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Abstract

Domain randomization in reinforcement learning
is an established technique for increasing the ro-
bustness of control policies trained in simulation.
By randomizing environment properties during
training, the learned policy can become robust to
uncertainties along the randomized dimensions.
While the environment distribution is typically
specified by hand, in this paper we investigate
automatically discovering a sampling distribution
via entropy-regularized reward maximization of
a normalizing-flow—based neural sampling distri-
bution. We show that this architecture is more
flexible and provides greater robustness than ex-
isting approaches that learn simpler, parameter-
ized sampling distributions, as demonstrated in
six simulated and one real-world robotics domain.
Lastly, we explore how these learned sampling
distributions, along with a privileged value func-
tion, can be used for out-of-distribution detection
in an uncertainty-aware multi-step manipulation
planner.

1. Introduction

Reinforcement learning (RL) is a powerful tool in robotics
because it can be used to learn effective control policies
for systems with highly complex dynamics that are difficult
to model analytically. Unlike traditional control methods,
which rely on precise mathematical models, RL learns di-
rectly from simulated or real-world experience (Luo & Li,
2021; Zhu et al., 2020; Schoettler et al., 2020).

However, RL approaches can be inefficient, involving
slow, minimally parallelized, and potentially unsafe data-
gathering processes when performed in real environ-
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ments (Kober et al., 2013). Learning in simulation elimi-
nates some of these problems, but introduces new issues
in the form of discrepancies between the training and real-
world environments (Valassakis et al., 2020).

Successful RL from simulation hence requires efficient and
accurate models of both robot and environment during the
training process. But even with highly accurate geometric
and dynamic simulators, the system can still be only con-
sidered partially observable (Kober et al., 2013)—material
qualities, inertial properties, perception noise, contact and
force sensor noise, manufacturing deviations and tolerances,
and imprecision in robot calibration all add uncertainty to
the model.

To improve the robustness of learned policies against sim-to-
real discrepancies, it is common to employ domain random-
ization, varying the large set of environmental parameters
inherent to a task according to a given underlying distribu-
tion (Muratore et al., 2019). In this way, policies are trained
to maximize their overall performance over a diverse set
of models. These sampling distributions are typically con-
structed manually with Gaussian or uniform distributions
on individual parameters with hand-selected variances and
bounds. However, choosing appropriate distributions for
each of the domain randomization parameters remains a
delicate process (Josifovski et al., 2022); too broad a distri-
bution leads to suboptimal local minima convergence (see
Figure 3), while too narrow a distribution leads to poor real-
world generalization (Mozifian et al., 2019; Packer et al.,
2018). Many existing methods rely on real-world rollouts
from hardware experiments to estimate dynamics parame-
ters (Chebotar et al., 2019; Ramos et al., 2019; Muratore
et al., 2022). However, for complex tasks with physical
parameters that are difficult to efficiently or effectively sam-
ple, this data may be time-consuming to produce, or simply
unavailable.

An alternative strategy is to learn an environment distribu-
tion during training with the aim of finding the broadest
possible training distribution that can feasibly be solved in
order to maximize the chances of transferring to an unknown
target environment. Automating updates to parameter dis-
tributions during the training process can remove the need
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for heuristic tuning and iterative experimentation (Mozi-
fian et al., 2019; OpenAl et al., 2019; Tiboni et al., 2024).
In this paper, we present GoFlow, a novel approach for
learned domain randomization that combines actor-critic
reinforcement learning architectures (Schulman et al., 2017,
Haarnoja et al., 2018) with a neural sampling distribution to
learn robust policies that generalize to real-world settings.
By maximizing the diversity of parameters during sampling,
we actively discover environments that are challenging for
the current policy but still solvable given enough training.

As proof of concept, we investigate one real-world use case:
contact-rich manipulation for assembly. Assembly is a criti-
cal area of research for robotics, requiring a diverse set of
high-contact interactions which often involve wide force
bandwidths and unpredictable dynamic changes. Recently,
sim-to-real RL has emerged as a potentially useful strategy
for learning robust contact-rich policies without laborious
real-world interactions (Noseworthy et al., 2024; Tang et al.,
2023b; Zhang et al., 2024). We build on this work by testing
our method on the real-world industrial assembly task of
gear insertion.

Lastly, we extend this classical gear insertion task to the
setting of multi-step decision making under uncertainty
and partial observability. As shown in this paper and else-
where (Tiboni et al., 2024; Mozifian et al., 2019; OpenAl
et al., 2019), policies trained in simulation have an upper
bound on the environmental uncertainties that they can be
conformant to. For example, a visionless robot executing
an insertion policy can only tolerate so much in-hand pose
error. However, estimates of this uncertainty can be used to
inform high level control decisions through task-oriented in-
formation gathering (Liang et al., 2020; Curtis et al., 2023).
For example, looking closer at objects can result in more
accurate pose estimates or tracking objects in the hand to
detect slippage. By integrating a probabilistic pose estima-
tion model, we can use the sampling distributions learned
with GoFlow as an out-of-distribution detector to determine
whether the policy is expected to succeed under its current
belief about the world state. If the robot has insufficient
information, it can act to deliberately seek the needed infor-
mation using a simple belief-space planning algorithm.

Our contributions are as follows: We introduce GoFlow, a
novel domain randomization method that combines actor-
critic reinforcement learning with a learned neural sampling
distribution. We show that GoFlow achieves higher domain
coverage than fixed and other learning-based solutions to
domain randomization on a suite of simulated environments.
We demonstrate the efficacy of GoFlow in a real-world
contact-rich manipulation task—gear insertion—and extend
it to multi-step decision-making under uncertainty. By inte-
grating a probabilistic pose estimation model, we enable the
robot to actively gather additional information when needed,

enhancing performance in partially observable settings.

2. Related Work

Recent developments in reinforcement learning have demon-
strated that policies trained in simulation can effectively
transfer to real-world robots, even for contact-rich robotic
tasks (Zhang et al., 2024; Tang et al., 2023b; Noseworthy
et al., 2024; Jin et al., 2023). A key innovation enabling this
transferability is domain randomization (?Peng et al., 2017),
where environment parameters are sampled from predefined
distributions during training, enabling learned policies to
generalize to environmental uncertainties upon deployment.

Traditionally, domain randomization requires manually
defining these sampling distributions, which can be labor-
intensive. To address this, recent work has explored meth-
ods to automatically learn these distributions, aiming for
maximal generalization with minimal manual effort. One
notable approach involves constructing adversarial distribu-
tions that challenge the current policy, ensuring coverage of
the environment parameter space (Mehta et al., 2020; Wang
et al., 2025). While adversarial methods can outperform uni-
form randomization, they typically assume all environments
sampled are solvable, limiting their effectiveness in highly
uncertain scenarios.

An alternative line of research adopts a curriculum-based ap-
proach, progressively expanding the complexity of the train-
ing distribution while maintaining policy success. Specific
curricular methods include minimizing divergence from a
target distribution using multivariate Gaussians (Mozifian
et al., 2019), maximizing entropy through independent beta
distributions (Tiboni et al., 2024), and incrementally ex-
panding uniform sampling distributions via boundary sam-
pling (OpenAl et al., 2019). In this work, we propose a
novel learned domain randomization technique leveraging
normalizing flows (Rezende & Mohamed, 2015) as neural
sampling distributions. This approach offers increased flexi-
bility and expressivity over existing parametric methods.

Beyond training robust policies in simulation, learned sam-
pling distributions can be tied to the real-world environmen-
tal conditions under which policies are likely to succeed.
Previous works have integrated domain randomization with
real-world interactions for more informed training distri-
butions (Ramos et al., 2019; Sagawa & Hino, 2025; Ajay
et al., 2022; Muratore et al., 2020) or to find the maximally
effective real-world strategy (Yu et al., 2018; Ren et al.,
2023). However, these methods often necessitate expen-
sive policy retraining or data-intensive evolutionary search
based on real-world feedback, posing challenges for real-
time applications. Instead, we utilize our learned sampling
distribution as an out-of-distribution detector within a multi-
step planning framework, enabling fast and data-efficient
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information gathering in the real world.

3. Background
3.1. Markov Decision Process

A Markov Decision Process (MDP) is a mathematical frame-
work for modeling decision-making. Formally, an MDP
is defined as a tuple (S, A, P, R, ), where S is the state
space, A is the action space, P : S x A x S — [0,1] is
the state transition probability function, where P(s’ | s, a)
denotes the probability of transitioning to state s’ from state
s after taking action a, R : § x A — R is the reward
function, where R(s,a) denotes the expected immediate
reward received after taking action « in state s, v € [0, 1)
is the discount factor, representing the importance of future
rewards.

A policy 7 : § x A — [0, 1] defines a probability distribu-
tion over actions given states, where w(a | s) is the prob-
ability of taking action a in state s. The goal is to find an
optimal policy 7* that maximizes the expected cumulative
discounted reward.

3.2. Domain Randomization

Domain randomization introduces variability into the envi-
ronment by randomizing certain parameters during training.
Let = denote the space of domain randomization parame-
ters, and let £ € = be a specific instance of these parameters.
Each £ corresponds to a different environment configuration
or dynamics.

We can define a parameterized family of Markov Decision
Processes (MDPs) where each M¢ = (S, A, P, R¢, ) has
transition dynamics P and reward function ¢ dependent
on . The agent interacts with environments sampled from
a distribution over =, typically denoted as p(€). !

The objective is to learn a policy 7 : S — A that maximizes
the expected return across the distribution environments:

J(m) = Eenpe) lEr~P5,7r [ZWth(Snat)H , (D

t=0

where 7 = {(sg, ao, $1,a1,...)} denotes a trajectory gen-
erated by policy 7 in environment £. Domain randomization
aims to find a policy 7* such that: 7* = arg max, J (7).

In deep reinforcement learning, the policy 7 is a neural net-
work parameterized by 6, denoted as 7. The agent learns
the policy parameters 6 through interactions with simulated

'This problem can also be thought of as a POMDP where the
observation space is S and the state space is a product of S and =
as discussed in (Kwon et al., 2021).

environments sampled from p(§). In our implementation,
we employ the Proximal Policy Optimization (PPO) algo-
rithm (Schulman et al., 2017), an on-policy policy gradient
method that optimizes a stochastic policy while ensuring
stable and efficient learning.

To further stabilize training, we pass privileged information
about the environment parameters ¢ to the critic network.
The critic network, parameterized by 1), estimates the state-
value function:

o0

Vd)(staﬁ) =Er, lz ’Ykrt+k

k=0

St, E] ) (2)

where s, is the current state, .1 are future rewards, and
v is the discount factor. By incorporating &, the critic
can provide more accurate value estimates with lower vari-
ance (Pinto et al., 2018). The actor network 7g(a¢|s;) does
not have access to &, ensuring that the policy relies only on
observable aspects of the state.

3.3. Normalizing Flows

Normalizing flows are a class of generative models that
transform a simple base distribution into a complex tar-
get distribution using a sequence of invertible, differen-
tiable functions. Let z ~ pz(z) be a latent variable from
a base distribution (e.g., a standard normal distribution).
A normalizing flow defines an invertible transformation
fs : R* — R? parameterized by neural network parameters
¢, such that x = f4(z), aiming for x to follow the target
distribution.

The density of x is computed using the change of variables
formula:

px(@) = p2(f;(2) o

det <6f¢‘ @) > ‘ . (3)

For practical computation, this is often rewritten as:

log px (z) = logpz(z) — log

det <af giz)> ' L@

where &Z(z) is the Jacobian of f4 at z. By composing
multiple such transformations f4 = fg, o--- o f4,, each
parameterized by neural network parameters ¢y, normaliz-
ing flows can model highly complex distributions.

In our work, we employ neural spline flows (Durkan et al.,
2019), a type of normalizing flow where the invertible trans-
formations are constructed using spline-based functions.
Specifically, the parameters ¢ represent the coefficients of
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Figure 1. An architecture diagram for our actor-critic RL training setup in the gears domain. At the start of each training episode, an
environment initialization £ ~ pg(€) is sampled via the normalizing flow model. This variable conditions both the simulator and the
privileged critic. At each time step, the agent receives observations including joint positions g, joint velocities ¢, and force measurements
F from which the actor policy generates actions. The critic takes observations o, reward 7, and environment initialization £ to estimate
the value. This estimated value is used to compute advantage A which is then used to train the actor. Only the actor is used during testing
and real-world deployment, but the critic and flow can help determine when a policy will be successful as discussed in section 6.

the splines (e.g., knot positions and heights) and the weights
and biases of the neural networks that parameterize these
splines.

4. Method

In this section, we introduce GoFlow, a method for learned
domain randomization that goes with the flow by adaptively
adjusting the domain randomization process using normal-
izing flows.

In traditional domain randomization setups, the distribution
p(§) is predefined. However, selecting an appropriate p()
is crucial for the policy’s performance and generalization.
Too broad a sampling distribution and the training focuses
on unsolvable environments and falls into local minima.
In contrast, too narrow a sampling distribution leads to
poor generalization and robustness. Additionally, rapid
changes to the sampling distribution can lead to unstable
training. To address these challenges, prior works such
as (Klink et al., 2021) have proposed a self-paced learner,
which starts by mastering a small set of environments, and
gradually expands the tasks to solver harder and harder
problems while maintaining training stability. This strategy
has subsequently been applied to domain randomization in
(Mozifian et al., 2019) and (Tiboni et al., 2024), where terms
were included for encouraging spread over the sampling

space for greater generalization. We take inspiration from
these works to form a joint optimization problem:

max {E¢~p [Je(m)] + o} (p) = BDk(paallp)}  (5)

P

where p is the sampling distribution over environment pa-
rameters p(§), H(p) is the differential entropy of p(¢),
Dy, (p|lpoa) is the divergence between the current and
previous sampling distributions, and « > 0, 8 > 0 are reg-
ularization coefficients that control the trade-off between
generalizability, training stability, and the expected reward
under the sampling distribution.

Other learned domain randomization approaches propose
similar objectives. (Mozifian et al., 2019) maximizes reward
but replaces entropy regularization with a KL divergence to
a fixed target distribution and omits the self-paced KL term.
(Tiboni et al., 2024) includes all three objectives but frames
the reward and self-paced KL terms as constraints, maxi-
mizing entropy through a nonlinear optimization process
that is not easily adaptable to neural sampling distributions.
We compare GoFlow to these methods in our experiments
to highlight its advantages. To our knowledge, GoFlow is
the first method to optimize such an objective with a neural
sampling distribution.

The GoFlow algorithm (Algorithm 1) begins by initial-
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Figure 2. An illustrative domain showing the learned sampling functions over the space of unobserved parameters for the tested baselines.
Compared to other learning methods, GoFlow correctly models the multimodality and inter-variable dependencies of the underlying
reward function. This toy domain, along with other domains in our experiments, violates some of the assumptions made by prior works,

such as the feasibility of the center point of the range.

Algorithm 1 GoFlow
Require: Initial policy parameters 0, flow parameters ¢,
training steps N, network updates K, entropy coeffi-
cient o, similarity coefficient 3, and learning rate 7,
I: forn =1to N do
2 Sample {EMHE |~ py(€), {ESVE ~ u(€)
3: Train mg with £™" initializations
4: Estimate Jews (7g) via policy rollouts
5
6
7

Save current flow distribution as pg,,, (&)
for k =1to K do

R« BB [p¢(g;est) Teren (m))].

8 e (2] Eeu [pol€) loapo(©)]

9: Dir + Eeny, (o [log Poa(§) —logpy (€ )}
10: 6 &+ 15V (R +af — BDKL)

11: end for
12: end for

izing both the policy parameters 6 and the normalizing
flow parameters ¢. In each training iteration, GoFlow first
samples a batch of environment parameters {¢;}2 | from
the current distribution modeled by the normalizing flow
(Line 2). These sampled parameters are used to train the
policy 7y (Line 3). Following the policy update, expected
returns Jg, (mg) are estimated for each sampled environment
through policy rollouts, providing a measure of the policy’s
performance under a target uniform distribution u(&) after
being trained on p(&) (Line 4).

After sampling these rollouts, GoFlow then performs K
steps of optimization on the sampling distribution. GoFlow

first estimates the policy’s performance on the sampling
distribution using the previously sampled rollout trajecto-
ries (Line 7). The entropy of the sampling distribution
(Line 8) and divergence from the previous sampling distri-
bution (Line 9) are estimated using newly drawn samples.
Importantly, we compute the reward and entropy terms by
importance sampling from a uniform distribution rather than
from the flow itself. This broad coverage helps prevent the
learned distribution from collapsing around a small region
of parameter space. Derivations for these equations can be
found in Appendix A.2. These terms are combined to form a
loss, which is differentiated to update the parameters of the
sampling distribution (Line 10). An architecture diagram
for this approach can be seen in Figure 1.

5. Domain Randomization Experiments

Our simulated experiments compare policy robustness in
a range of domains. For full details on the randomization
parameters and bounds, see Appendix A.3.

5.1. Domains

First, we examine the application of GoFlow to an illustra-
tive 2D domain that is multimodal and contains intervariable
dependencies. The state and action space are in R2. The
agent is initialized randomly in a bounded x, y plane. An
energy function is defined by a composition of Gaussians
placed in a regular circular or linear array. The agent can
observe its position with Gaussian noise proportional to
the inverse of the energy function. The agent is rewarded
for guessing its location, but is incapable of moving. This
task is infeasible when the agent is sufficiently far from any
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Figure 3. The coverage ratio over the target distribution across five random seeds for each of the environments. The bands around each

curve indicate the standard error.

of the Gaussian centers, so a sampling distribution should
come to resemble the energy function. Some example func-
tions learned by GoFlow and baselines from Section 5.2 can
be seen in Figure 2.

Second, we quantitatively compare GoFlow to existing base-
lines including Cartpole, Ant, Quadcopter, Quadruped, and
Humanoid in the IsaacLab suite of environments (Mittal
et al., 2023). We randomize over parameters such as link
masses, joint frictions, and material properties.

Lastly, we evaluate our method on a contact-rich robot ma-
nipulation task of gear insertion, a particularly relevant
problem for robotic assembly. In the gears domain, we
randomize over the relative pose between the gripper and
the held gears along three degrees of freedom. The prob-
lem is made difficult by the uncertainty the robot has about
the precise location of the gear relative to the hand. The
agent must learn to rely on signals of proprioception and
force feedback to guide the gear into the gear shaft. The
action space consists of end-effector pose offsets along three
translational degrees of freedom and one rotational degree
around the z dimension. The observation space consists of a
history of the ten previous end effector poses and velocities
estimated via finite differencing. In addition to simulated ex-
periments, our trained policies are tested on a Franka Emika
robot using IndustReal library built on the frankapy
toolkit (Tang et al., 2023a; Zhang et al., 2020).

5.2. Baselines

In our domain randomization experiments, we compare to
a number of standard RL baselines and learning-based ap-
proaches from the literature. In our quantitative experiments,
success is determined by the sampled environment passing
a certain performance threshold Jr that was selected for
each environment. We measure task performance in terms of
coverage, which is defined as the proportion of the total sam-
pling distribution for which the policy receives higher than
J: reward. Coverage is estimated via policy rollouts on 4096
uniformly selected environment initialization samples from
the total range of parameters. All baselines are trained with

an identical neural architecture and PPO implementation.
The success thresholds along with other hyperparameters
are in Appendix A.5.

We evaluate on the following baselines. First, we com-
pare to no domain randomization (NoDR) which trains
on a fixed environment parameter at the centroid of the
parameter space. Next, we compare to a full domain ran-
domization (FullDR) which samples uniformly across the
domain within the boundaries during training. In addition to
these fixed randomization methods, we evaluate against
some other learning-based solutions from the literature:
ADR (OpenAl et al., 2019) learns uniform intervals that
expand over time via boundary sampling. It starts by oc-
cupying an initial percentage of the domain and performs
“boundary sampling” during training with some probability.
The rewards attained from boundary sampling are com-
pared to thresholds that determine if the boundary should
be expanded or contracted. LSDR (Mozifian et al., 2019)
learns a multivariate gaussian sampling distribution using
reward maximization with a KL divergence regularization
term weighted by an a hyperparameter. Lastly, DORAE-
MON (Tiboni et al., 2024) learns independent beta distribu-
tions for each dimension of the domain, using a maximum
entropy objective constrained by an estimated success rate.

We compare coverage across environments sampled from a
uniform testing distribution within the environment bounds.
Our findings in Figure 3 show that GoFlow matches or out-
performs baselines across all domains. We find that our
method performs particularly well in comparison to other
learned baselines when the simpler or more feasible regions
of the domain are off-center, irregularly shaped, and have
inter-parameter dependencies such as those seen in Figure 2.
We intentionally chose large intervals with low coverage to
demonstrate this capability, and we perform a full study of
how baselines degrade significantly with increased param-
eter ranges while GoFlow degrades more gracefully (see
Appendix A.6). Additionally, coverage should not be mis-
taken for success-rate, as these policies can be integrated
into a planning framework that avoids the use of infeasi-
ble actions or gathers information to increase coverage as
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Figure 4. A multi-step manipulation plan using probabilistic pose estimation to estimate and update beliefs over time. The three rows
show the robot state s;, the observation oy, and the robot belief b; at each timestep. The red dotted line in the belief indicates the marginal
entropy thresholds for the x, y, and yaw (rotation around z) dimensions as determined by the learned normalizing flow. A belief with
entropy surpassing the threshold line indicates the policy will likely fail. For full visualizations of the belief posteriors, flow distributions,

and value maps, see Figure 14.

discussed in the following sections.

In addition to simulated experiments, we additionally eval-
uated the trained policies on a real-world gear insertion
task. The results of those real-world experiments show that
GoFlow results in more robust sim-to-real transfer as seen
in Table 1 and in the supplementary videos.

6. Application to Multi-step manipulation

While reinforcement learning has proven to be a valuable
technique for learning short-horizon skills in dynamic and
contact-rich settings, it often struggles to generalize to more
long-horizon and open ended problems (Sutton & Barto,
2018). The topic of sequencing short horizon skills in the
context of a higher-level decision strategy has been of in-
creasing interest to both the planning (Mishra et al., 2023)
and reinforcement learning communities (Nasiriany et al.,
2021). For this reason, we examine the utility of these
learned sampling distributions as out-of-distribution detec-
tors, or belief-space preconditions, in the context of a multi-
step planning system.

6.1. Belief-space planning background

Belief-space planning is a framework for decision-making
under uncertainty, where the agent maintains a probability
distribution over possible states, known as the belief state.
Instead of planning solely in the state space S, the agent
operates in the belief space I3, which consists of all possible
probability distributions over S. This approach is partic-
ularly useful in partially observable environments where
there is uncertainty in environment parameters and where it

is important to take actions to gain information.

Rather than operating at the primitive action level, belief-
space planners often make use of high-level actions Ay,
sometimes called skills or options. In our case, these high-
level actions will be a discrete set of pretrained RL poli-
cies. These high-level actions come with a belief-space
precondition and a belief-space effect, both of which are
subsets of the belief space B (Kaelbling & Lozano-Perez,
2013; Curtis et al., 2024). Specifically, a high-level action
m € Ap is associated with two components: a precondi-
tion Pre, C B, representing the set of belief states from
which the action can be applied, and an effect Eff,, C B,
representing the set of belief states that the action was de-
signed or trained to achieve. If the precondition holds—that
is, if the current belief state b satisfies b € Pre,—then
applying action a will achieve the effect Eff,; with proba-
bility at least € [0, 1]. More formally, if b € Pre,, then
Pr (th € Eff, | by, 7r) > 7. Depending on the planner, 7
may be set in advance, or calculated by the planner as a
function of the belief.

This formalization allows planners to reason abstractly about
the effects of high-level actions under uncertainty, which
can result in generalizable decision-making in long-horizon
problems that require active information gathering or risk-
awareness.

6.2. Computing preconditions

In this section, we highlight the potential application of
the learned sampling distribution pg and privileged value
function V), as a useful artifacts for belief-space planning.
In particular, we are interested in identifying belief-space
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Figure 5. A visual example of the precondition computation described in Section 6.2 for the gear assembly plan shown in Figure 4. The
two rows show two different projections of the 3D sampling space (x position vs y position in the top row and y position vs yaw rotation
in the bottom row). We apply a threshold € to the sampling distribution to remove low-probability regions (column 1). Additionally,
we filter the value function by retaining only the regions where the expected value exceeds a predetermined threshold 7 (column 2).
The intersection of these two regions defines the belief-space precondition, indicating where the policy is likely to succeed (column 3).
Comparing the precondition to the beliefs, we can see that the belief is not sufficiently contained within the precondition at t = 0 (column
4), but passes the success threshold 7 at after closer inspection at ¢ = 4 (column 5).

preconditions of a set of trained skills.

One point of leverage we have for this problem is the privi-
leged value function Vy, (s, £), which was learned alongside
the policy during training. One way to estimate the belief-
space precondition is to simply find the set of belief states
for which the expected value of the policy is larger than Jr
with probability greater than 7 under the belief:

Pre, = {b € B|Ey [Lv,(s,)>sr] >1}- (6)

However, a practical issue with this computation is that the
value function is likely not calibrated in large portions of
the state space that were not seen during policy training. To
address this, we focus on regions of the environment where
the agent has higher confidence due to sufficient sampling,
i.e., where py(§) > e for a threshold e. This enables us
to integrate the value function over the belief distribution
b(x, £) and the trusted region within =:

Pre, = {b € B|Ey [Ly,(sc)>sr - Lpye)>e) >0} (D

Here, 1 lower bounds the probability of achieving the de-
sired effects Eff;; (or value greater than Jr) after executing
m in any belief state in Pre,. Figure 5 shows an example
precondition for a single step of the assembly plan.

6.3. Updating beliefs

Updating the belief state requires a probabilistic state esti-
mation system that outputs a posterior over the unobserved
environment variables, rather than a single point estimate.
We use a probabilistic object pose estimation framework
called Bayes3D to infer posterior distributions over object
pose (Gothoskar et al., 2023). For details on this, see Ap-
pendix A.4.1.

The benefit of this approach in contrast to traditional
rendering-based pose estimation systems, such as those pre-
sented in (Wen et al., 2024) or (Labbé et al., 2022), is that
pose estimates from Bayes3D indicate high uncertainty for
distant, small, or occluded objects as well as uncertainty
stemming from object symmetry. Figure 14 shows the pose
beliefs across the multi-step plan.

6.4. A simple belief-space planner

While the problem of general-purpose multi-step planning
in belief-space has been widely studied, in this paper we use
a simple BFS belief-space planner to demonstrate the utility
of the learned sampling distributions as belief-space precon-
ditions. The full algorithm can be found in Algorithm 2.

An example plan can be seen in Figure 4. The goal is to
assemble the gear box by inserting all three gears (yellow,
pink, and blue) into the shafts on the gear plate. Each gear
insertion is associated with a separate policy for each color
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trained with GoFlow. In addition to the trained policies, the
robot is given access to an object-parameterized inspection
action which has no preconditions and whose effects are
a reduced-variance pose estimate attained by moving the
camera closer to the object. The robot is initially uncertain
of the x, y, and yaw components of the 6-dof pose based
on probabilistic pose estimates. Despite this uncertainty,
the robot is confident enough in the pose of the largest and
closest yellow gear to pick it up and insert it. In contrast,
the blue and pink gears require further inspection to get a
better pose estimate. Closer inspection reduces uncertainty
along the x and y axis, but reveals no additional information
about yaw dimension due to rotational symmetry. Despite
an unknown yaw dimension, the robot is confident in the
insertion because the flow p indicates that success is invari-
ant to the yaw dimension. This is due to the fact that success
in the insertion task is defined by the distance between the
bottom center of the gear and the base of the gear shaft,
which is independent of gear rotation. For visualizations of
the beliefs and flows at each step, see Appendix A.4.

7. Conclusion and discussion

In this paper, we introduced GoFlow, a novel approach to
domain randomization that uses normalizing flows to dy-
namically adjust the sampling distribution during reinforce-
ment learning. By combining actor-critic reinforcement
learning with a learned neural sampling distribution, we
enabled more flexible and expressive parameterization of
environmental variables, leading to better generalization
in complex tasks like contact-rich assembly. Our experi-
ments demonstrated that GoFlow achieves higher coverage
than traditional fixed and learning-based domain randomiza-
tion techniques across a variety of simulated environments,
particularly in scenarios where the domain has irregular de-
pendencies between parameters. The method also showed
promise in real-world robotic tasks including contact-rich
assembly.

Moreover, we extended GoFlow to multi-step decision-
making tasks, integrating it with belief-space planning to
handle long-horizon problems under uncertainty. This ex-
tension enabled the use of learned sampling distributions
and value functions as preconditions leading to active infor-
mation gathering.

Although GoFlow enables more expressive sampling dis-
tributions, it also presents some new challenges. One lim-
itation of our method is that it has higher variance due to
occasional training instability of the flow. This instability
can be alleviated by increasing 3, but at the cost of reduced
sample efficiency (see Appendix A.5). In addition, using the
flow and value estimates for belief-space planning require
manual selection and tuning of several thresholds which are
environment specific. The n parameter may be converted

from a threshold into a cost in the belief space planner,
which would remove one point of manual tuning. However,
removing the e parameter may prove more difficult, as it
would require uncertainty quantification of the neural value
function. Despite these challenges, we hope this work in-
spires further research on integrating short-horizon learned
policies into broader planning frameworks, particularly in
contexts involving uncertainty and partial observability.
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A. Appendix
A.1. Code Release

The codebase for the project can be found here.

A.2. Importance Sampling Proofs

Here we show how we obtain the importance-sampled esti-
mates for both the reward term R and the entropy term H in
GoFlow(Algorithm 1). Specifically, we sample from a uni-
form distribution u (&) over Z, rather than from the learned
distribution py (&) directly, in order to avoid collapse onto
narrow regions of the parameter space.

A.2.1. REWARD TERM: R

‘We want an unbiased estimate of

E¢rp,(e) [Je(m)] = / P

(&) Je(m) d€.

—_

Let u(§) be a uniform distribution over Z.
po(8) Je(m) = 248

Since
u(§) Je(m), we can rewrite:

Lro@acmas = [uie 268 se(x) ac

Hence, sampling &; ~ u(£) and averaging %J& (m)
gives an unbiased Monte Carlo estimate of E,,, [ J¢(m)].
If = has finite measure |Z|, then u(§) = 1/|Z|. Thus

ps(§)
u(€)

Therefore, the empirical estimate becomes

= ps(§) |Z].

B

Z ps(&) E]) Je, (7))

5| &
= % Z (&) Je. (m
. B . . . .
where {&;};7; ~ u(§). This matches Line 7 in Algorithm 1.

A.2.2. ENTROPY TERM: H

Similarly, to compute the differential entropy of p4(€), we

have
H(py) = 7/Hp¢

Again, we apply the same importance sampling trick via
u(€). We write:

(§) log py(£) dE.

_ pe(§)
pe(§) logpy(§) = u(©)

u(§) logpg(§)-

Hence

Lot tozpa()as = [ ue) 58 10gpac) s

If |Z| is the measure of = under «(€), then u(§) = 1/|Z|. So
the Monte Carlo estimate for [ py (&) log pgs (&) d€ becomes

B
Z (&) log pg (&),

U:J‘ [1]

with & ~ u(§).
entropy:

Multiplying by —1 yields the differential

Hipy) = — / po(€) log pe(£) e

_El Zm (&) log py (&),

which is exactly what we implement in Line 8 of Algo-
rithm 1.

Remark A.1. Using uniform sampling u () to approximate
these terms provides global coverage of =, helping prevent
the learned distribution py from collapsing around a small
subset of parameter space. By contrast, if one sampled
¢ from py () itself for these terms, the distribution might
fail to expand to other promising regions once it becomes
peaked.

A.3. Domain Randomization Parameters

Below we describe the randomization ranges and parameter
names for each environment. We also provide the reward
success threshold (J7) and cut the max duration of some
environments in order to speed up training (t,,4.). J¢ wWas
chosen to be below the optimal performance under no envi-
ronment randomization. We verified that the trained policy
still exhibited qualitatively successful performance at the
target reward threshold. Lastly, we slightly modified the
Quadruped environment to only take a fixed forward com-
mand rather than the goal-conditioned policy learned by
default. Other than those changes, the first four simulated
environments official IsaacLab implementation.

e Cartpole parameters (J; = 50, t,,4, = 25):

— Pole mass: Min = 0.01, Max = 20.0
— Cart mass: Min =0.01, Max =20.0

— Slider-Cart Friction: Min Bound = 0.0, Max
Bound =1.0

e Ant parameters (Jr = 700, {4 = 29):
— Torso mass: Min = 0.01, Max =20.0
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¢ Quadcopter parameters (Jr = 15,4, = 25):

— Quadcopter mass: Min = 0.01, Max = 20.0

* Quadruped parameters (Jr = 1.5, %4 = 5S):

Body mass: Min = 0.0, Max = 200.0

Left front hip friction: Min = 0.0, Max = 0.1
Left back hip friction: Min = 0.0, Max = 0.1
Right front hip friction: Min = 0.0, Max = 0.1
Right back hip friction: Min = 0.0, Max = 0.1

¢ Humanoid parameters (Jr = 1000, t,,q. = 55):

Torso Mass: Min = 0.01, Max = 25.0

Head Mass: Min = 0.01, Max =25.0

Left Hand Mass: Min = 0.01, Max = 30.0
Right Hand Mass: Min = 0.01, Max = 30.0

e Gear parameters (J7 = 50, ;4. = 45):

— Grasp Pose x: Min = -0.05, Max = 0.05
— Grasp Pose y: Min = -0.05, Max = 0.05
— Grasp Pose yaw: Min =-0.393, Max = 0.393

A.4. Multi-Step Planning Details

A.4.1. UPDATING BELIEFS VIA PROBABILISTIC POSE
ESTIMATION

Updating the belief state b requires a probabilistic state
estimation system that outputs a posterior over the state
space .S, rather than a single point estimate. Given a new
observation o, we use a probabilistic object pose estimation
framework (Bayes3D) to infer posterior distributions over
object pose (Gothoskar et al., 2023).

The pose estimation system uses inference in an probabilis-
tic generative graphics model with uniform priors on the
translational x, y, and rotational yaw (or r,;) components
of the 6-dof pose (since the object is assumed to be in flush
contact with the table surface) and an image likelihood
P(0rgpa | T2, 2, y). The object’s geometry and color infor-
mation is given by a mesh model. The image likelihood
is computed by rendering a latent image m™*® with the
object pose corresponding to (r,, x, y) and calculating the
per-pixel likelihood:

P(Orgbd | TI7$7y) X

H |:p0ul + (]- - pout) : -Pln(oz%];d ‘ Ty, T, y):| (8)

i,jEC
Pu(022 | 14, 2,y)
b . reb .
||0;%j - mejHl ||Og,j - ng,j”l ©
exp - breb o bd
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where ¢ and j are pixel row and column indices, C'is the set
of valid pixels returned by the renderer, by, and bg are hy-
perparameters that control posterior sensitivity to the color
and depth channels, and poy, is the pixel outlier probability
hyperparameter. For an observation o4, We can sample
from P(ry, 2,y | Orgba) X P(0Orgba | 72, @, y) to recover the
object pose posterior with a tempering exponential factor o
to encourage smoothness. We first find the maximum a pos-
teriori (MAP) estimate of object pose using coarse-to-fine
sequential Monte Carlo sampling (Del Moral et al., 2006)
and then calculate a posterior approximation using a grid
centered at the MAP estimate.

The benefit of this approach in contrast to traditional
rendering-based pose estimation systems, such as those
presented in (Wen et al., 2024) or (Labbé et al., 2022), is
that our pose estimates indicate high uncertainty for distant,
small, occluded, or non-visible objects as well dimensions
along which the object is symmetric. A visualization of the
pose beliefs at different points in the multi-step plan can be
seen in Figure 14 in the Appendix.

A.5. Hyperparameters

Below we list out the significant hyperparameters involved
in each baseline method, and how we chose them based
on our hyperparameter search. We run the same seed for
each hyperparameter and pick the best performing hyper-
parameter as the representative for our larger quantitative
experiments in figure 3. The full domain randomization
(FullDR) and no domain randomization (NoDR) baselines
have no hyperparameters.

A.5.1. GoOFLow

We search over the following values of the o hyperparam-
eter: [0.1,0.5,1.0,1.5,2.0]. We search over the follow-
ing values of the 8 hyperparameters [0.0, 0.1, 0.5, 1.0, 2.0].
Other hyperparameters include number of network updates
per training epoch (K = 100), network learning rate
(ny = le — 3), and neural spline flow architecture hyper-
parameters such as network depth (¢ = 3), hidden features
(64), and number of bins (8). We implement our flow using
the Zuko normalizing flow library (Rozet et al., 2022).

A.5.2. LSDR

Similary to GoFlow , we search over the following values
of the ay, hyperparameter: [0.1,0.5,1.0,1.5,2.0]. Other
hyperparameters include the number of updates per train-
ing epoch (T=100), and initial Gaussian parameters: p =
(€7naa: + fmin)/zo and > = diag (gmax - gmin/lo)
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Method

FullDR  NoDR

DORAEMON

LSDR

ADR

GoFlow

Success Rate

6/10

3/10

5/10

5/10

5/10

9/10

Table 1. Real-world experimental results with the statistically significant results bolded.

Cartpole Ant Quadcopter  Quadruped Humanoid Gears
FullDR 0.060+0.021  0.014-£0.006 0.000+0.000 0.012£0.007 0.195+0.044 0.000£0.000
NoDR 0.005+0.001  0.000+£0.000 0.000+0.000 0.086£0.008 0.001+0.001 0.008=+0.003
DORAEMON 0.015£0.005 0.000£0.000 0.000£0.000 0.029+£0.008 0.000+0.000 0.012=£0.004
LSDR 0.103+0.013  0.000£0.000 0.007+0.003 0.009+0.008 0.176+0.082 0.000£0.000
ADR 0.006+0.001 0.000£0.000 0.000+0.000 0.070£0.006 0.000+0.000 0.008=+0.004
GOFLOW 0.138+£0.005 0.056+£0.033 0.010+£0.006 0.275+0.019 0.274+0.076 0.035+0.019

Table 2. Mean and standard error (SDE) of the final reward value, with entries in bold indicating the best-performing method or methods
not statistically significantly worse than the best (one-tailed z test, e = 0.05).

A.5.3. DORAEMON

We search over the following values of the € p hyperparame-
ter: [0.005,0.01,0.05,0.1,0.5]. After fixing the best €, for
each environment, we additionally search over the success
thrshold ap: [0.005,0.01,0.05,0.1,0.5].

A.5.4. ADR

In ADR, we fix the upper threshold to be the success
threshold ¢t = Jp as was done in the original pa-
per and search over the lower bound threshold ¢t~ =
[0.1¢%,0.25¢%,0.5¢T,0.75¢7,0.9¢T]. The value used in
the original paper was 0.5ty . Other hyperparameters in-
clude the expansion/contraction rate, which we interpret to
be a fixed fraction of the domain interval, A = 0.1 % [gmax —
fmin} , and boundary sampling probability p, = 0.5.

A.6. Coverage vs Range Experiments

We compare coverage vs. range scale in the ant domain. We
adjust the parameter lower and upper bounds outlined in
Appendix A.3 and see how the coverage responds to those
changes during training. The parameter range is defined rel-
ative to a nominal midpoint m set to the original domain pa-
rameters: [m— (m—lower)sxscale, m- (upper—m)xscale)].
The results of our experiment are shown in Figure 12

A.7. Coverage vs. Threshold Experiments

In this experiment, we assess the sensitivity of coverage to
the performance threshold J; for a single training seed. We
experiment with threshold multipliers between 0 and 1.2+ .J;.
The results of this experiment can be seen in Figure 13.
These results demonstrate that although coverage is highly
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dependent on J;, GoFlow largely dominates the coverage
distribution for wide ranges of J;.

A.8. Real-world experiments

In addition to simulated experiments, we compare GoFlow
against baselines on a real-world gear insertion task. In
particular, we tested insertion of the pink medium gear over
10 trials for each baseline. To test this, we had the robot
perform 10 successive pick/inserts of the pink gear into the
middle shaft of the gear plate. Instead of randomizing the
pose of the gear, we elected to fix the initial pose of the
gear and the systematically perturb the end-effector pose
by a random £0.01 meter translational offset along the x
dimension during the pick. We expect some additional grasp
pose noise due to position error during grasp and object shift
during grasp. This led to a randomized in-hand offset while
running the trained insertion policy. Our results show that
GoFlow can indeed more robustly generalize to real-world
robot settings under pose uncertainty.

A.9. Statistical Tests

We performed a statistical analysis of the simulated results
reported in Figure 3 and the real-world experiments in Ta-
ble 1. For the simulated results, we recorded the final do-
main coverages across all seeds and performed pairwise
t-tests between each method and the top-performing method.
The final performance mean and standard deviation are re-
ported in Table 2. Any methods that were not significantly
different from the top performing method (p < 0.05) are
bolded. This same method was used to test significance of
the real-world results.



Flow-based Domain Randomization for Learning and Sequencing Robotic Skills

Coverage

Coverage

Coverage

Coverage

0.04

0.00

Cartpole Ant Quadcopter Quadruped Humanoid Gears
0.06 0.6 0.10
0.075
0.04 0.4
0.050 0.2 0.05
0.025 0.02 0.2
0.000 0.00 0.0 0.0 0.00
00 05 1.0 15 0.0 15 3.0 0 3 6 9 00 25 50 75 00 06 12 18 25 50 75
. x107 . x10° . x10° . x10° . 7 .
Timesteps Timesteps Timesteps Timesteps Timesteps Timesteps
a=2.0 a=1.5 === g=1.0 =— g=0.5 —=— g=0.1
Figure 6. GoFlow hyperparameter sweep results for o
Cartpole Ant Quadcopter Quadruped 06 Humanoid Gears
0.06 .
0.075 0.10
0.050 0.04 0.4
) 02 0.05
0.025 0.02 0.2
0.000 0.00 0.0 0.0 0.00
00 05 10 15 0.0 15 3.0 0 3 6 9 00 25 50 75 00 06 12 18 25 50 75
. x107 X x106 i %106 . %106 . 7 X
Timesteps Timesteps Timesteps Timesteps Timesteps Timesteps
B=2.0 B=1.0 = B=0.5  w—f=0.] — /3:0.0\
Figure 7. GoFlow hyperparameter sweep results for 3 after fixing the best « for each environment
Cartpole Ant Quadcopter Quadruped Humanoid Gears
0.0075 0.05 0.6
0.0075 0.006
0.0050 0.0050 0.4 0.004
0.00
-0025 0.0025 0.2 0.002
0.0000 = ‘“ -0.05 0.0000 ‘A 0.0 el NE |,
00 05 10 15 0.0 15 3.0 0 3 6 9 00 25 50 75 00 06 12 18 0 3 6
. x107 X x106 i X106 . %106 . x107 X
Timesteps Timesteps Timesteps Timesteps Timesteps Timesteps
a,=2.0 Q=15 m— =10 — =05 — ur,_=0.1‘
Figure 8. LSDR hyperparameter sweep results for oy,
Cartpole Ant Quadcopter Quadruped Humanoid Gears
0.05 0.05 0.10 0.003
0.04
0.002
0.00 0.00 0.05
0.001 0.02
-0.05 -0.05 0.00 0.000 0.00
00 05 10 15 0.0 15 3.0 0 3 6 9 00 25 50 75 00 06 12 18 25 50 75
. x107 X x10° . x10° . x10° . x107 .
Timesteps Timesteps Timesteps Timesteps Timesteps Timesteps
£p=0.5 £p=0.1 === £,=0.05 === gp=0.01 = gp=0.005

Figure 9. DORAEMON hyperparameter sweep results for ep

15



Flow-based Domain Randomization for Learning and Sequencing Robotic Skills

Coverage

Coverage

Coverage

Coverage

Cartpole Ant Quadcopter Quadruped Humanoid Gears
0.04 0.05 0.05 0.10 0.003
0.04
0.002
0.00 0.00 0.05
0.02
0.001 0.02
0.00 -0.05 -0.05 0.00 0.000 0.00
0.0 0.5 1.0 15 0.0 15 3.0 3 6 9 00 25 50 75 0.0 0.6 12 1.8 25 50 75
. x107 . x106 i x10° . %108 ) x107 X x10°
Timesteps Timesteps Timesteps Timesteps Timesteps Timesteps
ap=0.5 ap=0.1 === @qp=0.05  ==—— qp=0.01 ==— q;=0.005
Figure 10. DORAEMON hyperparameter sweep results for ap after fixing the best ep
Cartpole Ant Quadcopter Quadruped Humanoid Gears
0.05 0.05 0.05
0.008 0.15 0.02
0.006 0.00 0.00 0.10 0.00 | e——
0.004 0.05 0.01
0.002 -0.05 -0.05 0.00 ~0.05
00 05 10 15 0.0 15 30 3 6 9 00 25 50 75 00 06 12 18 25 50 75
X x107 . o ) x108 . x106 . x107 X x10°
Timesteps Timesteps Timesteps Timesteps Timesteps Timesteps
t==0.9 t7=0.75 = t7=0.5 w—t"=0.25 s—t=0.1
Figure 11. ADR hyperparameter sweep results for ¢~
GOFLOW FullDR NoDR DORAEMON ADR LSDR
10° 10° 10° 10° 10° 10°
1072 102 1072 1072
103 1073
‘ 107 107* 107 107
-6 -6
10 10-6 10- 10-6 1075 10
15 3.0 15 3.0 15 30 15 3.0 15 3.0 15 30
. o . ° . 0° . x10° . x10° . x10°
Timesteps Timesteps Timesteps Timesteps Timesteps Timesteps
mm— scale=0.1 === scale=0.25 === scale=0.5 scale=0.75 scale=0.9‘
Figure 12. Coverage vs range experiment results discussed in Section A.6
Cartpole Quadcopter Humanoid
—\ : H
0.10
—_— 1
0.05 -
——————
0.00 — X . T X H K +
00 04 08 12 00 04 08 12 00 04 08 12 00 04 08 12 00 04 08 12 00 04 08 12
Multiplier Multiplier Multiplier Multiplier Multiplier Multiplier
= GOFLOW === FullDR === NoDR

=== DORAEMON LSDR ADR
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Cartpole Ant Quadcopter Quadruped Humanoid Gears

FullDR -920.132  362.454 -2.286 0.108 657.414  8.627
NoDR -949.925 133.331 -3.807 -4.062 180.734  12.697
DORAEMON -930.417 86.742 -1.767 -2.472 235.516  11.378
LSDR -867.347 367.612 -1.870 -0.052 532.531  9.289
ADR -953.498  64.815 -3.183 -2.926 246.297  9.671
GOFLOW -820.510 198.302 -1.000 -2.814 376.652  14.209

Table 3. CVaR computed as the mean of the final rewards falling below the 10% percentile (VaR).
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Figure 14. A visualization of the beliefs over the object pose under the initial image (first three columns) and after closer inspection (last
three columns) as generated from the posterior of the model described in Section 6.3. The colormap corresponds to the log probability of
the posterior pose estimate. All plots are centered around the most likely pose estimate under the image model.
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Algorithm 2 Belief-Space Planner Using BFS

Require: Initial belief state by, goal condition G C 15, set of skills Ay, success threshold 7
1: Initialize the frontier F < {bo}

2: Initialize the visited set V < )
3: Initialize the plan dictionary Plan mapping belief states to sequences of skills
4: while F is notempty do
5: Dequeue b from F
6: if b€ G then
7: return Plan[b] > Return the sequence of skills leading to b
8: end if
9: for all skills 7 € Ay do
10: if b € Pre, givenn then
11: b + sample(Eff,)
12: if b ¢V then
13: Add V' to F and V
14: Update Plan[b'] « Plan[b] + [n]
15: end if
16: end if
17: end for
18: end while
19: return Failure > No plan found
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