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ABSTRACT

Large language models (LLMs) are highly sensitive to prompt perturbations,
where small changes to key segments can lead to unreliable outputs. Exist-
ing robustness methods often optimise holistic objectives, overlooking semantic
asymmetry and lacking certified guarantees. In this work, we propose Seman-
tic Segment Robustness Regularisation (S2R2), a fine-tuning framework based
on Low-Rank Adaptation (LoRA) that enforces segment-level alignment and pe-
nalises perturbation-induced attention shifts. We demonstrate that this objective
is connected to a Probably Approximately Correct (PAC)-Bayesian generalisa-
tion bound, which can be formally tightened by constraining the LoRA parameter
norms. Experiments across multiple models and domains show that S2R2 con-
sistently reduces empirical risk, achieves significantly tighter bounds than strong
baselines, and transfers effectively to out-of-distribution data.

1 INTRODUCTION

Large Language Models (LLMs) have achieved widespread adoption in numerous applications.
However, their reliability is often compromised by minor imperceptible perturbations to input
prompts, which can lead to unreliable or even malicious outputs (Hu et al., 2024; Honarvar et al.,
2025; Wang et al., 2024; Zhu et al., 2024b). For example, a summarisation model may generate an
incorrect medical conclusion if one clinical term is misspelt. This fragility undermines the utility of
LLMs and poses significant risks in safety-critical domains. Therefore, robustness is a prerequisite
for the trustworthy development of LLMs (Xhonneux et al., 2024; Tao et al., 2024; Paulus et al.,
2025).

Many researchers have focused on bolstering LLM robustness (Lin et al., 2025; Gan et al., 2024;
Rauba et al., 2024; Marjanovic et al., 2024; Wang et al., 2023) and provided well-designed fine-
tuning strategies (Qiang et al., 2024; Wu et al., 2021; Aghajanyan et al., 2021; Zhu et al., 2020;
Jiang et al., 2020). A common thread in these methods is a “holistic” treatment of the output, for
example, by minimising the Kullback-Leibler (KL) divergence over an entire sequence. Yet, this
approach disregards a core principle of language: Semantic information is unevenly distributed in a
sentence. Just as a few keywords can define a sentence’s message, particular segments of an LLM
output are more critical to its semantic integrity. This principle of non-uniform impact is also seen
in studies on adversarial fairness (Agarwal et al., 2018; Hashimoto et al., 2018; Jin et al., 2025). By
ignoring this, holistic methods fail to account for the unbalanced vulnerability of text, where damage
to key semantic segments can be disproportionately harmful (Qiang et al., 2024).

Focusing on semantic asymmetry is important, but it only captures part of the picture. The internal
reasoning dynamics of the model rely heavily on the attention mechanism (Vaswani et al., 2017).
Perturbations on model input influence output performances (Gan et al., 2024; Agrawal et al., 2025)
by inducing shifts into both embeddings and attention score matrices. However, existing research on
robustness does not deeply investigate the influence of the attention mechanism itself. Instead, these
studies limit their scope to empirically aligning the outputs from perturbed inputs with those from
the clean. Furthermore, such empirical methods also provide no certified guarantees of robustness
on unseen data, leaving open questions about their generalisation ability.

Therefore, in this research, we introduce Semantic Segment Robustness Regularisation (S2R2), a
new fine-tuning framework based on Low-Rank Adaptation (LoRA) (Hu et al., 2022), designed to
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Figure 1: Overview of S2R2. A clean input and its perturbed variant are processed through a
LoRA-based fine-tuned LLM. S2R2 minimises two complementary objectives: (1) Output-oriented
segment-level semantic loss Lsem penalises worst-case semantic shifts. (2) Mechanism-oriented at-
tention shift loss Latt constrains perturbation-induced changes in LoRA parameters. Together with
the base cross-entropy loss LCE, these objectives tighten the two terms of the PAC-Bayesian gener-
alisation bound. We also established the connection between Latt and regularisation.

address the gaps above. We move beyond the purely empirical objectives towards certified robust-
ness, and meanwhile consider the asymmetry of semantic information. LoRA provides a tractable
hypothesis space for the Probably Approximately Correct (PAC) Bayesian framework (McAllester,
1999) from its parameter-efficient nature, which is central to our theoretical analysis. S2R2 oper-
ates as shown in Fig. 1. First, instead of holistic output comparisons, it strategically focuses on the
worst-case semantic segments. Second, it introduces a regulariser that directly penalises attention
shifts, promoting a more stable internal reasoning process under perturbation. To ensure these em-
pirical improvements are not an artefact of overfitting, we derive a formal guarantee on the model’s
generalisation performance according to the PAC-Bayesian bound, bridging a critical gap between
empirical findings and theoretical assurance.

To summarise, the main contributions of our paper are as follows:

C1: We formalise segment-level robustness and propose a targeted mechanism to protect key parts
of the output, moving beyond simplistic token or sentence-level comparisons for transformer-based
architectures. C2: We introduce an explainable regulariser based on cross-attention shifts that can
serve as a training objective. It not only improves robustness but also constrains parameter updates to
enhance generalisation. C3: We derive a closed-form PAC-Bayesian bound for robust LoRA fine-
tuning, providing the first certified generalisation guarantee for LLMs fine-tuned against prompt
perturbations1.

2 PRELIMINARIES

To bridge the gaps highlighted in Sec. 1, our work is guided by three questions:

Q1: How do input perturbations during fine-tuning affect the model’s internal reasoning process?

Q2: How to improve the performance of the robustness of the fine-tuning process?

Q3: Can this robust fine-tuning approach guarantee generalisation and find an existing formal gen-
eralisation risk upper bound?

To address these questions, we first review existing literature to identify the gaps.

2.1 ROBUSTNESS TO INPUT PERTURBATION

LLMs often exhibit sensitivity to minor, semantically preserving perturbations in the input (Wang
et al., 2024; Agrawal et al., 2025), ranging from unintentional typos (Gan et al., 2024; Dong et al.,

1For transparency, we note that an LLM was used to assist with language polishing. See detailed statement
in App. F. The source code for this paper will be made publicly available upon acceptance.
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2023) and paraphrasing (Wang et al., 2023) to deliberate adversarial attacks. To optimise LLMs’
performances accordingly, several robustness fine-tuning strategies have been developed. Data aug-
mentation enriches the training set with perturbed examples to expose the model to a wider variety of
inputs (Wei & Zou, 2019), as well as more sophisticated methods such as back-translation (Edunov
et al., 2018). Adversarial training generates worst-case examples to maximise the training loss com-
pared with the ground truth. Since text is discrete, projected gradient descent has been used in the
continuous embedding space (Waghela et al., 2024). Consistency-based methods add a penalty term
between a model’s outputs for a clean input x and a perturbed one x′ to encourage smoother model
behaviour, measured by the KL divergence (Aghajanyan et al., 2021) or Jensen-Shannon (JS) di-
vergence (Qiang et al., 2024) between their respective output probability distributions. (Jiang et al.,
2020) and (Zhu et al., 2020) merge the consistency into adversarial input production to achieve the
state-of-the-art (SOTA) performances. Although current approaches are dedicated to robustness op-
timisation, they often holistically minimise the loss between the entire model output and the target
sequence. This overlooks the underlying mechanisms of how perturbations induce uncertainty. Re-
turning to traditional deep learning, it is highlighted that not all components contribute equally to the
robustness (Xu et al., 2021; Jin et al., 2025). Drawing from this, we examine the spectral influences
from the perspective of language.

2.2 LLMS FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) approaches use prompt-based (Lester et al., 2021; Liu et al.,
2024b) and adapter-based (Hu et al., 2022; Liu et al., 2024a; Dettmers et al., 2023; Jiang et al., 2024)
methods to circumvent the prohibitive cost of updating and storing every parameter in a large model.
Unlike prompt-based methods, adapter-based approaches such as LoRA and its variants are built
on the principle that weight updates lie in a low-rank subspace, allowing them to reduce trainable
parameters while directly influencing the model’s attention distributions. Given that our objective is
to explore hidden representations and cross-attention behaviour, we adopt LoRA as the backbone of
our method. For a Transformer layer l, we have:

W∗ = W0,∗ +W
′

∗, where W
′

∗ := B∗A
⊤
∗ , B∗ ∈ Rdout×r, A∗ ∈ Rdin×r, r ≪ min(din, dout),

r is the adapter matrix rank, the subscript ∗ is a wildcard for the transformer Query, Key, or Value
matrices, the pre-trained weight matrix W0,∗ ∈ Rdout×din remains frozen over fine-tuning, B∗ and
A∗ are trainable. Then the Query matrices for the former hidden layer H become:

Q = H (W0,Q +Q
′
) with Q

′
= HBQA

⊤
Q, and K, V can be updated analogously.

To define a prior and posterior distribution over LoRA trainable parameters, Gaussian distributions
(Goodman, 1963) can mathematically formalise the belief that task adaptation requires a minimal
perturbation from the pre-trained state. This practice has been well-established within the broader
Bayesian deep learning literature (Blundell et al., 2015; Dziugaite & Roy, 2017). Considering the
fine-tuning dataset is typically small relative to the initial pre-training corpus, it is insufficient to
change the variance drastically. Therefore, we can assume:

Assumption 1. The data-independent prior distribution P = N (0, τ2I) and the data-dependent
posterior Q = N (µ, σ2I) can be described by Gaussian distributions with comparable variances
τ2 and σ2.

During LoRA fine-tuning, B∗ and A∗ tend to remain balanced in magnitude, rather than one matrix
growing disproportionately large while the other shrinks. This behaviour has been partly attributed to
factors such as the symmetric gradient structure of the matrix product and the implicit regularisation
of stochastic gradient descent(Gunasekar et al., 2017). Moreover, an empirical examination by
(Zhu et al., 2024a) illustrates that even though B∗ and A∗ hold asymmetry in their data extraction
responsibility, in the standard LoRA training paradigm, the magnitudes of the learned matrices B∗
and A∗ are often observed to be comparable. Therefore, we can assume:

Assumption 2. The Frobenius Norms (computationally efficient and differentiable for each element
of a matrix) of LoRA matrices ∥Bl

∗∥F and ∥Al
∗∥F are comparable.

See empirical validation in App. E.
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2.3 PERTURBATION EFFECT

To answer Q1, we need to first formally characterise input perturbations’ mathematical impact on
the attention mechanism. When the input layer H is perturbed by a small error term ε (∥ε∥∞ ≤ ϵ)
the resulting pre-softmax attention score vector α can be decomposed. Let Q0 = H ·WQ,0 be the
original Query matrix derived from the frozen pre-trained weights. Our proposed robust fine-tuning
method introduces LoRA matrices B′ and A′, while the standard LoRA matrices remain B and A.
The full attention score vector α is then:

α = (H ·WQ,0︸ ︷︷ ︸
Original

+ (H + ε)B′A′⊤︸ ︷︷ ︸
Trainable

+ εWQ,0︸ ︷︷ ︸
Uncontrollable

)
K⊤ · V√

dk
, (1)

where the Original component represents the model’s original baseline, pre-trained behaviour. The
Trainable component is the low-rank update controlled during fine-tuning, producing a task-specific
offset that adapts the model’s behaviour to the current task. The Uncontrollable component repre-
sents a direct and stochastic influence of the attention logits from the perturbation, placing it outside
the direct control of the trainable LoRA parameters.

Training
Samples

Prior P
𝒩 0, τ!I

SFT

Posterior Q
𝒩 µ , σ!I

LoRA Adapter Hypothesis Space (ℋ)

Empirical Risk Generalisation Gap

True Risk

Pre-trained LLM (W0)

Figure 2: The LoRA adapter PAC-Bayesian
generalisation framework. It operates within
the LoRA hypothesis space H on top of a
frozen pre-trained LLM weight W0. A data-
independent Prior P represents our initial be-
lief over the LoRA parameters. Supervised
fine-tuning on training samples updates this
belief to a data-dependent Posterior Q. The
PAC-Bayesian theorem bounds the True Risk
using the Empirical Risk and a complexity
term, the Generalisation Gap, which is deter-
mined by the DKL between Q and P .

Therefore, the optimisation process guides the
trainable component to perform a dual function: not
only to generate a task-adaptation offset but also to
actively produce a corrective offset that counteracts
the uncontrollable noise. The mechanistic insight is
further discussed in App. B.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

To answer Q2 and Q3, we need to consider both
empirical loss and generalisation ability. There-
fore, we leverage the PAC-Bayesian framework
(McAllester, 1999; 2003) to transform the prob-
lems into finding an upper bound of the generalised
true risks given finite available training data. It is
further developed and applied in neural networks
(Catoni, 2007; Dziugaite & Roy, 2017) especially
the Gibbs classifier (Morvant et al., 2012), and (Jin
et al., 2025) discusses the “fairness” among classes
during robustness training of classifiers, which is
similar to our purpose of mitigating output asym-
metry. Applying to LLMs is made tractable by LoRA as shown in Fig. 2. Let H be a hypothesis
space where each hypothesis model instance hθ ∈ H is parameterised by θ ∈ Θ. Given a training
set of samples z drawn i.i.d. from an unknown data distribution D, the performance of a hypothesis
is evaluated by a loss function L(h, z). The objective of learning is to find a hypothesis with low
true risk, LD

tr := Ez∼DLtr(hθ, z), given a confidence level of 1 − δ and available training sam-
ples z ∼ Dt that leads to the empirical risk LDt

ex := Ez∼Dt
Lex(hθ, z). The inequality between the

prior and posterior distributions bounds the expected true risk by the expected empirical risk plus
a complexity term, measured by the Kullback-Leibler divergence DKL. For adversarial fine-tuning
scenarios over limited training samples, we utilise a common and tight form of the PAC-Bayesian
bound. This form can be derived from more general inequalities by optimising the trade-off param-
eter, resulting in the following expression (Seeger, 2003; Catoni, 2007):

LD
tr ≤ LDt

ex︸︷︷︸
Empirical

+

√
DKL(Q(θ)∥P (θ)) + ln( 2

√
n

δ
)

2n− 1︸ ︷︷ ︸
Complexity

, δ ∈ (0, 1), (2)

where LDt
ex is the empirical loss after training on available samples, n is the number of samples, and

θ represents the trainable model parameters from LoRA structures as shown in Fig. 2.
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The complexity term quantifies the generalisation error through including the influences of DKL
between the posterior distribution Q(θ) and the prior P (θ), confidence, and sampling scale. This
term offers several intuitive interpretations regarding the bound’s behaviour:

(1) The confidence parameter δ embodies a trade-off between certainty and tightness. Higher confi-
dence (1 − δ) necessarily widens the bound, reflecting higher certainty of its validity. (2) The DKL
acts as a regulariser. A large divergence indicates that the posterior distribution Q has moved far
from the prior belief P to fit the training data. The bound penalises this complexity as such a signif-
icant shift may lead to overfitting, thus warranting a looser guarantee. (3) The number of samples n
ensures that the bound tightens as more data is observed at a rate of O(n− 1

2

√
lnn). This aligns with

the principle that the empirical risk gradually approaches true risk as the sample size grows.

Therefore, our strategy is to minimise this bound by jointly addressing both terms, and now proceed
to analyse each term individually.

3.2 EMPIRICAL TERM

According to our analysis in Sec. 2.3, model robustness should be considered based on both external
behavioural changes: altered output semantics, and internal mechanistic shifts: attention pattern
change. We use the following two Shift statistics to measure the changes caused by perturbations:
semantic shift and attention shift.

3.2.1 SEMANTIC SHIFT

Existing holistic consistency losses minimise divergence over the entire sequence, but this dilutes
robustness signals by spreading gradients evenly across all tokens. We posit that the worst-case se-
mantic deviation is bounded by the spectral properties of the perturbation operator and the content’s
semantic structure, which can be calculated by the product of the largest singular values of pertur-
bation and content semantic covariance, which implies that the greatest semantic shift occurs when
the perturbation’s principal direction aligns with the content’s principal semantic axis, highlighting
the importance of semantically coherent units rather than entire sequences.

Therefore, we process model output by cutting text into semantic segments via lightweight
discourse-based segmentation and alignment. Given a clean prompt x with a length of Tx tokens and
its perturbed variant x′, let S and S′ denote the sets of clean and perturbed semantic segments in
the target outputs y and y′, respectively. The model produces semantically segmented embeddings
es and es′ for x and x′, respectively. We therefore propose a computationally feasible objective to
align the homologous segments and measure the amount of meaning drift at the granularity of text
segments. We define the following distance as the spectral semantic loss:

Lsem = M(S,S′) :=
∑
s∈S

∥∥∥ es︸︷︷︸
Clean

−
∑
s′∈S′

Tss′ es′︸ ︷︷ ︸
Aligned perturbed

∥∥∥2

2
, es =

1

|s|
∑
t∈s

et, (3)

where the alignment matrix T ∈ [0, 1]|S|×|S′| is dynamically computed as the solution to an optimal
Transport plan in the Monge-Kantorovich Problem (Villani, 2021), considering that perturbations
can alter the sequence structure (e.g., reordering, inserting, or deleting segments), making a fixed
one-to-one comparison brittle. M treats the sets of clean and perturbed segment embeddings as two
empirical distributions and finds the most efficient Transport plan between them, which allows our
discrepancy metric to disregard structural noise and isolate the true semantic deviation.

3.2.2 ATTENTION SHIFT

We begin by analysing the attention scores at a granular level. In Transformer architectures, an
attention weight aij represents the importance assigned by a query token at position i to a key token
at position j. The pre-softmax attention score vector for a specific key token j is the collection
of scores from all Tx query positions: αj = [α1j , . . . , αij , . . . , αTx,j ]. According to our model
definition in Eq. 1, the change in this score vector caused by a perturbation ε, is given by:

α′
j =

(
εWQ,0 + (H + ε)B′A′⊤ −HBA⊤

) K⊤
j Vj√
dk

. (4)
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The final attention weights are obtained via the softmax function, aij = softmax(αj)i, which is non-
linear. Assuming the perturbation is small, we employ a first-order Taylor expansion to linearise the
change in a single attention weight, a′ij . This change is propagated from the pre-softmax shifts α′

kj

from all query positions k ∈ {1, . . . , Tx}:

a′
ij ≈

Tx∑
k=1

∂aij

∂αkj
α′
kj =

∂aij

∂αij
α′
ij +

Tx∑
k ̸=i

∂aij

∂αkj
α′
kj = aij(1− aij)α

′
ij −

Tx∑
k ̸=i

aijakjα
′
kj . (5)

Eq. 5 reveals how pre-softmax perturbations affect individual attention weights. Following the set-
ting of Sec. 3.2.1, we define the segment-wise attention ζs as the average total attention directed to
a segment s. We define the total perturbation on the attention weights as a matrix ξ, where each ele-
ment ξij corresponds to the change a′ij derived above. The perturbation corresponding to a specific
segment s is the submatrix ξs. Defining the total perturbation matrix Ξ ∈ RTq×Tx , each element
of this matrix [Ξ]ij is the linearised change. Tq is the length of the query sequence, depending on
the LLM type as discussed in App. A.1. Then ξs is defined as the submatrix of Ξ composed of the
columns indexed by the segment s.

To measure the segment-wise attention shift, we derive an upper bound on its change |ζ ′s− ζs| under
the additive perturbation ξs. While the precise definitions of the terms vary slightly across different
attention mechanisms (see App. A.1), the final bound on the sensitivity robustly takes a unified form:

|ζ′s − ζs| ≤
√

Tq√
|s|

∥ξs∥F . (6)

Here we can further expand the Eq. 6. The matrix Ξs is composed of the individual attention changes
a′ij . As rigorously proven in App. A.2, we have: |a′ij | ≤ C

(1)
ij ||ε||2 + C

(2)
ij ||ε||2 · ||B′||F ||A′||F ,

where C
(1)
ij ≜ 2aij(1−aij)√

dk
||KT

j Vj ||2 · ||WQ,0||F , C(2)
ij ≜ 2aij(1−aij)√

dk
||KT

j Vj ||2.

By substituting this per-element bound into the definition of the Frobenius norm, it directly follows
that ||Ξs||F is in turn bounded by a function of ||B′||F ||A′||F . We therefore introduce an attention
loss designed to penalise this controlling factor:

Latt = λ · ||B′||F ||A′||F , (7)

where λ is a hyperparameter to balance this objective with the primary task loss. Here, we can
augment the empirical loss of robustness fine-tuning in Eq. 2 by comprehensively considering these
two losses with the traditional cross-entropy loss:

LDt
ex = LCE + Lsem + Latt. (8)

3.3 GENERALISATION ERROR BY COMPLEXITY

To answer Q3, looking back at the Eq. 2, the upper bound was constrained by a complexity term to
avoid overfitting. The DKL(Q(θ)∥P (θ)) describes the generated distribution distance of trainable
model parameters in LoRA layers based on a pre-trained LLM. For a transformer layer l, We define
θl := vec(Bl,Al). According to Assumption 1, we can compute and simplify the DKL for an LLM
with L fine-tuning participating layers as:

DKL =

L∑
l=1

1

2

[
∥µl∥2F
(τ l)2

+ kl

(
(σl)2

(τ l)2
− 1− ln

(σl)2

(τ l)2

)]
≈

L∑
l=1

1

2

∥µl∥2F
(τ l)2

=
1

2

L∑
l=1

∥Bl∥2F + ∥Al∥2F
(τ l)2

, (9)

where the numerator can be simply decomposed by (∥Bl∥F − ∥Al∥F )2︸ ︷︷ ︸
Imbalance

+2∥Bl∥F ∥Al∥F .

(1) The first term is a Norm Imbalance (∥Bl∥F −∥Al∥F )2 that penalises the dissimilarity between
the LoRA matrices B and A. According to the Assumption 2, this term remains small even in
non-regularised LoRA. (2)The second term ∥Bl∥F ∥Al∥F is directly proportional to our proposed
attention shift loss asLatt in Eq. 7. Conclusively, this loss also works as a regulariser that constrains
model overfitting and enhances the generalisation ability.
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Therefore, by minimising the empirical loss we design in Sec. 3.2, we can tighten the two terms
of the PAC-Bayesian bound. We not only enhance the empirical robustness, but also indirectly yet
effectively constrain the complexity term of the framework to guarantee generalisation. Now we
also return to the idea by (Langford & Caruana, 2001; Langford, 2002; Dziugaite & Roy, 2017).
Here, we can strictly tighten the two terms in the upper bound Eq. 2 through minimising the Eq. 8.

4 EXPERIMENT

Experimental Setup (1) Task Selection We adopt summarisation as our primary task since it
both validates the theoretical analysis in a genuine generation setting and provides outputs with rich
semantic structure, which are better suited for segment-level robustness evaluation than alternative
tasks such as translation (lexically constrained) or keyphrase generation (too short). (2) Models and
Datasets We validate S2R2 on diverse architectures: the encoder-decoder models BART-base (Lewis
et al., 2020) and Flan-T5-base (Chung et al., 2024), and the decoder-only Mistral-7B-Instruct-v0.2
(Jiang et al., 2023). Our evaluation uses three summarisation benchmarks chosen to test distinct
robustness aspects: CNN/Dailymail (Nallapati et al., 2016) for factual consistency (via high lexical
overlap), XSum (Hasan et al., 2021) for semantic coherence (highly abstractive), and the technical
PubMed (Canese & Weis, 2013) for domain-specific precision. (3) Implementation Details All of
the experiments are conducted on GPU A100 40G. We adopt the R3F (Aghajanyan et al., 2021) and
the SMART (Jiang et al., 2020) as canonical baselines according to Sec. 2.1, considering most recent
robustness methods are variants of these and do not alter the principle relevant to our regularisation.
All models are fine-tuned using LoRA. The base task is set up with the standard cross-entropy loss
(LCE). The semantic segment discrepancy loss (Lsem) is incorporated into the adversarial noise gen-
eration loop based on the holistic distance proposed by the baseline SMART, and is complemented
by the external LoRA-aware attention shift (Latt) which also works as the KL regulariser from our
PAC-Bayesian analysis. The parameters update pseudocode is as Algorithm 1 in App. D. For our
main experiments, we employ a computationally efficient strategy for segmenting model outputs
based on natural language punctuation. An additional high-cost small-resource examination using
an LLM segmentation method powered by a T5 model is provided in App. C, which indicates that
the punctuation slicing provides similar performance and is time-efficient.

4.1 EVALUATION

4.1.1 PERTURBATION TESTBED

To simulate common real-world text corruptions and assess model robustness, we apply three types
of perturbations to the source articles in the test sets, creating three parallel evaluation branches,
following (Qiang et al., 2024; Dong et al., 2023; Wang et al., 2023):

(1) Typographical & Deletion tests the tolerance to spelling errors and incomplete information. We
swap characters within words with a probability of p = 0.15 and subsequently delete words from
the text with a probability of p = 0.10. We follow recent TextAttack (Morris et al., 2020) and use
random-typo noise instead of obsolete homophone swap. (2) Synonym Replacement evaluates the
understanding of semantic equivalence despite variations in vocabulary. We replace words with their
synonyms with a probability of p = 0.15 by the WordNet (Miller, 1995). (3) Paraphrasing poses a
challenge to the model’s deep semantic comprehension. We use a pre-trained T5 paraphrasing model
(Chung et al., 2024) to rewrite the source text, generating adversarial examples that are syntactically
and lexically divergent but semantically aligned with the original.

4.1.2 EVALUATION METRICS

Based on the testbed above, we employ the following metrics to quantify capabilities.

(1) Performance Drop Rate (PDR) quantifies the relative degradation in ROUGE score (Lin, 2004)
when the model is faced with perturbations (Agrawal et al., 2025). For each perturbation type, the
PDR is calculated as PDRp = 1− RL(fp)

RL(fc)
, where RL(fp) and RL(fc) are the ROUGE-L scores on

the perturbed and clean datasets, respectively. Approaching 0 indicates superior robustness.
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Table 1: Main experimental results. |PDR|avg, ∆ed-avg, and 1-SBavg are averaged over all perturba-
tion types. E-Risk is the empirical risk, and PAC-B is the final PAC-Bayesian bound value. The best
result in each category is in bold. Lower is better for all metrics.

Method
|PDR| ↓ 1-SB ↓ ∆ed ↓ DKL ↓ E-Risk ↓ PAC-B ↓

Typo Syno Para Avg Typo Syno Para Avg Typo Syno Para Avg

(a) Bart-base on CNN/Dailymail

R3F 0.0949 0.0613 0.0872 0.0811 0.6402 0.4795 0.7507 0.6238 0.7524 0.6653 0.8597 0.7591 233.625 0.5831 0.6930
SMART 0.0008 0.0011 0.0176 0.0064 0.0611 0.0663 0.4176 0.1817 0.1378 0.1434 0.8806 0.3873 202.554 0.1821 0.2874
S2R2 0.0006 0.0015 0.0057 0.0012 0.0717 0.0661 0.4470 0.1956 0.1674 0.1548 0.8892 0.4038 78.006 0.1966 0.2626

(b) Bart-base on XSum

R3F 0.0320 0.0188 0.0548 0.0352 0.4166 0.2905 0.5898 0.4323 0.6748 0.5091 0.8985 0.6914 190.051 0.4185 0.5181
SMART 0.0108 0.0004 0.0264 0.0125 0.0566 0.1076 0.4014 0.2220 0.3196 0.2292 0.7558 0.4349 149.155 0.2223 0.3110
S2R2 0.0346 0.0138 0.0072 0.0185 0.0506 0.1144 0.3766 0.2141 0.3912 0.2962 0.7775 0.4883 90.775 0.2219 0.2924

(c) T5-base on PubMed

R3F 0.1266 0.0327 0.1043 0.0781 0.6613 0.3310 0.7105 0.5676 0.7225 0.3743 0.7716 0.6228 1377.258 0.5242 0.7874
SMART 0.0509 0.0060 0.0515 0.0321 0.6435 0.3737 0.8035 0.6089 0.6812 0.3944 0.8628 0.6461 1000.989 0.5560 0.7795
S2R2 0.3229 0.1592 1.9640 0.8152 0.1281 0.1174 0.2873 0.1776 0.0766 0.0702 0.2116 0.1195 774.055 0.2355 0.4333

(d) Mistral-7B on PubMed

R3F 0.0893 0.0568 0.2421 0.1300 0.5011 0.2144 0.8413 0.5189 0.2454 0.1419 0.7842 0.3902 565.093 0.4672 0.6365
SMART 0.0894 0.0588 0.2221 0.1235 0.5208 0.2119 0.7317 0.4881 0.2426 0.1376 0.7905 0.3903 461.931 0.4419 0.5951
S2R2 0.0795 0.0553 0.0902 0.0749 0.5499 0.2674 0.8417 0.5530 0.3444 0.2472 0.7734 0.4550 58.106 0.4419 0.5530

Table 2: Zero-shot experimental result. Cross-dataset evaluation to assess the transferability of
learned robustness. Bart-base are fine-tuned and evaluated on (a) different domains (general news
to biomedical) and (b) different task styles (abstractive to extractive summarisation).

Method
|PDR| ↓ ∆ed ↓ 1-SB ↓

DKL ↓ E-Risk ↓ PAC-B ↓
Typo Syno Para Avg Typo Syno Para Avg Typo Syno Para Avg

(a) Fine-tuned on CNN/DailyMail tested on PubMed

R3F 0.0952 0.0496 0.1164 0.0871 0.6649 0.4487 0.7442 0.6497 0.6461 0.5148 0.7881 0.6292 233.625 0.5770 0.6870
SMART 0.0138 0.0032 0.1392 0.0408 0.1921 0.3943 0.6124 0.6246 0.4204 0.4198 1.0340 0.3329 202.554 0.3328 0.4355
S2R2 0.0012 0.0001 0.0662 0.0217 0.1014 0.0918 0.3665 0.4242 0.2594 0.2361 0.7771 0.1866 78.006 0.1939 0.2595

(b) Fine-tuned on XSum tested on CNN/DailyMail

R3F 0.0453 0.0357 0.3634 0.0941 0.6197 0.6023 0.7846 0.8321 0.8195 0.8052 0.8716 0.6689 190.051 0.6277 0.7273
SMART 0.0031 0.0004 0.0366 0.0113 0.1264 0.1109 0.8114 0.5839 0.3193 0.2861 1.1460 0.3496 149.155 0.3392 0.4279
S2R2 0.0003 0.0027 0.0132 0.0052 0.1159 0.1004 0.5995 0.5152 0.3049 0.2636 0.9771 0.2719 90.775 0.2695 0.3399

(2)Output Consistency are reference-free and directly measure the consistency of the model’s be-
haviour. We compare the model’s predictions on clean inputs (fc) with those on perturbed inputs
(fp) by: (a) Self-BERTScore (SB) We use BERTScore (Zhang et al., 2020) to compute the semantic
similarity between fc and fp, measuring a model’s semantic stability. (b) Output Edit Rate (∆ed)
We compute the normalised word-level Levenshtein distance (Chowdhury et al., 2013) between fc
and fp to measure a model’s syntactic stability, quantifying the degree of surface-level change in the
output text induced by the perturbation.

According to the model’s output performances according to the metrics above, we heuristically
define the empirical risk in as 0.8(1-SB)+0.1PDR+0.1∆ed, considering semantic stability is the
most core indicator in our optimisation design. Other combinations are also acceptable provided the
value is normalised to [0, 1] in line with Eq. 2. Combining the generalisation gap calculated from
the fine-tuned LoRA norms, we can calculate the bound values to validate our S2R2’s effectiveness.

4.2 RESULTS AND ANALYSIS

4.2.1 ROBUSTNESS ON STANDARD BENCHMARKS

With Bart-base on CNN/Dailymail (Tab. 1(a)), S2R2 achieves a |PDR|avg of just 0.0012, an 81%
reduction over the strong SMART baseline. While its empirical risk (E-Risk) is comparable to
SMART, S2R2 drastically reduces the DKL from 202.5 to 78.0. This yields a final PAC-Bayesian
bound (PAC-B) of 0.2626, tightest among all methods, demonstrating that S2R2 finds a more gen-
eralisable robust solution. On the abstractive XSum dataset (Tab. 1(b)), S2R2 again secures the best
PAC-B, driven by superior semantic stability (lower 1-SBavg ) and a significantly smaller DKL.
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4.2.2 ROBUSTNESS IN SPECIALISED DOMAINS’ METRICS

The results on PubMed are particularly illuminating. With T5-base (Tab. 1(c)), S2R2 exhibits a
high |PDR|avg. However, this is coupled with exceptionally low ∆ed,avg and 1-SBavg scores (best-
in-class). This suggests that S2R2 produces outputs that are stable and semantically consistent with
their clean-input counterparts, a property not fully captured by the n-gram-based ROUGE metric,
which penalises valid semantic paraphrases that deviate from a single reference. By prioritising se-
mantic self-consistency, S2R2 achieves the lowest E-Risk and a 44% tighter PAC-B than its closest
competitor. This principle is further reinforced by the Mistral-7B-Instruct results (Tab. 1(d)). Here,
even though S2R2’s E-Risk is slightly higher than the baselines, it achieves this with a DKL that is
nearly 8 times smaller. This efficiency in parameter usage results in the tightest certified generali-
sation bound. It strongly suggests that baseline methods may overfit to the perturbation patterns in
the training data, leading to larger parameter norms and a weaker generalisation guarantee.

4.2.3 VISUALISATION OF THE REGULARISATION

Figure 3: Evolution of the sum of Frobenius norms
of LoRA matrices during fine-tuning. S2R2 consis-
tently maintains a lower value than baselines. The
x-axis differs in the three sub-figures due to the size
differences of the datasets and training batches.

Fig. 3 provides direct visual evidence for
our central claim. Across all models
and datasets, the LoRA parameter norms
Σl∥Bl∥F ∥Al∥F for S2R2 remain lower and
grow more slowly, correlating with a smaller
DKL and a tighter PAC-Bayesian bound.
Combined with the low empirical risk re-
ported in Tab. 1, we conclude that our S2R2’s
robustness stems not from aggressive param-
eter tuning that risks overfitting, but from
finding a more generalisable solution in a
constrained hypothesis space.

4.2.4 ZERO-SHOT CROSS-DATASET GENERALISATION

To further probe the generalisation capabilities of our framework, we conduct a challenging zero-
shot cross-dataset evaluation as shown in Tab. 2. Bart-base is fine-tuned on one dataset and then
directly tested against perturbations on another, unseen dataset. This setup assesses how well the
learned robustness transfers across different domains and task styles. First, we assess generalisation
from the general news domain to a specialised biomedical domain by training on CNN/Dailymail
and testing on PubMed (Tab. 2(a)). S2R2 not only achieves the best scores across all empirical
metrics, including a 42% reduction in E-Risk compared to the second, but also maintains the low-
est KL complexity. This leads to a PAC-Bayesian bound of 0.2595, which is significantly tighter
than the baselines. Next, we evaluate across different summarisation styles, training on the highly
abstractive XSum and testing on the more extractive CNN/Dailymail (Tab. 2(b)). The S2R2-trained
model again outperforms all baselines across all metrics.

The results suggest that S2R2 learns a more fundamental and transferable robustness mechanism,
successfully avoiding overfitting to the stylistic properties of the source domain. This provides
strong evidence that the generalisation guarantee offered by our framework is a meaningful predictor
of real-world, out-of-distribution robustness.

5 CONCLUSION

This work addresses the overlooked issue of semantic asymmetry in LLM robustness, where pertur-
bations to key segments disproportionately harm model reliability. We propose Semantic Segment
Robustness Regularisation, which combines segment-level alignment with LoRA-based fine-tuning
and derives a PAC-Bayesian bound for certified generalisation. Through extensive experiments on
diverse summarisation tasks, we show that S2R2 achieves consistently lower empirical risk and sig-
nificantly tighter bounds than strong baselines. Looking ahead, the framework can be extended to
provide theoretical guarantees for other empirically driven optimisation methods.
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A THEOREM PROOF SUPPLEMENTS

A.1 SEGMENT-WISE ATTENTION SHIFT

A.1.1 CASE 1: CAUSAL SELF-ATTENTION IN DECODER-ONLY MODELS

Notation and Definitions. We analyse the self-attention mechanism within a decoder-only autore-
gressive model. Let the model operate on a sequence of length Tx. We define a segment as a set
of indices s ⊆ {1, . . . , Tx} within this sequence. The attention matrix is denoted by A ∈ RTx×Tx ,
where an element aij represents the attention score from the query at position i to the key at position
j. For causal attention, aij = 0 for j > i. The vector of attention scores directed at a specific
token j from all query positions is its column vector aTx,j ∈ RTx . We then define the segment-wise
attention, ζs, as the total attention from all query positions directed to the key positions within the
past segment s, averaged by its size |s|:

ζs =
1

|s|
∑
j∈s

Tx∑
i=1

aij =
1

|s|
∑
j∈s

⟨aTx,j ,1Tx⟩. (10)

This metric quantifies how much the model, across its entire generation process, focuses on the
specific past segment s.
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Derivation of the Sensitivity Bound. We introduce an additive perturbation ξj to each attention
vector aTx,j to analyse the stability of this metric. The bound on the change, |ζ ′s − ζs|, is derived as
follows:

|ζ ′s − ζs| =

∣∣∣∣∣∣ 1|s|
∑
j∈s

⟨aTx,j + ξj ,1Tx⟩ −
1

|s|
∑
j∈s

⟨aTx,j ,1Tx⟩

∣∣∣∣∣∣
=

1

|s|

∣∣∣∣∣∣
∑
j∈s

⟨ξj ,1Tx
⟩

∣∣∣∣∣∣ ≤ 1

|s|
∑
j∈s

|⟨ξj ,1Tx
⟩|

≤ 1

|s|
∑
j∈s

∥ξj∥2∥1Tx
∥2 =

√
Tx

|s|
∑
j∈s

∥ξj∥2

≤
√
Tx

|s|
√
|s|

∑
j∈s

∥ξj∥22

1/2

=

√
Tx√
|s|
∥ξs∥F . (11)

where ξs is the matrix formed by stacking the perturbation vectors {ξj}j∈s.

A.1.2 CASE 2: ENCODER SELF-ATTENTION

Notation and Definitions. We analyze the self-attention mechanism within a Transformer en-
coder that processes an input sequence of length Tx. We define a segment as a set of indices
s ⊆ {1, . . . , Tx} within this input sequence. The attention matrix is denoted by A ∈ RTx×Tx ,
where an element aij represents the attention score from the input token at query position i to the
input token at key position j. The vector of attention scores directed at a specific token j is its
column vector aTx,j ∈ RTx . The segment-wise attention, ζs, quantifies the total attention from all
input positions directed to the tokens within segment s, averaged by its size |s|:

ζs =
1

|s|
∑
j∈s

Tx∑
i=1

aij =
1

|s|
∑
j∈s

⟨aTx,j ,1Tx
⟩. (12)

Derivation of the Sensitivity Bound. Following an identical derivation path as in the causal self-
attention case, which involves applying the triangle inequality and the Cauchy-Schwarz inequality,
we arrive at the same bound on the change in ζs due to a perturbation ξs:

|ζ ′s − ζs| ≤
√
Tx√
|s|
∥ξs∥F . (13)

This bound measures how robust the model’s internal representation of segment s is to perturbations
in attention scores.

A.1.3 CASE 3: ENCODER-DECODER CROSS-ATTENTION

Notation and Definitions. We analyze the cross-attention mechanism between an encoder and
a decoder. Let the encoder produce a sequence of key/value pairs of length Tx, and the decoder
produce a sequence of queries of length Ty . We define a segment as a set of indices s ⊆ {1, . . . , Tx}
within the input (encoder) sequence. The attention matrix is denoted by A ∈ RTy×Tx , where an
element aij represents the attention score from the decoder query at position i to the encoder key at
position j. The vector of attention scores directed at a specific input token j is the corresponding
column vector aTx,j ∈ RTy . The segment-wise attention, ζs, quantifies the total attention from all
decoder positions directed to the keys within the input segment s, averaged by its size |s|:

ζs =
1

|s|
∑
j∈s

Ty∑
i=1

aij =
1

|s|
∑
j∈s

⟨aTx,j ,1Ty
⟩. (14)
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Derivation of the Sensitivity Bound. The derivation for the sensitivity bound follows a similar
path, with the key difference being the dimension of the query space, Ty .

|ζ ′s − ζs| =
1

|s|

∣∣∣∣∣∣
∑
j∈s

⟨ξj ,1Ty
⟩

∣∣∣∣∣∣ ≤ 1

|s|
∑
j∈s

|⟨ξj ,1Ty
⟩|

≤ 1

|s|
∑
j∈s

∥ξj∥2∥1Ty∥2 =

√
Ty

|s|
∑
j∈s

∥ξj∥2

≤
√
Ty

|s|
√
|s|

∑
j∈s

∥ξj∥22

1/2

=

√
Ty√
|s|
∥ξs∥F . (15)

Here, the bound is scaled by the length of the decoder (query) sequence, Ty .

A.2 DETAILED DERIVATIONS OF THE ATTENTION SHIFT BOUND

This section provides a first-principles derivation of the upper bound for the change in a single
attention weight, denoted as |a′ij |.

Step 1: The Exact Linearised Change We begin with the exact first-order Taylor expansion of
the change in an attention weight a′ij as a function of the pre-softmax score changes a′kj . This
relationship is given by:

a′ij = aij(1− aij)a
′
ij −

∑
k ̸=i

aijakja
′
kj . (16)

Step 2: Deriving a General Upper Bound via Triangle Inequality To derive a universally valid
upper bound without making assumptions on the signs of the terms, we take the absolute value of
Eq. 16 and apply the triangle inequality:

|a′ij | =

∣∣∣∣∣∣aij(1− aij)a
′
ij −

∑
k ̸=i

aijakja
′
kj

∣∣∣∣∣∣
≤

∣∣aij(1− aij)a
′
ij

∣∣+
∣∣∣∣∣∣
∑
k ̸=i

aijakja
′
kj

∣∣∣∣∣∣
≤ aij(1− aij)|a′ij |+

∑
k ̸=i

aijakj |a′kj |. (17)

This inequality is always true. The problem now reduces to finding a uniform upper bound for the
pre-softmax change components, |a′kj |.

Step 3: Bounding the Pre-Softmax Change Components The pre-softmax change vector a′
j is

induced by the LoRA update. Under the assumption of a small perturbation vector ε, we further
assume the model has converged under an idealised robust training paradigm. In this setting, the
learned structural difference between the robust model (containing A′,B′) and the standard model
(containing A,B) primarily serves to counteract the “expected” effect of noise. For a symmetric,
zero-mean noise distribution, this expected effect is zero, implying the structural differences are
themselves minimal. This allows us to posit that the dominant driver of the attention shift for a
“specific” noise instance ε is the direct perturbation itself. We can therefore simplify the expression
after considering the first-order effects, where the magnitude of the perturbation is represented by
its norm:

a′
j ≈

1√
dk

(||ε||2WQ,0 + ||ε||2B′A′T )(KT
j Vj). (18)

To establish a uniform bound for any component |a′kj | = |(a′
j)k|, we can use the L2-norm of a′

j :

|a′kj | ≤ ||a′
j ||2. (19)
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We proceed by bounding the norm ||a′
j ||2 using the submultiplicative property of the Frobenius

norm (||XY ||2 ≤ ||X||F ||Y ||2):

||a′
j ||2 ≤

1√
dk
||||ε||2WQ,0 + ||ε||2B′A′T ||F · ||KT

j Vj ||2. (20)

Let us define this upper bound as Uj for notational simplicity, such that |a′kj | ≤ Uj for all k.

Step 4: Substitution and Simplification We now substitute the uniform bound Uj back into the
inequality derived in Eq. 17:

|a′ij | ≤ aij(1− aij)Uj +
∑
k ̸=i

aijakjUj

= Uj

aij(1− aij) + aij
∑
k ̸=i

akj

 . (21)

Given that the attention weights are the output of a softmax function, we have
∑

k akj = 1, which
implies

∑
k ̸=i akj = 1− aij . Substituting this yields:

|a′ij | ≤ Uj (aij(1− aij) + aij(1− aij))

= 2aij(1− aij)Uj . (22)

Replacing Uj with its full expression from Eq. 20, we get:

|a′ij | ≤
2aij(1− aij)√

dk
||KT

j Vj ||2 · ||||ε||2WQ,0 + ||ε||2B′A′T ||F . (23)

Step 5: Isolating the Norms of Trainable Matrices The final step is to isolate the contribution
of the trainable LoRA matrices A′ and B′. We focus on the term ||||ε||2WQ,0 + ||ε||2B′A′T ||F
and apply the triangle inequality followed by the submultiplicative property of the Frobenius norm:

||||ε||2WQ,0 + ||ε||2B′A′T ||F ≤ ||||ε||2WQ,0||F + ||||ε||2B′A′T ||F
= ||ε||2 · ||WQ,0||F + ||ε||2 · ||B′A′T ||F
≤ ||ε||2 · ||WQ,0||F + ||ε||2 · ||B′||F ||A′||F . (24)

Substituting this result back into our main inequality gives the final bound:

|a′ij | ≤
2aij(1− aij)√

dk
||KT

j Vj ||2 (||ε||2 · ||WQ,0||F + ||ε||2 · ||B′||F ||A′||F ) . (25)

This can be expressed more concisely by defining input-dependent constants:

|a′ij | ≤ C
(1)
ij ||ε||2 + C

(2)
ij ||ε||2 · ||B

′||F ||A′||F , (26)

where

C
(1)
ij ≜

2aij(1− aij)√
dk

||KT
j Vj ||2 · ||WQ,0||F ,

C
(2)
ij ≜

2aij(1− aij)√
dk

||KT
j Vj ||2.

This final expression rigorously demonstrates that the change in a single attention weight is upper-
bounded by a term directly proportional to the product of the Frobenius norms of the trainable
matrices A′ and B′, providing a direct theoretical justification for regularisation strategies targeting
these norms.
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B EQUATION DISCUSSION

In this section, we will further discuss the equations shown in the main text.

For Eq. 1:

α = (H ·WQ,0︸ ︷︷ ︸
Original

+ (H + ε)B′A′⊤︸ ︷︷ ︸
Trainable

+ εWQ,0︸ ︷︷ ︸
Uncontrollable

)
K⊤ · V√

dk
,

The core challenge of robust fine-tuning lies in the conflict between the trainable and uncontrollable
components. The uncontrollable term can introduce high-variance and sharp peaks into the attention
distribution, causing it to fixate on irrelevant tokens. In essence, it must learn to smooth the erratic
distribution induced by the perturbation to restore a stable, task-focused reasoning process.

prevailing approaches to robustness often operate reactively, focusing on aligning the final output
of a perturbed input with that of a clean one, which forces the model to learn an internal correction
implicitly. However, our analysis of the underlying mechanism motivates a proactively approach.
We contend that a more principled method should not only regularise the final output (an effect-
driven “backward” view) but also directly constrain the internal mechanism by compressing the
attention shifts caused by input perturbations (a cause-driven “forward” view).

For Eq. 2:

LD
tr ≤ LDt

ex︸︷︷︸
Empirical

+

√
DKL(Q(θ)∥P (θ)) + ln( 2

√
n

δ )

2n− 1︸ ︷︷ ︸
Complexity

, δ ∈ (0, 1)

The framework merges the probabilistic guarantees of PAC learning with the methodologies of
Bayesian Inference, offering a data-dependent upper bound on the generalisation error through
the distance between the posterior and prior beliefs of a model. For LLMs, another classical
generalisation bound, the Vapnik-Chervonenkis Dimension, is not applicable due to their over-
parametrised structures. Applying this framework to LLMs is made feasible by LoRA, which makes
the data distribution’s transformation over the hypothesis space computationally tractable. we seek
to find an upper bound on the true risk LD

tr := Ez∼DLtr(hθ, z) in terms of the empirical risk
LDt
ex := Ez∼Dt

Lex(hθ, z), given a confidence level of 1− δ and available training samples z ∼ Dt.

C LLM SEGMENT

In the main body of our work, we employ a computationally efficient punctuation-based method
for segmenting model outputs. To validate this choice, we conducted an additional small-scale
experiment using a more complex, high-cost segmentation approach powered by a pre-trained T5
model. This alternative method leverages the T5 model to perform semantic segmentation and
alignment.

This experiment was conducted using the Bart-base model. The T5-based segmentation approach
proved to be exceptionally resource-intensive, with a computational cost approximately 60 times
higher than our standard punctuation-based method. Due to these practical constraints, we per-
formed this validation on a smaller subset, using 1/8th of the original CNN/Dailymail and XSum
datasets.

Fig. 4 below illustrates the learning trends of the inner-loop segment loss (the semantic shift loss
Lsem) for the first 600 fine-tuning steps (batch size: 32) on the CNN/DailyMail and XSum datasets,
respectively.

C.1 ANALYSIS OF RESULTS

From the comparison plots (Fig. 4), we can draw two key observations:

1. General Convergence: Both segmentation methods demonstrate a clear downward trend
in segment loss on both datasets. This indicates that both the high-cost T5-based method
and the efficient punctuation-based method are viable strategies, successfully guiding the
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(a) CNN/DailyMail Dataset
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(b) XSum Dataset

Figure 4: Comparison of segment loss learning trends for bart-base during the first 600 fine-
tuning steps. The two sub-figures show the results on (a) a subset of the CNN/DailyMail dataset
and (b) a subset of the XSum dataset. Both plots confirm the convergence of the segment loss for
different segmentation methods.

model to minimise the semantic discrepancy between outputs from clean and perturbed
inputs.

2. Training Dynamics and Sensitivity: A notable difference emerges in the dynamic char-
acteristics of the two loss curves. While both converge, the punctuation-based approach
yields a smoother loss curve, whereas the signal from the T5-based segmentation is more
volatile. We interpret this volatility not as training instability, but as an indicator of higher
sensitivity. This characteristic likely stems from two aspects: first, the inherent complexity
introduced by using a large pre-trained model as a segmentation tool; second, and more
importantly, the finer granularity of the segmentation itself. By identifying more detailed
semantic units, the T5-based method enables the loss function to more acutely capture the
maximum distance between misaligned fragments. This heightened sensitivity to subtle se-
mantic shifts—which are averaged out by the coarser punctuation-based method—directly
supports our core hypothesis. It suggests that a more precise semantic segmentation re-
veals nuanced discrepancies, providing a more challenging but potentially more accurate
optimisation signal, thus validating the importance of focusing on fine-grained semantic
integrity.

D PSEUDOCODE FOR S2R2 FRAMEWORK

Algorithm 1 Parameters Update Process of Semantic Segment Robustness Regularisation (S2R2)

Notation:
L(θ;x, y) denotes the supervised fine-tuning loss (e.g., Cross-Entropy). Lsem(θ;x, x

′) de-
notes the semantic segment discrepancy from Eq. 3. Latt(θ) denotes the LoRA-aware attention
shift regulariser from Eq. 7. P(x) denotes the set of allowed perturbations for a clean input x.
Require:

Pre-trained LLM f(·;W0, θ); Dataset X ; Initial LoRA parameters θ0. Hyperparameters
Learning rate αlr; Loss weights η, γ; Iterations T .

1: for t = 1, . . . ,K do
2: Sample (x, y) ∼ X .
3: Inner-loop: Find worst-case perturbation via maximising a joint objective.

x′
k ← argmax

x′∈P(x)

{L(θk−1;x
′, y) + η · Lsem(θk−1;x, x

′)}

4: Outer-loop: Update parameters via descending on the total S2R2 objective.
LS2R2(θk−1)← L(θk−1;x, y) + η · Lsem(θk−1;x, x

′
k) + γ · Latt(θk−1)

5: θk ← θk−1 − αlr · ∇θLS2R2(θk−1)
6: end for
7: return θK
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E LORA ASSUMPTION VALIDATION

To validate our Assumption 2 regarding LoRA parameters as stated in the main paper, this section
provides an analysis of the variance in their Frobenius norms over the course of a standard fine-
tuning process (i.e., without our proposed S2R2). Assumption 2 posits that the Frobenius norms of
the LoRA matrices, ||Al||F and ||Bl||F , are comparable.

Tab. 3 presents the aggregated Frobenius norm statistics for various models after fine-tuning on their
respective datasets. The metrics are defined as follows:

• A Fsum: The sum of the Frobenius norms of matrix A across all LoRA layers, i.e.,∑
l ||Al||F .

• B Fsum: The sum of the Frobenius norms of matrix B across all LoRA layers, i.e.,∑
l ||Bl||F .

• LoRA ∆Fsum: The sum of the absolute differences between the norms of matrices A
and B for each layer, i.e.,

∑
l |||Al||F − ||Bl||F |. This metric measures the symmetry or

balance in the magnitudes of the LoRA matrices at each layer.

• LoRA ProdFsum: The sum of the products of the norms of matrices A and B for each
layer, i.e.,

∑
l(||Al||F · ||Bl||F ).

Model Dataset Method A Fsum B Fsum LoRA ∆Fsum LoRA ProdFsum

Bart-Base
CNN/DM R 19.275 9.784 57.515 184.472

S 18.542 7.831 64.595 140.354

Xsum R 17.241 9.103 49.177 154.976
S 15.977 6.562 57.687 100.997

T5-base PubMed R 49.139 18.435 208.239 875.407
S 40.838 18.282 142.747 691.655

Mistral-7B PubMed R 324.543 164.305 160.591 444.693
S 303.052 151.051 152.001 359.279

Table 3: Frobenius norm statistics of LoRA parameters after standard fine-tuning (without S2R2).
Methods R and S correspond to the R3F and SMART baselines, respectively.

E.1 ANALYSIS OF NORM COMPARABILITY

By examining the values of A Fsum and B Fsum in Tab. 3, we can empirically assess the validity of
Assumption 2. The data reveals a consistent trend across all models, datasets, and baseline methods:
while the norms of matrices A and B are not identical, they consistently remain within the same
order of magnitude.

For instance, with the Bart-Base model, the ratio of A Fsum to B Fsum is approximately 2.0-
2.4. For the larger T5-base and Mistral-7B models, this ratio remains in a similar range,
approximately 2.0-2.7. In the context of neural network parameter magnitudes, a difference of a
factor of 2-3 is generally considered comparable, especially when contrasted with scenarios where
parameters might differ by several orders of magnitude. This observation indicates that neither
matrix’s norm grows disproportionately large while the other shrinks to near zero.

This empirical result aligns with the discussion in our main paper, which acknowledges the potential
for asymmetry in the roles of matrices A and B while maintaining that their magnitudes are often
observed to be comparable. Therefore, the data presented provides a solid empirical grounding for
Assumption 2, justifying its use in the simplification of the KL divergence term within our PAC-
Bayesian analysis.
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F LARGE LANGUAGE MODEL USAGE STATEMENT

During the preparation of this manuscript, we utilised an LLM, specifically OpenAI’s GPT-5, to as-
sist with language editing and polishing. The primary uses of the LLM were for improving grammar,
spelling, clarity, and overall readability.

We wish to clarify that all core scientific contributions, including the conceptualisation of ideas,
the design of the methodology, the execution of experiments, and the interpretation of results, are
entirely the work of the human authors. The LLM served exclusively as a writing aid and did
not contribute to any of the substantive research aspects of this paper. The authors have carefully
reviewed and edited all text generated or modified by the LLM and take full responsibility for the
final content and its scientific accuracy.
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