the p =
0.01 baseline.

A.4 FIXED BATCH MEMBERSHIP EXPERIMENT

In this subsection, we use a toy experiment to better reflect our main intuition, which is also the
basic idea we presented in the above analysis – dependence among outputs arises because training
samples co-occur in gradient computations and parameter updates during training.

The toy experiment is based on the following insight: if the model is trained with fixed (rather
than randomly sampled) mini-batches, then samples within the same batch should exhibit sig-
nificantly stronger dependence compared to samples drawn from different batches. To validate

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

this, we constructed a binary classification task with 10,000 data points and 10-dimensional features.
We set the batch size to 64 and fixed the batch membership at the beginning of training. A single
hidden layer MLP, hidden dimension 128, is used as the model. Under this setup, we expect the
dependence within a same-batch subset Ssame to be significantly larger than that of a cross-batch
subset Scross, that is, H(Ssame, h) > H(Scross, h).

In Figure 5, the gap between the H(Ssame, h) and H(Scross, h) goes larger along with the training
steps. The result aligns with this expectation, with a statistical test yielding p = 2.11 × 10−54 ≪
0.01, supporting the conclusion that H(Ssame, h) > H(Scross, h).

B RELATED WORKS

B.1 UNLEARNING EVALUATION

Machine unlearning (Bourtoule et al., 2021; Nguyen et al., 2022; Xu et al., 2024) aims to remove
the influence of specific training data from machine learning models. It enhances user privacy by
complying with regulations such as the “right to be forgotten” (Garg et al., 2020; BUKATY, 2019)
and can also mitigate the impact of errors or adversarial contamination in training datasets (Cao &
Yang, 2015; Marchant et al., 2022). The effectiveness of an unlearning algorithm depends on its
goal and scenario (Kurmanji et al., 2023). When the goal is to remove erroneous or adversarial
knowledge (Dong et al., 2025; Jiang et al., 2025; Liu et al., 2022), unlearning effectiveness is often
measured by the drop in adversarial attack success rate while maintaining overall model utility. In
this paper, we focus on the privacy-oriented unlearning evaluation.

A common evaluation strategy for privacy-oriented unlearning is to use a model retrained from
scratch without the forgetting data as the gold standard. Existing approaches assess how similar the
unlearned model is to this retrained model in terms of output distributions (Nguyen et al., 2022)
or relearning time (Tarun et al., 2024; Zhang et al., 2024). Another intuitive approach leverages
Membership Inference Attacks (MIA) to determine whether the forgetting data still leaves a de-
tectable trace in the model. Most prior works still compare the MIA success rate of the unlearned
model against that of a retrained model. In contrast, our method enables post-unlearning evalua-
tion without requiring a retrained model. It directly measures whether the influence of the forgotten
data persists in the model through statistical dependence analysis, offering a scalable and practical
privacy-oriented evaluation approach.

A recent unlearning evaluation study (Tu et al., 2025) also explored the idea of “split sets.” In (Tu
et al., 2025), their methodological principle is the cryptographic indistinguishability that requires
the unlearned model to be computationally indistinguishable from retrained models across adversar-
ially chosen dataset partitions. To test this, they split the dataset multiple times to create different
training scenarios for indistinguishability evaluation. In contrast, our methodological principle is
statistical independence, which directly tests whether training-induced dependencies persist in the
model representations of a given subset. Specifically, we split the given subset into two halves and
use the HSIC test to measure the dependence between them. (Tu et al., 2025) requires training mul-
tiple models across dataset splits to construct distinguishing games. Ours only conducts statistical
dependence testing on the target model’s outputs, and no auxiliary model training is needed.

B.2 MEMBERSHIP INFERENCE ATTACK (MIA)

Membership inference attacks (MIAs) (Hu et al., 2022) aim to determine whether a specific sample
was included in a model’s training data. MIAs have been widely used as a privacy auditing tool and
have strong conceptual alignment with unlearning evaluation, since successful unlearning should
erase any membership signal of the forgetting data. A branch of existing MIA techniques (Shokri
et al., 2017; Leino & Fredrikson, 2020; Long et al., 2020) trains a binary classifier to identify a data
sample’s membership regarding the target model’s behavior. Another branch of the MIA exploit
model confidence (Salem et al., 2019) or loss values (Yang et al., 2016) to identify the membership of
a data sample. Existing MIA methods often require additional model training (e.g., shadow models
or binary attackers) or access to data labels to compute losses, gradients, or prediction correctness.
While these approaches can determine the membership of individual samples, they incur significant
overhead and rely on extra assumptions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In contrast, our method leverages a key property of most unlearning scenarios: forgetting typically
targets a subset of the training data rather than isolated samples. By analyzing the statistical depen-
dence within a group of samples, our approach provides a simpler and reliable evaluation. It requires
no additional model training, no access to the original training procedure or hyperparameters, and
no labeled data, making it a practical tool for post-unlearning privacy assessment.

B.3 STATISTICALLY SIGNIFICANT DEPENDENCE

Measuring statistical dependence between random variables is a fundamental problem in both statis-
tics (Gretton et al., 2005b) and machine learning (Song et al., 2007). Beyond classical measures such
as Pearson correlation and Mutual Information (MI), the Hilbert–Schmidt Independence Criterion
(HSIC) (Gretton et al., 2005a; 2007) offers a more general framework, capable of detecting arbitrary
dependencies in high-dimensional spaces without requiring explicit density estimation. Our work
leverages HSIC to quantify the residual dependence among the representations of a set of samples
and build a pipeline for evaluating unlearning effectiveness. If unlearning is effective, the repre-
sentations of the forgetting data should appear statistically independent, indicating the removal of
training influence. By focusing on group-level dependence rather than individual sample behavior,
our approach offers a robust and statistically meaningful criterion for post-unlearning evaluation.

C ALGORITHM FOR UNLEARNING EVALUATION

We decompose the overall unlearning evaluation process into three:

Algorithm 1 (estimate hsic distribution) first estimates the distribution of HSIC values for a target
subset by repeatedly permuting the data. This forms the statistical foundation for detecting whether
a subset shows significant dependence.

Algorithm 1 estimate hsic distribution() # Section 3.1

Require:
Model h
Subset S
Permutation times T

Ensure: H(S, h)
S1 = S [: len(S)//2]
S2 = S [len(S)//2 :]
H = []
for in range(T) do
S2 = RandomShuffle(S2)
V = HSIC(h(S1), h(S2))
H.append(V)

end for
return H

Algorithm 2 (is in training) then evaluates whether a candidate subset belongs to the training set. It
compares the HSIC distribution of the target set with reference in-training and out-of-training sets
using the Jensen–Shannon divergence (JSD), classifying the set as in-training if its HSIC profile is
closer to the in-training distribution.

Finally, Algorithm 3 (unlearn eval) quantifies the OOT rate of the unlearned model by sampling
multiple subsets from the forgetting data Df , and checking how many of these subsets are success-
fully identified as out-of-training. A higher OOT rate indicates more effective unlearning, as more
forgetting data are recognized as being removed from the training set.

D IMPLEMENTATION DETAILS

For the experiments on the classification task, we used mini-batch stochastic gradient descent (SGD)
with a weight decay of 5× 10−4. The batch size was set to 256 for SVHN and CIFAR-10, and 128

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 is in training() # Section 3.2

Require:
Model h
Permutation times T
Target set Star

Reference sets SIT and SOOT

Ensure: Is Star in-training data?
H(Star, h) = estimate hsic distribution(h,H(Star), T)
H(SIT , h) = estimate hsic distribution(h,H(SIT), T)
H(SOOT , h) = estimate hsic distribution(h,H(SOOT), T)

D(Star,SIT , h) = JSD(H(Star, h),H(SIT , h))
D(Star,SOOT , h) = JSD(H(Star, h),H(SOOT , h))
return D(Star,SIT , h) < D(Star,SOOT , h)

Algorithm 3 unlearn eval()

Require:
Unlearned model hun
Permutation times T
Forgetting training set Df

Reference sets SIT and SOOT

Size of target set n
Number of target sets m

Ensure: OOT rate
target list = []
for in range(m) do

sampling Si ∈ Df , |Si| = n
target list.append(Si)

end for
OOT Count=0
for Star in target list do

if not is in training(hun,T ,Star,SIT ,SOOT) then
OOT Count+=1

end if
end for
return OOT Count / m

for CIFAR-100 and Tiny-ImageNet. The initial learning rate was 0.01 for SVHN and 0.1 for all other
datasets. All models were trained for the number of epochs listed in Table 5, and the corresponding
training, evaluation, and test accuracies are also reported in the table.

Table 5: Training, eval, and test accuracies
for different architectures and datasets.

Dataset-Arch Ep TRAIN Acc EVAL Acc TEST Acc

SV-AllCNN 20 100.00±0.00 94.84±0.11 94.90±0.05
C10-AllCNN 50 99.41 ±0.02 91.95±0.24 91.63±0.09
SV-ResNet18 20 100.00±0.00 94.64±0.17 94.85±0.10
C10-ResNet18 100 99.94 ±0.01 93.48±0.35 93.48±0.22
C100-ResNet18 100 99.92 ±0.01 72.75±0.38 73.47±0.21
Tiny-ResNet18 100 91.10 ±0.23 57.20±0.36 57.75±0.50

Table 6: Activation dimensionalities of different
layers.

h1 h2 h3 h4 hp h

SVHN-AllCNN 98304 49152 12288 12288 192 10
C10-AllCNN 98304 49152 12288 12288 192 10
SVHN-ResNet18 65536 32768 16384 8192 512 10
C10-ResNet18 65536 32768 16384 8192 512 10
C100-ResNet18 65536 32768 16384 8192 512 100
Tiny-ResNet18 262144 131072 65536 32768 512 200

The Figure 4 in the main paper shows the effectiveness of our method across model layers. Table 6
presents activation dimensionalities of different layers. For each layer activation, we set the σ =√
dim by default. Since the dimensionality of the last layer’s activation (the logits) of the 10-class

tasks is too small, i.e.,
√
dim ≃ 3, we manually set the σ = 128 for them.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In the Table 2 of the main paper, we explore the impact of training progress on the effectiveness of
our method. To demonstrate the models’ training sufficiency, we report the model’s performance
(TrainAcc/TestAcc) at various checkpoints during training in Table 7. We can infer from the table
that models exhibit almost no overfitting before 20% of training, but they are not yet fully trained to
achieve high performance.

Table 7: Task utilities of models across training progress.

Data-Arch Acc 10% 20% 40% 80%

SV-AllCNN Train 88.09 95.73 98.51 99.92
Test 88.16 92.97 92.54 94.26

C10-AllCNN Train 92.77 99.21 100.00 100.00
Test 90.49 92.07 94.76 94.83

SV-ResNet18 Train 77.52 84.92 89.22 98.65
Test 71.42 78.12 80.06 91.49

C10-ResNet18 Train 76.56 87.20 91.50 99.85
Test 71.90 80.86 85.16 93.33

C100-ResNet18 Train 58.68 72.56 81.99 99.88
Test 52.65 56.08 57.14 73.31

Tiny-ResNet18 Train 60.30 84.10 91.04 91.11
Test 53.94 57.92 57.75 57.69

All the experiments are conducted on one server with NVIDIA RTX A5000 GPUs (24GB GDDR6
Memory) and 12th Gen Intel Core i7-12700K CPUs (12 cores and 128GB Memory). The code
was implemented in Python 3.12 and CUDA 12.4. The main Python packages’ versions are the
following: Numpy 2.2.5; Pandas 2.2.3; Pytorch 2.7.0; Torchvision 0.22.0. All source code required
for conducting and analyzing the experiments will be made publicly available upon publication of
the paper.

E CASE STUDY: DIFFUSION MODELS

We further apply our method to generative models, specifically focusing on Elucidated Diffusion
Models (EDM) (Karras et al., 2022), one of the most advanced diffusion-based generation frame-
works. Experiments are conducted on the CIFAR10, AFHQv2 (Choi et al., 2020), and FFHQ
datasets (Karras et al., 2019). For each dataset, we randomly sample 50% of the data to form
the forgetting set Df , and follow the official EDM training configuration1 to train a retrained model
on the corresponding remaining set Dr. The EDM architecture adopts a U-Net (Ronneberger et al.,
2015) structure consisting of an encoder and decoder. For our evaluation, we extract the encoder’s
output as the input of HSIC, which yields a flattened dimension of dim = 16384. In computing
HSIC, we set the kernel bandwidth σ values to span the range from 1 to the full dimensionality.

0 2500 5000 7500 10000 12500 15000

0.6

0.8

1.0

F1

0 50 100 150 200 250 300

0.6

0.8

1.0
Zoomed

CIFAR10
AFHQv2
FFHQ

Figure 6: F1 score across σ on the diffusion model.

From Figure 6, the F1 score rises sharply as σ increases from 1 to roughly 100, after which it stabi-
lizes and maintains high performance across a broad range of σ. AFHQv2 and FFHQ consistently
achieve high F1 scores (above 0.9). In contrast, CIFAR10 exhibits a gradual decline as σ continues
to increase, mirroring the observation in classification tasks. This is likely due to its lower resolution,
which limits the representational richness of the encoder features. The zoomed-in inset highlights

1https://github.com/NVlabs/edm

19

https://github.com/NVlabs/edm

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the sensitivity in the small-σ region, where excessively narrow kernel bandwidths fail to capture
meaningful dependencies in the high-dimensional encoder features. Beyond σ ≈ 100, the results
stabilize, suggesting that moderate bandwidths are sufficient for reliable HSIC estimation. Follow-
ing the

√
dim heuristic (σ = 128), the method achieves an F1 score of approximately 0.8 across all

datasets, confirming the heuristic as a practical choice for real-world high-dimensional generative
models, with further tuning providing additional robustness.

F MORE RESULTS ON EVALUATING UNLEARNING METHODS

In the section, we use the CIFAR10-ResNet18 setting as an example and conducted experiments
with R ∈ {5%, 10%, 20%}. We provide complete results in Table 8.

Table 8: Unlearned models’ results on CIFAR10-ResNet18 with R ∈ {5%, 10%, 20%}. Accr and
Accf denote unlearned models’ training accuracy on the Dr and Df , respectively. ASR refers to the
success rate of membership inference attacks. For these metrics, the closer to the retrained model’s
the better. For our method, the higher OTR means that more forgetting data has been identified as
out-of-training data, indicating more effective unlearning.

R Method Accr (%) Accf (%) ASR h hp

F1 OTR (%) ↑ F1 OTR (%) ↑

5%

Retrain 98.70±0.03 93.66±0.10 0.32±0.12 0.85±0.10 90.60±10.84 0.92±0.06 93.20±7.57

RandLabel 98.86±0.03 98.64±0.13 0.25±0.03 0.88±0.09 79.00±26.26 0.90±0.09 76.40±28.08
Unroll 99.38±0.03 99.24±0.22 0.28±0.10 0.88±0.08 0.80±0.75 0.88±0.09 1.00±2.00

Sparsity 93.75±0.54 91.52±0.38 0.44±0.08 0.66±0.29 62.00±31.12 0.66±0.31 62.20±33.07
SalUn 98.73±0.02 98.54±0.14 0.23±0.02 0.84±0.11 38.80±21.31 0.87±0.11 37.20±26.61

10%

Retrain 98.57±0.08 93.25±0.45 0.30±0.09 0.94±0.03 87.00±10.24 0.95±0.05 94.00±4.94

RandLabel 98.80±0.04 98.63±0.13 0.29±0.02 0.88±0.12 84.00±13.54 0.91±0.09 83.20±10.11
Unroll 99.36±0.05 99.21±0.11 0.30±0.12 0.88±0.04 3.00±2.19 0.90±0.07 4.40±4.03

Sparsity 92.72±0.93 90.56±0.82 0.42±0.09 0.62±0.15 50.80±22.61 0.59±0.16 53.80±24.19
SalUn 98.66±0.03 98.53±0.07 0.29±0.02 0.85±0.12 52.40±21.86 0.86±0.15 51.80±23.05

20%

Retrain 98.58±0.04 92.93±0.27 0.25±0.07 0.97±0.02 99.60±0.49 0.98±0.02 99.80±0.40

RandLabel 98.65±0.06 98.64±0.05 0.46±0.02 0.96±0.03 72.60±20.58 0.96±0.03 64.40±23.27
Unroll 99.41±0.04 99.27±0.06 0.24±0.12 0.84±0.20 24.40±27.95 0.90±0.09 7.00±6.72

Sparsity 94.28±0.58 92.00±0.66 0.35±0.07 0.75±0.09 62.60±18.11 0.73±0.09 47.40±23.02
SalUn 98.51±0.07 98.54±0.08 0.48±0.03 0.93±0.05 47.80±25.14 0.93±0.05 39.60±27.41

Across all forgetting ratios, our method consistently achieves high F1 scores (mostly above 0.85),
indicating a strong ability to correctly distinguish whether a given subset S is in-training or out-of-
training. Notably, the Retrain baseline shows very high OTR (over 87% for h and 93% for hp at
R = 5%), confirming that most forgetting subsets are successfully recognized as out-of-training—
an ideal unlearning behavior.

From the ASR perspective, all methods except Sparsity achieve membership inference resistance
comparable to the retrained model (approximately 0.25–0.32). In this regard, Unroll appears to
achieve the most effective unlearning, as its ASR is closest to that of the Retrain model. However,
the OTR metric provides clearer insights:

• RandLabel demonstrates strong unlearning effectiveness with high OTR (79%, 84%, 72%
for R = 5%, 10%, 20%), indicating that a large portion of the forgetting subsets are no
longer recognized as in-training.

• Unroll consistently yields extremely low OTR (below 5%), suggesting that most forgetting
subsets remain in-training, revealing ineffective unlearning despite its high accuracy.

• Sparsity achieves moderate OTR (50%–62%), but suffers from low accuracies and higher
ASR, showing unstable unlearning quality.

• SalUn achieves intermediate OTR performance (38%–52%), indicating partial unlearning
but not as effective as RandLabel or Retrain.

Overall, combining ASR with OTR reveals that RandLabel and Retrain exhibit the most desirable
unlearning behavior, while Unroll fails to effectively forget the target subsets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G COMPUTATIONAL COST ANALYSIS

Our proposed SDE consists of the following main computational steps:

1. Network inference. Both the test sample size and the network architecture influence this
step’s runtime. We exclude this cost from our analysis for two reasons: (1) this is a common
step for almost all evaluation methods, including MIAs and ours; (2) in practice, inference
only needs to be performed once, and the network outputs can be reused by subsequent
steps across different evaluation methods.

2. HSIC calculation. This step requires O(|S|2 × d) matrix operations, where d is representa-
tion dimension. It can be parallelized efficiently on GPUs. A promising direction for future
optimization is to incorporate Nyström kernel approximation to reduce the effective kernel
matrix size.

3. Repeatively sample Star ⊂ Df form times for counting OTR. This resultsm×above cost.

The overall time complexity could be approximated as O(m× |S|2 × d).

To demonstrate how m, d, and |S| influence runtime in practice, we conducted a brief experiment
under the CIFAR10–ResNet18 setting. The table below reports wall-clock time in seconds. The
overall runtime for each entry should include the network inference time corresponding to its subset
size. As expected, the runtime increases with the number of repetitionsm, representation dimension
d, and subset size |S|:

Table 9: Wall-clock time cost (seconds) with different m and |S| when d = 512.

Inference Time m = 50 m = 100 m = 200
|S| = 400 0.29+ 9.51 18.76 37.76
|S| = 1000 0.72+ 11.06 21.92 45.85
|S| = 2000 1.43+ 29.02 57.70 116.04

Table 10: Wall-clock time cost (seconds) with different m and |S| when d = 8192.

Inference Time m = 50 m = 100 m = 200
|S| = 400 0.29+ 13.46 26.55 52.35
|S| = 1000 0.72+ 27.15 54.18 107.99
|S| = 2000 1.43+ 84.84 168.30 335.67

21

	Introduction
	Preliminaries
	Machine Unlearning
	Hilbert-Schmidt Independence Criterion (HSIC)

	Method
	Split-half Dependence of a set of data
	Evaluating the Unlearned Model via H(S,h)

	Experiment
	Controlled experiments on retrained models
	Kernel bandwidth
	Impact of |S| and R
	Layer-wise generality
	Training sufficiency

	Comparison with Distribution Distance Metrics
	Evaluating Unlearning Methods

	Discussion and Limitation
	Conclusion
	Insightful Analysis
	Preliminaries
	Case 1: In-training subset (SDtr)
	Case 2: Out-of-training subset (SDtr=)
	Fixed batch membership experiment

	Related Works
	Unlearning Evaluation
	Membership Inference Attack (MIA)
	Statistically Significant Dependence

	Algorithm for Unlearning Evaluation
	Implementation Details
	Case Study: Diffusion Models
	More Results on Evaluating Unlearning Methods
	Computational cost analysis

