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Abstract

We derive a novel information-theoretic analysis of the generalization property
of meta-learning algorithms. Concretely, our analysis proposes a generic under-
standing of both the conventional learning-to-learn framework [1] and the modern
model-agnostic meta learning (MAML) algorithms [2]. Moreover, we provide a
data-dependent generalization bound for a stochastic variant of MAML, which is
non-vacuous for deep few-shot learning. As compared to previous bounds that
depend on the square norm of gradients, empirical validations on both simulated
data and a well-known few-shot benchmark show that the proposed bound is orders
of magnitude tighter in most situations.

1 Introduction

Learning a task with limited samples is crucial for real-world machine learning applications, where
proper prior knowledge is a key component for a successful transfer. Meta-Learning [3] or learning-
to-learn (LTL) aims to extract such information through previous training tasks, which has recently
re-emerged as an important topic.

Modern approaches based on MAML [2] have gained tremendous success by exploiting the capabili-
ties of deep neural networks [4–9]. However, many theoretical questions still remain elusive. For
instance, in the most popular methods for few-shot learning [10], the task-specific parameters and
meta-parameter are updated in support (also called meta-train) and query (also called meta-validation)
set, respectively. However, the majority of existing theoretical results such as [1, 11–14] do not pro-
vide a formal understanding of such popular practice. Moreover, modern meta-learning approaches
have incorporated over-parameterized deep neural networks, where conducting the theoretical analysis
becomes even more challenging.

In this paper, we introduce a novel theoretical understanding of the generalization property of meta-
learning through an information-theoretical perspective [15]. Compared with previous theoretical
results, the highlights of our contributions are as follows:

Unified Approach We analyze two popular scenarios. 1) The conventional LTL [11], where the
meta-parameters and task-specific parameters are updated within the same data set (referred as joint
training). 2) The modern MAML-based approaches where the meta-parameters and task specific
parameters are updated on distinct data sets (referred as alternate training), and for which the existing
theoretical analysis is rare.

Flexible Bounds The proposed meta-generalization error bounds are highly flexible: they are
algorithm-dependant, data-dependant, and are valid for non-convex loss functions. 1) Specifically, the
generalization error bound for joint-training (Theorem 5.1) is controlled by the mutual information
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between the output of the randomized algorithm and the whole data set. It can cover the typical
results of [12, 1], which can be interpreted with an environment-level and a task-level error. In
addition, it reveals the benefit of meta learning compared to single task learning. 2) Moreover, the
generalization error bound for alternate-training (Theorem 5.2) is characterized by the conditional
mutual information between the output of the randomized algorithm and the meta-validation dataset,
conditioned on the meta-train dataset. Intuitively, when the outputs of a meta learning algorithm w.r.t.
different input data-sets are similar (i.e. the algorithm is stable w.r.t. the data), the meta-generalization
error bound will be small. This theoretical result is coherent with the recently-proposed Chaser loss
in Bayes MAML [16].

Non-vacuous bounds for gradient-based few-shot learning Conventional gradient-based meta-
learning theories heavily rely on the assumption of a Lipschitz loss. However, [17] pointed out
that this Lipschitz constant for simple neural networks can be extremely large. Thus, conventional
gradient-based upper bounds are often vacuous for deep few-shot scenarios. In contrast, we propose a
tighter data-depend bound that depends on the expected gradient-incoherence rather than the gradient
norm (the approximation of the Lipschitz constant) [18] for the Meta-SGLD algorithm, which is
a stochastic variant of MAML that uses the Stochastic Gradient Langevin Dynamics (SGLD) [19].
We finally validate our theory in few-shot learning scenarios and obtain orders of magnitude tighter
bounds in most situations, compared to conventional gradient-based bounds.

2 Related Work

Conventional LTL The early theoretic framework, introduced by Baxter [11], proposed the notion
of task environment and derived uniform convergence bounds based on the capacity and covering
numbers of function classes. Pentina and Lampert [12] proposed PAC-Bayes risk bounds that depend
on environment-level and task-level errors. Amit and Meir [1] extended this approach and provided a
tighter risk bound. However, their theory applies to stochastic neural networks and used factorized
Gaussians to approximate the parameters’ distributions, which is computationally expensive to use
in practice. Jose and Simeone [20] first analyzed meta-learning through information-theoretic tools,
while they applied the assumptions that hide some probabilistic relations and obtained theoretical
results substantially different from those presented here. Limited to the space, a more detailed
discussion is provided in Appendix F.

Gradient based meta-learning In recent years, gradient-based meta-learning such as MAML [2]
have drawn increasing attention since they are model-agnostic and are easily deployed for complex
tasks like reinforcement learning, computer vision, and federate learning [21–24]. Then, Reptile
[25] provided a general first-order gradient calculation method. Other methods combine MAML and
Bayesian methods through structured variational inference [26] and empirical Bayes [27]. In Bayes
MAML[16], they propose a fast Bayesian adaption method using Stein variational gradient descent
and conceived a Chaser loss which coincides with the proposed Theorem 5.2.

On the theoretical side, Denevi et al. [13] analyzed the average excess risk for Stochastic Gradient
Descent (SGD) with Convex and Lipschitz loss. Balcan et al. [14] studied meta-learning through the
lens of online convex optimization, and has provided a guarantee with a regret bound. Khodak et al.
[28] extended to more general settings where the task-environment changes dynamically or the tasks
share a certain geometric structure. Other guarantees for online meta-learning scenarios are provided
by Denevi et al. [29] and Finn et al. [30]. Finally, [31, 32] also provided a convergence analysis for
MAML-based methods.

On meta train-validation split Although the support query approaches are rather difficult to analyze,
some interesting works have appeared on the simplified linear models. Denevi et al. [33] first studied
train-validation split for linear centroid meta-learning. They proved a generalization bound and
concluded that there exists a trade-off for train-validation split, which is consistent with Theorem
5.2 in our paper. Bai et al. [34] applied the random matrix theoretical analysis for a disentangled
comparison between joint training and alternate training under the realizable assumption in linear
centroid meta-learning. By calculating the closed-form concentration rates over the mean square error
of parameter estimation for the two settings, they obtained a better rate constant with joint training.
However, we aim to provide a generic analysis and do not make such a realizable assumption. We
believe an additional excess risk analysis with more assumptions is needed for a similar comparison,
which is out of the scope of this article. Moreover, Saunshi et al. [35] analyzed the train-validation
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split for linear representation learning. They showed that the train-validation split encourages learning
a low-rank representation. More detailed discussion and comparison can be found in Appendix F.

Information-theoretic learning for single tasks We use here an information-theoretic approach,
introduced by Russo and Zou [36] and Xu and Raginsky [15], for characterizing single-task learning.
Characterizing the generalization error of a learning algorithm in terms of the mutual information be-
tween its input and output brings the significant advantage of the ability to incorporate the dependence
on the data distribution, the hypothesis space, and the learning algorithm. This is in sharp contrast
with conventional VC-dimension bounds and uniform stability bounds. Tighter mutual information
bounds between the parameters and a single data point are explored in [37]. Pensia et al. [38] applied
the mutual-information framework to a broad class of iterative algorithms, including SGLD and
stochastic gradient Hamiltonian Monte Carlo (SGHMC). Negrea et al. [39] provided data-dependent
estimates of information-theoretic bounds for SGLD. For a recent comprehensive study, see Steinke
and Zakynthinou [40].

3 Preliminaries

Basic Notations We use upper case letters, e.g. X,Y , to denote random variables and corre-
sponding calligraphic letters X ,Y to denote the sets which they are defined on. We denote as PX ,
the marginal probability distribution of X . Given the Markov chain X → Y , PY |X denotes the
conditional distribution or the Markov transition kernel. X ⊥⊥ Y means X and Y are independent.

And let us recall some basic definitions:
Definition 3.1. Let ψX(λ)

def
= logE[eλ(X−E[X])] denote the cumulant generating function(CGF) of

random variable X . Then X is said to be σ-subgaussian if we have

ψX(λ) ≤ λ2σ2

2
,∀λ ∈ R .

Definition 3.2. LetX , Y andZ be arbitrary random variables, and letDKL denote the KL divergence.
The mutual information between X and Y is defined as:

I(X;Y )
def
= DKL(PX,Y ||PXPY ) .

The disintegrated mutual information between X and Y given Z is defined as:

IZ(X;Y )
def
= DKL(PX,Y |Z ||PX|ZPY |Z) .

The corresponding conditional mutual information is defined as:

I(X;Y |Z)
def
= EZ [IZ(X;Y )] .

Information theoretic bound for single task learning We consider an unknown distribution µ
on an instance space Z = X × Y , and a set of independent samples S = {Zi}mi=1 drawn from µ:
Zi ∼ µ and S ∼ µm. Given a parametrized hypothesis spaceW and a loss function ` :W×Z → R,
the true risk and the empirical risk of w ∈ W are respectively defined as Rµ(w)

def
= EZ∼µ`(w,Z)

and RS(w)
def
= (1/m)

∑m
i=1 `(w,Zi).

Following the setting of information-theoretic learning [36, 15, 37], a learning algorithm A is a
randomized mapping that takes a dataset S as input and outputs a hypothesis W according to
a conditional distribution PW |S , i.e., W = A(S) ∼ PW |S .4 The (mean) generalization error

gen(µ,A)
def
= EW,S [Rµ(W )−RS(W )] of an algorithm A is then bounded according to:

Theorem 3.1. (Xu and Raginsky [15]) Suppose that for each w ∈ W , the prediction loss `(w,Z) is
σ-subgaussian with respect to Z ∼ µ. Then for any randomized learner A characterized by PW |S ,
for S ∼ µm, we have

|gen(µ,A)| ≤
√

2σ2

m
I(W ;S) .

I(W ;S) is the mutual information between the input and output of algorithm A (see definition in
Definition A.2). Theorem 3.1 reveals that the less the output hypothesis W depends on the dataset S,
the smaller the generalization error of the learning algorithm will be.

4Note that the conditional distribution PW |S is different from the posterior distribution in Bayes learning.
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4 Problem Setup

Following [11], we assume that all tasks originate from a common environment τ , which is a
probability measure on the set of probability measures on Z = X ×Y . The draw of µ ∼ τ represents
encountering a learning task µ in the environment τ . To run a learning algorithm for a task, we need
to draw a set of data samples from µ. In meta learning, there are multiple tasks, for simplicity, we
assume that each task has the same sample size m. Based on Maurer et al. [41], the environment τ
induces a mixture distribution µm,τ on Zm such that µm,τ (A) = Eµ∼τ [µm(A)],∀A ⊆ Zm. Thus
the m data points in S that are independently sampled from a random task µ encountered in τ is
denoted as S ∼ µm,τ .

Consequently, for n train tasks that are independently sampled from the environment τ , each train
data set is denoted as Si ∼ µm,τ for i ∈ [n]. Analogously, for k test tasks data sets, we denote
Ste
i ∼ µm,τ for each i ∈ [k]. We further denote the (full) training set as S1:n = (S1, ..., Sn) and the

(full) testing set as Ste
1:k = (Ste

1 , ..., S
te
k ).

Meta Learner & Base Learner

Since different tasks are assumed to be an i.i.d. sampling from τ , they should share some common
information. We use a meta parameter U ∈ U to represent this shared knowledge. We also denote by
W1:n = (W1, . . . ,Wn) the task specific parameters, where each Wi ∈ W,∀i ∈ [n]. By exploring
the relations between U and W , we can design different meta learning algorithms. For example,
[12, 1] treated U as the hyper-parameters of the base learner that produces W . In gradient based
meta-learning such as MAML [2], U was chosen to be an initialization of W (hence, U =W) for a
gradient-descent base learner.

We define the meta learnerAmeta as an algorithm that takes the data sets S1:n as input, and then outputs
a random meta-parameter U = Ameta(S1:n) ∼ PU |S1:n

, which is a distribution that characterizes
Ameta. When learning a new task, the base learner Abase uses a new data set S ∼ µm,τ and the
estimated meta-parameter U to output a stochastic predictor W = Abase(U, S) ∼ PW |U,S .5

To evaluate the quality of the meta information U for learning a new task, we define the true meta
risk, given the base learner Abase, as

Rτ (U)
def
= ES∼µm,τEW∼PW |S,U [Rµ(W )] .

Joint Training & Alternate Training

Since τ and µ are unknown, we can only estimate U and W from the observed data. Generally, there
are two different types of methods for evaluating meta and task parameters.

Φ0 Φ1

ξ1

B1
1:n

Φt

Bt
1:n

ξt

ΦT

BT
1:n

ξT

S1:n

t ∈ [1, T ]

(a) Joint Training

U0 U1

ξ1

WI1

Btr
I1

Bva
I1

U t

WIt

Btr
It

Bva
It

ξt

UT

WIT

Btr
IT

Bva
IT

ξT

Str
1:n Sva

1:n

t ∈ [1, T ]

(b) Alternate Training

Figure 1: Parameter updating strategy through noisy iterative approach.

5Although the base learner is the same, PWi|U,Si is different for each task i due to the different data set Si.
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For Joint Training [1, 12], the whole dataset S1:n is used to jointly evaluate all the parameters
(U,W1:n) in parallel. A similar training protocol is illustrated in Fig. 1a. Then the corresponding
empirical meta risk w.r.t. U is defined as:

RS1:n
(U)

def
= 1

n

∑n
i=1 EWi∼PWi|Si,U [RSi(Wi)].

For Alternate training, used in modern deep meta-learning algorithms [2], Si is randomly split
into two smaller datasets: a meta-train set Str

i with |Str
i | = mtr and a meta-validation set Sva

i with
|Sva
i | = mva examples for each i ∈ [n]. In few-shot learning, Str

1:n and Sva
1:n are denoted as the support

set and query set. Additionally, we have m = mtr +mva and Str
i ⊥⊥ Sva

i . An example of the training
protocol is illustrated in Fig. 1b, where (U,W1:n) are alternately updated through Sva

1:n and Str
1:n,

respectively. The corresponding empirical meta risk w.r.t U is defined as:

R̃S1:n
(U)

def
= 1

n

∑n
i=1 EWi∼PWi|Str

i
,U

[RSva
i

(Wi)]

Then, the meta generalization error within these two modes w.r.t. Ameta and Abase are respectively
defined as

genjoi
meta(τ,Ameta,Abase)

def
= EU,S1:n

[Rτ (U)−RS1:n
(U)],

genalt
meta(τ,Ameta,Abase)

def
= EU,S1:n [Rτ (U)− R̃S1:n(U)] .

5 Information-Theoretic Generalization Bounds

We provide here novel generalization bounds for joint and alternate training, which are respectively
characterized by mutual information (MI) and conditional mutual information (CMI). These theo-
retical results are valid for any randomized algorithm Ameta and Abase. But for some deterministic
algorithms producing deterministic predictors, the mutual information bound can be vacuous.

5.1 Mutual Information (MI) Bound in Joint Training

Theorem 5.1. Suppose all tasks use the same loss `(Z,w), which is σ-subgaussian for each w ∈ W ,
where Z ∼ µ, µ ∼ τ . Then, the meta generalization error for joint training is upper bounded by

|genjoi
meta(τ,Ameta,Abase)| ≤

√
2σ2

nm
I(U,W1:n;S1:n) .

The proof of Theorem 5.1 is presented in Appendix B.1. Moreover, according to the chain rule of
mutual-information, the error bound in Theorem 5.1 can be further decomposed as√

2σ2

mn (I(U ;S1:n) +
∑n
i=1 I(Wi;Si|U)) ≤

√
2σ2

mn I(U ;S1:n) +
√

2σ2

mn

∑n
i=1 I(Wi;Si|U) .

Discussions The first and second terms reflect, respectively, the environmental and task-level uncer-
tainty. 1) In the limit of a very large number of tasks (n→∞) and a finite number m of samples per
task, the first term converges to zero, while the second term remains non-zero. This is consistent with
Theorem 1 of Bai et al. [34], where they proved that joint training has a bias in general. However,
this non-zero term will be smaller than the mutual information of single-task learning. Indeed, let
I(W ;S) denotes the mutual information of single-task learning, we have, as shown in Appendix B.2,
that I(W ;S) ≥ I(W ;S|U) ≈ 1

n

∑n
i=1 I(Wi;Si|U), which illustrates the benefits of learning the

meta-parameter U . 2) When we have a constant number n of tasks, while the number m of samples
per task goes to infinity, the whole bound will converge to zero. Note that the meta generalization error
bound reflects how the meta-information assists a new task to learn. If the new task has a sufficiently
large number m of samples, the generalization error will be small, and the meta-information U does
not significantly help learning the new task.

Relation with previous work Since mutual information implicitly depends on the unknown distribu-
tion τ , it is hard to estimate and minimize [42]. By introducing an arbitrary distribution-free prior
Q on U ×Wn, we can upper bound I(U,W1:n;S1:n) ≤ I(U,W1:n;S1:n) + DKL(PU,W1:n ||Q) =
ES1:nDKL(PU,W1:n|S1:n

||Q) (see Lemma A.1). If we set a joint prior Q = P ×
∏n
i=1 P , then the

bound of Theorem 5.1 becomes similar to the one proposed by [1], where P is the hyper-prior and P
is the task-prior in their settings. Finally, note that the bound of Theorem 5.1 is tighter than the one
proposed by [12], where the KL divergence is outside of the square root function.
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5.2 Conditional Mutual Information (CMI) Bound for Alternate Training

Theorem 5.2. Assume that all the tasks use the same loss function `(Z,w), which is σ-subgaussian
for each w ∈ W , where Z ∼ µ, µ ∼ τ .Then we have

|genalt
meta(τ,Ameta,Abase)| ≤ EStr

1:n

√
2σ2IS

tr
1:n(U,W1:n;Sva

1:n)

nmva
≤

√
2σ2I(U,W1:n;Sva1:n|Str1:n)

nmva
.

See the proof in Appendix B.3. The second inequality is obtained with the Jensen’s inequality for
the concave square root function and Lemma A.3. Additionally, we can apply the chain rule on the
conditional mutual information, to obtain the following decomposition:

I(U,W1:n;Sva
1:n|Str

1:n) = I(U ;Sva
1:n|Str

1:n) +
∑n
i=1 I(Wi;S

va
i |U, Stri )

= ES1:nDKL(PU |S1:n
||PU |Str

1:n
) + EU,S1:n

∑n
i=1DKL(PWi|Si,U ||PWi|Str

i ,U
)).

Discussions The aforementioned decomposition reveals the following intuition: Suppose the outputs
of the base learner and meta learner w.r.t. different input data-sets are similar (i.e. the learning
algorithms are stable w.r.t. the data). In that case, the meta-generalization error bound will be
small. Moreover, since the bound of Theorem 5.2 is data-dependent w.r.t. Str1:n, we can obtain
tighter theoretical results through these data-dependent estimates. This is to be contrasted with the
mutual information bound of Theorem 5.1, which depends on the unknown distribution and can thus
be inflated through the variational form. In Sec 6, we analyze noisy iterative algorithms in deep
few-shot learning to obtain tighter estimates. Besides, there exists an inherent trade-off in choosing
mva. If mva is large, then the denominator in the bound is large. However, since mva = m −mtr,
DKL(PU |S1:n

||PU |Str
1:n

) and DKL(PWi|Si,U ||PWi|Str
i ,U

) will also become large since smaller mtr will
lead to less reliable outputs.

6 Generalization Bounds for Noisy Iterative Algorithms

We will now exploit Theorem 5.1 and 5.2. to analyze concrete algorithms. Specifically, in noisy
iterative algorithms, all the iterations are related through a Markov structure, which can naturally
apply the information chain rule. Our theoretical results focus on one popular instance: SGLD [19],
which is a variant of Stochastic Gradient Descent (SGD) with the addition of a scaled isotropic
Gaussian noise to each gradient step. The injected noise allows SGLD to escape the local minima
and asymptotically converge to global minimum for sufficiently regular non-convex objectives [43].
It is worth mentioning that other types of iterative algorithms such as SG-HMC can be also analyzed
within our theoretical framework, which is left as the future work.

Since the algorithms to be analyzed require sampling mini-batches of sample at each iteration, we
make the following independence assumption:

Assumption 1 The sampling strategy is independent of the parameters and the previous samplings.

6.1 Bound for Joint Training with Bounded Gradient

In joint training, the meta and base parameters are updated simultaneously. We denote Φ
def
=

(U,W1:n) ∈ U × Wn, U ⊆ Rk,W ⊆ Rd. The training strategy is illustrated in Fig 1a. Con-
cretely, the learning algorithm executes T iterations. We further denote Φt as the updated parameter
at iteration t ∈ [T ], with Φ0 being a random initialization.

At iteration t ∈ [T ] and for task i ∈ [n], we randomly sample a batch Bti ⊆ Si of size b and
an isotropic Gaussian noise ξt ∼ N(0, σ2

t I(nd+k)). Let ξt = (ξt0, . . . , ξ
t
n), where ξt0 ∈ U , and

ξti ∈ W, ∀i ∈ [n]. Then the updating rule at iteration t can be expressed as

Φt = Φt−1 − ηtG(Φt−1, Bt1:n) + ξt ,

where G is the gradient of the empirical meta-risk on Bt1:n w.r.t. all the parameters Φ, and where ηt
is the learning rate. In addition, we assume bounded gradients:

Assumption 2 The gradients are bounded, i.e., sup
Φ∈R(nd+k),s∈Zbn

||G(Φ, s)||2 ≤ L, with L > 0.
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Then the mutual information in Theorem 5.1 can be upper-bounded as follows.
Theorem 6.1. Based on Theorem 5.1, for the SGLD algorithm that satisfies Assumptions 1 & 2, the
mutual information for joint training satisfies

I(Φ;S1:n) ≤
∑T
t=1

nd+k
2 log(1 +

η2
tL

2

(nd+k)σ2
t
) .

Specifically, if σt =
√
ηt, and ηt = c

t for c > 0, we have:

|genjoi
meta(τ,Ameta,Abase)| ≤ σL√

nm

√
c log T + c .

See the proof in Appendix B.4. It is worth mentioning that Amit and Meir [1] used U ⊆ R2d,W ⊆ Rd.
They adopt a similar variational form of our mutual information bound, where they use a factorized
Gaussian Qθ = N (θ, I2d) to approximate PU |S1:n

and Qφi = N (µi, σ
2
i ) to approximate PWi|U,Si .

They set PU = N (0, I2d), and PWi|U = N (µP , σ
2
P ), where (µP , σ

2
P ) ∼ Qθ. Then they optimize

the meta empirical risk plus the bound w.r.t. the parameters θ ∈ R2d and (µi, σ
2
i ) ∈ R2d by SGD.

Our method is different since we do not use parametric approximations. Instead, we simulate the
joint distribution with SGLD.

6.2 Bound for Alternate Training with Gradients Incoherence

The updating strategy for alternate training is illustrated in Fig. 1b. We also use SGLD for the meta
learnerAmeta and base learnerAbase, and denote this algorithm by Meta-SGLD. To build a connection
with MAML, we consider the scenarios with U =W ⊆ Rd, where meta-parameter U is a common
initialization for the task parameters W1:n to achieve a fast adaptation.

The Meta-SGLD algorithm has a nested loop structure: the outer loop includes T iterations of SGLD
for updating the meta-parameters U ; at each outer loop iteration t ∈ [T ], there exists several parallel
inner loops, where each loop is a K-iteration SGLD to update different task-specific parameters Wi.

Outer Loop Updates

It is computationally expensive to learn meta information from all the tasks when the number n of
tasks is large—a common situation in few-shot learning. Thus, for each t ∈ [T ], we sample a mini-
batch of tasks that are indexed by It ⊆ [n]. Then the corresponding meta-train and meta-validation
data sets are denoted as Btr

It
and Bva

It
, respectively. The task specific parameters are denoted as

WIt = {Wi : i ∈ It}. In addition, an isotropic Gaussian noise ξt ∼ N (0, σ2
t Id) is also injected

during the update. Then, the update rule w.r.t. U is expressed as:

U t = U t−1 − ηt∇R̃Bva
It

(U t−1) + ξt ,

where R̃Bva
It

(U t−1) = 1
|It|
∑
i∈It EWi∼PWi|Btr

i,t
,Ut−1 [RBva

i,t
(Wi)] is the empirical meta risk evaluated

on Bva
It

, and ηt is the meta learning rate at t. In addition, we denote the gradient incoherence of meta

parameter U at iteration t as εut
def
= ∇R̃BIt (U

t−1)−∇R̃Btr
It

(U t−1).

Inner Loop Updates

Given the outer loop iteration t, for each inner iteration k ∈ [K], we randomly sample a batch of data
for task i ∈ It from Btr

i,t (the i-th task in Btr
It

), which is denoted as Btr
i,t,k. Then the update rules for

the task parameters can be formulated as:

W 0
i,t = U t−1 ,W k

i,t = W k−1
i,t − βt,k∇RBtr

i,t,k
(W k−1

i,t ) + ζt,k ,

where βt,k is the learning rate for task parameter, ζt,k ∼ N (0, σ2
t,kId) is the injected isotropic

Gaussian noise (not shown in the figure) at inner iteration k. Analogously, we can compute
the gradient incoherence w.r.t. the task parameters W k

i,t. We first sample a batch Bi,t,k from
Bva
i,t

⋃
Btr
i,t (the union of training and validation task batches). Then the gradient incoherence

of task specific parameters at the k-th inner update, task i, and outer iteration t is defined as:
εwt,i,k

def
= ∇RBi,t,k(W k−1

i,t )−∇RBtr
i,t,k

(W k−1
i,t ).

Relation to MAML Without the noise injection, the whole updating protocol described above
is exactly MAML. Specifically, if we set K = 1, the empirical meta loss can be expressed as:
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R̃Bva
It

(U t−1) = 1
|It|
∑
i∈It RBva

i,t
(WK

i,t) = 1
|It|
∑
i∈It RBva

i,t
(U t−1 − βt,1∇RBtr

i,t,1
(U t−1)) , and

1
|It|
∑
i∈It ∇RBva

i,t
(WK

i,t) is the first-order MAML gradient.

Based on the nested loop structure and the independent sampling strategy, we have the following
data-dependent generalization-error bound for Meta-SGLD.

Theorem 6.2. Based on Theorem 5.2, for the Meta-SGLD that satisfies Assumption 1, if we set
σt =

√
2ηt/γt, σt,k =

√
2βt,k/γt,k, where γt and γt,k are the inverse temperatures. The meta

generalization error for alternate training satisfies

|genalt
meta(τ, SGLD, SGLD)| ≤

√
2σ2I(U,W1:n;Sva1:n|Str1:n)

nmva
≤ σ
√
nmva

√
εU + εW ,

where

εU =

T∑
t=1

EBvaIt ,BtrIt ,WIt ,U
t−1

ηtγt‖εut ‖22
2

, εW =

T∑
t=1

|It|∑
i=1

K∑
k=1

EBvai,t,k,Btri,t,k,Wk−1
i,t

βt,kγt,k‖εwt,i,k‖22
2

.

The proof is provided in Appendix B.5. The bound of Theorem 6.2 consists of two parts: εU , which
reflects the generalization error bound of the meta learner, and εW , which reflects the generalization
bound of the base learner. Moreover, εU and εW are characterized by the accumulated gradient
incoherence and predefined constants such as learning rates, inverse temperatures, and number of
iterations. Compared with previous works such as [13, 30], Theorem 6.2 exploits the gradient differ-
ence between two batches rather than the Lipschitz constant of the loss function (and, consequently,
its tighter estimation, the gradient norm of the empirical meta-risk and the individual task risks).
This can give a more realistic generalization error bound since the Lipschitz constant for neural
networks is often very large [17]. In contrast, our empirical results reveal (see Sec 7) that the gradient
incoherence can be much smaller than the gradient norm on average. Note that we have chosen
fixed and large inverse temperatures to ensure small injected noise variance from the beginning of
training. In addition, the step sizes also affect the bound w.r.t. training iteration numbers T,K. For
example, assuming that the gradient incoherence is bounded, if we choose ηt = 1

t , βt,k = 1
tk , the

meta generalization error bound is in O(
√
c1 log T + c2 logK), where c1, c2 are some constants. In

contrast, when learning rates are fixed, the bound is in O(
√
c1T + c2TK).

7 Empirical Validations

We validate Theorem 6.2 on both synthetic and real data. The numerical results demonstrate that,
in most situations, the gradient incoherence based bound is orders of magnitude tighter than the
conventional meta learning bounds with the Lipschitz assumption, which is estimated with gradient
norms.6

7.1 Synthetic Data

We consider a simple example of 2D mean estimation to illustrate the meta-learning setup. We
assume that the environment τ is a truncated 2D Gaussian distribution N ((−4,−4)T , 5I2). A new
task is also defined as a 2D GaussianN (µ, 0.1I2) with µ ∼ τ . To generate few-shot tasks, we sample
n = 20000 tasks from the environment with µi ∼ τ,∀i ∈ [n]. After sampling µi for each task, we
further sample m = 16 data points from N (µi, 0.1I2). At each iteration t, we randomly choose a
subset of 5 tasks (|It| = 5) from the whole data set. We evaluate on three different few-shot settings
with mva = {1, 8, 15} and the corresponding train size mtr = {15, 8, 1}. The detailed experiment
setting is in Appendix E.1.

The estimated meta-generalization upper bounds are shown in Fig. 2. For a better understanding
of the generalization behaviour w.r.t. the meta learner and base learner, we separately show the
estimated bounds of σ

√
εU
nmva

(Fig. 2(a)) and σ
√

εW
nmva

(Fig. 2(b)). The expectation terms within the
bound are estimated via Monte-Carlo sampling. To compare the conventional Lipschiz bound with

6Code is available at: https://github.com/livreQ/meta-sgld.
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ours, we approximately calculated a tighter estimation of the bound with the expected gradient norm
at each iteration [18] instead of using a fixed Lipschitz constant, which is extremely vacuous in deep
learning. The other components remain the same as the gradient incoherence bound.

The results on the synthetic data set reveal a substantial theoretical benefit compared with the
conventional Lipschitz bound. Specifically, the magnitude of the bound is improved by a factor of
10 to 100. Interestingly, the gap between the gradient-norm and the gradient-incoherence bound is
smallest when mva = 15. These theoretical results reveal that the generalization bound is unavoidably
large if the base learner is trained on extremely few data (e.g., a 1-shot scenario). Since too few train
data (small mtr) induces high randomness and large instability in each training task.

To further validate Theorem 6.2, We calculated the actual generalization gap by evaluating the
expected difference between the train loss and test loss for the above mentioned tree settings. The
actual generalization gap of mtr = 1 is also much larger compared to the other two setting, which
also demonstrated the instability for extreme few shot learning (See Table 1, 2 and 3 in Appendix
D.1).
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Figure 2: Synthetic data: Estimation of the generalization-error bound during the training (T = 200).
Left Estimated error bound w.r.t. meta-learner. Right The estimated error bound w.r.t. the base-
learner. The curves in Blue solid line and Orange dashed line represent the estimated bound through
gradient-norm (G_Norm) and gradient-incoherence (G_Inco) in different few-shot settings.

7.2 Few-Shot Benchmark

To evaluate the proposed bound in modern deep few-shot learning scenarios, we have tested the
Meta-SGLD algorithm on the Omniglot dataset [44]. The Omniglot dataset contains 1623 characters
for 50 different alphabets, and each character is present in 20 instances. We followed the experimental
protocol of [45, 2], which aims to learn a N-way classification task for 1-shot or 5-shot learning. In
our experiment, we conducted a 5-way classification learning. A train task consists of five classes
(characters) randomly chosen from the first 1200 characters, each class has m = 16 samples selected
from the 20 instances. Similarly, a test task contains five classes randomly sampled from the rest 423
characters. Therefore, the meta train set has n =

(
1200

5

)
tasks. At each epoch, we have trained the

model with |It| = 32 tasks. Analogous to the simulated data, we have conducted our experiment with
mtr = {15, 8, 1} and mva = {1, 8, 15} and separately visualized the two components of the bound.
The detailed experimental setting is provided in Appendix E.2.

The estimated bounds are shown in Fig. 3. Analogous to the results on synthetic data, the estimated
error bound trough gradient-incoherence is tighter than the gradient-norm based bound when mtr =
8, 15. In particular, the gradient-incoherence bound w.r.t. U is much tighter than the gradient-norm
bound when mtr = 15, which illustrates the benefits of the proposed theory. Simultaneously, the
gradient-incoherence bound is similar to the gradient-norm bound when mtr = 1, illustrating a
theoretical limitation of learning with very few meta-train samples. Moreover, we observe that the
optimal values for mva depends on the environment since the tightest bound for Omniglot is achieved
with mva = 8, which is different from what we have found for the synthetic data.

9



0 500 1000 1500 2000
Training epoch

10
5

10
4

10
3

G_norm
m_tr=8
m_tr=15
m_tr=1

G_inco
m_tr=8
m_tr=15
m_tr=1

(a) Bound of U

500 1000 1500 2000
Training epoch

10
1

1.3 × 10
0

G_norm
m_tr=8
m_tr=15
m_tr=1

G_inco
m_tr=8
m_tr=15
m_tr=1

(b) Bound of W

Figure 3: Omniglot: Estimation of the generalization-error bound during the training (T = 2000). The
curves in Blue solid line and Orange dashed line represent the estimated bound through gradient-norm
(G_Norm) and gradient-incoherence (G_Inco) in different few-shot settings

Finally, we observed that the component of the generalization error bound that originates from
task-specific parameters is numerically larger than the one the originates from the meta parameter, has
compared to the results for simulated data. This perhaps illustrates an inherent difficulty in learning
few-shot tasks with high-dimensional and complex data sets, where estimating the generalization error
bound is apparently more challenging. Additional experimental results for test accuracy comparison
with MAML on the aforementioned tree settings are presented in Appendix D.2 Table 4. Comparison
of bound values with the observed generalization error is also included (See Table 5,6 and 7). We
believe the less evident improvement with gradient incoherence bound compared to Synthetic data
can be ascribed to the utilization of Batch Normalization.

8 Conclusion

We derived a novel information-theoretic analysis of the generalization property of meta-learning
and provided algorithm-dependent generalization error bounds for both joint training and alternate
training. Compared to previous gradient-based bounds that depend on the square norm of gradients,
empirical validations on both simulated data and a few-shot benchmark show that the proposed bound
is orders of magnitude tighter in most situations. Finally, we think that these theoretical results can
inspire new algorithms through a deeper exploration of the relation between meta-parameters and
task-parameters.

Acknowledgments and Disclosure of Funding

Work partly supported by NSERC Discovery Grant RGPIN-2016-05942 and the China Scholar-
ship Council. We also thank SSQ Assurances and NSERC for their financial support through the
Collaborative Research and Development Grant CRDPJ 529584 - 18.

References
[1] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory.

In International Conference on Machine Learning, pages 205–214, 2018.

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

[3] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pages 3–17. Springer, 1998.

[4] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

10



[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[6] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. arXiv preprint
arXiv:1711.04043, 2017.

[7] Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference
on Learning Representations, 2018.

[8] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
pages 4080–4090, 2017.

[9] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1199–1208, 2018.

[10] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Interna-
tional Conference on Learning Representations, 2016.

[11] Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research,
12:149–198, 2000.

[12] Anastasia Pentina and Christoph Lampert. A pac-bayesian bound for lifelong learning. In
International Conference on Machine Learning, pages 991–999, 2014.

[13] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. In International Conference on Machine
Learning, pages 1566–1575. PMLR, 2019.

[14] Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In International Conference on Machine Learning, pages 424–433. PMLR,
2019.

[15] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. In Advances in Neural Information Processing Systems, pages 2524–2533,
2017.

[16] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
pages 7332–7342, 2018.

[17] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 3839–3848, 2018.

[18] Jian Li, Xuanyuan Luo, and Mingda Qiao. On generalization error bounds of noisy gradient
methods for non-convex learning. arXiv preprint arXiv:1902.00621, 2019.

[19] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

[20] Sharu Theresa Jose and Osvaldo Simeone. Information-theoretic generalization bounds for
meta-learning and applications. arXiv preprint arXiv:2005.04372, 2020.
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