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Abstract

The generalization of language models (LMs)
is undergoing active debates, contrasting their
potential for general intelligence with their
struggles with basic knowledge composition
(e.g., reverse/transition curse). This paper un-
covers the phenomenon of linear correlations
in LMs during knowledge composition. For
explanation, there exists a linear transforma-
tion between certain related knowledge that
maps the next token prediction logits from
one prompt to another, e.g., “X lives in the
city of ’— “X lives in the country of” for ev-
ery given X. This mirrors the linearity in hu-
man knowledge composition, such as Paris—
France. Our findings indicate that the lin-
ear transformation is 1) resilient to large-scale
fine-tuning, 2) generalizing updated knowledge
when aligned with real-world relationships, 3)
but causing hallucinations when it deviates.
Empirical results suggest that linear correla-
tion can serve as a potential identifier of LM’s
generalization. Finally, we show such linear
correlations can be learned with a single feed-
forward network and pre-trained vocabulary
representations, indicating LM generalization
heavily relies on the latter.!

1 Introduction

What knowledge do language models (LMs) learn
beyond memorizing the training data? The gen-
eralization ability of LMs is undergoing an active
debate. Optimists claim that LMs might have the
capability in entirely novel tasks with their emer-
gent behavior (Wei et al., 2022) by scaling-up pa-
rameters, while pessimists argue that LMs struggle
with composing simple knowledge (Peng et al.,
2024a; Thomm et al., 2024), such as reverse or
transition curses claiming that LMs cannot even
simply compose knowledge by reversing or transit-
ing (Berglund et al., 2024; Zhu et al., 2024).

'The code will be released for reproduction.

While macroscopically investigating how skills
emerge in language models remains challenging,
we can gain microscopical insight from the gener-
alization behavior on the smallest learning unit,
next token prediction (NTP). We unveil an in-
teresting linear correlation between logits of re-
lated NTPs, such as City—Country, from the
source knowledge like logits of Fiin(X) =
NTP(“X lives in the city of”) to the target knowl-
edge like logits of Feounm(X) = NTP(“X lives
in the country of”). Between logits in knowl-
edge subdomains (e.g., { Paris, Shanghai, - - - } for
Feiny(X)), we can fit a linear transformation
(W, b) that well approximates Fcouniy(X) = W -
Fein(X) + b for any X as the input. To fit the
transformation, we sample numerous output logits
from prompts with arbitrary inputs X's as shown
in Figure 1. Then, (W, b) is fitted with partial logit
pairs and tested on the rest. The Pearson correla-
tion coefficients for evaluation reflects the inherent
relations of knowledge in the real world, with high
correlations in cases like City— Country and low
correlations in cases like City—Gender.

Examining W, we find that its weights mirror
the linearity in the knowledge composition of hu-
mans. In the City— Country case, the W assigns
high weights to real-world (City, Country) pairs
such as Paris— France. In other words, probabil-
ity P(Fcounry(X) = France) is correlated with
P(Feiry(X) = Paris). However, there also exists
counterfactual weights learned in W, for instance,
the weight fit in W for (Indianapolis, India) is
much higher than the correct (Indianapolis, USA).
We say W is precise when W assigns high weights
for the correct knowledge pairs. WW’s precision is
generally low for knowledge pairs with low cor-
relations, but a high linear correlation also does
not guarantee high precision. This motivates us
to explore the connection between 1) such linear
correlations, 2) W’s precision, and 3) LM’s compo-
sitional generalization. Importantly, if the same W
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Figure 1: Demonstration of our main discoveries. 1) We can fit a linear transformation between the output of
source and target knowledge prompts, which is resilient against fine-tuning. 2) Updating the source knowledge will
generalize to the target one via resilient linearity, causing compositional generalization/hallucination.

and b also fit the parameter updates after gradient
propagation, then learning source knowledge will
simultaneously update the target knowledge.

We begin with one-step parameter updates, fine-
tune the LM with a piece of source knowledge, and
then check the gradients on the source and target
knowledge. When the linear correlation between
the source and target knowledge is high, we find
W capable of estimating the gradients on the tar-
get knowledge based on the source gradient. We
then extend the comparison to LMs before and
after large-scale post-training, which shows W fit-
ted before post-training to retain the estimation
ability for the LM after post-training. Thus, W
between highly correlated knowledge is found re-
silient against gradient propagation, which consis-
tently plays an important role in generalization.

To assess the role of linear correlation in LM
generalization, we test source—target knowledge
pairs with varying correlation intensity and W pre-
cision. Generalization succeeds only when both
are high, suggesting LMs struggle with non-linear
generalization, limiting the effectiveness of sim-
ple fine-tuning (Cohen et al., 2024). High correla-
tion with low W precision can cause compositional
hallucinations (e.g., P(Clity) = Indianapolis —
P(Country) = India). These correlations, ob-
servable before fine-tuning, help diagnose potential
faults in LM knowledge composition.

Finally, we explore the linear correlation’s origin
and hypothesize that vocabulary representations
are key. Even when we remove the LM’s com-
plex internals (position embeddings, self-attention,
etc.) and use only a mean-pooling layer plus a sin-
gle feedforward network, the model still learns to
compose knowledge from few paired texts (e.g.,

Fciry = Paris paired with Foyny = France). The
simplified archecture shows similar generalization
performance as the original Transformer. However,
altering lexical mappings (e.g., Paris—Japan) dis-
rupts this ability, underscoring the critical role of
vocabulary representations. Our contributions are
as follows,

* We unveil the linear correlation between the
LM’s output logits for related knowledge.

* We find such linear correlation existing between
gradients and resilient against training, which
connects it to compositional generalization and
hallucination of LMs.

* We attribute the cause of linear correlation be-
tween N'TPs to vocabulary representations.

2 Related Works

2.1 Language Model Interpretation

Language models (LMs) (Achiam et al., 2023;
Team et al., 2024; Groeneveld et al., 2024; Dubey
etal., 2024) are gaining widespread attention across
various fields due to their strong performance on
a variety of tasks, like reasoning and knowledge
retrieval. However, the black-box nature of (neu-
ral) LMs hinders human’s understanding of their
working mechanism. Various methods have been
developed to interpret LM behavior by analyzing
its parameters and intermediate representations.
Several works suggest that LMs store knowledge
inside the feedforward layers (Geva et al., 2021;
Dai et al., 2022; Meng et al., 2022), which are
used in a key-value matching manner to map in-
puts into related knowledge (Geva et al., 2022).
Some parameters are also found to perform cer-
tain relational transformations for the LM (Todd



et al., 2024; Zhang et al., 2024), known as the task
representations (Lampinen and McClelland, 2020).
For certain subsets of relations, LMs have been
unexpectedly found to encode knowledge in a lin-
ear manner (Hernandez et al., 2024), suggesting
a potential role of linearity in their understanding
of relational structures. However, it remains un-
known how the LM understands the transformation
between relations. Our work shows the linearity be-
tween the output from several relation pairs given
the same input.

2.2 Model Generalization

The power of modern deep neural networks lies
in their remarkable ability to generalize effectively
to unseen inputs. However, the exact mechanisms
through which these models achieve generaliza-
tion remain poorly understood. For instance, in the
context of knowledge editing, numerous research
studies have observed that standard fine-tuning
methods for updating knowledge often struggle
to meet critical objectives simultaneously . On
one hand, they fail to prevent unintended modifica-
tions to unrelated knowledge. On the other hand,
they frequently fall short of ensuring that logical
deductions based on the updated knowledge are
properly incorporated (Cohen et al., 2024; Zhong
et al., 2023). Previous research has proposed var-
ious metrics and methods to measure and predict
generalization in deep neural networks. However,
these approaches don’t cover the perspective of cor-
relation in model generalization (Yu et al., 2022;
Garg et al., 2022; Kang et al., 2024).

2.3 Hallucination Detection

Hallucination remains one of the most significant
challenges in the deployment of language models
(LMs) (Zhang et al., 2023; Huang et al., 2024). Nu-
merous studies have explored approaches to predict
and mitigate this issue. For instance, some prior
works utilize trained classifiers to identify halluci-
nations (Jiang et al., 2024; Quevedo et al., 2024;
Chen et al., 2024). Another method involves de-
tecting hallucinations by clustering semantically
similar responses and calculating entropy across
these clusters (Farquhar et al., 2024). Addition-
ally, the MIND framework has been proposed to
exploit the internal states of LMs during inference,
enabling real-time hallucination detection (Su et al.,
2024). Moreover, formal methods guided by iter-
ative prompting have been employed to dehalluci-
nate LM outputs (Jha et al., 2023). RAG has also

been used to detect and correct hallucinations in
LM (Mishra et al., 2024). Our study presents an
innovative approach to predicting hallucinations,
different from existing methodologies, by leverag-
ing the correlation.

3 Discovering Linear Correlation

3.1 Preliminary and Motivation

Next Token Prediction. Neural language mod-
els have been scaled up to numerous parameters
but can still be understood as a mapping function
among vocabulary representations 1V € R¥Vocabxd
We denote the embedding of the word X as Vy €
R?. For an input word sequence, such as “X lives
in the city of”, the embeddings of the involved
words will be processed with other components in
the LM 6_y (positional embedding, self-attention
networks, etc.) to encode the input context as
C = F([Vx, - ,Vyl) € RL Most?, if not all,
LMs tie the input and output vocabulary embed-
dings together (Press and Wolf, 2017) to use the dot
product C' - Vy as the logit of Y for the next token
prediction. Finally, the vocabulary-wise dot prod-
ucts are normalized by a softmax layer to represent
the probability of a certain token (Y for example).?

eC-Vy

Po_y, (M[Vx, Viives: - 7V0fD = W
zeVoca

)]
For a subset of all possible sequences that follow
the template “X lives in the city of” and takes ar-
bitrary X as the input, we can view template rep-
resentations [Viies, - - - , Vyy| as constant to map a
variable X (Vx) with the City relation.

P9ﬁv (Y‘ [VXv Viivess " Vof]) = PGﬁV7[‘/liVCS"“ Vot (Y|V)8)

Here, the encoding function Fiy =
F(|[Viives, - -+ , Vor])  (subscript City denotes
the semantics of constant representations) affects
the final probabilistic distribution by mapping Vx
to C' near vocabulary embeddings of cities, such as

VParis s ‘/rShan ghais VTokyo .

Motivation: Linearity in Relation. Some
knowledge like FityTocountry (“X is a city in the
country of”’) are found linear (Hernandez et al.,
2024) between vocabulary representations, which

In Appendix E, we empirically show our conclusion also
holds for an parameter untied LM - Mistral (Jiang et al., 2023)

3We omit the discussion of potential bias terms, multiple
token input for simplification and reading fluency.
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Figure 2: Our hypothesis and questions about how LMs
compose knowledge by learning (W, b).

means F' can be well approximated by (W, b) s.t.
C = WYV + b. While not all mappings have such
an interesting property, this phenomenon indicates
the potential for LMs to compose knowledge in
their parameters.

Knowledge Composition. There exists composi-
tional relations between knowledge such as Fountry
(“X lives in the country of”’) can be composed
by other relations as FeityToCountry (Fity) since
one’s residential city (source knowledge) indi-
cates one’s residential country (target knowledge).

Suppose the LM applies Fciy(Vx) to map Vx

close to a city embedding like Vp,,;s), then may

the LM learn (W, b) inside parameters and per-
form Fi Country(VX ) = I CityToCountry(F City(VX )) =

W Vparis + b = VErance? While the hypothesis can

be made for non-linear relations in the composi-

tion as well, we emphasize the linearity as it cor-
responds to the key-value matching (Geva et al.,

2021) behavior of Transformers. The linear trans-

formation can be simply performed by a feedfor-

ward network activated by self-attention.
Motivated by the potential role of linearity in
compositional knowledge, we conduct experiments
to validate the hypothesis that LMs learn such lin-
ear transformation inside the parameters for compo-
sition. The roadmap of our exploration is presented
in Figure 2, with questions we will answer in the
following sections. We will demonstrate that

* Such (W, b) exists for logits prompted from cer-
tain related knowledge pairs, which is applicable
to arbitrary inputs, not necessarily indicating a
known output (§ 3.4).

* Such linearity stays resilient against large-scale
fine-tuning, which guarantees the LM’s general-
ization to compositional knowledge (§ 4).

* Such linearity can be highly attributed to the vo-
cabulary representations. (§ 6).

3.2 Method and Evaluation

We search for the potential linear transformation
between pairs of source and target knowledge. Con-

tinuing with the (Fcity, FCountry) €Xample, the trans-
formation will be established between Ccjyy x =
F City(VX) and C’Country,X = I Country(VX ) We then
decode the two representations by the LM head to
produce logits LogPcy x and LogP ¢y x both in
shape R#Vocab.

LOgPCily,X = CCileX : V7 LOgPCoumry,X = CCO'—"“T%X % (3)

As the dot product with V' is linear, the potential
linearity holds after the transformation. We can
calculate T g R#¥Vocabx#Vocab apq p ¢ R#Vocad for
the transformation between logits. We learn (W, b)
for logit transformation (rather than hidden state)
to improve the interpretability of the fitted . For
example, a high weight in W gance paris) indicates a
correct understanding of knowledge composition.

In practice, only a subdomain* D of the LM’s
large vocabulary is meaningful for the predicted
logits, such as Dciyy = {Paris, Shanghai, Tokyo,
.-} for LogPCity and Dcounyey = {France, China,
Japan, - - - } for LogP gy - Thus, we are more in-
terested in the submatrix of W for these meaningful
words. Our main experiments will focus on those
values in W representing the linear transformation
W Deitg: Deountry) between such output subdomains.
The specific procedure to build such subdomains is
presented in Appendix D.

Based on the prior discussion above, we pro-
pose a method to search for the linear transfor-
mation. We first build a comprehensive input set
by enumerating a large number of words in the
LM’s vocabulary. While some words might in-
dicate clear answers for certain knowledge (e.g.,
Obama as X for Fcounyy), most of them do not
(e.g., Lit as X for Founny). We feed all inputs to
different prompts and collect the output logits such
as LogPc;, and LogPcyyyy- For each logit, we
only keep dimensions for words falling inside the
corresponding output vocabulary domain such as
Dcity and Dcounery- By collecting numerous (10K
in our experiments) logit pairs, we fit the linear-
ity transformation (W, b) with half of those pairs
(LogPciyy, x> LOZPCounuy, x)» VX € Train and then
evaluate the transformation on other half of pairs
(LOgPCity, X LOgPCountry, X)? VX € Test.

Evaluation. With (W, b), we make predictions
on the test pairs, LogPc ey, x = W -LogPejiy x +
b, VX € Test. We compare the predictions with the

*General subdomain size is ~ 100, listed in Appendix B.



test references using the correlation metric, Pear-
son correlation, to evaluate how similar the log-
its are distributed. The evaluation is applied by
both instance-wise (averaged over instance-wise
logits on z1,z2, -+ € X) and label-wise (aver-
aged over label-wise logits across instances on
di,do, -+ € D). Our main content focuses on
the label-wise Pearson correlation as we find that
the global bias b plays an important role in the
instance-wise predictions as shown in Appendix C.
The label-wise evaluation eliminates the effect of b,
which concentrates on the logit correlation matrix
W. Another advantage of instance-wise correla-
tion is that the metric is calculated based on dis-
tributions with the same dimensions. Besides, the
correlation weights on different labels also reflects
how well each label is approximated by the linear
transformation.

3.3 Experiment Setup

While numerous compositional knowledge pairs ex-
ist in natural language, we focus on large families
of knowledge composition that share a common-
ality. Specifically, we include four large families,
attribute, cross-language, simile, and math. We
include 111 prompts in our experiments to cover
broad knowledge fields as listed in Appendix B.

Attribute. Updating one attribute of a sub-
ject will affect other attributes as well. The
City— Country example illustrated before shows
such a compositional relation in the spatial attribute.
Another example is: Fcgo — Fompany

Cross-language. Knowledge update is expected
to be propagated to other languages, like the
English — French example: Fciyy — Fvile.

Simile. Simile builds equivalence among the at-
tributes between objects. Thus, updating a simile to
a subject will result in updating the corresponding
attribute. An example iS FsameColorAsFruit — £ Color-

Math. Numbers have denser composi-
tional relations with each other, such as
“X+1=2"—“X+2=3". We involve the four

basic arithmetic operations in experiments to
explore the knowledge composition in math. An
example is Fxi; — Fxyo.

For each family, we include the results on 10 ~
20 knowledge prompts in the main content to save
the length and place the others in Appendix E. Ta-
ble 1 showcases some examples of prompts and
domains.

Family  Prompt Domain Examples
. “X lives in the city of” Paris, Vienna
Atribute “Xlives in the country of”  France, Austria
X-Lan “X vit dans la ville de” Paris, Vienne
g “X lebt in der Stadt von” Paris, Wien
Simile “X has the same color as”  Apple, Banana
“X’s color is” Red, Yellow
“K+1=" 1,2,3,4,5
Math oy 2,4,6,8, 10

Table 1: Examples of prompts and domains in different
families of knowledge composition.

We include different LLaMA-3 (Dubey et al.,
2024) models in our experiments with parameter
numbers of 1B, 3B, 8B, and 70B. We include the
before and after post-training LMs for the evalua-
tion of linear correlation’s resilience against fine-
tuning. The variance in the model scale allows us
to explore the generality and scaling law of the lin-
ear correlation inside different models. We include
LMs from the same family to ensure consistency in
tokenization and training data, allowing for a more
controlled and convenient discussion. Results on
other LMs for broader generality are also included
in Appendix E.

3.4 Experiment Results

Figure 3 presents the main findings on linear corre-
lations between NTP logits, with full results avail-
able in Appendix E.

Attribute Strong correlations emerge among
semantically related attributes (e.g., city, coun-
try, continent) and within thematic clusters such
as spatial, language, job, and family-related at-
tributes. In contrast, unrelated attributes (e.g.,
gender vs. continent) show weak correlation,
suggesting that LMs can disentangle unrelated
factors and mitigate bias. However, some ex-
pected relationships (e.g., Language— Continent,
CEO— Company) show weak correlation, indicat-
ing gaps in knowledge structuring.

Cross-language Moderate cross-lingual corre-
lations exist, but same-concept alignment across
languages (e.g., English-Chinese) is weaker than
within-language semantic links. This likely reflects
English dominance in LLaMA-3’s training, further
examined using Aya in Appendix G.

Simile Simile analysis (Table 8) shows moder-
ate correlation between objects and their attributes,
suggesting LMs can connect figurative expressions
with underlying semantics.
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Figure 3: The linear correlation between NTP logits of 11ama-3-8b.
Hit@Top-N If City = Then Country =
Relation Pair Influenced Target Influencing Source Shanghai China, Italia, Albania, USSR, Korea
NYC USA, USSR, UAE, China, CCCP

1 3 5 1 3 5

City—Country 0.42 045 048 0.67 0.74 0.78
CEO—Company 0.09 0.09 0.14 0.05 0.05 0.08

Cityen—Cityes 091 091 092 0.67 074 0.78
Cityen—Cityzn 0.10 0.13 0.16 0.09 0.11 0.15
Fruit—Color 0.25 0.38 0.47 0.38 050 0.54
Food—Taste 0.28 0.50 0.62 0.14 0.36 043
X+1—-X+2 0.00 050 0.60 0.10 0.30 0.50
X+1—X*2 0.10 040 0.50 0.10 0.30 0.70

Table 2: The precision of composition built up in W.

Math Strong correlations appear among outputs
of the same math operator (Figure 7), but further
analysis reveals that such correlation may not re-
flect precise computation.

3.5 W can Reflect Real-world Knowledge

The weight matrix W can reflect compositional re-
lations between source and target domains. Thus,
we check whether the W’s weights reflect real-
world knowledge. Specifically, for each token in
the source (target) domain, we check whether the
top-influenced (influencing) outputs (inputs), i,e.
have the highest weights, are consistent with the
real world. We use Hit@Top-N (N = 1, 3, 5) met-
ric to evaluate whether there is a correct influenced
(influencing) token with a top weight. In experi-
ments that require closed reference, we test subset
of knowledge pairs with clear causal relations (e.g.,
City— Country rather than Mother— Father). The
experiment scale is relatively small due to the spar-
sity of knowledge composition references.

We analyze the W precision of 2 cases from
each family with the results presented in Table 2.
We find the LM have a relatively precise under-
standing of the correlation between certain highly
correlated attributes like City— Country. In trans-
formation matrix W, 42% cities learn the top-1

Oslo CCCP, Norway, Kosovo, Israel, Oman

Seattle Uruguay, Serbia, Kosovo, Romania, Slovenia
Indianapolis India, Indonesia, France, Iraq, Netherlands
fX+1= Then X +2 =

1 1,2,4,6,3
2 2,3,4,5,7
3 3,6,5,4,7
4 4,0,2,1,10
5 5,6,8,7,9

Table 3: Cases of top-influenced tokens pairs in target
knowledge.

weight with their influenced countries and 67%
countries have a correct top-1 influencing city. For
less correlated CEO— Company attributes, W is
also imprecise, suggesting the failure to reflect
the real-world causal relation. This phenomenon
is also observed in the cross-language family for
the strongly correlated English— Spanish and the
weakly correlated English— Chinese. However, a
strong correlation does not necessarily guarantee a
precise W as shown in the math cases.

In Table 3, we showcase some top-influenced
tokens in the attribute and math correlations to vi-
sualize how W reflects real-world correlations. In
the City— Country case, some cities like Shanghai
and NYC are matched with the correct countries
while some others like Oslo, Seattle, and Indone-
sia are not. The Indonesia— India case indicates
a bias introduced by superficial similarity into the
weights in W. The math cases show the correla-
tion is dominated by identical mapping. While the
LM tries to model a correct correlation as many
secondly influenced numbers are correct, the domi-
nation of identical mapping hinders the precision of
W to reflect real-world correlation. More cases in
Appendix H further support our observation and ex-
tend it to non-causal correlations like parent names.
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Figure 4: The scaling-up of the precision of WW.

Relation Pair Logit Correlation ~ Grad. Correlation

City—Country 0.89 0.79
CEO—Company 0.55 0.47
Cityen—Cityes 0.70 0.79
Cityen—Cityzn 0.58 0.46
Fruit—Color 0.48 0.46
Food— Taste 0.47 0.47
X+1—X+2 0.93 0.87
X+1—-X*2 0.73 0.66

Table 4: Gradient correlation between relations.

3.6 Is W More Accurate in Larger LMs?

Our discovery indicates that W reflects real-
world correlations between knowledge. We check
whether the weights of W are more in line with the
real world knowledge for larger LMs. Thus, we
plot the Top- N metric of correlations in LLaMA-
3 of different model sizes in Figure 4. In the
City—Country case, we can view a clear scaling-
up of W’s precision, showing that larger LMs
also better organize their knowledge. However,
CEO—Company is shown to be a hard causal re-
lation, whose W’s precision is not successfully
scaled up by a larger model size.

4 Resilient Correlation against Training

4.1 Gradient Correlation

As many weights in W reflect the real-world cor-
relation, we hypothesize that they are resilient
against gradient propagation because they capture
inherent patterns that resist change. Thus, we
check whether the gradients on related knowledge
prompts are also linearly correlated. We choose
to train 11ama-3.2-3b> with a common setup for
large LMs (AdamW (Loshchilov and Hutter, 2019)
with 5 x 1076 learning rate).

The gradient correlation results are presented in
Table 4, demonstrating a correlation between the
gradients on different NTP logits. Specifically, with
the gradient VLogP on a logit, we can estimate the
gradient on a correlated logit by W - VLogP. If
W is a precise one, the learned knowledge will

SWe select 3B LM for efficiency, which shows a similar
correlation behavior as the 8B LM in Appendix E.

Corr.  Prec. Relation Pair Generalization (Random)

City—Country 53.70% (0.78%)
High High  Country—Continent 50.93% (20.00%)
Cityen—sCityes 39.10% (0.41%)
Hish Low X+1—-X+2 0.00% (9.09%)
g X+1-X*2 8.18% (9.09%)
Fruit—Color 11.60% (6.67%)
Food— Taste 19.44% (10.00%)
Low  Low CEO—Company 4.34% (1.00%)
Language—Continent 23.65% (20.00%)

Cityen—Cityn
Cityen—Cityja

2.49% (0.41%)
4.60% (0.41%)

Table 5: The ratio of successful generalization in rela-

tions with different linear correlation and W precision.
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Figure 5: The effect of W weights on generalization.

also be correctly synchronized by knowledge com-
position caused by W, such as Shanghai—China.
Thus, the correlation between gradients indicates
a potential mechanism behind how LMs compose
learned knowledge.

4.2 Correlation after Large-scale
Post-training

We extend our investigation from single up-
dates to large-scale post-training of LMs, test-
ing whether the fitted linear transformation
(W, b) from a pre-trained LM (e.g., 11ama-3-8b)
still applies to its post-trained counterpart (e.g.,
llama-3-8b-instruct). Comparing correlation
matrices before and after post-training (Figures 3
and 8), we observe that the linear correlation
remains robust despite extensive optimization,
demonstrating that T is resilient to large-scale
post-training. This highlights the persistent role
of linear correlation in LM generalization. More-
over, as detailed in Appendix F, this correlation
resilience is even more pronounced in larger LMs.

5 Correlation is a Double-edged Sword

The potential role of the linear correlation in knowl-
edge composition inspires us to investigate how W
implicates the generalization of LMs. We antic-
ipate the resilient correlation to be a two-edged
sword, which propagates knowledge with a precise
W but also exacerbates hallucination with a impre-
cise W. For validation, we continue to fine-tune
the 11ama-3.2-3b model.



City Reference  Generalized ~ Wi Ween  Whnax
Shanghai China China 0.50 0.50  0.50
NYC USA USA 0.58 0.58 0.58
Copenhagen  Denmark Denmark 0.47 0.47  0.47
Karnataka India India 0.34 0.34  0.56
Indianapolis USA India —-0.05 0.15 0.17
Dresden Germany Israel 0.04 0.13 0.15
Canberra Australia Canada 0.04 0.10 0.10
Helsinki Finland Sweden 0.42 0.11  0.42

Table 6: Generalization cases in City— Country.

We examine how generalization depends on cor-
relation and the precision of W. Table 5 compares
relation pairs with varying levels of correlation and
precision (excluding the rare case of low corre-
lation and high precision). Results show signifi-
cant generalization only occurs when both are high.
We test more low-correlation pairs to confirm their
poor generalization, suggesting linear correlation
predicts generalization. When correlation is high
but W is poor, the LM hallucinates as expected. In
the X+/—X+2 case, learning “X+/=N" general-
izes strongly to “X+2=N" as in Figure 3.

We analyze the role of W weights in both gener-
alized and hallucinated cases of City— Country. As
shown in Figure 5, higher W weights on ground-
truth pairs generally promote successful general-
ization by enabling more effective gradient prop-
agation, consistent with the gradient correlation
trends in Table 4. However, high W weight alone
does not guarantee generalization. Case studies
in Table 6 reveal, 1) Correct generalizations typi-
cally align with top W weights; 2) Exceptions arise
when target entities like India have high prior prob-
ability, enabling generalization even with lower
W, whereas low-prior entities like Finland fail to
generalize despite strong gradient correlations.

The hallucinated cases can also be divided into
two categories. 1) Wrong W weight, a major rea-
son of compositional hallucination. The fifth to
seventh cases show low ground-truth W weights,
consequently leading to unsuccessful generaliza-
tion. These cases also show a relatively low maxi-
mal weight in W, which is potentially an indicator
of imprecise W weights. 2) Low prior probabil-
ity. The last case shows a high W weight between
Helsinki and Finland but the prior probability of
Finland is much lower than Sweden, which results
in a compositional hallucination. This is a mirror
case of the Karnataka—India generalization.

6 What Causes the Correlation?

To explore the source of linear correlations, we hy-
pothesize that vocabulary representations—beyond
pre-training data or architecture—drive this behav-

( LM Head ) LM Head )

Feedforward J
Mean Pooling J

Word Embedding ]

Add & Norm

Feedforward
Simplify

Add & Norm

Self Attention

[ + Position Embedding ]

[ Word Embedding ]

Figure 6: We replace the deep intermediate layers of
LMs with an initialized shallow bag-of-word network.

Mapping Generalization
(City—Country)

Shanghai, Tokyo, Paris—China, Japan, France 97.66%
Shanghai, Tokyo, Paris—Japan, France, China 22.66%
S, T,P—C,J,F 36.72%
(Country— Continent)

China, France, Canada— Asia, Europe, North 78.12%
(CEO— Company)

Elon, Andy, Tim—Tesla, Amazon, Apple 58.59%
(+1—+2)

1,2,3-3,4,5 9.38%

Table 7: Generalization effects of vocabulary mappings.

ior, as similar patterns persist across various LM
architectures (Appendix E). To test this, we conduct
an ablation study replacing LLaMA-3’s interme-
diate layers with mean pooling and a basic feed-
forward network (Figure 6). The model is trained
on 1,024 paired texts (e.g., “X lives in Shanghai”
/ “X lives in China”) for 1,000 epochs to capture
compositional relations. It is then evaluated on 128
unseen subjects (e.g., “Z lives in Shanghai”) over
2,000 epochs to see if it can infer related knowledge
(e.g., “Zlives in China”).

Several test results are presented in Table 7,
showing a consistent generalization performance
as the initial deep Transformer model. When we
switch the correspondence between cities and coun-
tries or keep only the first letter, the generalization
behavior disappears, which highly attributes gener-
alization to the vocabulary representations.

7 Conclusion

This work reveals a new perspective on how LMs
generalize by knowledge composition. We de-
tect linear correlations between related NTP logits,
which are resilient to training. Such correlations are
found to propagate updates on knowledge to one
another, leading to compositional generalization
and hallucination. We attribute the correlation to
vocabulary representations with an ablation study.
Future topics include further investigating the for-
mation of such linear correlation and utilizing it for
generalizable learning.



Limitations

As a pioneering study, our work focuses on un-
covering the phenomenon of linear correlations in
language models but leaves several key aspects for
future research:

* Theoretical Explanation We do not provide a
formal theory explaining why resilient linear cor-
relations emerge. Future work can explore the
underlying model architectures, optimization dy-
namics, and linguistic structures that drive this
phenomenon.

* Data Distribution Effects Our study does not
systematically analyze how training data influ-
ences the formation of these correlations. Inves-
tigating which data properties contribute to their
emergence could provide deeper insights.

¢ Identifying Correlated Knowledge Pairs While
we observe linear correlations in specific cases
(e.g., city—country), we do not establish a general
method to predict what knowledge pairs exhibit
this property. Future work can develop theoreti-
cal or empirical criteria for identifying such rela-
tionships.
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A Results for Main Content

In Table 8, Figures 7 and 8, we illustrate the exper-
iment results for the main content because of the
length limitation. Table 8 demonstrates the correla-
tion between simile objects and attributes. Figure 7
shows a high correlation between math calculation
results. Figure 8 presents the linear correlation
between logits from knowledge before and after
large-scale post-training, which is compared with
the results in Figure 3 to conclude a resilient linear
correlation against fine-tuning. The cross-tuning
results for simile and math families are presented in
Table 9 and Figure 9, which validate a resilient cor-
relation against post-training for highly correlated
knowledge pairs. Note that the concepts in Ob-
Jject (apple, t-shirt, laptop, chair, washing machine,
etc.) for simile relations do not directly indicate
attributes, so they are not used for evaluation when
reference is required.

Due to content limitations, we focus on describ-
ing the phenomenon rather than fully explaining
its origins. We hope our findings serve as a founda-
tion for further research into the mechanisms and
implications of linear correlations in LMs.

B Prompts and Setups

Table 10 shows the statistics of the prompts used in
our experiments. Tables 11, 12, 13 further list all
the specific prompts used in our experiments. The
domain size of most prompts is around 100 expect
for some domains with limited valid outputs like
Continent and Color.

C Instance-wise Correlation

Figure 10 shows the instance-wise Pearson correla-
tion evaluation results on different knowledge pairs.
We use attribute correlation as an example to show
that the target knowledge of each instance can be
well approximated by a linear transformation on the
source knowledge. In the main content, we demon-
strate the label-wise correlation because we find
the bias term b to dominate the prediction on many
knowledge pairs that are poorly linear correlated
(especially in gradient). Some target knowledge
is predictable with only the prior probability from
bias even without any linear indicator. Thus, the
label-wise correlation is a more challenging metric
by eliminating the effect of b with a better reflec-
tion of how the source knowledge influences the
target knowledge.
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D Subdomain Building Procedure

To build the subdomains, we do not simply collect
the top predictions from the next token predictions
because many predictions are introduced by the
frequency and similarity bias (e.g., stop words like
the) in the next token representation space (Deme-
ter et al., 2020; Peng et al., 2024b). Instead, we enu-
merate the common answers by gpt-4o0 (Achiam
et al., 2023) and search engines. Then we keep the
first tokens of the tokenization for these answers
which are not subwords. For example,China will
be represented by China, South Korean will be
represented by South, and Brunei will be dropped
because it is tokenized into [Br, unei]. We exclude
subwords because they cannot identify complete se-
mantics without tokens after them. The discussion
for subword cases is included in Appendix J.

E Whole Attribute Results and Extra
Discussion

From Figure 11 to Figure 19, we present the whole
correlation matrices inside all kinds of LMs for
different prompts. We can observe the existence of
correlation behavior among different LMs. While
the correlation in different LMs behaves differently,
some common pairs like City— Country hold for
all different LMs. Also, models from the same
LLaMA-3 family tend to behave in a similar way.
We can also observe many spurious correlations
such as Hobby—Mother, which generally have low
causal relations in the real world. Larger LMs tend
to be better at disentangling such kind of spurious
correlations as the smallest GPT2-Medium model
shows a much stronger correlation. In Figures 18
and 19, Table 14, we illustrate that the 3B model
has a similar correlation behavior as the 8B one.

F More Resilient Correlation in Larger
LMs

In Figure 20, we find the linear correlation is more
resilient against fine-tuning by plotting the cor-
relation before and after post-training in 1B, 3B,
8B LLaMA-3 LMs as we find more strong cor-
relations in larger LMs. In Figure 21, we also
plot the correlation matrix between logits from
mistral-7b-v@.3 before and after post-training,
which supports the existence of resilient linear cor-
relation in LMs with vocabulary representation un-
tied.



Table 8: Correlation between gradients on simile objects and attributes.

Relation Pair ~ Fruit-Color Food-Taste ~ Gem-Color Name-Country  Animal-Size

Correlation 48.42 46.68 27.46 67.35 59.59

Relation Pair  Object-Genre  Object-Heat  Object-Size Object-Price Object-Color
Correlation 77.68 73.11 71.41 72.87 70.87

Figure 7: The linear correlation between NTP logits of 11ama-3-8b in math operations.
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Figure 8: The linear correlation between NTP logits of 11ama-3-8b before and after large-scale post-training.
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Table 9: Correlation between logits on simile objects and attributes before and after large-scale post-training.

Relation Pair ~ Fruit-Color Food-Taste ~ Gem-Color = Name-Country  Animal-Size

Correlation 44.11 37.06 33.66 67.30 49.65

Relation Pair  Object-Genre  Object-Heat  Object-Size Object-Price Object-Color
Correlation 72.03 63.75 66.13 71.09 66.27
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Figure 9: The linear correlation between NTP logits in math operations before and after large-scale post-training.
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Cross-language 11 x 5 =55
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Math 4%x4=16
Total 111

Table 10: The statistics of prompts in different families.

Knowledge Template Domain Size
birthplace “{} was born in the city of” 242
city “{} lives in the city of” 242
country “{} lives in the country of” 128
continent “{} lives in the continent of” 6
language “{} speaks the language of” 217
company “{} works for the company of” 100
landmark “{} lives near the landmark of” 100
ceo “{} works for the CEO called” 101
mother “{})’s mother’s name is” 100
° father “{}’s father’s name is” 100
5 job “{}’s job is” 105
-"E personality “{}’s personality is” 100
Z pet “{}’s pet is” 100
sport “{}’s favorite sport is” 102
food “{}’s favorite food is” 104
drink “{}’s favorite drink is” 102
gender “{}’s gender is” 3
vehicle “{}’s preferred mode of transportation is” 51
color “{}’s favorite color is” 15
music “{}’s favorite music genre is” 100
hobby “{}’s favorite hobby is” 101
flower “{}’s favorite flower is” 97

vacation “{}’s favorite vacation spot is” 101

Table 11: Templates used in our experiments (Part 1:
Attribute).
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G Multilingual LM

Figure G demonstrates the cross-lingual correlation
of the multilingual LM, aya-expanse-8b, which
outperforms LLaMA-3 in multilingual tasks but
still lags behind in English (Ustiin et al., 2024).
The results show Aya to have a stronger cross-
lingual correlation between knowledge pairs, es-
pecially in Chinese and Japanese. On Latin lan-
guage, Aya’s advantage becomes smaller because
these languages share quite a lot entity names with
English and LLaMA-3 can benefit from its En-
glish ability to complement the weakness in multi-
lingual ability.

H Extra Case Study

We provide extra cases for analysis in this section.
In Table 15, we provide massive cases on the in-
fluencing cities in the City— Country knowledge
composition, which shows that the LM establishes
correlation between many (City, Country) pairs
such as (Edinburgh, Scotland), (Islamabad, Pak-
istan), and (Afghanistan, Kabul). Tables 16 and 17
showcase the correlation between knowledge pairs
that do not have a clear reference. Taking parent
correlation as an example, Table 16 shows correla-
tion of parent names from the same ethnicity like
(Chen, Mei) and (Santiago, Sofia).
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Figure 10: The instance-wise correlation between NTP logits of 11ama3-8b (attribute as an example).
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If X has attribute...
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Figure 11: The attribute correlation between NTP logits of gpt2-medium.
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If X has attribute...

Figure 12: The attribute correlation between NTP logits of 11ama-3.2-1b.
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If X has attribute...
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Figure 13: The attribute correlation between NTP logits of 11ama-3.2-3b.
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If X has attribute...
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Figure 14: The attribute correlation between NTP logits of 11ama-3-8b.
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If X has attribute...

<
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Figure 15: The attribute correlation between NTP logits of 11ama-3-70b.
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Figure 16: The attribute correlation between NTP logits of deepseek-r1-distll-qwen-7B.
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Figure 17: The attribute correlation between NTP logits of mistral-7b-v@. 3.
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Figure 18: The linear correlation between NTP logits of 11ama-3.2-3b.
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Figure 19: The linear correlation between NTP logits of 11ama-3.2-3b before and after large-scale post-training.
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Figure 20: The correlation becomes more resilient in larger LMs.
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If X has attribute...

Figure 21: The correlation between logits from mistral-7b-v@. 3 before and after post-training.
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Figure 22: The comparison between Aya and LLaMA in cross-lingual correlation.
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Knowledge Template Domain Size
birthplace “{} nacié en la ciudad de” 242
city “{} vive en la ciudad de” 242
country “{} vive en el pais de” 128
continent “{} vive en el continente de” 6
%  language “{} habla el idioma de” 217
S company “{} trabaja para la empresa de” 100
& ceo “{} trabaja para el CEO llamado” 101
job “El trabajo de {} es” 105
mother “El nombre de la madre de {} es” 100
father “{} el nombre del padre es” 100
gender “El género de {} es” 3
birthplace “{} est né dans la ville de” 242
city “{} vit dans la ville de” 242
country “{} vit dans le pays de” 128
continent “{} vit sur le continent de” 6
5 language “{} parle la langue de” 217
§ company “{} travaille pour I’entreprise de” 100
= ceo “{} travaille pour le PDG appelé” 101
job “{} travaille comme” 105
mother “Le nom de la mere de {} est” 100
father “Le nom du pére de {} est” 100
gender “{} est de sexe” 3
birthplace “{} wurde in der Stadt geboren” 242
city “{} lebt in der Stadt” 242
country “{} lebt im Land” 128
continent “{} lebt auf dem Kontinent” 6
g  language “{} spricht die Sprache von” 217
E company  “{} arbeitet fiir das Unternehmen von™ 100
O ceo “{} arbeitet fiir den CEO namens” 101
job “Der Beruf von {} ist” 105
mother “Der Name von {}’s Mutter ist” 100
father “Der Name von {}’s Vater ist” 100
gender “Das Geschlecht von {} ist” 3
birthplace T AR R T 242
city “f TR AR BT 242
country “{IFTR R E R 128
,  continent N V=R e PN o 6
& language LIRS & 217
£ company “OTAER AT R 100
© ceo “{) TAER) AT KICEOR” 101
job OB TAER 105
mother (IR IE TR 100
father ISR INE TR 100
gender SRR 3
birthplace “OhvE N ERIE 242
city “LIHHEA TV B ERHIL” 242
country “OhEA TWSEIT 128
»  continent “OhHEA TV B KREEIZ” 6
$  language “LIhTEh LTV SRR 217
g  company “{heO T B 2L 100
= ceo “(Indioa TV B AP CEOIL” 101
job ot 105
mother (DD LT 100
father “DORD AHNE” 100
gender “fioMERNT” 3

Table 12: Templates used in our experiments (Part 2:

Cross Language).

Knowledge Template Domain Size
object_color “The color of {} is the same as” 85
object_price “The size of {} is the same as” 85
object_heat “The heat of {} is the same as” 85
object_genre “The genre of {} is the same as” 85
object_size “The size of {} is the same as” 85
simile_color “The color of {} is” 15
simile_price “The size of {} is” 2

2 simile_heat “The heat of {} is” 4
E  simile_genre “The genre of {} is” 22

«u simile_size “The size of {} is” 3

simile_taste “The taste of {} is” 3
name_country “{} lives in the same country as” 128
gem_color “The color of {} is the same as the gem called” 50
animal_size “The size of {} is the same as the animal called” 100
food_taste “{} has the same taste as the food:” 95
fruit_color “{} X has the same color as the fruit:” 99

X+N “{}+N=" 11

£ X-N “{)-N=" 11
= X*N “PEN=" 11
X/N “{}/N=" 11

Table 13: Templates used in our experiments (Part 3:

Simile and Math).
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Relation Pair  Fruit-Color Food-Taste ~ Gem-Color Name-Country  Animal-Size

Correlation 48.37 46.95 50.48 78.83 69.43

Relation Pair  Object-Genre  Object-Heat  Object-Size Object-Price Object-Color

Correlation 81.92 76.48 84.23 84.23 81.08

Table 14: Correlation between logits of 11ama-3.2-3b on simile objects and attributes.

Country

Influencing Cities

Sweden
Cuba
Switzerland
Ghana
Poland
Turkey
Sudan
Romania
Samoa
Iceland
Nigeria
Iraq
Laos
USSR
Kosovo
China
Guatemala
Tunisia
Denmark
Nicaragua
Tirkiye
Bosnia
Netherlands
Malaysia
Venezuela
Sri
Ireland
Liberia
Afghanistan
America
Austria
Scotland
Libya
Uruguay
Bangladesh
Bahrain
Pakistan
Fiji
Cambodia
Singapore
Macedonia
Mongolia
Peru
Myanmar
Trinidad
Colombia
Maurit
Iran
India
Spain
Honduras
USA

Stockholm, Brisbane, Johannesburg, Cardiff, Chicago, Hyderabad, Aleppo, Lima, Rochester, Salem
Havana, Chicago, Columbus, stockholm, Rochester, Hyderabad, Scarborough, Johannesburg, singapore, Hamburg
Columbus, Stuttgart, Cardiff, Leicester, Chicago, Brisbane, Saras, stockholm, vegas, Bethlehem
Winnipeg, Nairobi, Johannesburg, Leicester, Atlanta, Tulsa, Maharashtra, Greenville, Brisbane, Lima
Warsaw, Cardiff, Liverpool, Maharashtra, stockholm, Amsterdam, Atlanta, Kashmir, Perth, Aleppo
Istanbul, Chicago, Toronto, Maharashtra, stockholm, Johannesburg, Cardiff, Lima, Columbus, Ankara
Nairobi, stockholm, Lima, Tulsa, Johannesburg, Maharashtra, Winnipeg, Hyderabad, Wilmington, Kashmir
Cardiff, Rochester, Johannesburg, Budapest, Seattle, Rajasthan, Hyderabad, Chicago, Kyoto, Lima
Maharashtra, Leicester, Winnipeg, Chicago, Honolulu, Brisbane, Nairobi, Hyderabad, Lima, Cardiff
Cardiff, Leicester, Chicago, Amsterdam, Wilmington, Islamabad, Winnipeg, Kyoto, Hyderabad, stockholm
Winnipeg, Nairobi, Maharashtra, Lagos, Johannesburg, Stuttgart, Leicester, Abu, Chicago, Tulsa
Chicago, Hyderabad, Wilmington, Lima, Baghdad, stockholm, Kashmir, Tulsa, Belfast, singapore
Bangkok, Leicester, Chicago, Kashmir, Tulsa, stockholm, Winnipeg, Lima, Rajasthan, Johannesburg
Moscow, NYC, Midlands, stockholm, Chicago, Cardiff, Maharashtra, Pyongyang, Boulder, Columbus
Kashmir, Seattle, Leicester, stockholm, Tulsa, Belfast, Mosul, vegas, Rochester, Buenos
Beijing, Shanghai, Hyderabad, Brisbane, Columbus, stockholm, Maharashtra, Amsterdam, Leicester, Hamburg
Greenville, Tulsa, Leicester, Buenos, Johannesburg, Kashmir, Wilmington, Lima, Chicago, Rochester
Johannesburg, stockholm, Hamburg, Columbus, Leicester, Tulsa, Stuttgart, Winnipeg, Cardiff, Maharashtra
Copenhagen, Cardiff, Leicester, Brisbane, Hyderabad, Atlanta, Saras, Chicago, Hamburg, Salem
Nairobi, Bangkok, Rochester, Leicester, Amsterdam, Kerala, Maharashtra, Belfast, Winnipeg, Chicago
Maharashtra, Miinchen, Seattle, Istanbul, stockholm, Jakarta, Istanbul, Toronto, Milwaukee, Kyoto
Hyderabad, Islamabad, Belfast, Johannesburg, Jakarta, Cardiff, Rochester, Kashmir, Leicester, Lima
Amsterdam, Cardiff, Midlands, Columbus, Karachi, stockholm, Nottingham, Maharashtra, Saras, Wilmington
Leicester, Kuala, Cardiff, Hamburg, Maharashtra, Baltimore, Chicago, Columbus, Johannesburg, Hyderabad
Wilmington, vegas, Cardiff, Maharashtra, Rochester, Brisbane, stockholm, Buenos, Lima, Tulsa
Leicester, Atlanta, Kashmir, Rajasthan, Nairobi, Cardiff, stockholm, Lima, Maharashtra, Islamabad
Dublin, Cardiff, Belfast, Leicester, Tehran, Johannesburg, Stuttgart, Aleppo, Bethlehem, Hyderabad
Leicester, Winnipeg, Nairobi, Johannesburg, Chicago, Kerala, Rochester, Maharashtra, Atlanta, Greenville
Kabul, Cardiff, Islamabad, stockholm, Tulsa, Chicago, Maharashtra, Kashmir, Rajasthan, Leicester
Columbus, Chicago, Belfast, Sofia, Hyderabad, Seattle, Cardiff, Johannesburg, Maharashtra, Moscow
Cardiff, Vienna, Hamburg, Hyderabad, Leicester, Bethlehem, Stuttgart, stockholm, Columbus, Rajasthan
Cardiff, Glasgow, Edinburgh, Stuttgart, stockholm, Belfast, Leicester, Columbus, Maharashtra, Lima
Chicago, stockholm, Columbus, Leicester, Aleppo, Cardiff, Mosul, Lima, Wilmington, Johannesburg
Buenos, Seattle, Hyderabad, Maharashtra, Hamburg, Johannesburg, Wilmington, Leicester, Columbus, Cardiff
Winnipeg, Cardiff, Leicester, Maharashtra, Tulsa, Atlanta, Chicago, Bangalore, Islamabad, Kashmir
Leicester, Chicago, Brisbane, Kashmir, Lima, Riyadh, Dubai, Wilmington, Atlanta, Saras
Islamabad, Cardiff, Jakarta, Karachi, Tulsa, Leicester, Winnipeg, Atlanta, Maharashtra, Wilmington
Lima, Leicester, Fargo, Kashmir, Brisbane, Winnipeg, Johannesburg, Cardiff, Tulsa, Edinburgh
Bangkok, Tulsa, Leicester, Cardiff, stockholm, Kashmir, Johannesburg, Wilmington, Kabul, Lima
singapore, Chicago, Leicester, Brisbane, Hamburg, Columbus, Atlanta, Kashmir, Johannesburg, Cardiff
Leicester, Stuttgart, Winnipeg, Rochester, Kashmir, Johannesburg, Jakarta, Maharashtra, Budapest, Lima
Winnipeg, Chattanooga, Leicester, Lima, Cardiff, Kyoto, Maharashtra, Johannesburg, Rajasthan, Hamburg
Lima, Perth, Maharashtra, Winnipeg, Leicester, Chattanooga, Seattle, Hyderabad, Nairobi, Chicago
Bangkok, Cardiff, Tulsa, Leicester, Winnipeg, Kashmir, Maharashtra, Kyoto, Lima, Chicago
Leicester, Cardiff, Maharashtra, Brisbane, Rochester, Tulsa, Winnipeg, Abu, vegas, Johannesburg
Mabharashtra, Columbus, Lima, Seattle, Rochester, Wilmington, Johannesburg, Stuttgart, Amsterdam, Hyderabad
Winnipeg, Leicester, Johannesburg, Edinburgh, Cardiff, Chicago, Stuttgart, stockholm, Moscow, Wilmington
Tehran, Cardiff, Lima, Kashmir, Hyderabad, Leicester, Aleppo, Chicago, Stuttgart, Hamburg
Indianapolis, Cardiff, Maharashtra, Chicago, Hyderabad, Leicester, Lima, Columbus, Winnipeg, stockholm
Madrid, Hyderabad, stockholm, Spokane, Cardiff, Amsterdam, Rome, Barcelona, Dallas, Johannesburg
Wilmington, Winnipeg, Buenos, Hamburg, Nairobi, stockholm, Johannesburg, Amsterdam, Columbus, Lima
NYC, Moscow, Columbus, Midlands, Chicago, Sofia, Karnataka, Karachi, Cardiff, Sevilla

Table 15: The most influencing cities of counties in the City— Country correlation.
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Father Influencing Mothers

Omar Olivia, Nora, Sara, Sofia, Naomi, Diana, Uma, Rosa, Eden, Jade
Victor Victoria, Sofia, Maria, Savannah, Sophie, Uma, Sonia, Angela, Grace, Ivy
Andre Angela, Sofia, Sophie, Savannah, Maria, Rebecca, Ivy, Clara, Chloe, Nina
Julio Sofia, Chloe, Maria, Carmen, Rebecca, Ivy, Rosa, Olivia, Sonia, Savannah
Enrique Carmen, Chloe, Rosa, Clara, Sofia, Emma, Maria, Rebecca, Fiona, Olivia
Amir Sara, Sofia, Amelia, Eden, Mei, Nora, Uma, Bella, Victoria, Diana
Xavier Sophie, Maria, Sonia, Olivia, Emma, Leah, Clara, Uma, Jasmine, Carmen
Javier Carmen, Chloe, Sofia, Ivy, Maria, Jasmine, Olivia, Rosa, Fiona, Jennifer
Vlad Elena, Sofia, Chloe, Mia, Nina, Angela, Diana, Naomi, Savannah, Clara
Roberto Chloe, Sofia, Rosa, Carmen, Lucia, Olivia, Clara, Mei, Maria, Elena
Lars Sophie, Clara, Maria, Nina, Ella, Sara, Harper, Savannah, Rebecca, Fiona
Min Sonia, Mei, Angela, Eden, Clara, Chloe, Grace, Maria, Harper, Savannah
James Grace, Fiona, Ella, Savannah, Emma, Angela, Chloe, Harper, Leah, Maria
Giovanni Lucia, Fiona, Sofia, Savannah, Rosa, Diana, Bella, Chloe, Carmen, Mei
Ivan Ivy, Elena, Sofia, Nina, Maria, Ada, Emma, Sophie, Savannah, Sakura
Diego Chloe, Sofia, Maria, Rosa, Angela, Carmen, Savannah, Diana, Clara, Mei
Fernando Maria, Rosa, Fiona, Savannah, Carmen, Angela, Sofia, Luna, Clara, Ada
Ethan Elena, Leah, Jennifer, Emma, Jasmine, Chloe, Clara, Mei, Ada, Serena
Chen Mei, Chloe, Grace, Nina, Eden, Harper, Sofia, Rebecca, Sakura, Sonia
Gabriel Maria, Sophie, Eden, Leah, Sara, Grace, Chloe, Rebecca, Elena, Luna
Boris Bella, Elena, Angela, Fiona, Nina, Ada, Sofia, Sophie, Nora, Leah
Jean Sophie, Angela, Chloe, Maria, Naomi, Carmen, Savannah, Nina, Rebecca, Lucia
Dmitry Sofia, Elena, Chloe, Diana, Nina, Savannah, Mia, Clara, Sakura, Ivy
Ahmed Sara, Sofia, Sophie, Nora, Uma, Victoria, Eden, Sonia, Jennifer, Mei
Wei Mei, Chloe, Grace, Rebecca, Mia, Sofia, Ada, Nina, Angela, Harper
Ibrahim Sofia, Sara, Eden, Uma, Victoria, Nora, Bella, Ada, Sophie, Elena
Liam Fiona, Emma, Mia, Chloe, Nora, Leah, Grace, Jasmine, Jade, Angela
Mustafa Sara, Sofia, Nora, Victoria, Ada, Uma, Eden, Jade, Rosa, Elena
Jorge Maria, Carmen, Rosa, Chloe, Sofia, Diana, Elena, Fiona, Angela, Nora
Leonardo Clara, Sofia, Jennifer, Olivia, Chloe, Jasmine, Fiona, Rosa, Lucia, Diana
Luca Fiona, Lucia, Sofia, Angela, Maria, Savannah, Emma, Clara, Sakura, Leah
Carlos Carmen, Maria, Rosa, Olivia, Chloe, Sofia, Clara, Sakura, Savannah, Fiona
Pedro Maria, Rosa, Carmen, Chloe, Olivia, Clara, Sakura, Sofia, Ivy, Ada
Michel Sophie, Lucia, Nina, Maria, Leah, Eden, Elena, Sara, Sonia, Carmen
Kai Mei, Maria, Nina, Angela, Chloe, Eden, Jade, Uma, Sakura, Ada
Benjamin Leah, Eden, Bella, Rebecca, Sophie, Grace, Nina, Harper, Lucia, Victoria
Noah Rebecca, Chloe, Nina, Nora, Eden, Naomi, Sara, Grace, Leah, Ada
Ali Sara, Nora, Eden, Victoria, Uma, Sofia, Mei, Jade, Bella, Sonia
Levi Chloe, Leah, Eden, Sara, Nina, Elena, Harper, Bella, Rosa, Rebecca
Antonio Rosa, Maria, Angela, Lucia, Sofia, Chloe, Savannah, Olivia, Carmen, Fiona
Rafael Sofia, Rosa, Carmen, Maria, Clara, Leah, Ivy, Chloe, Naomi, Lucia
Marco Maria, Sofia, Jasmine, Lucia, Clara, Angela, Chloe, Mei, Rebecca, Carmen
Stefan Elena, Fiona, Angela, Savannah, Clara, Sophie, Mei, Maria, Eden, Rebecca
Chung Mei, Chloe, Grace, Maria, Angela, Sonia, Harper, Clara, Savannah, Mia
Abdul Uma, Sara, Sofia, Nora, Jennifer, Ada, Rosa, Victoria, Eden, Bella
Muhammad Sofia, Sara, Victoria, Mei, Emily, Jennifer, Nora, Uma, Eden, Naomi
Hugo Maria, Sophie, Chloe, Clara, Fiona, Emma, Savannah, Angela, Carmen, Ivy
Axel Sophie, Angela, Rebecca, Nina, Ada, Emma, Fiona, Ivy, Eden, Savannah
Lucas Lucia, Maria, Clara, Fiona, Uma, Chloe, Harper, Savannah, Sophie, Jasmine
Mason Harper, Leah, Jasmine, Chloe, Angela, Nina, Ada, Sofia, Ella, Emma
Hassan Sara, Eden, Nora, Victoria, Bella, Sofia, Naomi, Savannah, Mei, Diana
Pablo Maria, Chloe, Sofia, Rosa, Savannah, Rebecca, Carmen, Elena, Fiona, Luna
Raphael Rebecca, Sophie, Elena, Leah, Rosa, Grace, Eden, Fiona, Clara, Sonia
Elijah Elena, Eden, Rebecca, Chloe, Savannah, Ella, Leah, Emily, Grace, Uma
Louis Sophie, Nina, Savannah, Grace, Rosa, Maria, Rebecca, Fiona, Leah, Sonia
Ricardo Chloe, Carmen, Sofia, Rosa, Jennifer, Clara, Rebecca, Sakura, Mei, Olivia
Samuel Sonia, Savannah, Leah, Eden, Rebecca, Sophie, Grace, Ada, Emma, Clara
William Grace, Emma, Emily, Leah, Ada, Harper, Angela, Victoria, Fiona, Diana
Salman Sonia, Sofia, Nora, Uma, Sara, Bella, Eden, Jennifer, Victoria, Leah
Oliver Olivia, Sophie, Harper, Elena, Nina, Maria, Grace, Diana, Emma, Nora
Angelo Angela, Sofia, Fiona, Clara, Chloe, Rosa, Carmen, Savannah, Lucia, Nina
Hans Sophie, Rebecca, Angela, Savannah, Eden, Ella, Clara, Maria, Uma, Mei
Jamal Sofia, Jasmine, Uma, Sara, Mei, Eden, Naomi, Victoria, Bella, Diana
Santiago Sofia, Maria, Rosa, Carmen, Chloe, Savannah, Mei, Olivia, Ivy, Luna

Table 16: The most influencing fathers of mothers in the Mother— Father correlation.
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Attribute

Influencing Objects

toys
transport
kitchen
furniture
decor
accessories
sports
travel
art
fitness
outdoors
bags
electronics
clothing
food
photography
literature
appliances
home
music

Genre

toy, puzzle, drum, shoes, sweater, electric, fridge, gloves, chair, jeans
headphones, pen, plate, drum, electric, car, couch, smartphone, rug, suitcase
drum, jeans, pen, plate, toy, backpack, rug, fridge, chair, grill
drum, chair, fridge, electric, rug, camera, puzzle, shoes, sweater, plate
drum, rug, vase, pen, sweater, jeans, smartphone, backpack, washing, speaker
drum, shoes, plate, laptop, electric, oven, gloves, curtains, jeans, chair
basketball, pen, drum, jeans, plate, skateboard, tennis, rug, charger, puzzle
pen, drum, water, yoga, suitcase, sunglasses, watch, plate, jeans, fridge
drum, puzzle, pen, scarf, water, camera, couch, toy, chair, jeans
yoga, puzzle, drum, pen, couch, electric, sweater, scarf, rug, camera
drum, plate, pen, fishing, electric, water, couch, camera, toy, puzzle
drum, fridge, sweater, gloves, jeans, backpack, pen, rug, electric, umbrella
electric, drum, headphones, plate, toy, pen, laptop, jeans, sweater, couch
drum, sweater, electric, shoes, skateboard, pen, jeans, camera, rug, fridge
fridge, drum, pen, water, scarf, couch, plate, smartphone, sweater, speaker
camera, water, drum, puzzle, scarf, skateboard, yoga, headphones, rug, couch
book, iron, pen, drum, yoga, couch, water, speaker, scarf, fan
electric, sweater, jeans, plate, shoes, fridge, drum, chair, oven, laptop
electric, oven, drum, smartphone, pen, backpack, rug, jeans, fridge, puzzle
guitar, drum, headphones, scarf, basketball, pen, toy, puzzle, suitcase, water

warm
hot

neutral
cold

Heat

hoodie, sweater, clock, lamp, drum, earrings, yoga, apple, tennis, oven
hoodie, puzzle, tennis, drum, oven, jeans, car, lamp, earrings, fan

jeans, speaker, blanket, sofa, car, puzzle, earrings, hoodie, tennis, rug

hoodie, car, earrings, fan, lamp, curtains, couch, clock, puzzle, sweater

large
medium
small

Size

smartphone, jeans, drum, puzzle, hoodie, umbrella, pencil, clock, car, backpack
hoodie, tripod, car, keyboard, drum, suitcase, smartphone, basketball, curtains, bottle
smartphone, hoodie, car, drum, pencil, jeans, backpack, keyboard, puzzle, toy

black
green
blue
beige
gold
natural
silver
orange
red
gray
brown
yellow
purple
white

Color

jeans, iron, fan, umbrella, hoodie, suitcase, puzzle, bowl, printer, electric
backpack, plate, puzzle, jeans, couch, umbrella, drum, soap, car, sweater
jeans, electric, puzzle, plate, backpack, fishing, bottle, chair, car, umbrella
jeans, soap, hoodie, drum, puzzle, bottle, suitcase, oven, bed, speaker
puzzle, backpack, car, earrings, iron, bottle, drum, jeans, plate, fan
jeans, bottle, puzzle, earrings, car, plate, oven, yoga, suitcase, drum
bottle, jeans, puzzle, iron, drum, mirror, soap, electric, backpack, earrings
puzzle, car, drum, backpack, jeans, umbrella, bottle, electric, oven, plate
car, drum, earrings, puzzle, microwave, pen, umbrella, bowl, electric, backpack
jeans, soap, mouse, puzzle, plate, sweater, umbrella, printer, bed, backpack
soap, iron, puzzle, sweater, umbrella, backpack, speaker, drum, hoodie, couch
plate, yoga, car, backpack, umbrella, soap, drum, puzzle, sweater, fan
puzzle, drum, electric, hoodie, backpack, jeans, microwave, mouse, bottle, bowl
plate, suitcase, fan, jeans, puzzle, backpack, soap, umbrella, sweater, drum

high
low

Price

smartphone, drum, air, car, hoodie, jeans, backpack, umbrella, puzzle, electric
drum, jeans, backpack, smartphone, car, hoodie, air, umbrella, puzzle, electric

Table 17: The most influencing objects of attributes in the simile correlation.
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I Low Dispersion in Label-wise
Correlation

A potential concern on the correlation metric is
whether the correlation reflects the majority prop-
erty of different labels or some highly correlated
cast bias into the evaluation. We plot the std of
label-wise correlation distributions of 11ama-3-8b
in Figures 23 (on the same model) and 24 (before
and after post-training). The result shows the dis-
tributions to be concentrated with a std generally
lower than 0.05, which addresses the misrepresen-
tation concern.

J Subword Issue

Finally, we show the precision of W is highly af-
fected by the semantics of the input and output
tokens. We first categorize the tokens into 3 cate-
gories, 1) Subword, a token being part of a word,
such as a prefix like Br in Brunei, 2) Word in a
phrase, a token is a whole word but also a part of
a phrase like North in North America, 3) Whole
semantics, the rest of tokens with a full meaning in
itself like USA.

The results in Table 18 show the semantic com-
pleteness to be an important factor in whether
knowledge can be generalized. With higher seman-
tic completeness (Whole Semantics > Word in a
Phrase > Subword), the WW’s precision also rise as
the token indicates a clearer entity. Consequently,
it can be better updated by the generalization be-
havior caused by the linear correlation. The only
precise mapping (and successful) generalization
for “Word in a Phrase” is Riyadh—Saudi Arabia,
where the first token Saudi has a strong indication
of the country.
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Figure 23: The std of correlation distribution between logits.
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Completeness Correlation  Precision (Hit@Top-5)  Generalization
Whole Semantics 0.85 0.49 55.67%
Word in a Phrase 0.86 0.10 2.00%

Subword 0.87 0.00 0.00%

Table 18: The correlation and W precision of tokens with different levels of semantic completeness.
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Figure 24: The std of correlation distribution between logits before and after large-scale post-training.
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