

# 000 001 002 003 004 005 006 007 008 009 010 AD-NODE: ADAPTIVE DYNAMICS LEARNING WITH 001 NEURAL ODES FOR MOBILE ROBOT CONTROL 002 003 004 005 006 007 008 009 010

005 **Anonymous authors**  
006 Paper under double-blind review

## 007 008 009 ABSTRACT 010

011 Mobile robots, such as ground vehicles and quadrotors, are becoming increasingly  
012 important in various fields, from logistics to agriculture, where they automate pro-  
013 cesses in environments that are difficult to access for humans. However, to per-  
014 form effectively in uncertain environments using model-based controllers, these  
015 systems require dynamics models capable of responding to environmental varia-  
016 tions, especially when direct access to environmental information is limited. To  
017 enable such adaptivity and facilitate integration with model predictive control, we  
018 propose an adaptive dynamics model which bypasses the need for direct environ-  
019 mental knowledge by inferring operational environments from state-action history.  
020 The dynamics model is based on neural ordinary equations, and a two-phase train-  
021 ing procedure is used to learn latent environment representations. We demonstrate  
022 the effectiveness of our approach through goal-reaching and path-tracking tasks  
023 on three robotic platforms of increasing complexity: a 2D differential wheeled  
024 robot with changing wheel contact conditions, a 3D quadrotor in variational wind  
025 fields, and the Sphero BOLT robot under two contact conditions for real-world  
026 deployment. Empirical results corroborate that our method can handle temporally  
027 and spatially varying environmental changes in both simulation and real-world  
028 systems.

## 029 1 INTRODUCTION 030

031 Mobile robots such as ground vehicles and quadrotors are increasingly used across applications,  
032 from navigating warehouse floors in logistics to large-scale crop monitoring in agriculture (Li et al.,  
033 2024; Duggal et al., 2016). These systems provide access to environments difficult to access for  
034 humans, enabling greater operational scale and improved efficiency. Mobile robots may encounter  
035 various types of environments within a single operation and generally lack prior knowledge of the  
036 conditions they will face, making real-time adaptability essential during deployment. To operate  
037 robustly in such uncertain environments, mobile robots require adaptive control strategies that can  
038 respond to environmental variations such as terrain types, wind conditions, or payload changes.  
039 However, achieving such adaptability remains challenging for model-based controllers as they rely  
040 on accurate dynamics models for control action planning over long horizons (Seo et al., 2020; Naga-  
041 bandi et al., 2018a). Furthermore, many environmental variations cannot be fully detected using on-  
042 board sensors, making it important for the system to infer hidden environmental factors from limited  
043 data and adapt its dynamics accordingly.

044 Previous efforts in in-context reinforcement learning (RL) have led to major advances in adapting  
045 to different environments based on past trajectories (Liang et al., 2023; Zhang et al., 2025; Belkhale  
046 et al., 2021). A line of research in adaptive model-free RL proposes specially designed adaptive  
047 modules, known as Rapid Motor Adaptation (RMA), to encode environmental information in RL  
048 policy (Kumar et al., 2021; Zhang et al., 2023; Qi et al., 2023). **However, model-free RL meth-  
049 ods often struggle to explicitly incorporate desired trajectories or hard constraints, such as collision  
050 avoidance, into the policy, which in turn requires large amounts of exploratory data.** Several model-  
051 based RL approaches have been proposed (Seo et al., 2020; Lee et al., 2020; Evans et al., 2022);  
052 however, they often model dynamics over a predefined discrete time domain, which overlooks the  
053 continuously-evolving dynamics of rigid-body robotic systems (Greydanus et al., 2019). Since the  
dynamics of these systems are typically governed by ordinary differential equations (ODEs), neural  
ordinary differential equations (NODE) (Chen et al., 2018), which learn first-order derivatives and

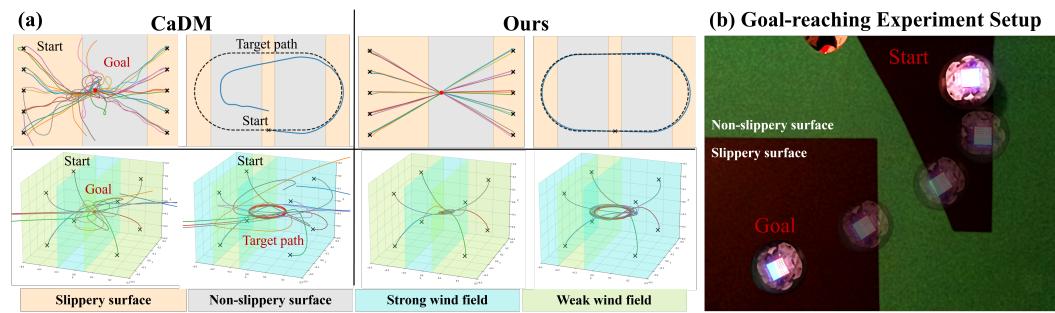


Figure 1: (a) Our adaptive dynamics model outperforms CaDM (Lee et al., 2020) when combined with MPC in goal-reaching and path-tracking tasks across (top row) differential wheeled robot and (bottom row) quadrotor navigation platforms. Our method works well in unknown environments (such as different layouts of surface textures and wind fields) and accurately reaches the targets, while CaDM struggles with oscillations around the targets. (b) Physical setup of a Sphero BOLT robot navigating through different textures and reaching the goal.

compute system states using numerical integrators, are well-suited for modeling continuous-time dynamics. The approach of modeling derivatives has also shown success in time-series prediction tasks across various domains (Lipman et al., 2022; Zhang et al., 2024; Cranmer et al., 2020). In robotics, learning dynamics with NODE has demonstrated robustness to noisy and irregular data in standard RL tasks (Yildiz et al., 2021). However, the effectiveness of continuous-time models for capturing adaptive dynamics under drastic environmental changes remains an open question. In this work, we propose AD-NODE, an adaptive dynamics model for mobile robots that combines NODE with an adaptive module in the style of RMA to infer environmental conditions from past state-action history. We use a two-phase training framework: in Phase 1, the model focuses on learning the mapping between states, with complete environmental information (referred to as "privileged information") included in the training data. In Phase 2, the model learns to reconstruct the environment from historical data during execution. The proposed adaptive dynamics model is used with model predictive control (MPC) (Morari & Lee, 1999; Garg et al., 2013; Chua et al., 2018) to determine the optimal actions for accomplishing navigation tasks on two simulated mobile robotic platforms: a 2D differential wheeled robot navigating surfaces with different textures, and a 3D quadrotor flying through different wind fields. Given the limited availability of models that are both adaptive and continuous, and with the goal of enabling adaptability in mobile robots across varying environments, we select a classic context-aware dynamics model (CaDM) (Lee et al., 2020) as our primary comparison baseline. Figure 1 demonstrates that our proposed model has superior performance in both goal-reaching and path-tracking tasks across both simulated platforms. Furthermore, the model we design can be deployed in a real-world environment where a Sphero BOLT robot navigates across two distinct textures.

## 1.1 CONTRIBUTION

We propose learning a continuous-time adaptive dynamics model with NODE (AD-NODE) for mobile robotic systems that can adapt to the environment during operation. Specifically:

- We propose a novel framework that incorporates adaptability into continuously-evolving dynamics for long-horizon rollouts in MPC.
- We empirically show that our framework achieves higher accuracy compared to the baselines in both goal-reaching and path-tracking tasks for differential wheeled robot and quadrotor navigation platforms.
- We validate the feasibility of AD-NODE beyond simulation by deploying it on a Sphero BOLT robot across surfaces with different friction, demonstrating adaptability and repeatability under hardware uncertainty.

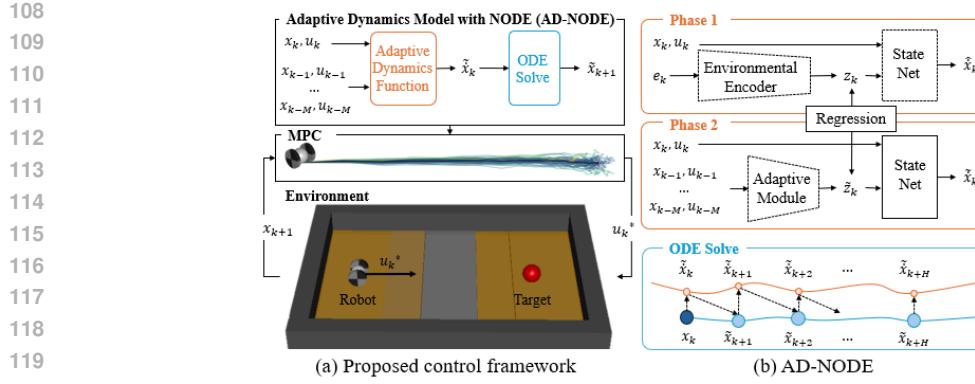


Figure 2: (a) Proposed control framework for mobile robots, where MPC is adopted to determine optimal control actions by predicting future trajectories with our proposed dynamics model (AD-NODE). (b) Structure of AD-NODE: the state net models the derivatives of states evolution, the environmental encoder processes privileged information, and the adaptive module reconstructs a latent environmental vector from historical state-action data by regressing to the corresponding latent vector from Phase 1. State prediction is obtained through numerical integration of the dynamics function. Models with trainable weights are indicated with dashed lines.

## 2 RELATED WORK

Adaptive dynamics modeling for robotic systems has been explored through a variety of approaches aimed at handling changing and partially observed environments. A common strategy uses historical state-action sequences to infer latent vectors representing the environment, which then inform the dynamics model. Different model structures have been used for this purpose, including transformers (Xiao et al., 2024) for handling long sequences and capturing temporal dependencies, graph neural networks for object-centric embeddings (Li et al., 2019), and probabilistic models to account for uncertainty in partially observed information (Guttikonda et al., 2024; Belkhale et al., 2021). Beyond model structures, various training pipelines have been explored, such as using both a forward and a backward path (Lee et al., 2020), meta-learning approaches that update themselves across a distribution of environments (Nagabandi et al., 2018a; Levy et al., 2025), and learning a multi-modal model that selects the correct mode on the fly (McKinnon & Schoellig, 2017). Some research also integrates multi-modal inputs, embedding heterogeneous sensor signals into latent spaces to enhance dynamics predictions (Vertens et al., 2023). Inspired by adaptive control theory, other approaches capture environmental variations by modeling residual errors from a reference model using low-pass filters (Huang et al., 2023; Hanover et al., 2021). Finally, continual online learning methods have been proposed to maintain adaptability by updating the model with new information during operation (Jiahao et al., 2023; Nagabandi et al., 2018b). Our work builds on these foundations by using environmental labels to guide historical state-action processing as well as structuring the model with a NODE backbone, yielding a practical dynamics model that works across different robotic platforms and environmental conditions.

## 3 PROBLEM STATEMENT

We address the problem of goal reaching or path tracking of mobile robots as a discrete-time MPC, which optimizes a sequence of future control actions over a finite time horizon. The dynamical system we are considering is governed by

$$\dot{x}(t) = f(x(t), u(t), e(t)), \quad x_{k+1} = x_k + \int_{t=k}^{t=k+1} f(x(t), u(t), e(t)) dt \quad (1)$$

where  $x_k \in \mathbb{R}^n$  denotes the state of the system at time step  $k$ ,  $u(t) \in \mathbb{R}^m$  is the control input,  $e(t) \in \mathbb{R}^l$  represents environmental factors that will influence the dynamics, and  $f$  represents the continuous-time dynamics of the system that models  $\dot{x}(t)$ .  $x_{k+1}$  can be obtained using a numerical

162 integrator such as *Euler* or *Runge–Kutta methods*. After discretization,  $u(t)$  is represented as  $u_k$ ,  
 163 and  $e(t)$  as  $e_k$ .

164 Over a prediction horizon  $H$ , the task can be formulated as an optimization problem that can be  
 165 solved using MPC (Morari & Lee, 1999; Garg et al., 2013; Chua et al., 2018) at each time step  $k$ :

$$\begin{aligned} 168 \quad & \min_{u_{k:k+H-1}} \sum_{i=k}^{k+H-1} \ell(x_i, u_i) + \ell_f(x_{k+H}) \\ 169 \quad & \text{s.t. } x_{i+1} = \text{ODESolve}(x_i, u_i, f, t_i, t_{i+1}), \quad i = k, \dots, k+H-1, \\ 170 \quad & \quad u_i \in \mathcal{U}, \quad x_0 \in \mathcal{X}_0 \end{aligned} \quad (2)$$

171 where  $\ell$  is the stage cost,  $\ell_f$  is the terminal cost.  $\mathcal{U}$  denotes the input constraint sets, and  $\mathcal{X}_0$  is  
 172 an initial constraint set designed to ensure a robot starts from the designated state. After solving  
 173 Equation 2, only the first control input  $u_k^*$  of the optimal sequence is applied to the system. In the  
 174 next time step, the horizon is shifted forward, and the optimization is repeated with updated state  
 175 information.

176 With a fixed dynamics model, MPC can handle a certain degree of uncertainty or disturbances via  
 177 solving Equation 2 on the fly during execution. However, it fails to handle systems that deviate too  
 178 much from the reference dynamics model, such as through unexpected environmental changes or  
 179 severe disturbances. To enable fast and effective adaptability, we propose to adapt the dynamics  
 180 function  $f$  by updating the environment ( $e_k$ ) between control steps. However, it is often hard to find  
 181 the complete environment information because the real-world system is often partially observed.  
 182 Therefore, the state-action history is used to recover the current environment. Inspired by RMA  
 183 (Kumar et al., 2021), we first encode environmental factors  $e_k$  into an environment latent vector  
 184  $z_k$  and learn an adaptive module to encode state-action history into latent vector  $\tilde{z}_k$ . Then, the  
 185 environment can be recovered by training encoders to align  $\tilde{z}_k$  and its corresponding  $z_k$  together.  
 186 The process can be expressed as

$$190 \quad z_k = g(e_k), \quad \tilde{z}_k = h(\{(x_i, u_i)\}_{i=k-M}^{k-1}), \quad L = L_2(z_k, \tilde{z}_k), \quad (3)$$

191 where  $\{(x_i, u_i)\}_{i=k-M}^{k-1}$  denotes state-action history over a horizon of length  $M$ .  $g$  denotes the  
 192 environmental encoder that encodes  $e_k$  to  $z_k$ , and  $h$  denotes the adaptive module that reconstructs  
 193 current environment by encoding state-action history to  $\tilde{z}_k$  and regressing to  $z_k$  by MSE loss. We  
 194 recover the environment in latent space because it is easier to align two different domains (the  
 195 domain of  $\{(x_i, u_i)\}_{i=k-M}^{k-1}$  and its corresponding  $e_k$ ) in another lower-dimensional space. See  
 196 Figure 2 for the complete framework.

## 200 4 ADAPTIVE DYNAMICS MODEL WITH NODE

201 This section proposes an adaptive dynamics model with NODE (AD-NODE) for mobile robots,  
 202 which integrates environment-aware dynamics into MPC to obtain optimal actions for navigation.

### 205 4.1 TWO-PHASE FRAMEWORK FOR LEARNING ADAPTIVE DYNAMICS

206 In this section, we discuss how to learn the dynamics mapping from the current state  $x_k$  and current  
 207 action  $u_k$  to the next state  $x_{k+1}$  conditioned on  $M$  historical data  $\{(x_i, u_i)\}_{i=k-M}^{k-1}$ . The objective of  
 208 learning the adaptive dynamics is to capture task-invariant environments based solely on historical  
 209 data (Equation 3), so that the dynamics function can be adjusted according to the inferred environ-  
 210 ment. While most model-based RL learns the mapping in an end-to-end manner, we decompose  
 211 dynamics learning into two phases as shown in Figure 2.

212 In Phase 1, we learn state evolution using privileged information  $e_k$ , which is available in simula-  
 213 tion but may not be measurable during deployment. Conditioning on  $e_k$ , which carries direct and  
 214 complete environmental information, facilitates learning the state evolution in response to control  
 215 actions. The state evolution is implemented in the state net with NODE to learn the first derivative

216  $\dot{x}(t)$ , and numerical integrators are used to compute the next state  $x_{k+1}$ . This process models tra-  
 217 jectories as integration of the vector fields, inherently producing smooth and physically consistent  
 218 outputs. A.1 and A.4.3 present both theoretical and empirical evidence for the advantages of mod-  
 219 eling dynamics with a NODE over a Multi-Layer Perceptron (MLP). However, instead of inputting  
 220  $x_k$ ,  $u_k$ , and  $e_k$  directly into the state net, we apply an environmental encoder to first turn  $e_k$  into a  
 221 latent vector  $z_k$ , which is then passed to the state net.

222 After completing end-to-end training in Phase 1, Phase 2 addresses the original mapping problem  
 223 by learning to infer  $z_k$  from historical data. Since Phase 1 is dedicated to modeling the temporal  
 224 evolution of system states, we fix the weights of the learned state net in Phase 2. We then regress the  
 225 historical data on their corresponding  $z_k$  and obtain  $\tilde{z}_k$  by following the process mentioned in Equa-  
 226 tion 3 and Figure 2. Since historical data carries distinct physical meanings and have significantly  
 227 different dimensionality compared to  $e_k$ , it is effective to align two domains together in latent space.  
 228 A similar approach has been proven successful in style transfer, where a domain-invariant repres-  
 229 entation is learned in latent space to facilitate knowledge transfer or generate consistent outputs across  
 230 different styles (Gatys et al., 2016).

## 231 4.2 SAMPLING-BASED CONTROL WITH ONLINE DYNAMICS LEARNING

232 NODE results in strong extrapolation capabilities and temporal continuity, making it particularly  
 233 well-suited for integration with sampling-based MPC: in particular, we use the model predictive  
 234 path integral (MPPI) framework (Williams et al., 2017). Within the MPPI framework, a large set  
 235 of control sequences  $\{u_{k:k+H-1}^{(i)}\}_{i=1}^N$  are sampled and propagated forward using Equation 1 to gen-  
 236 erate corresponding trajectories. The cost of each trajectory is evaluated using a task-specific cost  
 237 function  $J^{(i)}$  consisting of stage cost  $l$  and terminal cost  $l_f$ , and the optimal control is computed  
 238 as a weighted average  $u_k^* = \sum_{i=1}^N w^{(i)} u_k^{(i)}$ ,  $w^{(i)} = \frac{\exp(-\frac{1}{\lambda} J^{(i)})}{\sum_{j=1}^N \exp(-\frac{1}{\lambda} J^{(j)})}$ , where  $\lambda$  is a temperature  
 239 parameter controlling exploration. A.2 shows the convergence analysis of using Phase 2 model as  
 240 dynamics function within MPC framework.

241 To improve performance across environments, we incorporate online fine-tuning of the learned dy-  
 242 namics model. As new observations  $\{(x_k, u_k, x_{k+1})\}$  become available during execution, we update  
 243 the parameters in the dynamics model on the fly to reduce prediction errors. To avoid catastrophic  
 244 forgetting as well as to balance exploration and exploitation, we use experience replay buffers to  
 245 record all the observations for online learning and enable a robot to select between a random ac-  
 246 tion and  $u_k^*$ . This continual learning process allows the model to refine its predictions and adapt to  
 247 distributional shifts, especially for unseen historical data.

## 248 4.3 ADDITIONAL TRAINING DETAILS

249 To improve long-horizon prediction accuracy, we apply curriculum learning to train NODE with  
 250 gradually increasing prediction horizons, from 1-step to H-step alignment. This mitigates the gra-  
 251 dient explosion and vanishing issues that commonly arise when training on long sequences or fine-  
 252 tuning an existing model. In addition, for the adaptive module design, using a 1D convolutional  
 253 neural network (CNN) to handle the high dimensionality of historical data shows benefits in quadro-  
 254 tor experiments by improving latent vector reconstruction through the extraction of local temporal  
 255 patterns. The sliding filters capture environmental changes regardless of their position in the se-  
 256 quence, which is useful in robotic motion, where accelerations or directional shifts can occur at ar-  
 257 bitrary points within a time sequence. Since each element in the state and action vectors represents  
 258 a distinct physical quantity, treating them as separate channels further enhances feature extraction.

## 259 5 SIMULATION EXPERIMENTS

### 260 5.1 BASELINE METHODS

261 **MLP-based dynamics** We consider two MLP-based dynamics: Phase 1 uses privileged information  
 262 and trains the model autoregressively with an L2 loss over a fixed horizon to assess the benefits  
 263 of NODE, and Phase 2 builds on the Phase 1 model by incorporating historical data for partially  
 264 observed settings.

270  
**Context-aware dynamics model (CaDM)** Lee et al. (2020) trains the adaptive dynamics in an end-  
271 to-end manner by using forward and backward loss to extract environmental factors. The comparison  
272 evaluates the overall adaptability of the learned dynamics model under environmental changes.  
273

274 **Meta-learning based dynamics model** We adopt the concept of the meta-learning-based approach  
275 in Belkhale et al. (2021) to design a context encoder using variational inference. The comparison  
276 evaluates the overall adaptability of the learned dynamics model under environmental changes.  
277

278 **Fixed NODE-based dynamics** A NODE-based model that does not update environmental information  
279 during operation and relies solely on the initial environmental factors for inference.  
280

281 **AD-NODE** AD-NODE is developed in two phases: Phase 1 is trained with privileged information  
282 and serves as an upper bound for performance; it uses NODE and is solved with the *Forward Euler*  
283 *method*. Phase 2 builds on the Phase 1 model by incorporating historical state-action information  
284 through an encoder that reconstructs  $z_k$  for partially observed settings.  
285

286 **RMA** (Kumar et al., 2021) RMA is a representative model-free method in this work. To enable  
287 trajectory tracking capability, we encode desired future positions into a embedding vector and in-  
288 corporating it to the Proximal Policy Optimization (PPO) policy (Schulman et al., 2017).  
289

290 **DATT** (Huang et al., 2023) DATT is a model-free method that uses L1 adaptation to derive the  
291 environmental factors. Training is also based on PPO algorithm (Schulman et al., 2017).  
292

## 293 5.2 DATA COLLECTION

294 We collect a dataset using the simulator by performing a grid  
295 search over the span of the state and action spaces in different  
296 environmental factors. Note that fully covering these spaces  
297 is challenging, especially for the high-dimensional quadrotor  
298 system. Therefore, we adopt a coarse sampling strategy: for  
299 the differential wheeled robot, we grid-sample the initial states  
300 and choose a random action but fix it along a trajectory; for the  
301 quadrotor, we randomly sample initial states and apply random  
302 actions. Each trajectory consists of 50 state-action pairs. If  
303 the dynamics model trained on the dataset fails to accurately  
304 capture the true system behavior, the online dynamics learning  
305 approach discussed in Section 4.2 becomes essential as it helps  
306 the robot explore and cover the critical portions of the state-  
307 action space required to accomplish the task.  
308

## 309 5.3 2D DIFFERENTIAL WHEELED ROBOT NAVIGATION

310 **Setup** Instead of relying on an equation-  
311 based simulator, we implement the environ-  
312 ment using MuJoCo physics engine (Todorov  
313 et al., 2012) to provide more realistic simu-  
314 lations for a contact-rich environment. The en-  
315 vironment features a mobile robot with two  
316 cylindrical wheels operating on a 2D surface.  
317 The robot’s state is defined as  $[x, y, \theta, \dot{x}, \dot{y}, \omega]^T$ ,  
318 where  $x$  and  $y$  represent the position,  $\dot{x}$  and  
319  $\dot{y}$  represent the corresponding velocity, and  $\theta$   
320 and  $\omega$  denote the heading and angular veloci-  
321 ty (Figure 3). The robot is driven by a dif-  
322 fferential drive, which allows the wheels to ro-  
323 late at different speeds and directions, resulting  
324 in two control actions: forward velocity command and steering angle command, represented as  
325  $[u_{\text{forward}}, u_{\text{turn}}]^T$ . Our proposed MPC controller will determine the  $u_{\text{forward}}$  and  $u_{\text{turn}}$  and a low-level  
326 PID controller with fixed parameters is used to transform the high-level command to low-level motor  
327 torque commands for each wheel.  
328

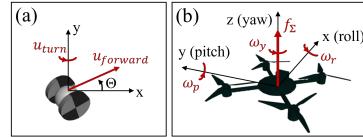


Figure 3: Environment setup for  
(a) 2D differential wheeled robot  
and (b) 3D quadrotor.

Table 1: Performance of the differential wheeled  
robot under (i) spatially continuous friction. Suc-  
cess rate (%) for goal-reaching and position  
RMSE (m) for path-tracking.

|                     | Goal-reaching | Path-tracking      |
|---------------------|---------------|--------------------|
| MLP(Phase1)         | 2             | > 0.1              |
| MLP(Phase2)         | 2             | > 0.1              |
| CaDM                | 16            | > 0.1              |
| Meta-learning based | 10            | 0.053±0.028        |
| Fixed NODE          | 74            | 0.045±0.015        |
| AD-NODE(Phase1)     | 76            | 0.026±0.013        |
| AD-NODE(Phase2)     | <b>98</b>     | <b>0.021±0.012</b> |

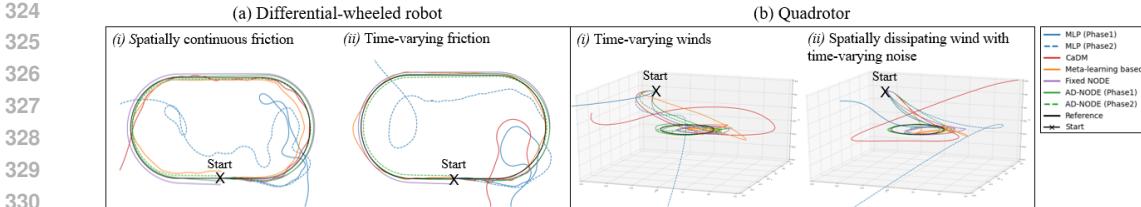


Figure 4: Path tracking trajectories of AD-NODE and model-based baselines in (a) differential-wheeled robot and (b) quadrotor simulators. The time-varying friction is updated every 5 control steps, and the time-varying wind field is updated every 10 control steps.

Table 2: Performance of the differential wheeled robot under (ii) time-varying friction updated every 5, 10, or 20 control steps. Success rate (%) for goal-reaching and position RMSE (m) for path-tracking.

|                     | Goal-reaching |           |           | Path-tracking      |                    |                    |
|---------------------|---------------|-----------|-----------|--------------------|--------------------|--------------------|
|                     | 5 steps       | 10 steps  | 20 steps  | 5 steps            | 10 steps           | 20 steps           |
| MLP(Phase1)         | 2             | 2         | 0         | > 0.1              | > 0.1              | > 0.1              |
| MLP(Phase2)         | 0             | 0         | 2         | > 0.1              | > 0.1              | > 0.1              |
| CaDM                | 12            | 10        | 14        | > 0.1              | > 0.1              | > 0.1              |
| Meta-learning based | 16            | 14        | 18        | 0.030±0.021        | 0.040±0.022        | 0.054±0.033        |
| Fixed NODE          | 66            | 62        | 60        | 0.038±0.012        | 0.035±0.015        | 0.044±0.014        |
| AD-NODE(Phase1)     | 74            | 76        | 74        | <b>0.024±0.015</b> | <b>0.024±0.015</b> | <b>0.025±0.016</b> |
| AD-NODE(Phase2)     | <b>92</b>     | <b>94</b> | <b>94</b> | 0.024±0.014        | 0.028±0.016        | 0.031±0.018        |

Environmental variations are surface textures, characterized by sliding, turning, and rolling friction, denoted as  $\mu_{\text{sliding}}$ ,  $\mu_{\text{turning}}$ ,  $\mu_{\text{rolling}}$ . We assume isotropic friction for simplicity. During data collection, we pick two surface textures, one is easier to maneuver on, and the other is slippery and requires more energy to move forward. See A.3.1 for simulation details. We collect trajectories on each surface for training. During testing, the robot is expected to detect surface changes and generalize to cases where the friction varies between the training values, as well as to cases where its wheels contact both surfaces simultaneously.

**Target tasks** Figure 1 visualizes the two tasks under piecewise constant friction. In the goal-reaching task, the differential wheeled robot starts from the left or right boundaries and uses a controller to reach the target at the center, with varying initial headings. This set-up evaluates performance across the entire domain. Success rate is defined as the percentage of episodes in which the agent reaches the target within a 10 mm threshold and within 150 control steps, measured over 50 runs. In the path-tracking task, the robot follows a predefined stadium-shaped path, with performance measured by the RMSE between the robot’s position and the target path over a complete lap. For both tasks, the test environments are evaluated in two environments: (i) spatially continuous friction that changes with radial distance from the environment center; and (ii) time-varying friction, updated every 5, 10, or 20 control steps. See A.6.2 for the cost functions used in MPC.

**MPC performance** In Table 1 and 2, we observe that our proposed model consistently outperforms the baselines, achieving higher goal-reaching success rates and lower path-tracking errors under both environments. Intuitively, the Phase 1 model is expected to perform better due to access to privileged information; however, Phase 2 achieves higher success rates in the goal-reaching tasks. This may be because Phase 1 training does not include scenarios where the two wheels are on different surfaces, whereas the Phase 2 model, trained on historical data, may generalize better to such cases. For path-tracking tasks, both Phase 1 and Phase 2 variants of our model show comparable performance across environments. Figure 4 shows the robot trajectories in the path-tracking tasks. The MLP-based dynamics models fail to complete the lap, CaDM completes most of it, and both the meta-learning-based and fixed-dynamics models successfully finish the full lap. Our proposed model achieves the best reference-tracking performance, consistent with the results reported in the tables.

378  
 379 Table 3: Performance of the quadrotor is evaluated under (i) time-varying winds fluctuating sinu-  
 380 soidally around nominal, updated every 10 control steps, and (ii) spatially dissipating wind with  
 381 random time-varying noise modeled as Brownian motion. Shown as RMSE (m).

|                     | <i>i</i>           | <i>ii</i>          |                    |
|---------------------|--------------------|--------------------|--------------------|
|                     | Goal-reaching      | Path-tracking      | Goal-reaching      |
|                     |                    |                    | Path-tracking      |
| MLP(Phase 1)        | > 0.2              | > 0.2              | > 0.2              |
| MLP(Phase 2)        | > 0.2              | > 0.2              | > 0.2              |
| CaDM                | > 0.2              | > 0.2              | > 0.2              |
| Meta-learning based | 0.092±0.023        | 0.143±0.074        | 0.099±0.021        |
| Fixed NODE          | 0.066±0.011        | 0.055±0.019        | 0.065±0.008        |
| <b>RMA</b>          | <b>0.107±0.012</b> | <b>0.099±0.014</b> | <b>0.065±0.015</b> |
| <b>DATT</b>         | <b>0.083±0.016</b> | <b>0.070±0.013</b> | <b>0.051±0.008</b> |
| AD-NODE(Phase 1)    | <b>0.010±0.004</b> | <b>0.036±0.020</b> | <b>0.012±0.007</b> |
| AD-NODE(Phase 2)    | 0.031±0.016        | 0.049±0.026        | 0.022±0.014        |
|                     |                    |                    | <b>0.030±0.018</b> |

#### 390 391 5.4 3D QUADROTOR TRAJECTORY PLANNING 392

393 **Setup** We use the quadrotor dynamics as the governing equation in our simulator (Huang et al.,  
 394 2023). Since we are only concerned with the position, velocity and orientation of a quadrotor, the  
 395 state that can capture the simplified dynamics model is defined as  $[p, v, q]^T$ , where  $p$ ,  $v$  and  $q$  are the  
 396 3D position, velocity, and quaternion. As shown in Figure 3, control action is defined as  $[f_\Sigma, \omega]^T$ ,  
 397 where  $f_\Sigma$  denotes the desired thrust and  $\omega$  denotes the desired angular velocity in roll, pitch and  
 398 yaw direction  $[\omega_r, \omega_p, \omega_y]$ . The MPC controller will determine the high-level actions, thrust and  
 399 angular velocity, and we implement low-level controller including a PI controller that transforms the  
 400 high-level commands to thrust and torque followed by an inverse mapping of an actuation matrix  
 401 for obtaining the four motor speeds. To model a real-world quadrotor, we transform the continuous  
 402 dynamics model into a discrete one with the sampling time set as 0.02 seconds.

403 Environmental variations are different wind fields acting on the quadrotor system. The wind field  
 404 is modeled as a disturbance force along the x-direction. During data collection, we sample the  
 405 disturbance force in the range of  $[-1, 1]$  N and collect trajectories in each wind field. During testing,  
 406 the quadrotor is subjected to wind fields beyond the  $[-1, 1]$  N range, representing out-of-distribution  
 407 environmental conditions.

408 **Target tasks** Figure 1 visualizes the two tasks under piecewise constant wind field. In the goal  
 409 reaching and hovering task, the goal is at the origin, and the quadrotor can start from each vertex of  
 410 a cube where the cube’s edge length is 0.4 meters long. The objective is to control the quadrotor to  
 411 reach and hover at the goal. We allow each controller 5 seconds to execute actions, then calculate  
 412 the average position error (RMSE) between the quadrotor position and goal over the final second. In  
 413 the path tracking task, the objective is to track a circle starting from the same positions as in the goal  
 414 reaching tasks, using the same RMSE metric. Test environments include two wind conditions: (i)  
 415 time-varying wind fluctuating sinusoidally around a nominal force, updated every 10 control steps;  
 416 and (ii) spatially dissipating wind with random time-varying noise modeled as Brownian motion  
 417 (Huang et al., 2023), which represents the wind field of a fan blowing on a quadrotor. See A.6.2 for  
 418 the cost function used in MPC.

419 **MPC performance** Table 3 shows the results of the two tasks in both environments after integrat-  
 420 ing the learned dynamics model with MPC. We also apply online dynamics learning, as described in  
 421 Section 4.2, to fine-tune the dynamics model (see A.6.3 for details). Similar to Section 5.3, our  
 422 approach successfully completes each navigation task in environments that vary across space and time,  
 423 achieving lower tracking errors than the **model-based baselines**. While there is a slight performance  
 424 drop from Phase 1 (with privileged information) to Phase 2, the adaptive module in Phase 2 still re-  
 425 constructs environmental factors and outperforms both the fixed NODE-based dynamics model and  
 426 other **model-based baselines**. The quadrotor trajectories in the path-tracking task (Figure 4 ) show  
 427 that the meta-learning-based and fixed-dynamics models perform best among the baselines, success-  
 428 fully guiding the quadrotor near the target trajectory. However, these top baselines still cannot track  
 429 the reference accurately, whereas AD-NODE achieves the best overall tracking performance.

430 Table 3 also compares model-free (RMA and DATT) and model-based approaches. These two  
 431 categories use fundamentally different training pipelines: PPO, a model-free and on-policy method,

432 trains the policy directly from data sampled by the current policy, while our model-based approach  
 433 first collects offline data using random policies to train a dynamics model, then fine-tunes the model  
 434 using online data generated by the MPPI controller. Because of these differences, it is difficult to  
 435 compare the methods using exactly the same training dataset. Nevertheless, we report the results in  
 436 Table 3 and show that our approach achieves comparable performance. The qualitative results of the  
 437 model-free baselines can be found in A.8.

438 Model-free methods may underperform partly due to how desired trajectories are incorporated during  
 439 PPO training. MPPI naturally embeds the desired trajectory into its cost function, so the dy-  
 440 namics model does not need to learn trajectory-specific behavior. In contrast, PPO must sample  
 441 trajectories during training, and these samples may not fully cover the evaluation trajectories. MPPI  
 442 also allows soft or hard constraints (e.g., collision avoidance) to be directly added to the optimiza-  
 443 tion, improving safety. On the other hand, model-free methods offer significantly faster inference:  
 444 PPO runs at roughly 0.001 s per step—an order of magnitude faster than our 0.01 s—making them  
 445 attractive for applications requiring very high control rates or limited onboard compute.

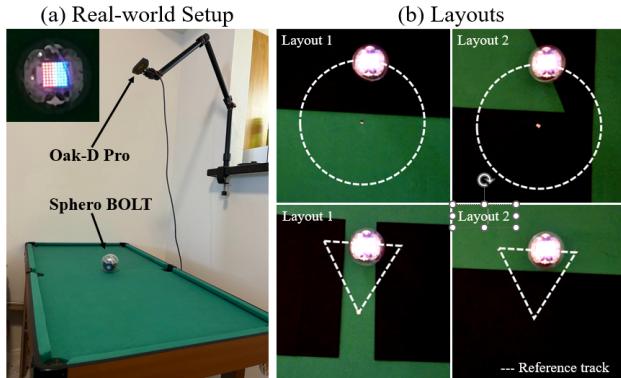
## 447 6 REAL-WORLD EXPERIMENTS

### 449 6.1 SETUP

451 To demonstrate the effectiveness of  
 452 deployment on real-world robots, we  
 453 evaluate the proposed framework on  
 454 a mobile robot platform (shown in  
 455 Figure 5 (a)) where a Sphero BOLT  
 456 robot is operated on a pool table and a Luxonis Oak-D Pro camera is  
 457 mounted above the table to detect  
 458 robot state. Although the robot has a  
 459 spherical outer shape, its internal ac-  
 460 tuation resembles a differential-drive  
 461 mechanism, so it cannot move side-  
 462 ways without first turning its head-  
 463 ing. Therefore, this robot is a suit-  
 464 able platform for testing planning al-  
 465 gorithms for navigation tasks.

466 The state of the robot is defined as  
 467  $[x, y, dx, dy, \dot{x}, \dot{y}]^T$ , where  $x$  and  $y$   
 468 represent the 2D position,  $dx$  and  
 469  $dy$  denote the cosine and sine of the  
 470 robot heading,  $\dot{x}$  and  $\dot{y}$  represent the corresponding velocity. We use the frame capture loop of  
 471 the camera, running at 60 fps with a frame step size of  $\Delta t = 0.0167$  seconds, and obtain a  
 472 control frequency of 15 Hz and control step size of  $dt = 0.0667$  seconds, by applying action every  
 473 4 frame capture loop. To estimate the robot state, two colored patches (Figure 5 (a), top left) are  
 474 displayed on the LED array, and a blob detection algorithm identifies their centers  $p_1 = (u_1, v_1)$   
 475 and  $p_2 = (u_2, v_2)$ . Due to the symmetric design of two patches, the center of the robot  $(x, y)$  can be  
 476 calculated by the average of  $p_1$  and  $p_2$ . To avoid ambiguity in the angle of the heading, we represent  
 477 the heading with two entries  $(dx, dy)$ , which are calculated by  $(u_1 - x, v_1 - y)$ . To estimate the  
 478 robot's velocity  $(\dot{x}, \dot{y})$ , we record the robot center  $(x_{prev}, y_{prev})$  two frames before each control  
 479 step. The velocity is then computed as  $((x - x_{prev})/(2\Delta t), (y - y_{prev})/(2\Delta t))$ .

480 The action of the robot is defined as  $[u_{\text{forward}}, u_{\text{turn}}]^T$ , which represent the forward velocity command  
 481 and the steering angle command respectively. The proposed framework will determine the optimal  
 482 action at each control step and the internal low-level controller in the Sphero BOLT robot will track  
 483 the commanded action. We note that the actual run time of obtaining an optimized action from the  
 484 framework is less than 0.01 seconds on a single Nvidia RTX 3090 GPU. The reason we slow down  
 485 the control rate is to accommodate the blob detection algorithm and the Bluetooth communication,  
 which take most of the time. To evaluate the capability of adapting to different environments, we



486 Figure 5: (a) Environment setup for the real-world platform.  
 487 (b) Friction layouts for path tracking.

486  
 487 Table 4: Performance of real-world experiments on navigation tasks with different friction layouts.  
 488 Shown as RMSE (cm).

|                   | Goal-reaching     |                   | Circle-tracking   |                   | Triangle-tracking |                   |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                   | Layout 1          | Layout 2          | Layout 1          | Layout 2          | Layout 1          | Layout 2          |
| Fixed NODE-based  | $2.127 \pm 1.233$ | $2.725 \pm 1.176$ | $4.567 \pm 2.106$ | $2.858 \pm 0.744$ | $5.404 \pm 0.193$ | $5.124 \pm 0.318$ |
| AD-NODE (Phase 2) | $0.766 \pm 0.303$ | $0.372 \pm 0.082$ | $2.077 \pm 0.340$ | $2.417 \pm 0.124$ | $3.315 \pm 0.027$ | $2.681 \pm 0.113$ |

492  
 493  
 494 create different friction layouts (shown in Figure 5 (b)) by randomly placing papers (low friction)  
 495 on the pool table (high friction).

496  
 497  
 498 **6.2 DATA COLLECTION**

500 Since the low-level controller in the Sphero BOLT robot is embedded in the robot’s computational  
 501 board (unknown to users) and the uncertainty of the robot’s dynamics is complicated, it is hard to  
 502 build a simulation environment that has small sim-to-real gap to the real-world platform. Therefore,  
 503 we choose to collect data directly on the real-world platform by commanding the robot with random  
 504 actions from a randomly placed location on the pool table. In sum, we collect nearly 2,000 pairs of  
 505 (state, action, next state) for each texture. Regarding the privileged information in Phase 1 training,  
 506 we assign relatively accurate friction coefficients for each texture. Note that we do not collect  
 507 data for out-of-distribution situations in which the robot crosses between the paper and pool table  
 508 textures, and the dynamics learned in Phase 2 are expected to generalize to such scenarios.

509  
 510 **6.3 RESULTS OF GOAL-REACHING AND PATH-TRACKING TASKS**

511 In the goal-reaching task, each layout is tested from a random initial position with the table center as  
 512 the goal. The robot must reach and hover at the goal, and performance is measured by the minimum  
 513 distance between its trajectory and the goal. **For the path-tracking task, we test two reference tracks:**  
 514 **a circular path and a triangular path that provides a more aggressive reference. Each layout used**  
 515 **a similar start position. The robot is required to follow the path, and performance is measured by**  
 516 **the average Euclidean distance between the trajectory and the closest path point.** The cost design  
 517 follows  $J_1$  (goal reaching) and  $J_2$  (path tracking) in Section A.6.2. Table 4 reports results on two  
 518 friction layouts, each averaged over three runs from similar start poses. Since the fixed NODE model  
 519 does not adapt to environment changes, its dynamics use the friction coefficient at the start location.  
 520 Results show that AD-NODE achieves smaller errors, indicating effective adaptation to spatially  
 521 varying friction. It also achieves lower standard deviation, demonstrating greater robustness and  
 522 higher repeatability under real-world uncertainty. AD-NODE is deployable on real-world systems  
 523 and outperforms the fixed NODE, which treats environmental changes as disturbances. AD-NODE  
 524 also handles surface boundary crossings more reliably, while the fixed NODE often gets stuck or  
 525 loses track. **The videos from the experiment are available here, and the trajectories for path tracking**  
 526 **are available in Section A.8.**

527  
 528  
 529 **7 CONCLUSION & FUTURE WORKS**

530 In this paper, we propose Adaptive Dynamics learning based on NODE (AD-NODE), a method  
 531 that can be integrated into MPC to perform navigation tasks on mobile robotic systems. We adopt  
 532 a two-phase training process to reconstruct environmental factors and adjust state predictions ac-  
 533 cordingly. Simulation results demonstrate the superior performance of AD-NODE on a differential  
 534 wheeled robot and a quadrotor operating under out-of-distribution environmental conditions. We  
 535 also demonstrate the outstanding performance of applying the framework on a real-world mobile  
 536 robot. Compared to a method that does not adapt its dynamics, AD-NODE can adjust its dynamics  
 537 according to the environment and thereby achieve better performance in navigation tasks. In the  
 538 future, we hope to extend the framework to different robotic platforms such as quadruped robots or  
 539 humanoid robots.

540 **8 REPRODUCIBILITY STATEMENT**  
 541

542 We have taken several steps to ensure reproducibility. Simulation details, including the Mujoco sim-  
 543 ulation settings for the differential wheeled robot and the equations used in the quadrotor environ-  
 544 ment, are provided in A.3. Details of the dynamics learning setup, including the model architectures  
 545 for all baselines and our proposed model, as well as all training parameters of our proposed model,  
 546 are provided in A.4. The data collection procedure is described in Section 5.2. Implementation  
 547 details of the MPC, including controller parameters and the cost function, are included in A.6. All  
 548 theoretical results are supported by complete derivations and proofs in A.1 and A.2. The source  
 549 code will be released upon acceptance.

550 **REFERENCES**  
 551

552 Suneel Belkhale, Rachel Li, Gregory Kahn, Rowan McAllister, Roberto Calandra, and Sergey  
 553 Levine. Model-based meta-reinforcement learning for flight with suspended payloads. *IEEE*  
 554 *Robotics and Automation Letters*, 6(2):1471–1478, April 2021. ISSN 2377-3774. doi: 10.1109/  
 555 *lra.2021.3057046*. URL <http://dx.doi.org/10.1109/LRA.2021.3057046>.

556 Ricky T. Q. Chen. torchdiffeq, 2018. URL <https://github.com/rtqichen/torchdiffeq>.

557 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary  
 558 differential equations. In *Advances in Neural Information Processing Systems*, volume 31. Curran  
 559 Associates, Inc., 2018.

560 Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-  
 561 ing in a handful of trials using probabilistic dynamics models. *Advances in neural information*  
 562 *processing systems*, 31, 2018.

563 Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.  
 564 Lagrangian neural networks. *arXiv preprint arXiv:2003.04630*, 2020.

565 Vishakh Duggal, Mohak Sukhwani, Kumar Bipin, G Syamasundar Reddy, and K Madhava Krishna.  
 566 Plantation monitoring and yield estimation using autonomous quadcopter for precision agricul-  
 567 ture. In *2016 IEEE international conference on robotics and automation (ICRA)*, pp. 5121–5127.  
 568 IEEE, 2016.

569 Ben Evans, Abitha Thankaraj, and Lerrel Pinto. Context is everything: Implicit identification for  
 570 dynamics adaptation. In *2022 International Conference on Robotics and Automation (ICRA)*, pp.  
 571 2642–2648. IEEE, 2022.

572 Vikas Garg, TS Jayaram, and Balakrishnan Narayanaswamy. Online optimization with dynamic  
 573 temporal uncertainty: Incorporating short term predictions for renewable integration in intelligent  
 574 energy systems. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 27, pp.  
 575 1291–1297, 2013.

576 Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional  
 577 neural networks. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,  
 578 pp. 2414–2423, 2016. doi: 10.1109/CVPR.2016.265.

579 Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. *Advances*  
 580 *in neural information processing systems*, 32, 2019.

581 Suresh Guttikonda, Jan Achterhold, Haolong Li, Joschka Boedecker, and Joerg Stueckler. Context-  
 582 conditional navigation with a learning-based terrain- and robot-aware dynamics model, 2024.  
 583 URL <https://arxiv.org/abs/2307.09206>.

584 Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann, and Davide Scaramuzza. Performance,  
 585 precision, and payloads: Adaptive nonlinear mpc for quadrotors. *IEEE Robotics and Automation*  
 586 *Letters*, 7(2):690–697, 2021.

587 Kevin Huang, Rwik Rana, Alexander Spitzer, Guanya Shi, and Byron Boots. Datt: Deep adaptive  
 588 trajectory tracking for quadrotor control. *arXiv preprint arXiv:2310.09053*, 2023.

594 Tom Z Jiahao, Kong Yao Chee, and M Ani Hsieh. Online dynamics learning for predictive control  
 595 with an application to aerial robots. In *Conference on Robot Learning*, pp. 2251–2261. PMLR,  
 596 2023.

597

598 Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for  
 599 legged robots. *arXiv preprint arXiv:2107.04034*, 2021.

600

601 Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynam-  
 602 ics model for generalization in model-based reinforcement learning. In *International Conference*  
 603 *on Machine Learning*, pp. 5757–5766. PMLR, 2020.

604

605 Jacob Levy, Jason Gibson, Bogdan Vlahov, Erica Tevere, Evangelos Theodorou, David Fridovich-  
 606 Keil, and Patrick Spieler. Meta-learning online dynamics model adaptation in off-road au-  
 607 tonomous driving, 2025. URL <https://arxiv.org/abs/2504.16923>.

608

609 Keqin Li, Lipeng Liu, Jiajing Chen, Dezhi Yu, Xiaofan Zhou, Ming Li, Congyu Wang, and Zhao  
 610 Li. Research on reinforcement learning based warehouse robot navigation algorithm in complex  
 611 warehouse layout. In *2024 6th International Conference on Artificial Intelligence and Computer*  
 612 *Applications (ICAICA)*, pp. 296–301. IEEE, 2024.

613

614 Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional koop-  
 615 man operators for model-based control. *arXiv preprint arXiv:1910.08264*, 2019.

616

617 Jingsong Liang, Zhichen Wang, Yuhong Cao, Jimmy Chiun, Mengqi Zhang, and Guillaume Adrien  
 618 Sartoretti. Context-aware deep reinforcement learning for autonomous robotic navigation in un-  
 619 known area. In *Conference on Robot Learning*, pp. 1425–1436. PMLR, 2023.

620

621 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching  
 622 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

623

624 Christopher D. McKinnon and Angela P. Schoellig. Learning multimodal models for robot dynamics  
 625 online with a mixture of gaussian process experts. In *2017 IEEE International Conference on*  
 626 *Robotics and Automation (ICRA)*, pp. 322–328, 2017. doi: 10.1109/ICRA.2017.7989041.

627

628 Manfred Morari and Jay H Lee. Model predictive control: past, present and future. *Computers &*  
 629 *chemical engineering*, 23(4-5):667–682, 1999.

630

631 Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,  
 632 and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-  
 633 reinforcement learning. *arXiv preprint arXiv:1803.11347*, 2018a.

634

635 Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning:  
 636 Continual adaptation for model-based rl. *arXiv preprint arXiv:1812.07671*, 2018b.

637

638 Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik. In-hand object rotation  
 639 via rapid motor adaptation. In *Conference on Robot Learning*, pp. 1722–1732. PMLR, 2023.

640

641 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 642 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

643

644 Younggyo Seo, Kimin Lee, Ignasi Clavera Gilaberte, Thanard Kurutach, Jinwoo Shin, and Pieter  
 645 Abbeel. Trajectory-wise multiple choice learning for dynamics generalization in reinforcement  
 646 learning. *Advances in Neural Information Processing Systems*, 33:12968–12979, 2020.

647

648 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.  
 649 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.  
 650 IEEE, 2012.

651

652 Johan Vertens, Nicolai Dorka, Tim Welschendorf, Michael Thompson, and Wolfram Burgard. Im-  
 653 proving deep dynamics models for autonomous vehicles with multimodal latent mapping of sur-  
 654 faces. In *2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp.  
 655 4299–4306, 2023. doi: 10.1109/IROS55552.2023.10341771.

648 Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral  
 649 control: From theory to parallel computation. *Journal of Guidance, Control, and Dynamics*, 40  
 650 (2):344–357, 2017.

651 Wenli Xiao, Haoru Xue, Tony Tao, Dvij Kalaria, John M. Dolan, and Guanya Shi. Anycar to  
 652 anywhere: Learning universal dynamics model for agile and adaptive mobility, 2024. URL  
 653 <https://arxiv.org/abs/2409.15783>.

654 Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Continuous-time model-based reinforce-  
 655 ment learning. In *International Conference on Machine Learning*, pp. 12009–12018. PMLR,  
 656 2021.

657 Dingqi Zhang, Antonio Loquercio, Xiangyu Wu, Ashish Kumar, Jitendra Malik, and Mark W  
 658 Mueller. Learning a single near-hover position controller for vastly different quadcopters. In  
 659 *2023 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1263–1269. IEEE,  
 660 2023.

661 Xi Nicole Zhang, Yuan Pu, Yuki Kawamura, Andrew Loza, Yoshua Bengio, Dennis Shung, and  
 662 Alexander Tong. Trajectory flow matching with applications to clinical time series modelling.  
 663 *Advances in Neural Information Processing Systems*, 37:107198–107224, 2024.

664 Xilun Zhang, Shiqi Liu, Peide Huang, William Jongwon Han, Yiqi Lyu, Mengdi Xu, and Ding Zhao.  
 665 Dynamics as prompts: In-context learning for sim-to-real system identifications. *IEEE Robotics  
 666 and Automation Letters*, 2025.

## 667 A APPENDIX

### 668 A.1 ERROR PROPAGATION IN NODE vs. DISCRETE-TIME MAP

669 We compare error growth when dynamics are approximated by (i) a continuous-time vector field  
 670 model (NODE), and (ii) a discrete-time map model (MLP). The difference lies in how approximation  
 671 errors propagate over long horizons.

672 **Lemma A.1** (Error propagation for vector-field models (NODE)). *Consider the true continuous-  
 673 time dynamics*

$$674 \dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0, \quad (4)$$

675 and the approximate continuous-time dynamics

$$676 \dot{\hat{x}}(t) = \hat{f}(\hat{x}(t), u(t)), \quad \hat{x}(0) = x_0, \quad (5)$$

677 where  $f, \hat{f} : \mathbb{R}^d \times \mathcal{U} \rightarrow \mathbb{R}^d$ ,  $f$  is Lipschitz continuous in  $x$  with Lipschitz constant  $L$  and let the  
 678 approximation error be

$$679 \epsilon = \sup_{x \in \mathbb{R}^d, u \in \mathcal{U}} \|f(x, u) - \hat{f}(x, u)\|. \quad (6)$$

680 Based on  $\delta(0) = 0$ , the trajectory error  $\delta(t) = \|x(t) - \hat{x}(t)\|$  satisfies the bound

$$681 \delta(t) \leq \frac{\epsilon}{L} (e^{Lt} - 1). \quad (7)$$

682 **Proof.** Let  $e(t) = x(t) - \hat{x}(t)$ . Then

$$683 \dot{e}(t) = f(x(t), u(t)) - \hat{f}(\hat{x}(t), u(t)).$$

684 Adding and subtracting  $f(\hat{x}(t), u(t))$  gives

$$685 \dot{e}(t) = (f(x(t), u(t)) - f(\hat{x}(t), u(t))) + (f(\hat{x}(t), u(t)) - \hat{f}(\hat{x}(t), u(t))).$$

686 Taking norms and using the Lipschitz property,

$$687 \|\dot{e}(t)\| \leq L\|e(t)\| + \epsilon.$$

688 Applying Grönwall's inequality with initial error  $\|e(0)\| = 0$  yields

$$689 \|e(t)\| \leq \frac{\epsilon}{L} (e^{Lt} - 1).$$

690  $\square$

702 **Lemma A.2** (Error propagation for discrete-time map models (MLP)). *Consider the true discrete-  
703 time dynamics*

$$704 \quad x_{k+1} = F(x_k, u_k), \quad x_0 \in \mathbb{R}^d, \quad (8)$$

705 *and the approximate model*

$$706 \quad \hat{x}_{k+1} = \hat{F}(\hat{x}_k, u_k), \quad \hat{x}_0 = x_0, \quad (9)$$

708 *where  $F, \hat{F} : \mathbb{R}^d \times \mathcal{U} \rightarrow \mathbb{R}^d$ ,  $F$  is Lipschitz continuous in  $x$  with constant  $L$ , and the one-step  
709 approximation error is bounded by*

$$710 \quad \|F(x, u) - \hat{F}(x, u)\| \leq \epsilon, \quad \forall (x, u) \in \mathbb{R}^d \times \mathcal{U}. \quad (10)$$

711 *Based on zero initial error, after  $H$  steps, the trajectory error satisfies*

$$713 \quad \|x_H - \hat{x}_H\| \leq \epsilon \frac{L^H - 1}{L - 1}. \quad (11)$$

715 **Proof.** Define  $e_k = x_k - \hat{x}_k$ . Then

$$717 \quad e_{k+1} = F(x_k, u_k) - \hat{F}(\hat{x}_k, u_k).$$

718 *Adding and subtracting  $F(\hat{x}_k, u_k)$  gives*

$$720 \quad e_{k+1} = (F(x_k, u_k) - F(\hat{x}_k, u_k)) + (F(\hat{x}_k, u_k) - \hat{F}(\hat{x}_k, u_k)).$$

721 *Taking norms,*

$$722 \quad \|e_{k+1}\| \leq L\|e_k\| + \epsilon.$$

723 *By induction with  $e_0 = 0$ , the recursive inequality solves to*

$$725 \quad \|e_H\| \leq \epsilon \sum_{i=0}^{H-1} L^i = \epsilon \frac{L^H - 1}{L - 1}.$$

728  $\square$

729 **Summary** The theoretical results above show that NODE suffers from exponential error growth  
730 with horizon length and MLP suffers from geometrical error growth with horizon length. However,  
731 the source of error differs: NODE accumulate error through the *vector-field approximation*, while  
732 MLPs inject fresh error at every prediction step. Based on the results from Chen et al. (2018), this  
733 structural distinction implies that NODE yield smoother and more consistent rollouts under bounded  
734 model mismatch. Moreover, empirical evidence from Chen et al. (2018) demonstrates that NODE  
735 can achieve comparable or superior performance to discrete models with fewer parameters. Taken  
736 together, these results suggest that while NODE do not eliminate long-horizon error amplification,  
737 they provide practical advantages in stability, efficiency, and trajectory consistency, making them a  
738 favorable choice for model-based control.

## 739 A.2 CONVERGENCE ANALYSIS OF MPC BASED ON LEARNED DYNAMICS ERROR

740 In this section, we start deriving dynamics errors  $\varepsilon_f$  and analyze convergence of MPC with the  
741 learned dynamics function.

742 The true plant dynamics function  $f$  is defined in Equation 1 and the learned dynamics model  $\hat{f}$  is  
743 composed of two components:

- 744 1. Adaptive module:  $\hat{z}_k = h(\{(x_i, u_i)\}_{i=k-M}^{k-1})$  encodes the past  $M$  steps of observed state-  
745 action history into an adaptive latent vector  $\hat{z}_k$ .
- 746 2. State network:  $n(x_k, u_k, \hat{z}_k)$  predicts the next state using the current state  $x_k$ , current con-  
747 trol  $u_k$ , and the adaptive latent  $\hat{z}_k$ .

748 The overall learned-model one-step error is defined as

$$749 \quad \varepsilon_f := \|f(x_k, u_k, \hat{e}_k) - f(x_k, u_k, e_k)\|,$$

750 which bounds the difference between the true next state and the predicted next state.

751 This error  $\varepsilon_f$  can be decomposed into two contributions:

756 1. Adaptive module error: Let  $\varepsilon_z := \|\hat{z}_k - z_k^*\|$  denote the error of the adaptive module in  
 757 estimating the true latent environment variables. Assuming the state network is Lipschitz  
 758 in  $\hat{z}$ , i.e.,

$$759 \|n(x, u, \hat{z}_1) - n(x, u, \hat{z}_2)\| \leq L_z \|\hat{z}_1 - \hat{z}_2\|,$$

760 then the contribution of the adaptive module to the one-step approximation error of state  
 761 network is bounded by

$$762 \|n(x_k, u_k, \hat{z}_k) - n(x_k, u_k, z_k^*)\| \leq L_z \varepsilon_z.$$

764 2. State network approximation error: Even if the adaptive module were perfect ( $\hat{z}_k = z_k^*$ ),  
 765 the state network  $n$  may still have intrinsic approximation error:

$$766 \varepsilon_s := \|n(x_k, u_k, z_k^*) - f(x_k, u_k, e_k)\|.$$

768 **Combined one-step error:** By the triangle inequality, the total one-step learned-model error is

$$770 \varepsilon_f = \|f(x_k, u_k, \hat{e}_k) - f(x_k, u_k, e_k)\| \leq \underbrace{L_z \varepsilon_z}_{\text{adaptive module contribution}} + \underbrace{\varepsilon_s}_{\text{state network contribution}}.$$

773 After deriving one-step dynamics error  $\varepsilon_f$ , we start deriving the overall convergence of MPC using  
 774 this dynamics. We consider the learned dynamics model  $\hat{f}(x, u, \hat{e})$  with estimated environmental  
 775 factor  $\hat{e}$ , and assume:

777 1. Lipschitz dynamics:  $\|f(x_1, u, e) - f(x_2, u, e)\| \leq L_x \|x_1 - x_2\|, \forall x_1, x_2, u.$   
 778 2. Bounded one-step model error:  $\varepsilon_f$ .  
 779 3. Lipschitz stage and terminal costs:  $|\ell(x_1, u) - \ell(x_2, u)| \leq L_\ell \|x_1 - x_2\|, |l_f(x_1) - l_f(x_2)| \leq$   
 780  $L_{l_f} \|x_1 - x_2\|.$   
 781 4. Existence of terminal ingredients: terminal set  $\mathcal{X}_f$  and terminal control law  $k_f$  ensure  
 782 recursive feasibility and nominal decrease.

784 **Lemma A.3** (Predicted vs actual finite-horizon cost difference). *Let  $\hat{U}_k^*$  be the optimal MPC se-  
 785 quence at time  $k$  with predicted states  $\hat{x}_{k+i|k}$ . Denote the true states under  $\hat{U}_k^*$  by  $x_{k+i}$ . Then*

$$786 \left| \sum_{i=0}^{N-1} \ell(x_{k+i}, \hat{u}_{k+i|k}) + l_f(x_{k+N}) - \sum_{i=0}^{N-1} \ell(\hat{x}_{k+i|k}, \hat{u}_{k+i|k}) - l_f(\hat{x}_{k+N|k}) \right| \leq \Gamma_N \varepsilon_f, \quad (12)$$

789 where

$$790 \Gamma_N = L_\ell \sum_{i=0}^{N-1} \frac{1 - L_x^i}{1 - L_x} + L_{l_f} \frac{1 - L_x^N}{1 - L_x}. \quad (13)$$

793 **Proof.** Using the one-step model error bound and Lipschitz dynamics, the state prediction error  
 794 grows as

$$795 \|\hat{x}_{k+i+1|k} - x_{k+i+1}\| \leq L_x \|\hat{x}_{k+i|k} - x_{k+i}\| + \varepsilon_f.$$

796 Then by the Lipschitz property of the stage and terminal costs,

$$798 |\ell(x_{k+i}, \hat{u}_{k+i|k}) - \ell(\hat{x}_{k+i|k}, \hat{u}_{k+i|k})| \leq L_\ell \|\hat{x}_{k+i|k} - x_{k+i}\|,$$

$$800 |l_f(x_{k+N}) - l_f(\hat{x}_{k+N|k})| \leq L_{l_f} \|\hat{x}_{k+N|k} - x_{k+N}\|.$$

801 Summing over  $i = 0, \dots, N-1$  gives the stated bound.

802 **Lemma A.4** (Descent inequality for the MPC value function). *Let  $V_k(x_k)$  denote the MPC value at  
 803 time  $k$ . Then, under recursive feasibility,*

$$804 V_k(x_{k+1}) - V_k(x_k) \leq -\ell(x_k, u_k) + 2\Gamma_N \varepsilon_f, \quad (14)$$

805 where  $u_k$  is the applied MPC control and  $\Gamma_N$  is as in Lemma A.3.

807 **Proof.**

809 1. Construct the shifted candidate sequence for time  $k+1$ :  $\tilde{U}_{k+1} = \{\hat{u}_{k+1|k}, \dots, \hat{u}_{k+N-1|k}, k_f(\hat{x}_{k+N|k})\}.$

810 2. By definition of the MPC value function,  $V_{k+1}(x_{k+1}) \leq J_{k+1}^{pred}(\tilde{U}_{k+1})$ .  
 811  
 812 3. Apply Lemma A.3 at time  $k+1$ :  $|J_{k+1}^{pred}(\tilde{U}_{k+1}) - J_{k+1}^{true}(\tilde{U}_{k+1})| \leq \Gamma_N \varepsilon_f$ .  
 813  
 814 4. Relate the true tail cost to the full cost:  $J_{k+1}^{true}(\tilde{U}_{k+1}) = J_k^{true}(\hat{U}_k^*) - \ell(x_k, u_k)$ .  
 815  
 816 5. Apply Lemma A.3 at time  $k$  to relate  $J_k^{true}(\hat{U}_k^*)$  to  $V_k(x_k)$ :  $J_k^{true}(\hat{U}_k^*) \leq V_k(x_k) + \Gamma_N \varepsilon_f$ .  
 817  
 818 6. Combining the above steps gives

$$V_k(x_{k+1}) - V_k(x_k) \leq -\ell(x_k, u_k) + 2\Gamma_N \varepsilon_f.$$

820 **Lemma A.5** (Uniformly Ultimate Boundedness). Assume  $V_k(x)$  is positive definite and satisfies  
 821  $\underline{\alpha}_V(\|x - x^*\|) \leq V_k(x) \leq \bar{\alpha}_V(\|x - x^*\|)$ . Define

$$r = \underline{\alpha}^{-1}(2\Gamma_N \varepsilon_f), \quad (15)$$

822 where  $\underline{\alpha}$  is the class- $\mathcal{K}$  function in Lemma A.4. Then the closed-loop is uniformly ultimate bounded:  
 823

$$\limsup_{k \rightarrow \infty} \|x_k - x^*\| \leq r. \quad (16)$$

827 **Summary** The overall one-step learned-model error  $\varepsilon_f$ , which combines contributions from the  
 828 adaptive module and the state network, directly determines the practical convergence bound of the  
 829 MPC. Specifically, under the robust descent inequality of Lemma A.4, the closed-loop trajectories  
 830 are guaranteed to converge to a neighborhood of the equilibrium of radius

$$r = \underline{\alpha}^{-1}(2\Gamma_N \varepsilon_f),$$

832 where  $\Gamma_N$  depends on the prediction horizon and Lipschitz constants of the stage and terminal costs,  
 833 and  $\underline{\alpha}$  characterizes the Lyapunov decrease. If  $\underline{\alpha}$  is quadratic, this simplifies to  $r = \sqrt{2\Gamma_N \varepsilon_f / \alpha_1}$ ,  
 834 showing that the attractor radius scales as the square root of the learned-model error. Therefore,  
 835 improvements in either the adaptive module (reducing  $\varepsilon_z$ ) or the state network (reducing  $\varepsilon_s$ ) directly  
 836 shrink  $\varepsilon_f$ , which in turn reduces the size of the practical attractor and brings the closed-loop system  
 837 closer to the true equilibrium.

### 838 A.3 SIMULATION DETAILS

#### 839 A.3.1 2D DIFFERENTIAL WHEELED ROBOT WITH DIFFERENT SURFACE TEXTURES

842 Since MuJoCo physics engine (Todorov et al., 2012) provides good simulation for contact-rich sce-  
 843 narios, we built the differential wheeled robot environment from scratch in MuJoCo. To the best  
 844 of our knowledge, existing RL environments for ground vehicle navigation are either built using a  
 845 bicycle model or assume that the tire undergoes a pure rotation on the ground. In addition, they  
 846 often ignore turning friction or rolling friction, oversimplifying the real-world situations of a ground  
 847 vehicle that navigates on different surfaces.

848 To simulate real-world situations and evaluate the effectiveness of our approach, we build a differ-  
 849 ential wheeled robot with wheel torques as control input that considers slipping, turning, and rolling  
 850 frictions of the surface. However, such contact-rich scenes often lead to simulation instability, and  
 851 there are no constraints ensuring that the wheels remain in contact with the surface at all times during  
 852 the robot’s movement. Therefore, we set the damping coefficients for each joint at 0.1 Ns / m and  
 853 the integrator to be a *fourth-order Runge-Kutta* method to prevent the simulation from exploding.

854 To simulate real-world robots, we develop a low-level PID controller that can transform the high-  
 855 level control inputs, desired forward velocity  $u_{\text{forward}}$  and desired steering angle  $u_{\text{turn}}$ , to low-level  
 856 wheel torques. The implemented low-level controller is expressed as

$$u_{\text{left}}[k] = K_{p,v} \cdot e_v[k] + K_{i,v} \cdot \sum_{j=0}^k e_v[j] \cdot dt + K_{p,h} \cdot u_{\text{turn}}[k] + K_{d,h} \cdot \frac{u_{\text{turn}}[k] - u_{\text{turn}}[k-1]}{dt}$$

$$u_{\text{right}}[k] = K_{p,v} \cdot e_v[k] + K_{i,v} \cdot \sum_{j=0}^k e_v[j] \cdot dt - K_{p,h} \cdot u_{\text{turn}}[k] - K_{d,h} \cdot \frac{u_{\text{turn}}[k] - u_{\text{turn}}[k-1]}{dt}$$

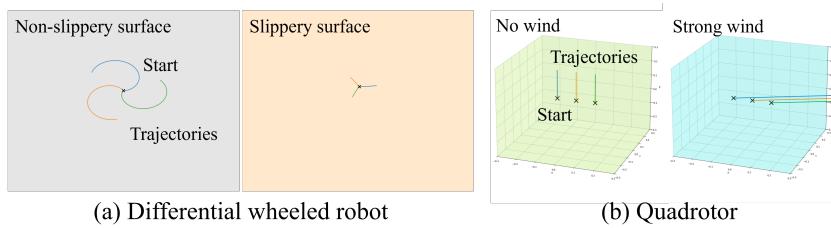


Figure 6: The influence of environmental factors on differential wheeled robots and quadrotors under identical control inputs: (a) It is more difficult for a differential wheeled robot to navigate on a slippery surface compared to a non-slippery one. (b) Even when thrust is applied to a quadrotor, strong wind can significantly alter its dynamics, causing it to drift in the x-direction.

where  $e_v[k] = u_{\text{forward}} - v[k]$ ,  $u_{\text{left}}$  denotes left wheel torque,  $u_{\text{right}}$  denotes right wheel torque, and  $dt$  denotes the control time step, which is set to be 0.04 seconds.  $K_{p,v}$  is the velocity proportional control gain,  $K_{i,v}$  is velocity integral control gain,  $K_{p,h}$  is the heading proportional control gain, and  $K_{d,h}$  is the heading derivative control gain.

However, the simulated differential wheeled robots often have jerky motions, but we still collect data and test our framework in the environment to see whether our framework can handle complex dynamics. Figure 6 shows the resulting trajectories on different surfaces with control inputs of  $[0.5, 0.5]^T$  applied for 80 steps. The surface conditions used to collect data are  $\mu_{\text{sliding}}, \mu_{\text{turning}}, \mu_{\text{rolling}} = [0.7, 0.04, 0.01]$  for the slippery surface and  $[2, 0.005, 0]$  for the non-slippery surface. Figure 6 demonstrate that surface friction significantly affects the dynamic behavior of a differential wheeled robot. On a slippery surface, the robot travels a shorter distance and turns less under the same control actions, highlighting the importance of dynamics adjustment for achieving a robust controller.

### A.3.2 3D QUADROTOR WITH DIFFERENT WIND FIELDS

In the quadrotor platform, we consider the following quadrotor dynamics as our governing equations in the simulator, which also follows the implementation from Huang et al. (2023).

$$\begin{aligned} \dot{p} &= v, & m\dot{v} &= mg + Re_3 f_\Sigma + d, \\ \dot{R} &= RS(\omega), & J\dot{\omega} &= J\omega \times \omega + \tau, \end{aligned}$$

where  $p, v, g \in \mathbb{R}^3$  are the position, velocity, and gravity vectors in the world frame,  $R \in \text{SO}(3)$  is the attitude rotation matrix, and  $\omega \in \mathbb{R}^3$  is the angular velocity in the body frame. The parameters  $m$  and  $J$  represent the mass and inertia matrix, respectively. The unit vector  $e_3 = [0; 0; 1]$ , and  $S(\cdot) : \mathbb{R}^3 \rightarrow \mathfrak{so}(3)$  maps a vector to its skew-symmetric matrix form.

Regarding the environmental factors,  $d$  is the translational disturbance, which models the wind fields. The control inputs are the total thrust  $f_\Sigma$  and the torque  $\tau$  in the body frame. For quadrotors, there exists a linear and invertible actuation matrix between  $[f_\Sigma; \tau]$  and the four motor speeds. Figure 6 shows the trajectories under different wind fields with a 0.1 N thrust applied for 50 steps. The strong wind field introduces a 0.5 N disturbance in the positive x-direction. The resulting trajectories show that the wind significantly alters the dynamics, posing challenges for the original MPC, which does not adapt its model of the system dynamics.

## A.4 IMPLEMENTATION DETAILS OF DYNAMICS LEARNING

### A.4.1 MODEL STRUCTURES

We implement the backbone of the state net using an MLP. For the differential wheeled robot, it consists of two hidden fully connected layers, each with 64 units followed by ReLU activation. For the quadrotor, it has three hidden fully connected layers, each with 64 units followed by ReLU activation. The method is implemented with Torchdiffeq package (Chen, 2018), and *Euler integrator* is adopted as the ODE solver.

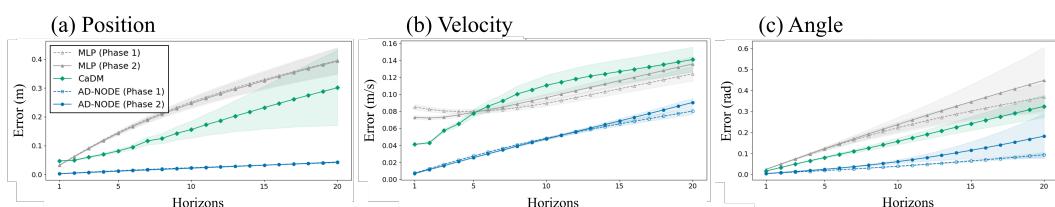


Figure 7: Dynamics prediction errors (RMSE) for the differential wheeled robot on the test set over different horizons: (a) position, (b) velocity, and (c) angle.

In the differential wheeled robot environment, both the environmental encoder and the adaptive module are implemented using an MLP consisting of one hidden fully connected layer with 64 units, followed by ReLU activation. For the quadrotor, the environmental encoder is also implemented using an MLP with one hidden fully connected layer and 64 units, followed by ReLU activation. The adaptive module is implemented using a 1D CNN consisting of three stacked 1D convolutional layers (with kernel sizes of 5 and 3), each followed by ReLU activation and dropout. The extracted features are then flattened and passed through an MLP comprising two linear layers with ReLU activation and dropout.

#### A.4.2 HYPERPARAMETER

In both Phase 1 training and Phase 2 training, we use Adam as an optimizer and MSE as loss function to train the networks. However, there are some differences in terms of training hyperparameters between each phase and each environment.

For the differential wheeled robot environment, in Phase 1 training, a learning rate of  $1 \times 10^{-3}$  is used and decayed to  $1 \times 10^{-4}$ , with a batch size of 512. In Phase 2 training, the learning rate is set to  $1 \times 10^{-3}$ , and the adaptive module is trained with a batch size of 128. The experiments of all models were trained on a single NVIDIA RTX 3070 GPU on a personal workstation. Training time for each experiment ranged from 1 to 5 hours, depending on model complexity and dataset size.

For the quadrotor environment, we apply curriculum learning during Phase 1 training. An exponential learning rate scheduler is used, starting from a learning rate of  $1 \times 10^{-3}$  and decaying to  $1 \times 10^{-4}$ . The training starts from learning to match 1 future step to 30 future steps. In each curriculum, we train 10 epochs with 1024 batch size. Similar to the experiment done on the differential wheeled robot platform, the training process is conducted on a single NVIDIA RTX 3090 GPU, the runtime is around three hours. Regarding Phase 2 training, we set the learning rate to be  $1 \times 10^{-4}$  and train 100 epoch to learn the adaptive module with 1024 batch size. The entire training time on a single NVIDIA RTX 3090 GPU is around one hour.

#### A.4.3 ADDITIONAL EVALUATION OF DYNAMICS MODEL PERFORMANCE

**2D Differential Wheeled Robot** We collect a test dataset using the same collection procedure with a sampling parameter that differs from the one used during training data collection to evaluate the long-horizon prediction error of a learned dynamics. Then, we compare each dynamics learning method in terms of errors in position, velocity and heading angle at each prediction time up until 20 horizons. The errors are defined as RMSE between the prediction and the ground-truth.

Figure 7 shows the prediction errors of each dynamics learning method on the test dataset. Compared to baselines such as CaDM and MLP, AD-NODE achieves lower prediction errors across all state components. The results also align with the theoretical conclusion from A.1. Learning-based dynamics models are typically prone to error accumulation over time, but our method mitigates this issue by using NODE as the backbone, which better captures the continuous-time evolution of robot dynamics. Models with access to privileged information achieve higher accuracy than those relying solely on inferred context from historical state-action trajectories.

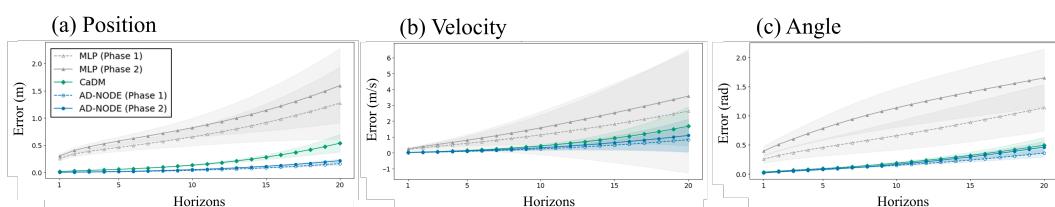


Figure 8: Dynamics prediction errors (RMSE) for the quadrotor on the test set over different horizons: (a) position, (b) velocity, and (c) angle.

**3D Quadrotor** We evaluate the dynamics model using the same procedure as for the differential wheeled robot. However, since orientation lies in  $SO(3)$ , orientation error is defined as the minimal rotation angle between the predicted and ground-truth quaternions. Given a ground-truth quaternion  $q_{gt}$  and a predicted quaternion  $\hat{q}$ , the error quaternion  $q_e$  is defined as  $q_e = q_{gt} \otimes \hat{q}^{-1}$  where  $\otimes$  denotes the quaternion product. The angle of the shortest rotation from  $\hat{q}$  to  $q_{gt}$  can be computed as  $2 \cdot \arccos(|q_e^w|)$ , where  $q_e^w$  is the scalar (real) part of the quaternion  $q_e$ .

Figure 8 presents the prediction error of each dynamics learning method on the test dataset. Similar to the differential wheeled robot environment, our proposed dynamics model demonstrates lower long-horizon prediction errors compared to the baselines. The accumulated error is particularly evident in the MLP-based model, which fails to capture the continuity inherent in physical dynamics. CaDM performs better than MLP due to its use of forward and backward loss.

## 996 A.5 IMPLEMENTATION DETAILS OF BASELINES

### 998 A.5.1 MODEL STRUCTURES

1000 In this paper, we implement four baselines across both environments: (1) MLP-based dynamics with  
 1001 privileged information, (2) MLP-based dynamics with historical information, (3) CaDM from Lee  
 1002 et al. (2020), and (4) the meta-learning-based dynamics model from Belkhale et al. (2021). Below,  
 1003 we describe the model architectures for these baselines.

1004 The same model structures are used in both simulation environments. For the MLP-based dynamics  
 1005 models (with privileged and historical information), the main network is implemented as an MLP  
 1006 with three hidden fully connected layers (64 units, ReLU activation). The encoder is implemented  
 1007 as an MLP with two hidden fully connected layers, also with 64 units and ReLU activation.

1008 For CaDM, the dynamics model consists of an MLP with two hidden fully connected layers (128  
 1009 units, ReLU activation) for both the forward and backward dynamics. The encoder is implemented  
 1010 as an MLP with one hidden layer (64 units, ReLU activation).

1011 For the meta-learning-based dynamics model, the context encoder is a variational encoder that maps  
 1012 a history of state-action pairs to a latent context vector. It consists of a two fully connected hidden  
 1013 layers (64 units, ReLU activation) shared between the mean and log-variance outputs, producing a  
 1014 Gaussian distribution from which the latent vector can be sampled. The forward dynamics model is  
 1015 an MLP with two hidden layers (128 units, ReLU activation). During training, the model minimizes  
 1016 MSE loss between predicted and true states and the Kullback-Leibler divergence (KL divergence)  
 1017 between the inferred context distribution and a standard Gaussian.

### 1018 A.5.2 HYPERPARAMETER

1020 The Adam optimizer is used for all baselines. For the MLP-based dynamics model with privileged  
 1021 information, the number of training epochs is 100, with a learning rate of  $1 \times 10^{-4}$  and a batch  
 1022 size of 128. In the Phase 2 counterpart of the MLP-based dynamics model, where the encoder is  
 1023 retrained using historical information, training is conducted for 15 epochs with a learning rate of  
 1024  $5 \times 10^{-5}$  and a batch size of 128. For CaDM, a batch size of 256, a learning rate of  $1 \times 10^{-4}$ ,  
 1025 and 30 training epochs are used. When computing the loss, the weight ratio of the backward to the  
 forward models is set to 0.5. For the meta-learning-based method, a batch size of 256, a learning

1026 rate of  $1 \times 10^{-4}$ , and 50 training epochs are used. When computing the loss, the weight ratio of the  
 1027 KL divergence term to the forward loss is set to  $1 \times 10^{-2}$ .  
 1028

1029 **A.6 IMPLEMENTATION DETAILS OF MPC**  
 1030

1031 **A.6.1 HYPERPARAMETER**  
 1032

1033 Hyperparameters of the MPPI controller vary based on the task, cost function design and dynamics  
 1034 function. For the differential wheeled robot environment, in the goal-reaching task, the horizon is  
 1035 set to 20, the number of samples to 500, and the temperature to  $1 \times 10^{-2}$ . The sampling standard  
 1036 deviation for each control dimension is  $[0.1, 0.1]^T$  corresponding to  $u_{\text{forward}}$  and  $u_{\text{turn}}$ , respectively.  
 1037 In the path tracking task, the horizon is set to 15, the number of samples to 800, and the temperature  
 1038 to  $1 \times 10^{-4}$ . The sampling standard deviation for each control dimension is  $[0.5, 0.3]^T$  corresponding  
 1039 to  $u_{\text{forward}}$  and  $u_{\text{turn}}$ . In the velocity tracking task, the horizon is set to 20, the number of samples to  
 1040 800, and the temperature to  $1 \times 10^{-4}$ . The sampling standard deviation for each control dimension  
 1041 is  $[0.2, 0.1]^T$  corresponding to  $u_{\text{forward}}$  and  $u_{\text{turn}}$ . The length of the state-action history is set to 5 for  
 1042 all tasks.

1043 For the quadrotor environment, horizon is set at 40, number of sampling size is set at 4096, tempera-  
 1044 ture is set at 0.05, sampling standard deviation for each control dimension is  $[0.25, 0.7, 0.7, 0.7]^T$ ,  
 1045 each corresponds to thrust, angular velocity in raw, pitch and yaw direction. The length of the  
 1046 state-action history is set at 10.

1047 During inference, the length of the state-action history is shorter than the designated length in the  
 1048 beginning of each episode. Therefore, we apply random actions at the beginning to fill the designated  
 1049 length. Since the robot does not know the ground-truth environmental factors, this is a way for it to  
 1050 capture the current environment by randomly exploring for a short time at the start of each episode.  
 1051 Compared to the total length of the controller, which usually operates over hundreds or thousands  
 1052 of steps, this initial exploration does not sacrifice the accuracy or success rate too much.

1053 **A.6.2 COST DESIGN**  
 1054

1055 For the differential wheeled robot and the real-world deployment, we design two cost functions:  $J_1$   
 1056 for goal reaching and  $J_2$  for path tracking. The two definitions are

$$1058 \quad 1059 \quad 1060 \quad J_1 = \sum_{k=0}^H \left[ w_v (v_k - v_k^{\text{ref}})^2 + w_\theta (\theta_k - \theta_k^{\text{pp}})^2 \right],$$

$$1062 \quad 1063 \quad 1064 \quad J_2 = \sum_{k=0}^H \left[ w_p \|p_k - p_k^{\text{ref}}\|^2 + w_v (v_k - v_k^{\text{ref}})^2 + w_\theta (\theta_k - \theta_k^{\text{ref}})^2 \right],$$

1065 where

$$1066 \quad 1067 \quad p_k = \begin{bmatrix} x_k \\ y_k \end{bmatrix}, \quad p_k^{\text{ref}} \text{ is the reference position,}$$

$$1069 \quad 1070 \quad 1071 \quad v_k = \left\| \begin{bmatrix} \dot{x}_k \\ \dot{y}_k \end{bmatrix} \right\|_2, \quad v_k^{\text{ref}} \text{ is the reference velocity,}$$

$$1072 \quad 1073 \quad \theta_k^{\text{pp}} = \arctan 2(y_{\text{goal}} - y_k, x_{\text{goal}} - x_k),$$

$$1075 \quad 1076 \quad \theta_k^{\text{ref}} \text{ is the reference heading,}$$

1077 and  $w_p, w_\theta, w_v$  are the positive scalar weights on position, heading, and velocity losses respectively.

1078 The MPC cost function for a quadrotor performing a goal reaching and hovering or path tracking  
 1079 task is defined as

---

1080   **Algorithm 1** Online Dynamics Learning

---

1081   1: **Initialize:** dataset  $\mathcal{D} \leftarrow \emptyset$ , State Net parameters  $\theta$  from Phase 1, Adaptive Module parameters  
 1082    $\phi$ , environment  $\mathcal{E}$ , environmental factors  $e$ , MPC controller  $\pi_{\text{MPC}}$

1083   2: **for** episode = 1 to  $N_{\text{episodes}}$  **do**

1084    3:     $x_1 \leftarrow \mathcal{E}.\text{reset}()$

1085    4:    **for** timestep  $k$  = 1 to  $T$  **do**

1086      5:    **if** explore(episode,  $k$ ) **then**

1087        6:     $u_k \leftarrow$  sample random action from action space

1088        7:    **else**

1089        8:     $u_k \leftarrow \pi_{\text{MPC}}(x_k)$                            ▷ Plan using current Adaptive Module and State Net

1090        9:    **end if**

1091      10:     $x_{k+1}, r \leftarrow \mathcal{E}.\text{step}(u_k)$

1092      11:     $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\{(x_i, u_i)\}_{i=k-M}^{k-1}, e_k)\}$

1093      12:    **if** model update condition met **then**

1094        13:     $\phi \leftarrow$  update Adaptive Module using data  $\mathcal{D}$

1095        14:    **end if**

1096      15:     $x_k \leftarrow x_{k+1}$

1097     16:    **end for**

1098    17: **end for**

---

$$J_3 = \sum_{k=0}^H \left( w_p \left\| p_k - p_k^{\text{ref}} \right\|^2 + w_q \left( 1 - \left( q_k^\top q_k^{\text{ref}} \right)^2 \right) \right),$$

where

$p_k^{\text{ref}}$  is the reference (goal or trajectory) position at time  $k$ ,

$q_k^{\text{ref}}$  is the reference quaternion at time  $k$ ,

and  $w_p, w_q$  are weighting factors for the position and orientation errors, respectively.

### A.6.3 ONLINE DYNAMICS LEARNING

Online dynamics learning follows the general procedure in model-based RL. The pseudo code of online dynamics learning is shown at Algorithm 1.

Online learning is used in the quadrotor task, as described in Section 4.2, to refine our dynamics model. To further evaluate the effectiveness of online learning under extreme conditions, we conduct an experiment comparing performance before and after online adaptation. In scenarios where wind forces exceed 3 N, which is far beyond the offline training range of  $-1$  to  $1$  N, offline learning yielded a position RMSE of  $0.1649\text{ m} \pm 0.0221$ , while online finetuning reduced it to  $0.0646\text{ m} \pm 0.0153$ . The results demonstrate that online learning can significantly improve performance in new environments by refining the dynamics model using rollout trajectories.

## A.7 PERFORMANCE OF THREE-DIMENSIONAL WIND FIELD

We evaluate both model-free approaches and model-based approaches on three-dimensional wind field with random time-varying noise modeled as Brownian motion (shown in Figure 9). The performance persists even on this complex wind field. The reason why AD-NODE (Phase 1) performs worse than AD-NODE (Phase 2) is because Phase 1 model uses privilege information that is far from training distribution, which might obtain a wrong environmental vector. Whereas, Phase 2 model uses state-action history to reconstruct environmental vector, demonstrating strong generalization ability to unseen environmental factors.

1134

1135 Table 5: Performance of the quadrotor is evaluated under three dimensional wind field with random  
1136 time-varying noise modeled as Brownian motion. Shown as RMSE (m).

|                     | Goal-reaching                       | Path-tracking                       |
|---------------------|-------------------------------------|-------------------------------------|
| MLP(Phase 1)        | > 0.2                               | > 0.2                               |
| MLP(Phase 2)        | > 0.2                               | > 0.2                               |
| CaDM                | > 0.2                               | > 0.2                               |
| Meta-learning based | 0.088 $\pm$ 0.021                   | 0.109 $\pm$ 0.075                   |
| Fixed NODE          | 0.066 $\pm$ 0.012                   | 0.061 $\pm$ 0.025                   |
| RMA                 | 0.069 $\pm$ 0.019                   | 0.063 $\pm$ 0.018                   |
| DATT                | 0.056 $\pm$ 0.016                   | 0.050 $\pm$ 0.015                   |
| AD-NODE(Phase 1)    | 0.033 $\pm$ 0.022                   | 0.071 $\pm$ 0.056                   |
| AD-NODE(Phase 2)    | <b>0.021 <math>\pm</math> 0.013</b> | <b>0.039 <math>\pm</math> 0.023</b> |

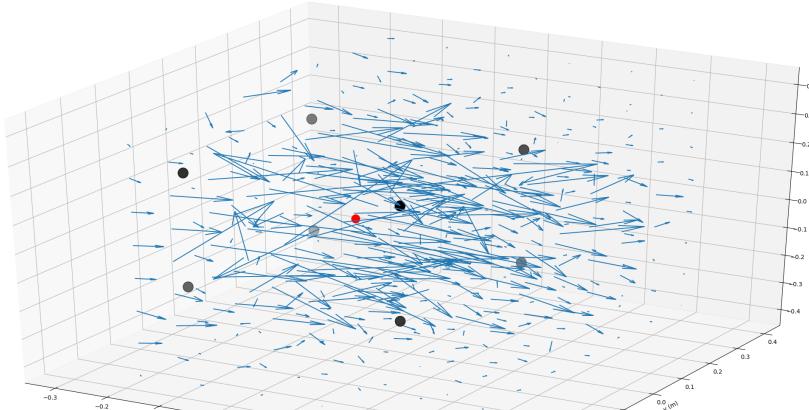


Figure 9: The figure shows three-dimensional wind field used for evaluating each algorithm. Blue arrow denotes the vector field of wind force. Black dot is the start and red dot is the goal.

## 1170 A.8 TRAJECTORIES OF THE PATH-TRACKING TASKS

## 1171 A.8.1 TRAJECTORIES OF MODEL-FREE BASELINES

1173 In this section, we provide a qualitative analysis of the trajectories generated by our proposed model  
1174 and the model-free baselines for the path-tracking task when combined with MPPI control. Figure  
1175 10 shows the trajectories in the quadrotor simulator. We observe that the quadrotor using RMA  
1176 and DATT as policies can reach positions near the target path. However, they fail to track the path  
1177 accurately, resulting in higher errors compared to AD-NODE. These results align with those shown  
1178 in Table 3.

## 1180 A.8.2 TRAJECTORIES OF REAL-WORLD EXPERIMENTS

1182 Figure 11 shows the trajectories from the real-world experiments for the path-tracking task using cir-  
1183 cular and triangular reference paths. The trajectories appear wavy because the robot wobbles during  
1184 motion, indicating high system uncertainty. This is because the robot is not a pure unicycle model,  
1185 as it has a plastic shell over a differential-drive mechanism, which makes the system challenging  
1186 to control. Despite this, our model still aligns more closely with the reference path compared to  
1187 the fixed-dynamics model, demonstrating that AD-NODE can be deployed on systems with high  
1188 uncertainty and help the robot adapt to different environments.

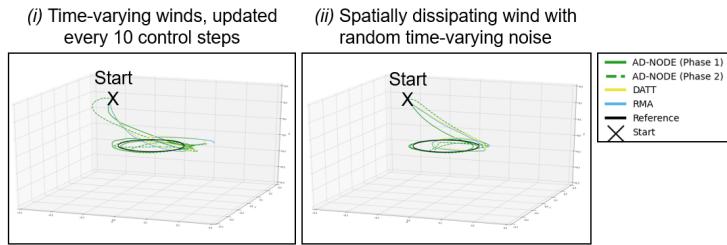


Figure 10: Trajectories of AD-NODE and model-free baselines in quadrotor simulation for path tracking.

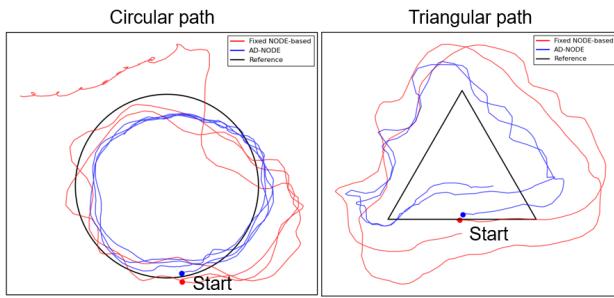


Figure 11: Trajectories of AD-NODE and fixed NODE-based dynamics for path tracking in the Sphero BOLT robot.

## A.9 ADDITIONAL EVALUATION IN ENVIRONMENTS WITH PIECEWISE-CONSTANT FACTORS

### A.9.1 2D DIFFERENTIAL WHEELED ROBOT WITH DIFFERENT SURFACE TEXTURES

For this experiment, we used the same setup and data collection method described in Section 5. Both goal-reaching and path-tracking tasks were performed in environments with piecewise-constant friction, introducing drastic changes at the crossing boundaries. Examples of the test environment are shown in Figures 1 and 6, and the results are summarized in Table 6. From the table, we can see that the benefits of using AD-NODE persist in this test case.

### A.9.2 3D QUADROTOR WITH DIFFERENT WIND FIELDS

Similar to differential wheeled task, we used the same setup and data collection method described in Section 5. Both goal-reaching and path-tracking tasks were performed in environments with piecewise-constant wind fields, introducing drastic changes at the crossing boundaries. The test environments are shown in Figures 1 and 6, and the results are summarized in Table 7. From the table, we can see that the benefits of using AD-NODE persist in this test case.

Table 6: Performance of differential wheeled robot with a piecewise-constant spatial friction layouts that remain fixed over time.

|                     | Goal-reaching    | Path-tracking                       |
|---------------------|------------------|-------------------------------------|
|                     | Success rate (%) | RMSE (m)                            |
| MLP (Phase 1)       | 2                | > 0.1                               |
| MLP (Phase 2)       | 2                | > 0.1                               |
| CaDM                | 28               | > 0.1                               |
| Meta-learning based | 12               | $0.043 \pm 0.031$                   |
| Fixed NODE-based    | 32               | $0.046 \pm 0.015$                   |
| AD-NODE (Phase 1)   | <b>94</b>        | <b><math>0.017 \pm 0.007</math></b> |
| AD-NODE (Phase 2)   | <b>94</b>        | $0.021 \pm 0.013$                   |

1242  
 1243 Table 7: Performance of the quadrotor with piecewise-constant wind field layouts that remain fixed  
 1244 over time.

|                     | Goal-reaching & hovering<br>RMSE (m) | Path-tracking<br>RMSE (m) |
|---------------------|--------------------------------------|---------------------------|
| MLP (Phase 1)       | > 0.2                                | > 0.2                     |
| MLP (Phase 2)       | > 0.2                                | > 0.2                     |
| CaDM                | > 0.2                                | > 0.2                     |
| Meta-learning based | 0.052 ± 0.041                        | > 0.2                     |
| Fixed NODE-based    | 0.099 ± 0.058                        | 0.122 ± 0.037             |
| AD-NODE (Phase 1)   | <b>0.013 ± 0.008</b>                 | <b>0.081 ± 0.030</b>      |
| AD-NODE (Phase 2)   | 0.033 ± 0.022                        | 0.103 ± 0.047             |

1253  
 1254 Table 8: AD-NODE performance on test cases with different distances from the training distribution.  
 1255 The RMSE and standard deviation of position and velocity errors for the three categories are reported  
 1256 after the mass reaches the target. In the fixed-mass setting, the mass remains constant throughout the  
 1257 task. In the changing-mass setting, the mass starts at 5 kg and transitions to the value corresponding  
 1258 to each regime after 150 control steps.

|                         | Fixed-mass    |               |               | Changing-mass |               |               |
|-------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                         | Standard      | Moderate      | Extreme       | Standard      | Moderate      | Extreme       |
| Position RMSE<br>(mm)   | 5.600 ± 0.524 | 5.500 ± 0.609 | 5.819 ± 1.106 | 5.682 ± 0.399 | 5.993 ± 0.734 | 5.884 ± 2.231 |
| Velocity RMSE<br>(mm/s) | 2.497 ± 0.746 | 3.890 ± 2.136 | 5.480 ± 3.675 | 2.131 ± 0.378 | 2.408 ± 0.581 | 3.668 ± 1.792 |

#### A.10 ADDITIONAL EVALUATION ON MASS-SPRING-DAMPING SYSTEM

In this experiment, we want to test our algorithm on a toy example with known dynamics to understand the generalization ability of the proposed model. We consider a mass moving along a one-dimensional axis under an external force, connected to a spring and a damper. The system dynamics are described by the state-space equation as shown below:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

where

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \quad u(t) = F(t)$$

$x_1(t)$  represents the displacement and  $x_2(t)$  the velocity of the mass. The environmental variation here is the changing mass during movement. Generalization performance is evaluated across three regimes in the test set: standard, moderate, and extreme. The standard regime uses masses within the training range, the moderate regime includes slightly out-of-range values, and the extreme regime includes the most distant values, similar to the definition in Lee et al. (2020). We evaluate our proposed dynamics model on a goal-reaching task, where the mass is controlled to reach a target location from various initial positions by applying an external force. Performance is reported as errors of position and velocity after the mass reaches the goal, averaged over 20 runs per category. The goal-reaching criterion requires the mass to have a position error of less than 10 mm and a velocity error of less than 10 mm/s. The results are presented in Table 8. The positional errors are comparable across categories, indicating that the model generalizes well. The fluctuations in position and velocity of the mass in the standard test samples are smaller than those observed in the extreme cases when the mass is near the target.

#### A.11 THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to improve the readability of this submission. Specifically, they assisted in correcting grammar, refining sentence structure, and polishing the wording of the text. In addition, we took inspiration from LLMs and decided to use Grönwall's inequality to derive the results of Lemma A.1.