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Abstract

The generalization of language models (LMs)001
is undergoing active debates, contrasting their002
potential for general intelligence with their003
struggles with basic knowledge composition004
(e.g., reverse/transition curse). This paper un-005
covers the phenomenon of linear correlations006
in LMs during knowledge composition. For007
explanation, there exists a linear transforma-008
tion between certain related knowledge that009
maps the next token prediction logits from010
one prompt to another, e.g., “X lives in the011
city of ”→ “X lives in the country of ” for ev-012
ery given X. This mirrors the linearity in hu-013
man knowledge composition, such as Paris→014
France. Our findings indicate that the lin-015
ear transformation is 1) resilient to large-scale016
fine-tuning, 2) generalizing updated knowledge017
when aligned with real-world relationships, 3)018
but causing hallucinations when it deviates.019
Empirical results suggest that linear correla-020
tion can serve as a potential identifier of LM’s021
generalization. Finally, we show such linear022
correlations can be learned with a single feed-023
forward network and pre-trained vocabulary024
representations, indicating LM generalization025
heavily relies on the latter.1026

1 Introduction027

What knowledge do language models (LMs) learn028

beyond memorizing the training data? The gen-029

eralization ability of LMs is undergoing an active030

debate. Optimists claim that LMs might have the031

capability in entirely novel tasks with their emer-032

gent behavior (Wei et al., 2022) by scaling-up pa-033

rameters, while pessimists argue that LMs struggle034

with composing simple knowledge (Peng et al.,035

2024a; Thomm et al., 2024), such as reverse or036

transition curses claiming that LMs cannot even037

simply compose knowledge by reversing or transit-038

ing (Berglund et al., 2024; Zhu et al., 2024).039

1The code will be released for reproduction.

While macroscopically investigating how skills 040

emerge in language models remains challenging, 041

we can gain microscopical insight from the gener- 042

alization behavior on the smallest learning unit, 043

next token prediction (NTP). We unveil an in- 044

teresting linear correlation between logits of re- 045

lated NTPs, such as City→Country, from the 046

source knowledge like logits of FCity(X) = 047

NTP(“X lives in the city of”) to the target knowl- 048

edge like logits of FCountry(X) = NTP(“X lives 049

in the country of”). Between logits in knowl- 050

edge subdomains (e.g., {Paris, Shanghai, · · · } for 051

FCity(X)), we can fit a linear transformation 052

(W, b) that well approximates FCountry(X) = W · 053

FCity(X) + b for any X as the input. To fit the 054

transformation, we sample numerous output logits 055

from prompts with arbitrary inputs Xs as shown 056

in Figure 1. Then, (W, b) is fitted with partial logit 057

pairs and tested on the rest. The Pearson correla- 058

tion coefficients for evaluation reflects the inherent 059

relations of knowledge in the real world, with high 060

correlations in cases like City→Country and low 061

correlations in cases like City→Gender. 062

Examining W , we find that its weights mirror 063

the linearity in the knowledge composition of hu- 064

mans. In the City→Country case, the W assigns 065

high weights to real-world (City, Country) pairs 066

such as Paris→France. In other words, probabil- 067

ity P (FCountry(X) = France) is correlated with 068

P (FCity(X) = Paris). However, there also exists 069

counterfactual weights learned in W , for instance, 070

the weight fit in W for (Indianapolis, India) is 071

much higher than the correct (Indianapolis, USA). 072

We say W is precise when W assigns high weights 073

for the correct knowledge pairs. W ’s precision is 074

generally low for knowledge pairs with low cor- 075

relations, but a high linear correlation also does 076

not guarantee high precision. This motivates us 077

to explore the connection between 1) such linear 078

correlations, 2) W ’s precision, and 3) LM’s compo- 079

sitional generalization. Importantly, if the same W 080
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Figure 1: Demonstration of our main discoveries. 1) We can fit a linear transformation between the output of
source and target knowledge prompts, which is resilient against fine-tuning. 2) Updating the source knowledge will
generalize to the target one via resilient linearity, causing compositional generalization/hallucination.

and b also fit the parameter updates after gradient081

propagation, then learning source knowledge will082

simultaneously update the target knowledge.083

We begin with one-step parameter updates, fine-084

tune the LM with a piece of source knowledge, and085

then check the gradients on the source and target086

knowledge. When the linear correlation between087

the source and target knowledge is high, we find088

W capable of estimating the gradients on the tar-089

get knowledge based on the source gradient. We090

then extend the comparison to LMs before and091

after large-scale post-training, which shows W fit-092

ted before post-training to retain the estimation093

ability for the LM after post-training. Thus, W094

between highly correlated knowledge is found re-095

silient against gradient propagation, which consis-096

tently plays an important role in generalization.097

To assess the role of linear correlation in LM098

generalization, we test source–target knowledge099

pairs with varying correlation intensity and W pre-100

cision. Generalization succeeds only when both101

are high, suggesting LMs struggle with non-linear102

generalization, limiting the effectiveness of sim-103

ple fine-tuning (Cohen et al., 2024). High correla-104

tion with low W precision can cause compositional105

hallucinations (e.g., P (City) = Indianapolis →106

P (Country) = India). These correlations, ob-107

servable before fine-tuning, help diagnose potential108

faults in LM knowledge composition.109

Finally, we explore the linear correlation’s origin110

and hypothesize that vocabulary representations111

are key. Even when we remove the LM’s com-112

plex internals (position embeddings, self-attention,113

etc.) and use only a mean-pooling layer plus a sin-114

gle feedforward network, the model still learns to115

compose knowledge from few paired texts (e.g.,116

FCity = Paris paired with FCountry = France). The 117

simplified archecture shows similar generalization 118

performance as the original Transformer. However, 119

altering lexical mappings (e.g., Paris→Japan) dis- 120

rupts this ability, underscoring the critical role of 121

vocabulary representations. Our contributions are 122

as follows, 123

• We unveil the linear correlation between the 124

LM’s output logits for related knowledge. 125

• We find such linear correlation existing between 126

gradients and resilient against training, which 127

connects it to compositional generalization and 128

hallucination of LMs. 129

• We attribute the cause of linear correlation be- 130

tween NTPs to vocabulary representations. 131

2 Related Works 132

2.1 Language Model Interpretation 133

Language models (LMs) (Achiam et al., 2023; 134

Team et al., 2024; Groeneveld et al., 2024; Dubey 135

et al., 2024) are gaining widespread attention across 136

various fields due to their strong performance on 137

a variety of tasks, like reasoning and knowledge 138

retrieval. However, the black-box nature of (neu- 139

ral) LMs hinders human’s understanding of their 140

working mechanism. Various methods have been 141

developed to interpret LM behavior by analyzing 142

its parameters and intermediate representations. 143

Several works suggest that LMs store knowledge 144

inside the feedforward layers (Geva et al., 2021; 145

Dai et al., 2022; Meng et al., 2022), which are 146

used in a key-value matching manner to map in- 147

puts into related knowledge (Geva et al., 2022). 148

Some parameters are also found to perform cer- 149

tain relational transformations for the LM (Todd 150
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et al., 2024; Zhang et al., 2024), known as the task151

representations (Lampinen and McClelland, 2020).152

For certain subsets of relations, LMs have been153

unexpectedly found to encode knowledge in a lin-154

ear manner (Hernandez et al., 2024), suggesting155

a potential role of linearity in their understanding156

of relational structures. However, it remains un-157

known how the LM understands the transformation158

between relations. Our work shows the linearity be-159

tween the output from several relation pairs given160

the same input.161

2.2 Model Generalization162

The power of modern deep neural networks lies163

in their remarkable ability to generalize effectively164

to unseen inputs. However, the exact mechanisms165

through which these models achieve generaliza-166

tion remain poorly understood. For instance, in the167

context of knowledge editing, numerous research168

studies have observed that standard fine-tuning169

methods for updating knowledge often struggle170

to meet critical objectives simultaneously . On171

one hand, they fail to prevent unintended modifica-172

tions to unrelated knowledge. On the other hand,173

they frequently fall short of ensuring that logical174

deductions based on the updated knowledge are175

properly incorporated (Cohen et al., 2024; Zhong176

et al., 2023). Previous research has proposed var-177

ious metrics and methods to measure and predict178

generalization in deep neural networks. However,179

these approaches don’t cover the perspective of cor-180

relation in model generalization (Yu et al., 2022;181

Garg et al., 2022; Kang et al., 2024).182

2.3 Hallucination Detection183

Hallucination remains one of the most significant184

challenges in the deployment of language models185

(LMs) (Zhang et al., 2023; Huang et al., 2024). Nu-186

merous studies have explored approaches to predict187

and mitigate this issue. For instance, some prior188

works utilize trained classifiers to identify halluci-189

nations (Jiang et al., 2024; Quevedo et al., 2024;190

Chen et al., 2024). Another method involves de-191

tecting hallucinations by clustering semantically192

similar responses and calculating entropy across193

these clusters (Farquhar et al., 2024). Addition-194

ally, the MIND framework has been proposed to195

exploit the internal states of LMs during inference,196

enabling real-time hallucination detection (Su et al.,197

2024). Moreover, formal methods guided by iter-198

ative prompting have been employed to dehalluci-199

nate LM outputs (Jha et al., 2023). RAG has also200

been used to detect and correct hallucinations in 201

LM (Mishra et al., 2024). Our study presents an 202

innovative approach to predicting hallucinations, 203

different from existing methodologies, by leverag- 204

ing the correlation. 205

3 Discovering Linear Correlation 206

3.1 Preliminary and Motivation 207

Next Token Prediction. Neural language mod- 208

els have been scaled up to numerous parameters 209

but can still be understood as a mapping function 210

among vocabulary representations V ∈ R#Vocab×d. 211

We denote the embedding of the word X as VX ∈ 212

Rd. For an input word sequence, such as “X lives 213

in the city of ”, the embeddings of the involved 214

words will be processed with other components in 215

the LM θ¬V (positional embedding, self-attention 216

networks, etc.) to encode the input context as 217

C = F ([VX, · · · , Vof]) ∈ Rd. Most2, if not all, 218

LMs tie the input and output vocabulary embed- 219

dings together (Press and Wolf, 2017) to use the dot 220

product C · VY as the logit of Y for the next token 221

prediction. Finally, the vocabulary-wise dot prod- 222

ucts are normalized by a softmax layer to represent 223

the probability of a certain token (Y for example).3 224

Pθ¬V (Y|[VX, Vlives, · · · , Vof]) =
eC·VY∑

Z∈Vocab e
C·VZ

(1) 225

For a subset of all possible sequences that follow 226

the template “X lives in the city of ” and takes ar- 227

bitrary X as the input, we can view template rep- 228

resentations [Vlives, · · · , Vof] as constant to map a 229

variable X (VX ) with the City relation. 230

Pθ¬V (Y|[VX, Vlives, · · · , Vof]) = Pθ¬V ,[Vlives,··· ,Vof](Y|VX)
(2) 231

Here, the encoding function FCity = 232

F (·|[Vlives, · · · , Vof]) (subscript City denotes 233

the semantics of constant representations) affects 234

the final probabilistic distribution by mapping VX 235

to C near vocabulary embeddings of cities, such as 236

VParis, VShanghai, VTokyo. 237

Motivation: Linearity in Relation. Some 238

knowledge like FCityToCountry (“X is a city in the 239

country of ”) are found linear (Hernandez et al., 240

2024) between vocabulary representations, which 241

2In Appendix E, we empirically show our conclusion also
holds for an parameter untied LM - Mistral (Jiang et al., 2023)

3We omit the discussion of potential bias terms, multiple
token input for simplification and reading fluency.

3



Y2 = FCityToCountry(Y1)
≈ WY1 + b

Y1 = FCity(X)

Y2 = FCountry(X) = FCityToCountry(FCity(X))
≈ WY1 + b (?)

(Q1) Can we fit a linear transformation 

(W, b) between Y1 and Y2? (§3.4)

(Q2) Does (W, b) hold for arbitrary X 

not indicating Y1/Y2? (§3.4)

(Q3) Is (W, b) changed by fine-tuning 

the LM? (§4)

(Q4) What parameters might contribute 

to the formation of (W, b)? (§6)

Figure 2: Our hypothesis and questions about how LMs
compose knowledge by learning (W, b).

means F can be well approximated by (W, b) s.t.242

C = WV + b. While not all mappings have such243

an interesting property, this phenomenon indicates244

the potential for LMs to compose knowledge in245

their parameters.246

Knowledge Composition. There exists composi-247

tional relations between knowledge such as FCountry248

(“X lives in the country of ”) can be composed249

by other relations as FCityToCountry(FCity) since250

one’s residential city (source knowledge) indi-251

cates one’s residential country (target knowledge).252

Suppose the LM applies FCity(VX) to map VX253

close to a city embedding like VParis), then may254

the LM learn (W, b) inside parameters and per-255

form FCountry(VX) = FCityToCountry(FCity(VX)) =256

WVParis + b = VFrance? While the hypothesis can257

be made for non-linear relations in the composi-258

tion as well, we emphasize the linearity as it cor-259

responds to the key-value matching (Geva et al.,260

2021) behavior of Transformers. The linear trans-261

formation can be simply performed by a feedfor-262

ward network activated by self-attention.263

Motivated by the potential role of linearity in264

compositional knowledge, we conduct experiments265

to validate the hypothesis that LMs learn such lin-266

ear transformation inside the parameters for compo-267

sition. The roadmap of our exploration is presented268

in Figure 2, with questions we will answer in the269

following sections. We will demonstrate that270

• Such (W, b) exists for logits prompted from cer-271

tain related knowledge pairs, which is applicable272

to arbitrary inputs, not necessarily indicating a273

known output (§ 3.4).274

• Such linearity stays resilient against large-scale275

fine-tuning, which guarantees the LM’s general-276

ization to compositional knowledge (§ 4).277

• Such linearity can be highly attributed to the vo-278

cabulary representations. (§ 6).279

3.2 Method and Evaluation280

We search for the potential linear transformation281

between pairs of source and target knowledge. Con-282

tinuing with the (FCity, FCountry) example, the trans- 283

formation will be established between CCity,X = 284

FCity(VX) and CCountry,X = FCountry(VX). We then 285

decode the two representations by the LM head to 286

produce logits LogPCity,X and LogPCountry,X both in 287

shape R#Vocab. 288

LogPCity,X = CCity,X · V ;LogPCountry,X = CCountry,X · V (3) 289

As the dot product with V is linear, the potential 290

linearity holds after the transformation. We can 291

calculate W ∈ R#Vocab×#Vocab and b ∈ R#Vocab for 292

the transformation between logits. We learn (W, b) 293

for logit transformation (rather than hidden state) 294

to improve the interpretability of the fitted W . For 295

example, a high weight in W(France,Paris) indicates a 296

correct understanding of knowledge composition. 297

In practice, only a subdomain4 D of the LM’s 298

large vocabulary is meaningful for the predicted 299

logits, such as DCity = {Paris, Shanghai, Tokyo, 300

· · · } for LogPCity and DCountry = {France, China, 301

Japan, · · · } for LogPCountry. Thus, we are more in- 302

terested in the submatrix of W for these meaningful 303

words. Our main experiments will focus on those 304

values in W representing the linear transformation 305

W(DCity,DCountry) between such output subdomains. 306

The specific procedure to build such subdomains is 307

presented in Appendix D. 308

Based on the prior discussion above, we pro- 309

pose a method to search for the linear transfor- 310

mation. We first build a comprehensive input set 311

by enumerating a large number of words in the 312

LM’s vocabulary. While some words might in- 313

dicate clear answers for certain knowledge (e.g., 314

Obama as X for FCountry), most of them do not 315

(e.g., Lit as X for FCountry). We feed all inputs to 316

different prompts and collect the output logits such 317

as LogPCity and LogPCountry. For each logit, we 318

only keep dimensions for words falling inside the 319

corresponding output vocabulary domain such as 320

DCity and DCountry. By collecting numerous (10K 321

in our experiments) logit pairs, we fit the linear- 322

ity transformation (W, b) with half of those pairs 323

(LogPCity, X,LogPCountry, X),∀X ∈ Train and then 324

evaluate the transformation on other half of pairs 325

(LogPCity, X,LogPCountry, X),∀X ∈ Test. 326

Evaluation. With (W, b), we make predictions 327

on the test pairs, LogPCountry, X = W ·LogPCity, X+ 328

b,∀X ∈ Test. We compare the predictions with the 329

4General subdomain size is ∼ 100, listed in Appendix B.
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test references using the correlation metric, Pear-330

son correlation, to evaluate how similar the log-331

its are distributed. The evaluation is applied by332

both instance-wise (averaged over instance-wise333

logits on x1, x2, · · · ∈ X) and label-wise (aver-334

aged over label-wise logits across instances on335

d1, d2, · · · ∈ D). Our main content focuses on336

the label-wise Pearson correlation as we find that337

the global bias b plays an important role in the338

instance-wise predictions as shown in Appendix C.339

The label-wise evaluation eliminates the effect of b,340

which concentrates on the logit correlation matrix341

W . Another advantage of instance-wise correla-342

tion is that the metric is calculated based on dis-343

tributions with the same dimensions. Besides, the344

correlation weights on different labels also reflects345

how well each label is approximated by the linear346

transformation.347

3.3 Experiment Setup348

While numerous compositional knowledge pairs ex-349

ist in natural language, we focus on large families350

of knowledge composition that share a common-351

ality. Specifically, we include four large families,352

attribute, cross-language, simile, and math. We353

include 111 prompts in our experiments to cover354

broad knowledge fields as listed in Appendix B.355

Attribute. Updating one attribute of a sub-356

ject will affect other attributes as well. The357

City→Country example illustrated before shows358

such a compositional relation in the spatial attribute.359

Another example is: FCEO → FCompany360

Cross-language. Knowledge update is expected361

to be propagated to other languages, like the362

English → French example: FCity → FVille.363

Simile. Simile builds equivalence among the at-364

tributes between objects. Thus, updating a simile to365

a subject will result in updating the corresponding366

attribute. An example is FSameColorAsFruit → FColor.367

Math. Numbers have denser composi-368

tional relations with each other, such as369

“X+1=2”→“X+2=3”. We involve the four370

basic arithmetic operations in experiments to371

explore the knowledge composition in math. An372

example is FX+1 → FX+2.373

For each family, we include the results on 10 ∼374

20 knowledge prompts in the main content to save375

the length and place the others in Appendix E. Ta-376

ble 1 showcases some examples of prompts and377

domains.378

Family Prompt Domain Examples

Attribute “X lives in the city of” Paris, Vienna
“X lives in the country of” France, Austria

X-Lang. “X vit dans la ville de” Paris, Vienne
“X lebt in der Stadt von” Paris, Wien

Simile “X has the same color as” Apple, Banana
“X’s color is” Red, Yellow

Math “X+1=” 1, 2, 3, 4, 5
“X*2=” 2, 4, 6, 8, 10

Table 1: Examples of prompts and domains in different
families of knowledge composition.

We include different LLaMA-3 (Dubey et al., 379

2024) models in our experiments with parameter 380

numbers of 1B, 3B, 8B, and 70B. We include the 381

before and after post-training LMs for the evalua- 382

tion of linear correlation’s resilience against fine- 383

tuning. The variance in the model scale allows us 384

to explore the generality and scaling law of the lin- 385

ear correlation inside different models. We include 386

LMs from the same family to ensure consistency in 387

tokenization and training data, allowing for a more 388

controlled and convenient discussion. Results on 389

other LMs for broader generality are also included 390

in Appendix E. 391

3.4 Experiment Results 392

Figure 3 presents the main findings on linear corre- 393

lations between NTP logits, with full results avail- 394

able in Appendix E. 395

Attribute Strong correlations emerge among 396

semantically related attributes (e.g., city, coun- 397

try, continent) and within thematic clusters such 398

as spatial, language, job, and family-related at- 399

tributes. In contrast, unrelated attributes (e.g., 400

gender vs. continent) show weak correlation, 401

suggesting that LMs can disentangle unrelated 402

factors and mitigate bias. However, some ex- 403

pected relationships (e.g., Language→Continent, 404

CEO→Company) show weak correlation, indicat- 405

ing gaps in knowledge structuring. 406

Cross-language Moderate cross-lingual corre- 407

lations exist, but same-concept alignment across 408

languages (e.g., English-Chinese) is weaker than 409

within-language semantic links. This likely reflects 410

English dominance in LLaMA-3’s training, further 411

examined using Aya in Appendix G. 412

Simile Simile analysis (Table 8) shows moder- 413

ate correlation between objects and their attributes, 414

suggesting LMs can connect figurative expressions 415

with underlying semantics. 416
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Figure 3: The linear correlation between NTP logits of llama-3-8b.

Relation Pair

Hit@Top-N

Influenced Target Influencing Source

1 3 5 1 3 5

City→Country 0.42 0.45 0.48 0.67 0.74 0.78
CEO→Company 0.09 0.09 0.14 0.05 0.05 0.08

Cityen→Cityes 0.91 0.91 0.92 0.67 0.74 0.78
Cityen→Cityzh 0.10 0.13 0.16 0.09 0.11 0.15

Fruit→Color 0.25 0.38 0.47 0.38 0.50 0.54
Food→Taste 0.28 0.50 0.62 0.14 0.36 0.43

X+1→X+2 0.00 0.50 0.60 0.10 0.30 0.50
X+1→X*2 0.10 0.40 0.50 0.10 0.30 0.70

Table 2: The precision of composition built up in W .

Math Strong correlations appear among outputs417

of the same math operator (Figure 7), but further418

analysis reveals that such correlation may not re-419

flect precise computation.420

3.5 W can Reflect Real-world Knowledge421

The weight matrix W can reflect compositional re-422

lations between source and target domains. Thus,423

we check whether the W ’s weights reflect real-424

world knowledge. Specifically, for each token in425

the source (target) domain, we check whether the426

top-influenced (influencing) outputs (inputs), i,e.427

have the highest weights, are consistent with the428

real world. We use Hit@Top-N (N = 1, 3, 5) met-429

ric to evaluate whether there is a correct influenced430

(influencing) token with a top weight. In experi-431

ments that require closed reference, we test subset432

of knowledge pairs with clear causal relations (e.g.,433

City→Country rather than Mother→Father). The434

experiment scale is relatively small due to the spar-435

sity of knowledge composition references.436

We analyze the W precision of 2 cases from437

each family with the results presented in Table 2.438

We find the LM have a relatively precise under-439

standing of the correlation between certain highly440

correlated attributes like City→Country. In trans-441

formation matrix W , 42% cities learn the top-1442

If City = Then Country =

Shanghai China, Italia, Albania, USSR, Korea
NYC USA, USSR, UAE, China, CCCP
Oslo CCCP, Norway, Kosovo, Israel, Oman

Seattle Uruguay, Serbia, Kosovo, Romania, Slovenia
Indianapolis India, Indonesia, France, Iraq, Netherlands

If X + 1 = Then X + 2 =

1 1, 2, 4, 6, 3
2 2, 3, 4, 5, 7
3 3, 6, 5, 4, 7
4 4, 0, 2, 1, 10
5 5, 6, 8, 7, 9

Table 3: Cases of top-influenced tokens pairs in target
knowledge.

weight with their influenced countries and 67% 443

countries have a correct top-1 influencing city. For 444

less correlated CEO→Company attributes, W is 445

also imprecise, suggesting the failure to reflect 446

the real-world causal relation. This phenomenon 447

is also observed in the cross-language family for 448

the strongly correlated English→Spanish and the 449

weakly correlated English→Chinese. However, a 450

strong correlation does not necessarily guarantee a 451

precise W as shown in the math cases. 452

In Table 3, we showcase some top-influenced 453

tokens in the attribute and math correlations to vi- 454

sualize how W reflects real-world correlations. In 455

the City→Country case, some cities like Shanghai 456

and NYC are matched with the correct countries 457

while some others like Oslo, Seattle, and Indone- 458

sia are not. The Indonesia→India case indicates 459

a bias introduced by superficial similarity into the 460

weights in W . The math cases show the correla- 461

tion is dominated by identical mapping. While the 462

LM tries to model a correct correlation as many 463

secondly influenced numbers are correct, the domi- 464

nation of identical mapping hinders the precision of 465

W to reflect real-world correlation. More cases in 466

Appendix H further support our observation and ex- 467

tend it to non-causal correlations like parent names. 468
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Figure 4: The scaling-up of the precision of W .

Relation Pair Logit Correlation Grad. Correlation

City→Country 0.89 0.79
CEO→Company 0.55 0.47

Cityen→Cityes 0.70 0.79
Cityen→Cityzh 0.58 0.46

Fruit→Color 0.48 0.46
Food→Taste 0.47 0.47

X+1→X+2 0.93 0.87
X+1→X*2 0.73 0.66

Table 4: Gradient correlation between relations.

3.6 Is W More Accurate in Larger LMs?469

Our discovery indicates that W reflects real-470

world correlations between knowledge. We check471

whether the weights of W are more in line with the472

real world knowledge for larger LMs. Thus, we473

plot the Top-N metric of correlations in LLaMA-474

3 of different model sizes in Figure 4. In the475

City→Country case, we can view a clear scaling-476

up of W ’s precision, showing that larger LMs477

also better organize their knowledge. However,478

CEO→Company is shown to be a hard causal re-479

lation, whose W ’s precision is not successfully480

scaled up by a larger model size.481

4 Resilient Correlation against Training482

4.1 Gradient Correlation483

As many weights in W reflect the real-world cor-484

relation, we hypothesize that they are resilient485

against gradient propagation because they capture486

inherent patterns that resist change. Thus, we487

check whether the gradients on related knowledge488

prompts are also linearly correlated. We choose489

to train llama-3.2-3b5 with a common setup for490

large LMs (AdamW (Loshchilov and Hutter, 2019)491

with 5× 10−6 learning rate).492

The gradient correlation results are presented in493

Table 4, demonstrating a correlation between the494

gradients on different NTP logits. Specifically, with495

the gradient ∇LogP on a logit, we can estimate the496

gradient on a correlated logit by W · ∇LogP. If497

W is a precise one, the learned knowledge will498

5We select 3B LM for efficiency, which shows a similar
correlation behavior as the 8B LM in Appendix E.

Corr. Prec. Relation Pair Generalization (Random)

High High
City→Country 53.70% (0.78%)

Country→Continent 50.93% (20.00%)
Cityen→Cityes 39.10% (0.41%)

High Low X+1→X+2 0.00% (9.09%)
X+1→X*2 8.18% (9.09%)

Low Low

Fruit→Color 11.60% (6.67%)
Food→Taste 19.44% (10.00%)

CEO→Company 4.34% (1.00%)
Language→Continent 23.65% (20.00%)

Cityen→Cityzh 2.49% (0.41%)
Cityen→Cityja 4.60% (0.41%)

Table 5: The ratio of successful generalization in rela-
tions with different linear correlation and W precision.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

W Weight
0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n

Hallucination
Generalization

Figure 5: The effect of W weights on generalization.

also be correctly synchronized by knowledge com- 499

position caused by W , such as Shanghai→China. 500

Thus, the correlation between gradients indicates 501

a potential mechanism behind how LMs compose 502

learned knowledge. 503

4.2 Correlation after Large-scale 504

Post-training 505

We extend our investigation from single up- 506

dates to large-scale post-training of LMs, test- 507

ing whether the fitted linear transformation 508

(W, b) from a pre-trained LM (e.g., llama-3-8b) 509

still applies to its post-trained counterpart (e.g., 510

llama-3-8b-instruct). Comparing correlation 511

matrices before and after post-training (Figures 3 512

and 8), we observe that the linear correlation 513

remains robust despite extensive optimization, 514

demonstrating that W is resilient to large-scale 515

post-training. This highlights the persistent role 516

of linear correlation in LM generalization. More- 517

over, as detailed in Appendix F, this correlation 518

resilience is even more pronounced in larger LMs. 519

5 Correlation is a Double-edged Sword 520

The potential role of the linear correlation in knowl- 521

edge composition inspires us to investigate how W 522

implicates the generalization of LMs. We antic- 523

ipate the resilient correlation to be a two-edged 524

sword, which propagates knowledge with a precise 525

W but also exacerbates hallucination with a impre- 526

cise W . For validation, we continue to fine-tune 527

the llama-3.2-3b model. 528
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City Reference Generalized Wref Wgen Wmax

Shanghai China China 0.50 0.50 0.50
NYC USA USA 0.58 0.58 0.58

Copenhagen Denmark Denmark 0.47 0.47 0.47
Karnataka India India 0.34 0.34 0.56

Indianapolis USA India −0.05 0.15 0.17
Dresden Germany Israel 0.04 0.13 0.15
Canberra Australia Canada 0.04 0.10 0.10
Helsinki Finland Sweden 0.42 0.11 0.42

Table 6: Generalization cases in City→Country.

We examine how generalization depends on cor-529

relation and the precision of W . Table 5 compares530

relation pairs with varying levels of correlation and531

precision (excluding the rare case of low corre-532

lation and high precision). Results show signifi-533

cant generalization only occurs when both are high.534

We test more low-correlation pairs to confirm their535

poor generalization, suggesting linear correlation536

predicts generalization. When correlation is high537

but W is poor, the LM hallucinates as expected. In538

the X+1→X+2 case, learning “X+1=N” general-539

izes strongly to “X+2=N” as in Figure 3.540

We analyze the role of W weights in both gener-541

alized and hallucinated cases of City→Country. As542

shown in Figure 5, higher W weights on ground-543

truth pairs generally promote successful general-544

ization by enabling more effective gradient prop-545

agation, consistent with the gradient correlation546

trends in Table 4. However, high W weight alone547

does not guarantee generalization. Case studies548

in Table 6 reveal, 1) Correct generalizations typi-549

cally align with top W weights; 2) Exceptions arise550

when target entities like India have high prior prob-551

ability, enabling generalization even with lower552

W , whereas low-prior entities like Finland fail to553

generalize despite strong gradient correlations.554

The hallucinated cases can also be divided into555

two categories. 1) Wrong W weight, a major rea-556

son of compositional hallucination. The fifth to557

seventh cases show low ground-truth W weights,558

consequently leading to unsuccessful generaliza-559

tion. These cases also show a relatively low maxi-560

mal weight in W , which is potentially an indicator561

of imprecise W weights. 2) Low prior probabil-562

ity. The last case shows a high W weight between563

Helsinki and Finland but the prior probability of564

Finland is much lower than Sweden, which results565

in a compositional hallucination. This is a mirror566

case of the Karnataka→India generalization.567

6 What Causes the Correlation?568

To explore the source of linear correlations, we hy-569

pothesize that vocabulary representations—beyond570

pre-training data or architecture—drive this behav-571

+ Position Embedding

Self Attention

Add & Norm

Feedforward

Add & Norm ×
N

 L
a

yers

Word Embedding

LM Head

Mean Pooling

Word Embedding

LM Head

Feedforward

Simplify

Figure 6: We replace the deep intermediate layers of
LMs with an initialized shallow bag-of-word network.

Mapping Generalization

(City→Country)
Shanghai, Tokyo, Paris→China, Japan, France 97.66%
Shanghai, Tokyo, Paris→Japan, France, China 22.66%
S, T, P→C, J, F 36.72%

(Country→Continent)
China, France, Canada→Asia, Europe, North 78.12%

(CEO→Company)
Elon, Andy, Tim→Tesla, Amazon, Apple 58.59%

(+1→+2)
1, 2, 3→3, 4, 5 9.38%

Table 7: Generalization effects of vocabulary mappings.

ior, as similar patterns persist across various LM 572

architectures (Appendix E). To test this, we conduct 573

an ablation study replacing LLaMA-3’s interme- 574

diate layers with mean pooling and a basic feed- 575

forward network (Figure 6). The model is trained 576

on 1,024 paired texts (e.g., “X lives in Shanghai” 577

/ “X lives in China”) for 1,000 epochs to capture 578

compositional relations. It is then evaluated on 128 579

unseen subjects (e.g., “Z lives in Shanghai”) over 580

2,000 epochs to see if it can infer related knowledge 581

(e.g., “Z lives in China”). 582

Several test results are presented in Table 7, 583

showing a consistent generalization performance 584

as the initial deep Transformer model. When we 585

switch the correspondence between cities and coun- 586

tries or keep only the first letter, the generalization 587

behavior disappears, which highly attributes gener- 588

alization to the vocabulary representations. 589

7 Conclusion 590

This work reveals a new perspective on how LMs 591

generalize by knowledge composition. We de- 592

tect linear correlations between related NTP logits, 593

which are resilient to training. Such correlations are 594

found to propagate updates on knowledge to one 595

another, leading to compositional generalization 596

and hallucination. We attribute the correlation to 597

vocabulary representations with an ablation study. 598

Future topics include further investigating the for- 599

mation of such linear correlation and utilizing it for 600

generalizable learning. 601
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Limitations602

As a pioneering study, our work focuses on un-603

covering the phenomenon of linear correlations in604

language models but leaves several key aspects for605

future research:606

• Theoretical Explanation We do not provide a607

formal theory explaining why resilient linear cor-608

relations emerge. Future work can explore the609

underlying model architectures, optimization dy-610

namics, and linguistic structures that drive this611

phenomenon.612

• Data Distribution Effects Our study does not613

systematically analyze how training data influ-614

ences the formation of these correlations. Inves-615

tigating which data properties contribute to their616

emergence could provide deeper insights.617

• Identifying Correlated Knowledge Pairs While618

we observe linear correlations in specific cases619

(e.g., city–country), we do not establish a general620

method to predict what knowledge pairs exhibit621

this property. Future work can develop theoreti-622

cal or empirical criteria for identifying such rela-623

tionships.624

References625

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama626
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,627
Diogo Almeida, Janko Altenschmidt, Sam Altman,628
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.629
arXiv preprint arXiv:2303.08774.630

Lukas Berglund, Meg Tong, Maximilian Kaufmann,631
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-632
rbak, and Owain Evans. 2024. The reversal curse:633
Llms trained on "a is b" fail to learn "b is a". In634
The Twelfth International Conference on Learning635
Representations, ICLR 2024, Vienna, Austria, May636
7-11, 2024. OpenReview.net.637

Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen,638
Ge Fan, Dayiheng Liu, Dongmei Zhang, Zhixu Li,639
and Yanghua Xiao. 2024. Hallucination detection:640
Robustly discerning reliable answers in large lan-641
guage models. Preprint, arXiv:2407.04121.642

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,643
and Mor Geva. 2024. Evaluating the ripple effects644
of knowledge editing in language models. Transac-645
tions of the Association for Computational Linguis-646
tics, 12:283–298.647

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao648
Chang, and Furu Wei. 2022. Knowledge neurons649
in pretrained transformers. In Proceedings of the650
60th Annual Meeting of the Association for Compu-651
tational Linguistics (Volume 1: Long Papers), ACL652

2022, Dublin, Ireland, May 22-27, 2022, pages 8493– 653
8502. Association for Computational Linguistics. 654

David Demeter, Gregory Kimmel, and Doug Downey. 655
2020. Stolen probability: A structural weak- 656
ness of neural language models. arXiv preprint 657
arXiv:2005.02433. 658

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 659
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 660
Akhil Mathur, Alan Schelten, Amy Yang, Angela 661
Fan, et al. 2024. The llama 3 herd of models. arXiv 662
preprint arXiv:2407.21783. 663

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and 664
Yarin Gal. 2024. Detecting hallucinations in large 665
language models using semantic entropy. Nature, 666
630(8017):625–630. 667

Saurabh Garg, Sivaraman Balakrishnan, Zachary C. 668
Lipton, Behnam Neyshabur, and Hanie Sedghi. 669
2022. Leveraging unlabeled data to pre- 670
dict out-of-distribution performance. Preprint, 671
arXiv:2201.04234. 672

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav 673
Goldberg. 2022. Transformer feed-forward layers 674
build predictions by promoting concepts in the vocab- 675
ulary space. In Proceedings of the 2022 Conference 676
on Empirical Methods in Natural Language Process- 677
ing, EMNLP 2022, Abu Dhabi, United Arab Emirates, 678
December 7-11, 2022, pages 30–45. Association for 679
Computational Linguistics. 680

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 681
Levy. 2021. Transformer feed-forward layers are key- 682
value memories. In Proceedings of the 2021 Confer- 683
ence on Empirical Methods in Natural Language Pro- 684
cessing, EMNLP 2021, Virtual Event / Punta Cana, 685
Dominican Republic, 7-11 November, 2021, pages 686
5484–5495. Association for Computational Linguis- 687
tics. 688

Dirk Groeneveld, Iz Beltagy, Evan Pete Walsh, Ak- 689
shita Bhagia, Rodney Kinney, Oyvind Tafjord, 690
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, 691
Yizhong Wang, Shane Arora, David Atkinson, Rus- 692
sell Authur, Khyathi Raghavi Chandu, Arman Cohan, 693
Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hes- 694
sel, Tushar Khot, William Merrill, Jacob Morrison, 695
Niklas Muennighoff, Aakanksha Naik, Crystal Nam, 696
Matthew E. Peters, Valentina Pyatkin, Abhilasha 697
Ravichander, Dustin Schwenk, Saurabh Shah, Will 698
Smith, Emma Strubell, Nishant Subramani, Mitchell 699
Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle 700
Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle 701
Lo, Luca Soldaini, Noah A. Smith, and Hannaneh 702
Hajishirzi. 2024. Olmo: Accelerating the science 703
of language models. In Proceedings of the 62nd 704
Annual Meeting of the Association for Computa- 705
tional Linguistics (Volume 1: Long Papers), ACL 706
2024, Bangkok, Thailand, August 11-16, 2024, pages 707
15789–15809. Association for Computational Lin- 708
guistics. 709

9

https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://arxiv.org/abs/2407.04121
https://arxiv.org/abs/2407.04121
https://arxiv.org/abs/2407.04121
https://arxiv.org/abs/2407.04121
https://arxiv.org/abs/2407.04121
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://arxiv.org/abs/2201.04234
https://arxiv.org/abs/2201.04234
https://arxiv.org/abs/2201.04234
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.3
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.3
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.3
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.3
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.3
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.18653/V1/2024.ACL-LONG.841
https://doi.org/10.18653/V1/2024.ACL-LONG.841
https://doi.org/10.18653/V1/2024.ACL-LONG.841


Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin710
Meng, Martin Wattenberg, Jacob Andreas, Yonatan711
Belinkov, and David Bau. 2024. Linearity of relation712
decoding in transformer language models. In The713
Twelfth International Conference on Learning Rep-714
resentations, ICLR 2024, Vienna, Austria, May 7-11,715
2024. OpenReview.net.716

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,717
Zhangyin Feng, Haotian Wang, Qianglong Chen,718
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting719
Liu. 2024. A survey on hallucination in large lan-720
guage models: Principles, taxonomy, challenges, and721
open questions. ACM Transactions on Information722
Systems.723

Susmit Jha, Sumit Kumar Jha, Patrick Lincoln,724
Nathaniel D Bastian, Alvaro Velasquez, and Sandeep725
Neema. 2023. Dehallucinating large language mod-726
els using formal methods guided iterative prompting.727
In 2023 IEEE International Conference on Assured728
Autonomy (ICAA), pages 149–152. IEEE.729

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-730
sch, Chris Bamford, Devendra Singh Chaplot, Diego731
de las Casas, Florian Bressand, Gianna Lengyel, Guil-732
laume Lample, Lucile Saulnier, et al. 2023. Mistral733
7b. arXiv preprint arXiv:2310.06825.734

Che Jiang, Biqing Qi, Xiangyu Hong, Dayuan Fu, Yang735
Cheng, Fandong Meng, Mo Yu, Bowen Zhou, and736
Jie Zhou. 2024. On large language models’ hal-737
lucination with regard to known facts. Preprint,738
arXiv:2403.20009.739

Katie Kang, Amrith Setlur, Dibya Ghosh, Jacob Stein-740
hardt, Claire Tomlin, Sergey Levine, and Aviral741
Kumar. 2024. What do learning dynamics reveal742
about generalization in llm reasoning? Preprint,743
arXiv:2411.07681.744

Andrew K. Lampinen and James L. McClelland. 2020.745
Transforming task representations to perform novel746
tasks. Proc. Natl. Acad. Sci. USA, 117(52):32970–747
32981.748

Ilya Loshchilov and Frank Hutter. 2019. Decoupled749
weight decay regularization. In 7th International750
Conference on Learning Representations, ICLR 2019,751
New Orleans, LA, USA, May 6-9, 2019. OpenRe-752
view.net.753

Kevin Meng, David Bau, Alex Andonian, and Yonatan754
Belinkov. 2022. Locating and editing factual associ-755
ations in GPT. In Advances in Neural Information756
Processing Systems 35: Annual Conference on Neu-757
ral Information Processing Systems 2022, NeurIPS758
2022, New Orleans, LA, USA, November 28 - Decem-759
ber 9, 2022.760

Abhika Mishra, Akari Asai, Vidhisha Balachandran,761
Yizhong Wang, Graham Neubig, Yulia Tsvetkov, and762
Hannaneh Hajishirzi. 2024. Fine-grained halluci-763
nation detection and editing for language models.764
Preprint, arXiv:2401.06855.765

Binghui Peng, Srini Narayanan, and Christos H. Pa- 766
padimitriou. 2024a. On limitations of the transformer 767
architecture. CoRR, abs/2402.08164. 768

Letian Peng, Chenyang An, and Jingbo Shang. 2024b. 769
Correlation and navigation in the vocabulary key 770
representation space of language models. CoRR, 771
abs/2410.02284. 772

Ofir Press and Lior Wolf. 2017. Using the output embed- 773
ding to improve language models. In Proceedings of 774
the 15th Conference of the European Chapter of the 775
Association for Computational Linguistics, EACL 776
2017, Valencia, Spain, April 3-7, 2017, Volume 2: 777
Short Papers, pages 157–163. Association for Com- 778
putational Linguistics. 779

Ernesto Quevedo, Jorge Yero, Rachel Koerner, Pablo 780
Rivas, and Tomas Cerny. 2024. Detecting hallucina- 781
tions in large language model generation: A token 782
probability approach. Preprint, arXiv:2405.19648. 783

Weihang Su, Changyue Wang, Qingyao Ai, Yiran HU, 784
Zhijing Wu, Yujia Zhou, and Yiqun Liu. 2024. Unsu- 785
pervised real-time hallucination detection based on 786
the internal states of large language models. Preprint, 787
arXiv:2403.06448. 788

Gemma Team, Thomas Mesnard, Cassidy Hardin, 789
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 790
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, 791
Juliette Love, et al. 2024. Gemma: Open models 792
based on gemini research and technology. arXiv 793
preprint arXiv:2403.08295. 794

Jonathan Thomm, Giacomo Camposampiero, Aleksan- 795
dar Terzic, Michael Hersche, Bernhard Schölkopf, 796
and Abbas Rahimi. 2024. Limits of transformer lan- 797
guage models on learning to compose algorithms. 798
In The Thirty-eighth Annual Conference on Neural 799
Information Processing Systems. 800

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron 801
Mueller, Byron C. Wallace, and David Bau. 2024. 802
Function vectors in large language models. In The 803
Twelfth International Conference on Learning Rep- 804
resentations, ICLR 2024, Vienna, Austria, May 7-11, 805
2024. OpenReview.net. 806

Ahmet Üstün, Viraat Aryabumi, Zheng Xin Yong, Wei- 807
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel 808
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, 809
Freddie Vargus, Phil Blunsom, Shayne Longpre, 810
Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, 811
and Sara Hooker. 2024. Aya model: An instruction 812
finetuned open-access multilingual language model. 813
In Proceedings of the 62nd Annual Meeting of the 814
Association for Computational Linguistics (Volume 1: 815
Long Papers), ACL 2024, Bangkok, Thailand, August 816
11-16, 2024, pages 15894–15939. Association for 817
Computational Linguistics. 818

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 819
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 820
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. 821
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy 822

10

https://openreview.net/forum?id=w7LU2s14kE
https://openreview.net/forum?id=w7LU2s14kE
https://openreview.net/forum?id=w7LU2s14kE
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://arxiv.org/abs/2403.20009
https://arxiv.org/abs/2403.20009
https://arxiv.org/abs/2403.20009
https://arxiv.org/abs/2411.07681
https://arxiv.org/abs/2411.07681
https://arxiv.org/abs/2411.07681
https://doi.org/10.1073/PNAS.2008852117
https://doi.org/10.1073/PNAS.2008852117
https://doi.org/10.1073/PNAS.2008852117
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2401.06855
https://arxiv.org/abs/2401.06855
https://arxiv.org/abs/2401.06855
https://doi.org/10.48550/ARXIV.2402.08164
https://doi.org/10.48550/ARXIV.2402.08164
https://doi.org/10.48550/ARXIV.2402.08164
https://doi.org/10.48550/ARXIV.2410.02284
https://doi.org/10.48550/ARXIV.2410.02284
https://doi.org/10.48550/ARXIV.2410.02284
https://doi.org/10.18653/V1/E17-2025
https://doi.org/10.18653/V1/E17-2025
https://doi.org/10.18653/V1/E17-2025
https://arxiv.org/abs/2405.19648
https://arxiv.org/abs/2405.19648
https://arxiv.org/abs/2405.19648
https://arxiv.org/abs/2405.19648
https://arxiv.org/abs/2405.19648
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2403.06448
https://openreview.net/forum?id=AwyxtyMwaG
https://doi.org/10.18653/V1/2024.ACL-LONG.845
https://doi.org/10.18653/V1/2024.ACL-LONG.845
https://doi.org/10.18653/V1/2024.ACL-LONG.845


Liang, Jeff Dean, and William Fedus. 2022. Emer-823
gent abilities of large language models. Trans. Mach.824
Learn. Res., 2022.825

Yaodong Yu, Zitong Yang, Alexander Wei, Yi Ma,826
and Jacob Steinhardt. 2022. Predicting out-of-827
distribution error with the projection norm. Preprint,828
arXiv:2202.05834.829

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,830
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,831
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei832
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song833
in the ai ocean: A survey on hallucination in large834
language models. Preprint, arXiv:2309.01219.835

Zhihao Zhang, Jun Zhao, Qi Zhang, Tao Gui, and Xu-836
anjing Huang. 2024. Unveiling linguistic regions837
in large language models. In Proceedings of the838
62nd Annual Meeting of the Association for Compu-839
tational Linguistics (Volume 1: Long Papers), ACL840
2024, Bangkok, Thailand, August 11-16, 2024, pages841
6228–6247. Association for Computational Linguis-842
tics.843

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-844
ning, Christopher Potts, and Danqi Chen. 2023.845
Mquake: Assessing knowledge editing in language846
models via multi-hop questions. arXiv preprint847
arXiv:2305.14795.848

Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael I.849
Jordan, Jiantao Jiao, Yuandong Tian, and Stuart Rus-850
sell. 2024. Towards a theoretical understanding of851
the ’reversal curse’ via training dynamics. CoRR,852
abs/2405.04669.853

11

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://arxiv.org/abs/2202.05834
https://arxiv.org/abs/2202.05834
https://arxiv.org/abs/2202.05834
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://doi.org/10.18653/V1/2024.ACL-LONG.338
https://doi.org/10.18653/V1/2024.ACL-LONG.338
https://doi.org/10.18653/V1/2024.ACL-LONG.338
https://doi.org/10.48550/ARXIV.2405.04669
https://doi.org/10.48550/ARXIV.2405.04669
https://doi.org/10.48550/ARXIV.2405.04669


A Results for Main Content854

In Table 8, Figures 7 and 8, we illustrate the exper-855

iment results for the main content because of the856

length limitation. Table 8 demonstrates the correla-857

tion between simile objects and attributes. Figure 7858

shows a high correlation between math calculation859

results. Figure 8 presents the linear correlation860

between logits from knowledge before and after861

large-scale post-training, which is compared with862

the results in Figure 3 to conclude a resilient linear863

correlation against fine-tuning. The cross-tuning864

results for simile and math families are presented in865

Table 9 and Figure 9, which validate a resilient cor-866

relation against post-training for highly correlated867

knowledge pairs. Note that the concepts in Ob-868

ject (apple, t-shirt, laptop, chair, washing machine,869

etc.) for simile relations do not directly indicate870

attributes, so they are not used for evaluation when871

reference is required.872

Due to content limitations, we focus on describ-873

ing the phenomenon rather than fully explaining874

its origins. We hope our findings serve as a founda-875

tion for further research into the mechanisms and876

implications of linear correlations in LMs.877

B Prompts and Setups878

Table 10 shows the statistics of the prompts used in879

our experiments. Tables 11, 12, 13 further list all880

the specific prompts used in our experiments. The881

domain size of most prompts is around 100 expect882

for some domains with limited valid outputs like883

Continent and Color.884

C Instance-wise Correlation885

Figure 10 shows the instance-wise Pearson correla-886

tion evaluation results on different knowledge pairs.887

We use attribute correlation as an example to show888

that the target knowledge of each instance can be889

well approximated by a linear transformation on the890

source knowledge. In the main content, we demon-891

strate the label-wise correlation because we find892

the bias term b to dominate the prediction on many893

knowledge pairs that are poorly linear correlated894

(especially in gradient). Some target knowledge895

is predictable with only the prior probability from896

bias even without any linear indicator. Thus, the897

label-wise correlation is a more challenging metric898

by eliminating the effect of b with a better reflec-899

tion of how the source knowledge influences the900

target knowledge.901

D Subdomain Building Procedure 902

To build the subdomains, we do not simply collect 903

the top predictions from the next token predictions 904

because many predictions are introduced by the 905

frequency and similarity bias (e.g., stop words like 906

the) in the next token representation space (Deme- 907

ter et al., 2020; Peng et al., 2024b). Instead, we enu- 908

merate the common answers by gpt-4o (Achiam 909

et al., 2023) and search engines. Then we keep the 910

first tokens of the tokenization for these answers 911

which are not subwords. For example,China will 912

be represented by China, South Korean will be 913

represented by South, and Brunei will be dropped 914

because it is tokenized into [Br, unei]. We exclude 915

subwords because they cannot identify complete se- 916

mantics without tokens after them. The discussion 917

for subword cases is included in Appendix J. 918

E Whole Attribute Results and Extra 919

Discussion 920

From Figure 11 to Figure 19, we present the whole 921

correlation matrices inside all kinds of LMs for 922

different prompts. We can observe the existence of 923

correlation behavior among different LMs. While 924

the correlation in different LMs behaves differently, 925

some common pairs like City→Country hold for 926

all different LMs. Also, models from the same 927

LLaMA-3 family tend to behave in a similar way. 928

We can also observe many spurious correlations 929

such as Hobby→Mother, which generally have low 930

causal relations in the real world. Larger LMs tend 931

to be better at disentangling such kind of spurious 932

correlations as the smallest GPT2-Medium model 933

shows a much stronger correlation. In Figures 18 934

and 19, Table 14, we illustrate that the 3B model 935

has a similar correlation behavior as the 8B one. 936

F More Resilient Correlation in Larger 937

LMs 938

In Figure 20, we find the linear correlation is more 939

resilient against fine-tuning by plotting the cor- 940

relation before and after post-training in 1B, 3B, 941

8B LLaMA-3 LMs as we find more strong cor- 942

relations in larger LMs. In Figure 21, we also 943

plot the correlation matrix between logits from 944

mistral-7b-v0.3 before and after post-training, 945

which supports the existence of resilient linear cor- 946

relation in LMs with vocabulary representation un- 947

tied. 948
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Table 8: Correlation between gradients on simile objects and attributes.

Relation Pair Fruit-Color Food-Taste Gem-Color Name-Country Animal-Size

Correlation 48.42 46.68 27.46 67.35 59.59

Relation Pair Object-Genre Object-Heat Object-Size Object-Price Object-Color

Correlation 77.68 73.11 71.41 72.87 70.87

Figure 7: The linear correlation between NTP logits of llama-3-8b in math operations.
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Figure 8: The linear correlation between NTP logits of llama-3-8b before and after large-scale post-training.
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Table 9: Correlation between logits on simile objects and attributes before and after large-scale post-training.

Relation Pair Fruit-Color Food-Taste Gem-Color Name-Country Animal-Size

Correlation 44.11 37.06 33.66 67.30 49.65

Relation Pair Object-Genre Object-Heat Object-Size Object-Price Object-Color

Correlation 72.03 63.75 66.13 71.09 66.27
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Figure 9: The linear correlation between NTP logits in math operations before and after large-scale post-training.
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Template Domain Size

Attribute 23
Cross-language 11× 5 = 55
Simile 17
Math 4× 4 = 16

Total 111

Table 10: The statistics of prompts in different families.

Knowledge Template Domain Size

A
ttr

ib
ut

e

birthplace “{} was born in the city of ” 242
city “{} lives in the city of ” 242

country “{} lives in the country of ” 128
continent “{} lives in the continent of ” 6
language “{} speaks the language of ” 217
company “{} works for the company of ” 100
landmark “{} lives near the landmark of ” 100

ceo “{} works for the CEO called” 101
mother “{}’s mother’s name is” 100
father “{}’s father’s name is” 100

job “{}’s job is” 105
personality “{}’s personality is” 100

pet “{}’s pet is” 100
sport “{}’s favorite sport is” 102
food “{}’s favorite food is” 104
drink “{}’s favorite drink is” 102

gender “{}’s gender is” 3
vehicle “{}’s preferred mode of transportation is” 51
color “{}’s favorite color is” 15
music “{}’s favorite music genre is” 100
hobby “{}’s favorite hobby is” 101
flower “{}’s favorite flower is” 97

vacation “{}’s favorite vacation spot is” 101

Table 11: Templates used in our experiments (Part 1:
Attribute).

G Multilingual LM 949

Figure G demonstrates the cross-lingual correlation 950

of the multilingual LM, aya-expanse-8b, which 951

outperforms LLaMA-3 in multilingual tasks but 952

still lags behind in English (Üstün et al., 2024). 953

The results show Aya to have a stronger cross- 954

lingual correlation between knowledge pairs, es- 955

pecially in Chinese and Japanese. On Latin lan- 956

guage, Aya’s advantage becomes smaller because 957

these languages share quite a lot entity names with 958

English and LLaMA-3 can benefit from its En- 959

glish ability to complement the weakness in multi- 960

lingual ability. 961

H Extra Case Study 962

We provide extra cases for analysis in this section. 963

In Table 15, we provide massive cases on the in- 964

fluencing cities in the City→Country knowledge 965

composition, which shows that the LM establishes 966

correlation between many (City, Country) pairs 967

such as (Edinburgh, Scotland), (Islamabad, Pak- 968

istan), and (Afghanistan, Kabul). Tables 16 and 17 969

showcase the correlation between knowledge pairs 970

that do not have a clear reference. Taking parent 971

correlation as an example, Table 16 shows correla- 972

tion of parent names from the same ethnicity like 973

(Chen, Mei) and (Santiago, Sofia). 974

14



bir
thp

lac
e
cit

y

co
un

try

co
nti

ne
nt

lan
gu

ag
e

co
mpa

ny

lan
dm

ark ceo

moth
er

fat
he

r
job

pe
rso

na
litype

t
spo

rt
foo

d
dri

nk
ge

nd
er

ve
hic

le
co

lor
musi

c
ho

bb
y

flo
wer

va
cat

ion

Then X has attribute...

va
cat

ion

flo
wer

ho
bb

y

musi
c

co
lor

ve
hic

le

ge
nd

er

dri
nk

foo
d

spo
rt

pe
t

pe
rso

na
lity

job

fat
he

r

moth
er

ceo

lan
dm

ark

co
mpa

ny

lan
gu

ag
e

co
nti

ne
nt

co
un

try

cit
y

bir
thp

lac
e

If
 X

 h
as

 a
ttr

ib
ut

e.
..

Attribute (Instance-wise Correlation)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: The instance-wise correlation between NTP logits of llama3-8b (attribute as an example).
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Figure 11: The attribute correlation between NTP logits of gpt2-medium.
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Figure 12: The attribute correlation between NTP logits of llama-3.2-1b.
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Figure 13: The attribute correlation between NTP logits of llama-3.2-3b.
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Figure 14: The attribute correlation between NTP logits of llama-3-8b.
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Figure 15: The attribute correlation between NTP logits of llama-3-70b.
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Figure 16: The attribute correlation between NTP logits of deepseek-r1-distll-qwen-7B.
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Figure 17: The attribute correlation between NTP logits of mistral-7b-v0.3.
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Figure 18: The linear correlation between NTP logits of llama-3.2-3b.
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Figure 19: The linear correlation between NTP logits of llama-3.2-3b before and after large-scale post-training.
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Figure 20: The correlation becomes more resilient in larger LMs.
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Figure 21: The correlation between logits from mistral-7b-v0.3 before and after post-training.
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Figure 22: The comparison between Aya and LLaMA in cross-lingual correlation.
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Knowledge Template Domain Size
Sp

an
is

h

birthplace “{} nació en la ciudad de” 242
city “{} vive en la ciudad de” 242

country “{} vive en el país de” 128
continent “{} vive en el continente de” 6
language “{} habla el idioma de” 217
company “{} trabaja para la empresa de” 100

ceo “{} trabaja para el CEO llamado” 101
job “El trabajo de {} es” 105

mother “El nombre de la madre de {} es” 100
father “{} el nombre del padre es” 100
gender “El género de {} es” 3

Fr
en

ch

birthplace “{} est né dans la ville de” 242
city “{} vit dans la ville de” 242

country “{} vit dans le pays de” 128
continent “{} vit sur le continent de” 6
language “{} parle la langue de” 217
company “{} travaille pour l’entreprise de” 100

ceo “{} travaille pour le PDG appelé” 101
job “{} travaille comme” 105

mother “Le nom de la mère de {} est” 100
father “Le nom du père de {} est” 100
gender “{} est de sexe” 3

G
er

m
an

birthplace “{} wurde in der Stadt geboren” 242
city “{} lebt in der Stadt” 242

country “{} lebt im Land” 128
continent “{} lebt auf dem Kontinent” 6
language “{} spricht die Sprache von” 217
company “{} arbeitet für das Unternehmen von” 100

ceo “{} arbeitet für den CEO namens” 101
job “Der Beruf von {} ist” 105

mother “Der Name von {}’s Mutter ist” 100
father “Der Name von {}’s Vater ist” 100
gender “Das Geschlecht von {} ist” 3

C
hi

ne
se

birthplace “{}所出生的城市是” 242
city “{}所居住的城市是” 242

country “{}所居住的国家是” 128
continent “{}所居住的大陆是” 6
language “{}说的语言是” 217
company “{}工作的公司是” 100

ceo “{}工作的公司的CEO是” 101
job “{}的工作是” 105

mother “{}的母亲的名字是” 100
father “{}的父亲的名字是” 100
gender “{}的性别是” 3

Ja
pa

ne
se

birthplace “{}が生まれた都市は” 242
city “{}が住んでいる都市は” 242

country “{}が住んでいる国は” 128
continent “{}が住んでいる大陸は” 6
language “{}が話している言語は” 217
company “{}が働いている会社は” 100

ceo “{}が働いている会社のCEOは” 101
job “{}の仕事は” 105

mother “{}の母の名前は” 100
father “{}の父の名前は” 100
gender “{}の性別は” 3

Table 12: Templates used in our experiments (Part 2:
Cross Language).

Knowledge Template Domain Size

Si
m

ile

object_color “The color of {} is the same as” 85
object_price “The size of {} is the same as” 85
object_heat “The heat of {} is the same as” 85

object_genre “The genre of {} is the same as” 85
object_size “The size of {} is the same as” 85

simile_color “The color of {} is” 15
simile_price “The size of {} is” 2
simile_heat “The heat of {} is” 4

simile_genre “The genre of {} is” 22
simile_size “The size of {} is” 3
simile_taste “The taste of {} is” 3

name_country “{} lives in the same country as” 128
gem_color “The color of {} is the same as the gem called” 50

animal_size “The size of {} is the same as the animal called” 100
food_taste “{} has the same taste as the food:” 95
fruit_color “{} X has the same color as the fruit:” 99

M
at

h

X+N “{}+N=” 11
X-N “{}-N=” 11
X*N “{}*N=” 11
X/N “{}/N=” 11

Table 13: Templates used in our experiments (Part 3:
Simile and Math).
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Relation Pair Fruit-Color Food-Taste Gem-Color Name-Country Animal-Size

Correlation 48.37 46.95 50.48 78.83 69.43

Relation Pair Object-Genre Object-Heat Object-Size Object-Price Object-Color

Correlation 81.92 76.48 84.23 84.23 81.08

Table 14: Correlation between logits of llama-3.2-3b on simile objects and attributes.

Country Influencing Cities

Sweden Stockholm, Brisbane, Johannesburg, Cardiff, Chicago, Hyderabad, Aleppo, Lima, Rochester, Salem
Cuba Havana, Chicago, Columbus, stockholm, Rochester, Hyderabad, Scarborough, Johannesburg, singapore, Hamburg

Switzerland Columbus, Stuttgart, Cardiff, Leicester, Chicago, Brisbane, Saras, stockholm, vegas, Bethlehem
Ghana Winnipeg, Nairobi, Johannesburg, Leicester, Atlanta, Tulsa, Maharashtra, Greenville, Brisbane, Lima
Poland Warsaw, Cardiff, Liverpool, Maharashtra, stockholm, Amsterdam, Atlanta, Kashmir, Perth, Aleppo
Turkey Istanbul, Chicago, Toronto, Maharashtra, stockholm, Johannesburg, Cardiff, Lima, Columbus, Ankara
Sudan Nairobi, stockholm, Lima, Tulsa, Johannesburg, Maharashtra, Winnipeg, Hyderabad, Wilmington, Kashmir

Romania Cardiff, Rochester, Johannesburg, Budapest, Seattle, Rajasthan, Hyderabad, Chicago, Kyoto, Lima
Samoa Maharashtra, Leicester, Winnipeg, Chicago, Honolulu, Brisbane, Nairobi, Hyderabad, Lima, Cardiff
Iceland Cardiff, Leicester, Chicago, Amsterdam, Wilmington, Islamabad, Winnipeg, Kyoto, Hyderabad, stockholm
Nigeria Winnipeg, Nairobi, Maharashtra, Lagos, Johannesburg, Stuttgart, Leicester, Abu, Chicago, Tulsa

Iraq Chicago, Hyderabad, Wilmington, Lima, Baghdad, stockholm, Kashmir, Tulsa, Belfast, singapore
Laos Bangkok, Leicester, Chicago, Kashmir, Tulsa, stockholm, Winnipeg, Lima, Rajasthan, Johannesburg

USSR Moscow, NYC, Midlands, stockholm, Chicago, Cardiff, Maharashtra, Pyongyang, Boulder, Columbus
Kosovo Kashmir, Seattle, Leicester, stockholm, Tulsa, Belfast, Mosul, vegas, Rochester, Buenos
China Beijing, Shanghai, Hyderabad, Brisbane, Columbus, stockholm, Maharashtra, Amsterdam, Leicester, Hamburg

Guatemala Greenville, Tulsa, Leicester, Buenos, Johannesburg, Kashmir, Wilmington, Lima, Chicago, Rochester
Tunisia Johannesburg, stockholm, Hamburg, Columbus, Leicester, Tulsa, Stuttgart, Winnipeg, Cardiff, Maharashtra

Denmark Copenhagen, Cardiff, Leicester, Brisbane, Hyderabad, Atlanta, Saras, Chicago, Hamburg, Salem
Nicaragua Nairobi, Bangkok, Rochester, Leicester, Amsterdam, Kerala, Maharashtra, Belfast, Winnipeg, Chicago
Türkiye Maharashtra, München, Seattle, İstanbul, stockholm, Jakarta, Istanbul, Toronto, Milwaukee, Kyoto
Bosnia Hyderabad, Islamabad, Belfast, Johannesburg, Jakarta, Cardiff, Rochester, Kashmir, Leicester, Lima

Netherlands Amsterdam, Cardiff, Midlands, Columbus, Karachi, stockholm, Nottingham, Maharashtra, Saras, Wilmington
Malaysia Leicester, Kuala, Cardiff, Hamburg, Maharashtra, Baltimore, Chicago, Columbus, Johannesburg, Hyderabad
Venezuela Wilmington, vegas, Cardiff, Maharashtra, Rochester, Brisbane, stockholm, Buenos, Lima, Tulsa

Sri Leicester, Atlanta, Kashmir, Rajasthan, Nairobi, Cardiff, stockholm, Lima, Maharashtra, Islamabad
Ireland Dublin, Cardiff, Belfast, Leicester, Tehran, Johannesburg, Stuttgart, Aleppo, Bethlehem, Hyderabad
Liberia Leicester, Winnipeg, Nairobi, Johannesburg, Chicago, Kerala, Rochester, Maharashtra, Atlanta, Greenville

Afghanistan Kabul, Cardiff, Islamabad, stockholm, Tulsa, Chicago, Maharashtra, Kashmir, Rajasthan, Leicester
America Columbus, Chicago, Belfast, Sofia, Hyderabad, Seattle, Cardiff, Johannesburg, Maharashtra, Moscow
Austria Cardiff, Vienna, Hamburg, Hyderabad, Leicester, Bethlehem, Stuttgart, stockholm, Columbus, Rajasthan

Scotland Cardiff, Glasgow, Edinburgh, Stuttgart, stockholm, Belfast, Leicester, Columbus, Maharashtra, Lima
Libya Chicago, stockholm, Columbus, Leicester, Aleppo, Cardiff, Mosul, Lima, Wilmington, Johannesburg

Uruguay Buenos, Seattle, Hyderabad, Maharashtra, Hamburg, Johannesburg, Wilmington, Leicester, Columbus, Cardiff
Bangladesh Winnipeg, Cardiff, Leicester, Maharashtra, Tulsa, Atlanta, Chicago, Bangalore, Islamabad, Kashmir

Bahrain Leicester, Chicago, Brisbane, Kashmir, Lima, Riyadh, Dubai, Wilmington, Atlanta, Saras
Pakistan Islamabad, Cardiff, Jakarta, Karachi, Tulsa, Leicester, Winnipeg, Atlanta, Maharashtra, Wilmington

Fiji Lima, Leicester, Fargo, Kashmir, Brisbane, Winnipeg, Johannesburg, Cardiff, Tulsa, Edinburgh
Cambodia Bangkok, Tulsa, Leicester, Cardiff, stockholm, Kashmir, Johannesburg, Wilmington, Kabul, Lima
Singapore singapore, Chicago, Leicester, Brisbane, Hamburg, Columbus, Atlanta, Kashmir, Johannesburg, Cardiff
Macedonia Leicester, Stuttgart, Winnipeg, Rochester, Kashmir, Johannesburg, Jakarta, Maharashtra, Budapest, Lima
Mongolia Winnipeg, Chattanooga, Leicester, Lima, Cardiff, Kyoto, Maharashtra, Johannesburg, Rajasthan, Hamburg

Peru Lima, Perth, Maharashtra, Winnipeg, Leicester, Chattanooga, Seattle, Hyderabad, Nairobi, Chicago
Myanmar Bangkok, Cardiff, Tulsa, Leicester, Winnipeg, Kashmir, Maharashtra, Kyoto, Lima, Chicago
Trinidad Leicester, Cardiff, Maharashtra, Brisbane, Rochester, Tulsa, Winnipeg, Abu, vegas, Johannesburg

Colombia Maharashtra, Columbus, Lima, Seattle, Rochester, Wilmington, Johannesburg, Stuttgart, Amsterdam, Hyderabad
Maurit Winnipeg, Leicester, Johannesburg, Edinburgh, Cardiff, Chicago, Stuttgart, stockholm, Moscow, Wilmington

Iran Tehran, Cardiff, Lima, Kashmir, Hyderabad, Leicester, Aleppo, Chicago, Stuttgart, Hamburg
India Indianapolis, Cardiff, Maharashtra, Chicago, Hyderabad, Leicester, Lima, Columbus, Winnipeg, stockholm
Spain Madrid, Hyderabad, stockholm, Spokane, Cardiff, Amsterdam, Rome, Barcelona, Dallas, Johannesburg

Honduras Wilmington, Winnipeg, Buenos, Hamburg, Nairobi, stockholm, Johannesburg, Amsterdam, Columbus, Lima
USA NYC, Moscow, Columbus, Midlands, Chicago, Sofia, Karnataka, Karachi, Cardiff, Sevilla

Table 15: The most influencing cities of counties in the City→Country correlation.
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Father Influencing Mothers

Omar Olivia, Nora, Sara, Sofia, Naomi, Diana, Uma, Rosa, Eden, Jade
Victor Victoria, Sofia, Maria, Savannah, Sophie, Uma, Sonia, Angela, Grace, Ivy
Andre Angela, Sofia, Sophie, Savannah, Maria, Rebecca, Ivy, Clara, Chloe, Nina
Julio Sofia, Chloe, Maria, Carmen, Rebecca, Ivy, Rosa, Olivia, Sonia, Savannah

Enrique Carmen, Chloe, Rosa, Clara, Sofia, Emma, Maria, Rebecca, Fiona, Olivia
Amir Sara, Sofia, Amelia, Eden, Mei, Nora, Uma, Bella, Victoria, Diana

Xavier Sophie, Maria, Sonia, Olivia, Emma, Leah, Clara, Uma, Jasmine, Carmen
Javier Carmen, Chloe, Sofia, Ivy, Maria, Jasmine, Olivia, Rosa, Fiona, Jennifer
Vlad Elena, Sofia, Chloe, Mia, Nina, Angela, Diana, Naomi, Savannah, Clara

Roberto Chloe, Sofia, Rosa, Carmen, Lucia, Olivia, Clara, Mei, Maria, Elena
Lars Sophie, Clara, Maria, Nina, Ella, Sara, Harper, Savannah, Rebecca, Fiona
Min Sonia, Mei, Angela, Eden, Clara, Chloe, Grace, Maria, Harper, Savannah

James Grace, Fiona, Ella, Savannah, Emma, Angela, Chloe, Harper, Leah, Maria
Giovanni Lucia, Fiona, Sofia, Savannah, Rosa, Diana, Bella, Chloe, Carmen, Mei

Ivan Ivy, Elena, Sofia, Nina, Maria, Ada, Emma, Sophie, Savannah, Sakura
Diego Chloe, Sofia, Maria, Rosa, Angela, Carmen, Savannah, Diana, Clara, Mei

Fernando Maria, Rosa, Fiona, Savannah, Carmen, Angela, Sofia, Luna, Clara, Ada
Ethan Elena, Leah, Jennifer, Emma, Jasmine, Chloe, Clara, Mei, Ada, Serena
Chen Mei, Chloe, Grace, Nina, Eden, Harper, Sofia, Rebecca, Sakura, Sonia

Gabriel Maria, Sophie, Eden, Leah, Sara, Grace, Chloe, Rebecca, Elena, Luna
Boris Bella, Elena, Angela, Fiona, Nina, Ada, Sofia, Sophie, Nora, Leah
Jean Sophie, Angela, Chloe, Maria, Naomi, Carmen, Savannah, Nina, Rebecca, Lucia

Dmitry Sofia, Elena, Chloe, Diana, Nina, Savannah, Mia, Clara, Sakura, Ivy
Ahmed Sara, Sofia, Sophie, Nora, Uma, Victoria, Eden, Sonia, Jennifer, Mei

Wei Mei, Chloe, Grace, Rebecca, Mia, Sofia, Ada, Nina, Angela, Harper
Ibrahim Sofia, Sara, Eden, Uma, Victoria, Nora, Bella, Ada, Sophie, Elena

Liam Fiona, Emma, Mia, Chloe, Nora, Leah, Grace, Jasmine, Jade, Angela
Mustafa Sara, Sofia, Nora, Victoria, Ada, Uma, Eden, Jade, Rosa, Elena

Jorge Maria, Carmen, Rosa, Chloe, Sofia, Diana, Elena, Fiona, Angela, Nora
Leonardo Clara, Sofia, Jennifer, Olivia, Chloe, Jasmine, Fiona, Rosa, Lucia, Diana

Luca Fiona, Lucia, Sofia, Angela, Maria, Savannah, Emma, Clara, Sakura, Leah
Carlos Carmen, Maria, Rosa, Olivia, Chloe, Sofia, Clara, Sakura, Savannah, Fiona
Pedro Maria, Rosa, Carmen, Chloe, Olivia, Clara, Sakura, Sofia, Ivy, Ada
Michel Sophie, Lucia, Nina, Maria, Leah, Eden, Elena, Sara, Sonia, Carmen

Kai Mei, Maria, Nina, Angela, Chloe, Eden, Jade, Uma, Sakura, Ada
Benjamin Leah, Eden, Bella, Rebecca, Sophie, Grace, Nina, Harper, Lucia, Victoria

Noah Rebecca, Chloe, Nina, Nora, Eden, Naomi, Sara, Grace, Leah, Ada
Ali Sara, Nora, Eden, Victoria, Uma, Sofia, Mei, Jade, Bella, Sonia

Levi Chloe, Leah, Eden, Sara, Nina, Elena, Harper, Bella, Rosa, Rebecca
Antonio Rosa, Maria, Angela, Lucia, Sofia, Chloe, Savannah, Olivia, Carmen, Fiona
Rafael Sofia, Rosa, Carmen, Maria, Clara, Leah, Ivy, Chloe, Naomi, Lucia
Marco Maria, Sofia, Jasmine, Lucia, Clara, Angela, Chloe, Mei, Rebecca, Carmen
Stefan Elena, Fiona, Angela, Savannah, Clara, Sophie, Mei, Maria, Eden, Rebecca
Chung Mei, Chloe, Grace, Maria, Angela, Sonia, Harper, Clara, Savannah, Mia
Abdul Uma, Sara, Sofia, Nora, Jennifer, Ada, Rosa, Victoria, Eden, Bella

Muhammad Sofia, Sara, Victoria, Mei, Emily, Jennifer, Nora, Uma, Eden, Naomi
Hugo Maria, Sophie, Chloe, Clara, Fiona, Emma, Savannah, Angela, Carmen, Ivy
Axel Sophie, Angela, Rebecca, Nina, Ada, Emma, Fiona, Ivy, Eden, Savannah
Lucas Lucia, Maria, Clara, Fiona, Uma, Chloe, Harper, Savannah, Sophie, Jasmine
Mason Harper, Leah, Jasmine, Chloe, Angela, Nina, Ada, Sofia, Ella, Emma
Hassan Sara, Eden, Nora, Victoria, Bella, Sofia, Naomi, Savannah, Mei, Diana
Pablo Maria, Chloe, Sofia, Rosa, Savannah, Rebecca, Carmen, Elena, Fiona, Luna

Raphael Rebecca, Sophie, Elena, Leah, Rosa, Grace, Eden, Fiona, Clara, Sonia
Elijah Elena, Eden, Rebecca, Chloe, Savannah, Ella, Leah, Emily, Grace, Uma
Louis Sophie, Nina, Savannah, Grace, Rosa, Maria, Rebecca, Fiona, Leah, Sonia

Ricardo Chloe, Carmen, Sofia, Rosa, Jennifer, Clara, Rebecca, Sakura, Mei, Olivia
Samuel Sonia, Savannah, Leah, Eden, Rebecca, Sophie, Grace, Ada, Emma, Clara
William Grace, Emma, Emily, Leah, Ada, Harper, Angela, Victoria, Fiona, Diana
Salman Sonia, Sofia, Nora, Uma, Sara, Bella, Eden, Jennifer, Victoria, Leah
Oliver Olivia, Sophie, Harper, Elena, Nina, Maria, Grace, Diana, Emma, Nora
Angelo Angela, Sofia, Fiona, Clara, Chloe, Rosa, Carmen, Savannah, Lucia, Nina
Hans Sophie, Rebecca, Angela, Savannah, Eden, Ella, Clara, Maria, Uma, Mei
Jamal Sofia, Jasmine, Uma, Sara, Mei, Eden, Naomi, Victoria, Bella, Diana

Santiago Sofia, Maria, Rosa, Carmen, Chloe, Savannah, Mei, Olivia, Ivy, Luna

Table 16: The most influencing fathers of mothers in the Mother→Father correlation.
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Attribute Influencing Objects

G
en

re

toys toy, puzzle, drum, shoes, sweater, electric, fridge, gloves, chair, jeans
transport headphones, pen, plate, drum, electric, car, couch, smartphone, rug, suitcase
kitchen drum, jeans, pen, plate, toy, backpack, rug, fridge, chair, grill

furniture drum, chair, fridge, electric, rug, camera, puzzle, shoes, sweater, plate
decor drum, rug, vase, pen, sweater, jeans, smartphone, backpack, washing, speaker

accessories drum, shoes, plate, laptop, electric, oven, gloves, curtains, jeans, chair
sports basketball, pen, drum, jeans, plate, skateboard, tennis, rug, charger, puzzle
travel pen, drum, water, yoga, suitcase, sunglasses, watch, plate, jeans, fridge

art drum, puzzle, pen, scarf, water, camera, couch, toy, chair, jeans
fitness yoga, puzzle, drum, pen, couch, electric, sweater, scarf, rug, camera

outdoors drum, plate, pen, fishing, electric, water, couch, camera, toy, puzzle
bags drum, fridge, sweater, gloves, jeans, backpack, pen, rug, electric, umbrella

electronics electric, drum, headphones, plate, toy, pen, laptop, jeans, sweater, couch
clothing drum, sweater, electric, shoes, skateboard, pen, jeans, camera, rug, fridge

food fridge, drum, pen, water, scarf, couch, plate, smartphone, sweater, speaker
photography camera, water, drum, puzzle, scarf, skateboard, yoga, headphones, rug, couch

literature book, iron, pen, drum, yoga, couch, water, speaker, scarf, fan
appliances electric, sweater, jeans, plate, shoes, fridge, drum, chair, oven, laptop

home electric, oven, drum, smartphone, pen, backpack, rug, jeans, fridge, puzzle
music guitar, drum, headphones, scarf, basketball, pen, toy, puzzle, suitcase, water

H
ea

t

warm hoodie, sweater, clock, lamp, drum, earrings, yoga, apple, tennis, oven
hot hoodie, puzzle, tennis, drum, oven, jeans, car, lamp, earrings, fan

neutral jeans, speaker, blanket, sofa, car, puzzle, earrings, hoodie, tennis, rug
cold hoodie, car, earrings, fan, lamp, curtains, couch, clock, puzzle, sweater

Si
ze

large smartphone, jeans, drum, puzzle, hoodie, umbrella, pencil, clock, car, backpack
medium hoodie, tripod, car, keyboard, drum, suitcase, smartphone, basketball, curtains, bottle

small smartphone, hoodie, car, drum, pencil, jeans, backpack, keyboard, puzzle, toy

C
ol

or

black jeans, iron, fan, umbrella, hoodie, suitcase, puzzle, bowl, printer, electric
green backpack, plate, puzzle, jeans, couch, umbrella, drum, soap, car, sweater
blue jeans, electric, puzzle, plate, backpack, fishing, bottle, chair, car, umbrella
beige jeans, soap, hoodie, drum, puzzle, bottle, suitcase, oven, bed, speaker
gold puzzle, backpack, car, earrings, iron, bottle, drum, jeans, plate, fan

natural jeans, bottle, puzzle, earrings, car, plate, oven, yoga, suitcase, drum
silver bottle, jeans, puzzle, iron, drum, mirror, soap, electric, backpack, earrings

orange puzzle, car, drum, backpack, jeans, umbrella, bottle, electric, oven, plate
red car, drum, earrings, puzzle, microwave, pen, umbrella, bowl, electric, backpack

gray jeans, soap, mouse, puzzle, plate, sweater, umbrella, printer, bed, backpack
brown soap, iron, puzzle, sweater, umbrella, backpack, speaker, drum, hoodie, couch
yellow plate, yoga, car, backpack, umbrella, soap, drum, puzzle, sweater, fan
purple puzzle, drum, electric, hoodie, backpack, jeans, microwave, mouse, bottle, bowl
white plate, suitcase, fan, jeans, puzzle, backpack, soap, umbrella, sweater, drum

Pr
ic

e high smartphone, drum, air, car, hoodie, jeans, backpack, umbrella, puzzle, electric
low drum, jeans, backpack, smartphone, car, hoodie, air, umbrella, puzzle, electric

Table 17: The most influencing objects of attributes in the simile correlation.
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I Low Dispersion in Label-wise975

Correlation976

A potential concern on the correlation metric is977

whether the correlation reflects the majority prop-978

erty of different labels or some highly correlated979

cast bias into the evaluation. We plot the std of980

label-wise correlation distributions of llama-3-8b981

in Figures 23 (on the same model) and 24 (before982

and after post-training). The result shows the dis-983

tributions to be concentrated with a std generally984

lower than 0.05, which addresses the misrepresen-985

tation concern.986

J Subword Issue987

Finally, we show the precision of W is highly af-988

fected by the semantics of the input and output989

tokens. We first categorize the tokens into 3 cate-990

gories, 1) Subword, a token being part of a word,991

such as a prefix like Br in Brunei, 2) Word in a992

phrase, a token is a whole word but also a part of993

a phrase like North in North America, 3) Whole994

semantics, the rest of tokens with a full meaning in995

itself like USA.996

The results in Table 18 show the semantic com-997

pleteness to be an important factor in whether998

knowledge can be generalized. With higher seman-999

tic completeness (Whole Semantics > Word in a1000

Phrase > Subword), the W ’s precision also rise as1001

the token indicates a clearer entity. Consequently,1002

it can be better updated by the generalization be-1003

havior caused by the linear correlation. The only1004

precise mapping (and successful) generalization1005

for “Word in a Phrase” is Riyadh→Saudi Arabia,1006

where the first token Saudi has a strong indication1007

of the country.1008
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Figure 23: The std of correlation distribution between logits.
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Correlation STD

0.00

0.02

0.04

0.06

0.08

0.10

Completeness Correlation Precision (Hit@Top-5) Generalization

Whole Semantics 0.85 0.49 55.67%
Word in a Phrase 0.86 0.10 2.00%

Subword 0.87 0.00 0.00%

Table 18: The correlation and W precision of tokens with different levels of semantic completeness.
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Figure 24: The std of correlation distribution between logits before and after large-scale post-training.
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