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ABSTRACT

Video dataset condensation aims to mitigate the immense computational cost of
video processing, but faces the unique challenge of preserving the complex in-
terplay between spatial content and temporal dynamics. Prior work often unnat-
urally disentangles these elements, overlooking their essential interdependence.
We introduce Dynamic Frame Synthesis (DFS), a novel approach that preserves
this critical coupling. DFS begins with a minimal set of key frames and dynam-
ically synthesizes new ones by identifying moments of high motion complexity,
where simple interpolation fails, through gradient misalignments. This adaptive
process allocates new frames only where such complexity exists, creating highly
efficient and temporally coherent synthetic datasets. Extensive experiments show
DFS outperforms prior methods on standard action recognition benchmarks, cre-
ating powerful representations with significantly less storage.

1 INTRODUCTION

Machine learning research has progressed substantially through the parallel development of novel
algorithmic frameworks and the growing availability of extensive training data. In the domain of
computer vision, video data represents one of the richest sources of visual information, where
static content elements and temporal dynamics are fundamentally intertwined. Large-scale video
datasets such as Kinetics-700 (Carreira & Zissermanl, [2017), HowTol00M (Miech et al., 2019),
and YouTube-8M (Abu-El-Haija et al.| 2016) have enabled remarkable advances in video under-
standing (Carreira & Zisserman, 2017; Wang et al., |2016)), from action recognition, object track-
ing (Bertinetto et al., 2016 |Li et al., 2018)), predicting future events (Farha & Gall| 2019)), to real-
istic video generation (Tulyakov et al., [2018)). However, the exponential growth of these datasets
introduces substantial computational demands for storage, preprocessing, and training, creating a
significant barrier that can limit broader participation in research. Just as image dataset condensa-
tion has emerged as an effective solution to this challenge in the image domain (Zhao et al., 2020;
Zhao & Bilenl 2023;|Zhao et al.,[2023}; |Guo et al., 2023} |Cazenavette et al., |2022)), a similar need is
acutely felt for video.

However, video condensation presents a fundamental challenge not found in images: the inseparable
interdependence of content and motion. A pioneering work in this area by Wang et al. (Wang et al.,
2024) proposed a two-stage approach that disentangles video into static content and dynamic motion.
While this decomposition may offer computational advantages, it fundamentally misrepresents the
nature of real-world video. For instance, in a ’clapping” action, a static frame of hands already
touching precludes the possibility of representing the “moving hands together” motion. Content,
in this way, constrains the trajectory of motion, and motion defines the evolution of content. The
key challenge, therefore, is not to model content and motion separately, but to identify the precise
moments where they are most critically intertwined.

Based on this insight, we propose Dynamic Frame Synthesis (DFS), a new paradigm for condensing
videos by learning where motion matters as shown in Figure [T} Instead of optimizing a fixed set
of frames, DFS begins with a minimal representation, such as the start and end frames of a video.
We build on the base assumption that simple motion can be adequately approximated by linear
interpolation between these anchors. Our method focuses on the moments where this assumption
breaks, instances of non-linear spatiotemporal change signaled by gradient misalignments. It is at
these critical junctures that DFS intelligently synthesizes a new key frame, dynamically focusing its
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Figure 1: Visual representation of prior video dataset condensation methods and DFS (Ours). In
frame-wise matching, each frame gets updated individually, neglecting the relation between frames.
Static and dynamic disentangling method Wang et al.|(2024) learn the temporal dynamics; however,
it is restricted by the frozen pre-trained static image. Unlike these methods, our method learns the
motion dynamics without any constraints to a single frame through a holistic approach.

representational capacity on the most informative parts of the action. As a result, DFS allocates more
frames to complex actions while keeping simple ones compact, achieving superior performance and
memory efficiency simultaneously.

Our main contributions are as follows:

* We propose DFS, a new paradigm that dynamically condenses videos by learning to iden-
tify moments of high motion complexity.

* We introduce a gradient-guided synthesis mechanism that adaptively allocates frames, pre-
serving the crucial content-motion coupling.

* We demonstrate through extensive experiments that our method achieves state-of-the-art
performance and storage efficiency across multiple action recognition benchmarks.

2 RELATED WORKS

2.1 DATASET DISTILLATION

Dataset distillation aims to synthesize a small, highly informative dataset that captures the essen-
tial characteristics of the original large-scale dataset. When models are trained on these condensed
datasets, they can achieve performance comparable to training on the full dataset, but with sig-
nificantly reduced computational and storage requirements. As deep learning models and datasets
continue to grow in size, this field has evolved into several methodological branches.

Gradient Matching This approach ensures that synthetic data produces similar gradient updates
as the original dataset. DC (Zhao et al., 2020) pioneered this direction by formulating dataset dis-
tillation as a bi-level optimization problem that matches single-step gradients between original and
synthetic datasets. DSA (Zhao & Bilen| 2021) enhanced this framework through differentiable
Siamese augmentation, improving generalization by ensuring consistent gradients across various
data transformations. IDC (Kim et al., [2022) contributed efficient parameterization strategies by
storing synthetic images at lower resolutions and upsampling during training, reducing storage re-
quirements while maintaining performance. These methods provide a direct way to ensure that
synthetic data induces similar training behavior as the original dataset.

Distribution Matching These methods aim to align feature distributions between synthetic and
real data, often providing more efficient alternatives to gradient-matching. DM (Zhao & Bilen,
2023)) introduced a framework that aligns distributions in embedding space, significantly improving
computational efficiency. CAFE (Wang et al., 2022) ensures that statistical feature properties from
synthetic and real samples remain consistent across network layers, providing more comprehensive
feature alignment. Distribution-matching methods typically offer better scaling properties when
condensing large-scale datasets with numerous categories.
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Trajectory Matching Rather than matching single-step gradients or feature distributions, these
methods aim to match entire training trajectories. MTT (Cazenavette et al., 2022) developed tech-
niques to create condensed datasets by mimicking the training trajectories of models trained on the
original dataset, significantly improving distillation efficiency. DATM (Guo et al.|[2023) introduced
difficulty-aligned trajectory matching to enable effective distillation without performance loss even
as the synthetic dataset size changes. These approaches capture longer-range training dynamics,
often resulting in better performance than single-step methods.

2.2 VIDEO DATASET CONDENSATION

Despite extensive research on image dataset condensation, the field of video dataset condensation
remains largely unexplored, with only Wang et al. (Wang et al.,|2024)) making notable contributions.
Their approach disentangles static content from dynamic motion by distilling videos into a single
RGB static frame for content representation and a separate multi-frame single-channel component
for motion. Their method follows a two-stage process: first, training the static component, then
freezing it while updating only the dynamic component. Through experiments with varying numbers
of condensed frames, they found that frame count does not significantly impact action recognition
performance, leading to their focus on a hybrid static-dynamic representation.

Our work differs fundamentally in how it approaches the interaction between content and motion.
While previous methods explicitly separate these two components by first learning a static represen-
tation and then optimizing motion as an auxiliary signal, we adopt a holistic training framework that
treats the video as a fully coupled spatiotemporal structure from the beginning.

3 METHOD

LetD = ng’ol D, where D, = {(V/,y2)} N, denote the real dataset consisting of C classes. Each
video V! € RTXH*WX3 contains T frames of height H, width W and 3 color channels. The goal
of video dataset condensation is to synthesize a compact synthetic dataset:

c-1
S = U Sca SC = {(52792)}?4:Cp Mc < Nca (1)
c=0

such that each condensed video SJ effectively captures essential spatiotemporal patterns specific
to class ¢, while drastically reducing memory and computation costs with minimal degradation in
downstream task performance.

3.1 TEMPORAL FRAME INTERPOLATION

DFS (Dynamic Frame Synthesis) initializes each motion sequence S7 using only the first and last
frames of the video segment, rather than the entire sequence of T frames. This two-frame initial-
ization serves as a sparse temporal anchor from which new frames are progressively inserted during
training. This design is motivated by prior works in video frame interpolation, which show that
simple or low-velocity motion can often be approximated by linear interpolation between the two
endpoints (Niklaus et al.l2017; Liu et al., 2017). We denote this initial set of frames as:

ST = {sc1,5e1}- (2)

All intermediate frames between these key frames are populated by linear temporal interpolation

to construct a full sequence of length T". Given two adjacent key frames s., and sc,,,, the
interpolated frame at time ¢ is computed as:
Sc,t = QtSck; + (1 - at)sc,ki+17 (3)

where a; = :1*171__; and k; < t < k;;1. Throughout the training, only the frames in S are treated

as trainable parameters.
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Figure 2: Overview of DFS. We first initialize the key frame set as the start and the end frame. As
training proceeds, we calculate the cosine similarity of the gradients for each temporally interpolated
frame against its two adjacent key frames. Then, the frames that have a negative correlation with its
two adjacent key frames are added to the key frame set and used in the subsequent training.

Interpolated Frame < Interpolation between two frames

3.2 GRADIENT-GUIDED FRAME INSERTION

Once the initial set S = {s. 1, s. 1} is established, DFS progressively expands this set by inserting
frames that deviate from linear motion, as indicated by their gradient directions. At each training
step, we consider interpolated candidate frames s ; that lie between adjacent key frames s ;, and
Sck;4.» Where k; < t < k;; 1. For each candidate frame, we compute its gradient VL(s. ;) and
measure its cosine similarity with the gradients of its two adjacent key frames:

cost = cos (VL(sct), VL(Sek;)), 4)
cos§+1 = cos (Vﬁ(scyt), Vﬁ(sc,ki“)) . 5)

If both cosine similarities are below ¢, i.e.,
cos! < e and COS§+1 <€, (6)

then the candidate frame s ; is considered to be the frame that is at the position of which the motion
cannot be represented through linear interpolation and is inserted into the key frame set:

57 STU{sc} (7

This gradient-based criterion captures non-linear transitions in appearance or motion and enables
the model to refine its support set by inserting only those frames that contribute meaningful learning
signals. The insertion process is repeated iteratively throughout training except for the warm-up and
cool-down phases, resulting in a temporally adaptive sequence that emphasizes semantically rich
regions.

Our frame insertion strategy is theoretically justified through the following lemmas.

Lemma 1 (Loss-Descent Blockage under Gradient Misalignment) Let s; = asg, + (1 —
a)sk,,,» with 0 < o < 1, be a linear interpolation between two key frames sy, and sy, Let the
task-loss gradients be

gt = vStE(St)7 9i = vskiﬁ(Ski), gi+1 = Vski+1£(ski+1)-
Suppose (g1, ;) <0 and {g¢, gi+1) < 0. Then, for any convex combination
U= )‘(_gi) + (1 - >\)(_91‘+1)7 AE [07 1}7

i+1°

it holds that
<gt> U> > 0.

Consequently, no first-order update to only the endpoints decreases L(s;). Thus, s; must be pro-
moted to the key-frame set for further loss minimization.

Proof. See Appendix. U
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Table 1: Experiment results on two video benchmarks and prior methods categorized into coreset
methods, static/dynamic disentangled methods, and holistic methods. ' represents the author pro-
vided results. Higher values are better. Bold and underline denote the best and second-best scores
for each setting, respectively.

Method MiniUCF HMDB51

VPC 10 VPC 5 VPC 1 VPC 10 VPC 5 VPC 1
Coreset Methods
Random 27.841.1 19.610.4 10.940.7 9.840.4 6.8+0.7 3.3+0.1
Herding 33.7i0‘3 26»3i1_0 13.2i1_3 10.8i0_6 9.0:&0‘6 3.0:&0‘1
K-Center 29.140.6 23.240.7 13.941.6 8.040.1 5.240.4 24404
Static / Dynamic Disentangled Methods
DM 30.0+0.6 25.740.2 153111 12.1,,, 8.040.2 6.1,
Wang et al.” - 272464 175,44 - 8:2,0, 6.040.4
Holistic Method
DFS 31.04 41 28.040.1 179403 12.810.2 10.510.4 754103
Whole Dataset 57.841.1 254402

3.3 WARM-UP AND COOL-DOWN PHASE

To ensure stable frame insertion dynamics during training, we introduce a warm-up and cool-down
phase.

Warm-Up Phase. During the early stage of training, we disable gradient-guided frame insertion
and optimize only the initial key frames in the set S7 = {s. 1, ., }. This allows the endpoints to be
optimized before being used as reference anchors for gradient-guided frame insertion. Without this
phase, premature insertion based on noisy gradients may lead to redundant or suboptimal key frame
selection.

Cool-Down Phase. In the final training phase, frame insertion is again suspended. Since newly
inserted frames near convergence would receive insufficient updates, they may remain under-
optimized and degrade downstream performance. By freezing the key set toward the end of training,
we ensure that all frames in the set receive adequate supervision.

3.4 OPTIMIZATION OBJECTIVE

Let fy denote a feature extractor network, and let Bzeal and BY" be the real and synthetic video

batches for class c, respectively. Each synthetic video SJ contains a subset of trainable key frames,
while the remaining frames are linearly interpolated.

We define our optimization objective as minimizing the feature distribution discrepancy between
real and synthetic samples as following:
2

mmZ rea1| > folw |Bsyn > fols ®)

{s¢}
zepe seB" 9

During training, gradients are backpropagated only through the active key frame set S7. Warm-up
and cool-down phases regulate when new key frames are inserted, ensuring stable optimization and
sufficient updates across all selected frames. The overall framework of the DFS is illustrated in

Figure[2]
4 EXPERIMENT

4.1 DATASET

We conduct experiments on 4 datasets: UCF101 (Soomro et al.,|2012) and HMDBS51 (Kuehne et al.,
2011])) for small scale datasets, and Kinetics (Carreira & Zisserman,|2017)) and Something-Something
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Table 2: Storage requirements on two video benchmarks and prior methods categorized into coreset
methods, static/dynamic disentangled methods, and holistic methods. ' represents the author pro-
vided results. Lower values are better. The value in parentheses in indicates the size of the synthetic
dataset as a percentage of the full dataset size. Bold and underline denote the best and second-best
scores for each setting, respectively.

Method MiniUCF HMDB51

VPC 10 VPC 5 VPC 1 VPC 10 VPC 5 VPC 1
Coreset Methods
Randpm 1150(11_7%) 586(6.0%> 115(1‘2%) 1150(23,3%) 586(11‘9%) 115(2.3%)
Herding 1150(11.7%) 586 (6.0%) 1151 29) 1150(23.3%) 586(11.9%) 115(2.3%)
K-Center 1150(11.7%) 586(6.0%> 115(1‘2%) 1150(23,3%) 586(11‘9%) 115(2.3%)

Static / Dynamic Disentangled Methods

DM 1150(11.7%) 586 (6.0%) 115(1.29%) 1150(23.3%) 586(11.9%) 115(2.3%)

+ Wang et al.” - 455 (4.6%) 94(1.0%) - 455(9.2%) 94(1.9%)

Holistic Methods

DFS 324(3.3%) 133(1.4%) 20(0.2%) 287(5.8%) 137 (2.8%) 22(0.4%)
9.81GB 4.93GB

Table 3: Experiment results on two large-scale video benchmarks. T represents the author provided
results. Bold and underline denote the best and second-best scores for each setting, respectively.

Method Kinetics-400 SSv2
VPC 5 VPC 1 VPC 5 VPC 1

Coreset Methods

Random 5.540.2 3.04+0.2 3.640.1 31401

Herding 6.3+0.2 3.340.1 3.640.1 28101

K-Center 6.240.2 3.140.1 45101 2.6+0.2

Static / Dynamic Disentangled Methods

DM 914109 63100 4.1 .4, 3.6+0.0
+ Wang et al.” 7.040.1 6.3, 3.840.1 4.040.1
Holistic Method

DFS 81lig, 71to0.1 416, 39402
‘Whole Dataset 30.340.1 23.0+0.3

V2 (Goyal et al.,|2017) for large scale datasets. UCF101 consists of 13,320 video clips of 101 action
categories. Following the prior work (Wang et al., [2024), we leverage the miniaturized version
of UCF101, hereinafter miniUCF, which includes the 50 most common action categories from the
UCF101 dataset. HMDBS51 consists of 6,849 video clips of 51 action categories. Kinetics-400 has
videos of 400 human action classes and Something-Something V2 has 174 motion-centered classes.

For miniUCF and HMDB51, we sample 16 frames per video with a sampling interval of 4 and
resize frames to 112 x 112. For Kinetics-400 and Something-Something V2, we sample 8 frames
per video and resize to 64 x 64. Consistent with prior work (Wang et al.| |2024), we only apply
horizontal flipping with 50% probability as the sole data augmentation strategy.

4.2 EXPERIMENTAL SETTING

For all of the experiments, we employ miniC3D, which comprises 4 Conv3D layers, as our back-
bone architecture following the pioneering work in video dataset condensation. Unlike DM (Zhao
& Bilen, [2023), DFS is initialized from Gaussian noise rather than initializing to a random real
frame from the dataset. We report the mean of three evaluations for each experiment, measuring
top-1 accuracy for miniUCF and HMDBS51, and top-5 accuracy for Kinetics-400 and Something-
Something V2. We compare our method against three coreset selection methods (random selection,
Herding (Welling} [2009), and K-Center (Sener & Savarese, [2017)), an image dataset condensation
methods (DM (Zhao & Bilen, 2023)), and a video dataset condensation method (Wang et al. (Wang
et al., [2024)) the first and the only video dataset condensation method. We evaluate performance
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Table 4: Cross-architecture results on MiniUCF with 1 VPC. T indicates author-provided results.
Bold denotes best scores per model.

Method Evaluation Model

ConvNet3D CNN+GRU CNN+LSTM
DM 15.341.1 9.940.7 9.240.3
Wang et al.” 17.5401 12.010.7 10.310.2
DEFS (Ours) 179103 18.940.5 182113

under different condensation ratios, measured as Videos Per Class (VPC). Note that the VPC fol-
lows the notation of Images Per Class (IPC) in image dataset condensation and that DFS, in most
cases, will have fewer frames than 16 frames, as we are only adding frames when required. During
inference, we leverage the index position for each saved vector, which is saved with the frames, with
negligible memory consumption. Our experiments employ the SGD optimizer with a momentum
of 0.95 for all methods. The e is set to 0. The hyperparameters, including the learning rates, are
detailed in the Appendix.

4.3 RESULTS

Table[T] presents the experiment results categorized as coreset methods, static and dynamic disentan-
gled methods, and the holistic method. We categorized DM (Zhao & Bilen| [2023)) as the disentan-
gled methods as they initialize the frames from the real frames in the dataset. The results showcase
that DFS achieves state-of-the-art performance in most experimental settings. The performance in-
crements of DFS are smaller in the motion-centric large dataset, where only 8 frames are used for
training, as shown in Table [3]| However, we note that we always achieve the second-best perfor-
mance, if not first. Additionally, DFS scales along with the VPC which was not the case with Wang
et. al (Wang et al., [2024).

As the storage footprint of condensed data is a critical factor in dataset condensation, we report the
storage requirements in Table 2] We follow the same calculation procedure as prior work (Wang
et al.| [2024), treating each sample as a £ 1oat 32 tensor. For DFS, the reported storage corresponds
to the total number of frames retained after the condensation process completes for each VPC setting.
We ignore the negligible overhead from storing frame indices.

Unlike previous methods that begin with a fixed number of frames (e.g., 16), DFS starts with only
2 key frames per video and progressively inserts additional frames only when the cosine similarity
between gradients is negative. This selective strategy results in a significantly lower storage footprint
while achieving superior performance. Moreover, since DFS adds frames adaptively rather than
proportionally to the number of VPCs, its storage does not grow linearly with VPC. This behavior
is clearly visible in the miniUCF results, where storage grows much more slowly than would be
expected under proportional expansion. Such efficiency makes DFS especially advantageous when
users wish to scale up performance under higher VPC budgets without incurring prohibitive storage
costs.

5 ABLATION

Cross-Architecture As dataset condensation aims to perform well not only on the training model
but also on other architectures, we validate our approach’s robustness through Table ] The exper-
imental results demonstrate that DFS not only achieves state-of-the-art performance compared to
prior methods but also maintains robust performance across different architectures. Notably, while
DM and Wang et al. (Wang et al., [2024)) show significant performance drops when evaluated on
CNN+GRU, our method maintains consistent performance with only minimal degradation. This
strong cross-architecture generalization underscores the strength of our holistic design, which pre-
serves the intrinsic coupling between content and motion—an essential property of video data often
overlooked by prior methods.

Effect of Number of Initial Key Frames Table [5| presents results when varying the number of
initial key frames for the condensation process. We observe a consistent decrease in performance as
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Table 5: Results by varying initial representative frames of DFS. Bold denotes best scores per
dataset.

Number of Initial Key Frames

Dataset

2 3 4 6 8
MiniUCF 179103 1734108 17.040.1 15.540.2 15.340.2
HMDB51 7.5+0.3 6.8+0.1 6.640.1 6.140.3 5.640.2

Table 6: Ablation study results for (A) with and without insertion, (B) frame selection strategy, (C)
similarity metric, and (D) training phase (warm-up and cool-down).

Dataset w/ Insertion  w/o Insertion Dataset Negative Grad. Random Pos.
__HMDBSL 75403 __ Glsos _~ HMDBSI Thtos  68x02
miniUCF 179403 15.841.2 miniUCF 17.940.3 16.840.4
(A) B)
Dataset Cosine Sim. L2 Distance Dataset w/o Warm-Up  w/o Cool-Down
__HMDBSI 75403 60+0¢ _ HMDBSI 68412 6305
miniUCF 17.940.3 15.740.7 miniUCF 16.140.8 16.941.3
© D)

the number of initial frames increases. This result highlights a central principle of our approach that
it is not the amount of input frames that matters, but the ability to insert new frames only when they
are truly needed. Starting with a minimal number of frames (i.e., 2) and selectively adding more
based on gradient signals enables the model to focus on semantically meaningful motion without
being distracted by redundant or misaligned updates. The performance drop seen with more initial
frames supports this idea by showing that naively including more content can actually interfere with
the optimization process. We hypothesize that starting with too many frames creates conflicting gra-
dient signals in the early training stages, hindering the optimization of a coherent motion trajectory.
In contrast, our start-small approach allows the model to first establish a robust and simple path
between two anchors before refining more complex, non-linear dynamics.

Without Frame Insertion One of DFS’s core contributions is the progressive insertion of frames
based on gradient cues. To isolate the effect of this component, we perform an ablation where only
two key frames (the first and last) are optimized throughout training. Temporal interpolation is still
applied between these endpoints, but no additional key frames are inserted. As shown in Table[f[A),
removing this progressive insertion leads to a substantial performance drop, confirming that our
insertion strategy is critical for capturing complex motion and structure. Nevertheless, this reduced
variant still outperforms several existing baselines. This suggests that even a minimal version of our
method can serve as a competitive and meaningful baseline for video dataset condensation.

Frame Selection Strategy We evaluate the effectiveness of our gradient-based frame selection
by comparing it against a random selection baseline. Both methods operate under identical condi-
tions: a new frame is inserted whenever a negative cosine similarity is detected between gradients.
However, while DFS selects the frame with the most negative cosine similarity, the baseline instead
randomly selects one from the candidate pool, including the negatively correlated one. This setup
ensures that the two methods differ only in how the new frame is selected, not in how often frames
are added or when. As shown in Table [6fB), replacing our targeted frame selection with random
addition results in substantial performance drops across both datasets. This confirms that gradient
correlation is not just a useful signal but a decisive factor in identifying semantically meaningful
frames that enhance the condensation process.

Cosine Similarity vs. L2 Distance DFS uses cosine similarity to identify frames whose gradients
are directionally misaligned with those of existing key frames, signaling potential discontinuities
in motion or content. This angle-based criterion is particularly effective for capturing semantic
transitions, as it not only measures the degree of difference but also the directional disagreement
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between gradients. To test whether cosine similarity is truly essential, we compare it against a
distance-based alternative using the L2 norm. However, unlike cosine similarity, which has a well-
defined geometric interpretation, L2 distance lacks a natural threshold. To make the comparison
meaningful, we calibrated the L2 threshold to 0.141, which corresponds to 10% of the unit vector
distance implied by a 90-degree angular separation in cosine space. As shown in Table[6{C), cosine
similarity significantly outperforms L2 distance across both HMDBS51 and miniUCF. These results
confirm that directional disagreement, rather than magnitude alone, is a more reliable indicator of
frame-level semantic variation, justifying our use of cosine similarity for frame insertion.

Effect of Warm-Up and Cool-Down Phases To stabilize training and prevent premature or noisy
frame insertions, DFS incorporates both a warm-up and a cool-down phase. The warm-up phase
delays the start of frame insertion to allow gradients to stabilize around the initial key frames. The
cool-down phase, on the other hand, suspends further insertions once the condensation process nears
convergence, preventing overfitting or unnecessary growth in the synthetic video set. To evaluate
the necessity of each phase, we conduct ablations where either the warm-up or cool-down phase is
removed. As shown in Table[6(D), removing either phase degrades performance, with the absence
of the warm-up phase causing unstable optimization due to early gradient noise, and the absence
of the cool-down phase leading to over-insertion and noisy representation. These findings confirm
that both the warm-up and cool-down stages are integral to DFS’s temporal curriculum, ensuring
effective and stable condensation dynamics throughout training. All qualitative results can be found
in the Appendix.

Optical Flow Result To qualitatively as-  miniUCF — Class : Soccer Penalty
sess whether the frames selected through
our gradient-based criterion capture mean-
ingful temporal dynamics, we visualize the . i b
class-wise mean optical flow on the mini- Mean Optical Flow of Real Video

UCF dataset. Figure [3] compares the aver-

age optical flow of real videos (top) with that

of our condensed data generated using only

negatively correlated frames (IPC = 5, bqt- Mean Optical Flow of Condensed Data

tom) for the class Soccer Penalty. Despite

the aggressive frame reduction, our method Figure 3: Optical flow comparison - Soccer Penalty
produces motion patterns that closely resem- ~ class.

ble those of the real videos. This result implies that selecting frames based on gradient misalignment
is not only computationally principled but also semantically grounded—our approach reliably de-
tects the frames responsible for key motion events, even without any supervision. More qualitative
results are provided in the Appendix.

6 CONCLUSION

In this paper, we introduced Dynamic Frame Synthesis (DFS), a novel paradigm for video dataset
condensation that learns to identify and preserve the critical interplay between content and motion.
Unlike prior methods that rely on a fixed representation or artificial disentanglement, DFS dynami-
cally synthesizes keyframes where they are most needed, guided by gradient misalignments that sig-
nal high motion complexity. This adaptive strategy allows DFS to allocate representational capacity
intelligently, resulting in condensed datasets that are not only compact but also temporally coherent.
Our extensive experiments demonstrate that DFS sets a new state-of-the-art, outperforming existing
methods in both accuracy and storage efficiency across standard action recognition benchmarks.

Limitations While DFS enables efficient and adaptive frame selection under typical spatiotem-
poral conditions, it may face challenges in two regimes. First, in videos with extremely fast or
abrupt motion, linear interpolation may fail to capture dynamics. Second, for very long sequences,
optimization from Gaussian noise can become unstable. Moreover, DFS is primarily designed for
classification tasks, and its ability to preserve fine-grained semantic cues required for generative
tasks (e.g., captioning, video-text alignment, video generation) remains unexplored.
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ETHICS STATEMENT

The primary focus of this work is on improving the computational efficiency of training video mod-
els, with the goal of making research more accessible and environmentally sustainable. However,
we acknowledge that any dataset condensation method carries potential ethical implications. The
primary ethical consideration for DFS is the potential for inheriting and amplifying biases present
in the original large-scale datasets. Since DFS aims to capture the essential data distribution, any
demographic, social, or representational biases in the source data will likely be reflected or even
concentrated in the condensed set. We urge practitioners using DFS to perform thorough bias audits
on the source datasets and the models trained on the condensed results. Additionally, as with any
technology that lowers the barrier to training powerful models, there is a risk of misuse in applica-
tions.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we include source code in the supplementary zip file. All
hyperparameters required to reproduce our experiments, including learning rates, batch sizes, and
the warm-up/cool-down schedules for each dataset and VPC setting, are provided in the Appendix.
The data preprocessing and evaluation protocols are consistent with those of prior work to ensure
fair and direct comparison.
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A APPENDIX

A.1 PROOF oF LEMMA[I]

Lemma 1 (Loss-Descent Blockage under Gradient Misalignment)
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Let s; = asy, + (1 — a)sg,.,, with 0 < o < 1, be a linearly interpolated frame between two key
frames sy, and sy, . Let the task-loss gradients be denoted as

gt = vst‘c(st)a gi = Vski‘c(ski)v

gi+1 = \Y% L:(Ski+1)'

Skii
Suppose

(g9¢, gi) <0 and {g¢, giv1) <O.
Then, for every convex combination

v= )‘(_gi) + (1 - )‘)(_giJrl)v Ae [O’ 1]7

the following inequality holds:
{(g¢, v) > 0.

Consequently, no first-order update obtained by modifying only the two endpoint frames can de-
crease L at s;; the loss is stationary or strictly increasing along every such direction. Therefore, sy
must be promoted to the key frame set and directly optimized to enable further loss minimization.

Proof. By the bilinearity of the inner product,

(9t,v) = Mg, —gi) + (1 = A){gt, —git1)-

Applying the assumption (g¢, g;) < 0, we obtain

<gta 7gl> = 7<gtagi> > Oa

and similarly,

(9t, —Gi+1) = — (¢, gir1) > 0.

Therefore,

(ge,v) = X (g, —gi) + (1 = A) - (9¢, —giy1) > 0.

This shows that the directional derivative of £ at s, along any direction v formed by adjusting only
the endpoints is positive:

D,L(sy) = (VL(st),v) > 0.

Thus, no first-order update along such directions can reduce the loss at s;, and £(s) is strictly
increasing along all directions spanned by —g; and —g;+;. It follows that further loss minimization
requires directly optimizing s; as a key frame. ]

A.2 HYPERPARAMETER

In Table [A] we show the learning rate and batch size under each dataset and IPC. The € is set to 0
for all experiments throughout the manuscript. The warm-up and cool-down phases are processed
for 20% of the whole iteration each. In other words, if the condensation process is set to 100
iterations, the warm-up phase takes up the first 20 iterations and the cool-down phase takes up the
last 20 iterations, leaving 80 iterations for the progressive refinement and insertion of frames. We
follow the setting from the prior method (Wang et al., 2024)) for evaluation and cross-architecture
evaluation.
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Table A: Hyperparameters for DFS under different datasets and IPC.

Method  Dataset Train Evaluation
IPC LR Batch Real Epoch LR
1 1 64
MiniUCF 5 25 64
S | U 0 . 4 .
DFS 1 0.7 64
HMDB51 5 25 64 500 1le—2
S | U o 4 .
L 1 1 64
fnete 0 s 0] 128
1 3 64
SSv2 5 30 128

SSv2 — Class 26 SSv2 — Class 60

Figure A: Extra optical flow results on SSv2 under 1 VPC setting. The red circle shows where the
optical flow matches the most between the condensed video and the real video.

A.3 OPTICAL FLOW ANALYSIS

To further assess the temporal fidelity of our condensation framework, we visualize the optical flow
fields of both real and condensed videos. Optical flow represents the pixel-wise motion between
consecutive frames and serves as a direct indicator of whether the synthesized frames preserve real-
istic temporal dynamics. In our visualizations in the supplementary and also in the main manuscript,
we use a standard HSV-based color encoding, where the hue (i.e., the color itself) corresponds to
the direction of motion—such as rightward appearing reddish, leftward bluish, and upward green-
ish—while the saturation and brightness encode the magnitude of motion, with brighter and more
saturated regions indicating stronger or faster motion. Regions with little to no motion appear de-
saturated or grayish.

Despite beginning from Gaussian noise and adding frames along training, the optical flow results
show that DFS is capable of progressively aligning the synthesized motion with that of the real
video. As shown in Figure [B] the red circles highlight regions where the direction and magnitude
of the condensed optical flow closely resemble those of the original video. This further supports the
observation that DFS can synthesize coherent motion dynamics from sparsely supervised temporal
supervision.

Nevertheless, some failure modes are also apparent in these optical flow visualizations. In cases
where the first and last frames contain minimal or no motion, the model struggles and generates
meaningless or abrupt motion during warm-up phase. Moreover, in action classes that involve fast
or abrupt motions, the resulting flow fields from the condensed video occasionally lack directional
consistency and show spatial noise, indicating poor alignment. These limitations appear to be ex-
acerbated by the use of Gaussian noise initialization, which may hinder the model’s ability to focus
solely on the informative motion patterns at early training stages.
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MiniUCF — class 5

MiniUCF — class 15
2 B L2k |
2| .. o b
SSv2 — class 51 SSv2 — class 156

Figure B: Analysis on when DFS fails.

A.4 QUALITATIVE RESULTS

We visualize the condensed videos on HMDBS51 and MiniUCF under the 1 VPC setting for maximal
clarity. The visualized frames in Figure [C] and Figure [D] correspond to those retained after the
condensation process, where the noise images are placeholders which does not get stored along with
condensed data.

Red rectangles highlight the negative effect when the warm-up phase is omitted. As consistently
observed across both datasets, removing the warm-up leads to excessive frame selection, resulting
in redundant and less informative synthetic frames while consuming more memory.

Blue rectangles indicate frames produced when the cool-down phase is omitted. Although overall
results appear more stable than in the warm-up-removed case, we observe that some frames are
added during the final few iterations of condensation. These late-added frames often lack sufficient
training, reducing their utility for action recognition by being not fully trained.

We used a Large Language Model (LLM) to assist with improving the clarity, grammar, and organi-
zation of the text. All scientific contributions, including the core methodology, experimental design,
and analysis of results, are solely the work of the authors. ]The Use of Large Language Models
(LLMs)

We used a Large Language Model (LLM) to assist with improving the clarity, grammar, and organi-
zation of the text. All scientific contributions, including the core methodology, experimental design,
and analysis of results, are solely the work of the authors. You may include other additional
sections here.
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DEFS w/o warm — up w/o cool — down

Figure C: Visualization of DFS, DFS without warm-up, and DFS without cool-down on HMDB51
under 1 VPC. Red rectangles highlight the negative effects of omitting the warm-up phase, while
blue rectangles indicate frames that may be under-trained due to the absence of a cool-down phase.
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DES w/0 warm — up w/o cool — down

Figure D: Visualization of DFS, DFS without warm-up, and DFS without cool-down on MiniUCF
under 1 VPC. Red rectangles highlight the negative effects of omitting the warm-up phase, while
blue rectangles indicate frames that may be under-trained due to the absence of a cool-down phase.
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