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ABSTRACT

Mobile robots, such as ground vehicles and quadrotors, are becoming increasingly
important in various fields, from logistics to agriculture, where they automate pro-
cesses in environments that are difficult to access for humans. However, to per-
form effectively in uncertain environments using model-based controllers, these
systems require dynamics models capable of responding to environmental varia-
tions, especially when direct access to environmental information is limited. To
enable such adaptivity and facilitate integration with model predictive control, we
propose an adaptive dynamics model which bypasses the need for direct environ-
mental knowledge by inferring operational environments from state-action history.
The dynamics model is based on neural ordinary equations, and a two-phase train-
ing procedure is used to learn latent environment representations. We demonstrate
the effectiveness of our approach through goal-reaching and path-tracking tasks
on three robotic platforms of increasing complexity: a 2D differential wheeled
robot with changing wheel contact conditions, a 3D quadrotor in variational wind
fields, and the Sphero BOLT robot under two contact conditions for real-world
deployment. Empirical results corroborate that our method can handle temporally
and spatially varying environmental changes in both simulation and real-world
systems.

1 INTRODUCTION

Mobile robots such as ground vehicles and quadrotors are increasingly used across applications,
from navigating warehouse floors in logistics to large-scale crop monitoring in agriculture (Li et al.,
2024; Duggal et al., 2016). These systems provide access to environments difficult to access for
humans, enabling greater operational scale and improved efficiency. Mobile robots may encounter
various types of environments within a single operation and generally lack prior knowledge of the
conditions they will face, making real-time adaptability essential during deployment. To operate
robustly in such uncertain environments, mobile robots require adaptive control strategies that can
respond to environmental variations such as terrain types, wind conditions, or payload changes.
However, achieving such adaptability remains challenging for model-based controllers as they rely
on accurate dynamics models for control action planning over long horizons (Seo et al., 2020; Naga-
bandi et al., 2018). Furthermore, many environmental variations cannot be fully detected using on-
board sensors, making it important for the system to infer hidden environmental factors from limited
data and adapt its dynamics accordingly.

Previous efforts in in-context reinforcement learning (RL) have led to major advances in adapting
to different environments based on past trajectories (Liang et al., 2023; Zhang et al., 2025; Belkhale
et al., 2021). A line of research in adaptive model-free RL proposes specially designed adaptive
modules, known as Rapid Motor Adaptation (RMA), to encode environmental information in RL
policy (Kumar et al., 2021; Zhang et al., 2023; Qi et al., 2023). However, these model-free RL
approaches still require significant pre-training or extensive exploration data to generalize across a
variety of tasks. Several model-based RL approaches have been proposed (Seo et al., 2020; Lee
et al., 2020; Evans et al., 2022); however, they often model dynamics over a predefined discrete
time domain, which overlooks the continuously-evolving dynamics of rigid-body robotic systems
(Greydanus et al., 2019). Since the dynamics of these systems are typically governed by ordinary
differential equations (ODEs), neural ordinary differential equations (NODE) (Chen et al., 2018),
which learn first-order derivatives and compute system states using numerical integrators, are well-
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Figure 1: (a) Our adaptive dynamics model outperforms CaDM (Lee et al., 2020) when combined
with MPC in goal-reaching and path-tracking tasks across (top row) differential wheeled robot and
(bottom row) quadrotor navigation platforms. Our method works well in unknown environments
(such as different layouts of surface textures and wind fields) and accurately reaches the targets,
while CaDM struggles with oscillations around the targets. (b) Physical setup of a Sphero BOLT
robot navigating through different textures and reaching the goal.

suited for modeling continuous-time dynamics. The approach of modeling derivatives has also
shown success in time-series prediction tasks across various domains (Lipman et al., 2022; Zhang
et al., 2024b; Cranmer et al., 2020). In robotics, learning dynamics with NODE has demonstrated
robustness to noisy and irregular data in standard RL tasks (Yildiz et al., 2021). However, the ef-
fectiveness of continuous-time models for capturing adaptive dynamics under drastic environmental
changes remains an open question. In this work, we propose AD-NODE, an adaptive dynamics
model for mobile robots that combines NODE with an adaptive module in the style of RMA to infer
environmental conditions from past state-action history. We use a two-phase training framework: in
Phase 1, the model focuses on learning the mapping between states, with complete environmental
information (referred to as ”privileged information”) included in the training data. In Phase 2, the
model learns to reconstruct the environment from historical data during execution. The proposed
adaptive dynamics model is used with model predictive control (MPC) (Morari & Lee, 1999; Garg
et al., 2013; Chua et al., 2018) to determine the optimal actions for accomplishing navigation tasks
on two simulated mobile robotic platforms: a 2D differential wheeled robot navigating surfaces with
different textures, and a 3D quadrotor flying through different wind fields. Given the limited avail-
ability of models that are both adaptive and continuous, and with the goal of enabling adaptability
in mobile robots across varying environments, we select a classic context-aware dynamics model
(CaDM) (Lee et al., 2020) as our primary comparison baseline. Figure 1 demonstrates that our
proposed model has superior performance in both goal-reaching and path-tracking tasks across both
simulated platforms. Furthermore, the model we design can be deployed in a real-world environment
where a Sphero BOLT robot navigates across two distinct textures.

1.1 CONTRIBUTION

We propose learning a continuous-time adaptive dynamics model with NODE (AD-NODE) for mo-
bile robotic systems that can adapt to the environment during operation. Specifically:

• We propose a novel framework that incorporates adaptability into continuously-evolving
dynamics for long-horizon rollouts in MPC.

• We empirically show that our framework achieves higher accuracy compared to the base-
lines in both goal-reaching and path-tracking tasks for differential wheeled robot and
quadrotor navigation platforms.

• We validate the feasibility of AD-NODE beyond simulation by deploying it on a Sphero
BOLT robot across surfaces with different friction, demonstrating adaptability and repeata-
bility under hardware uncertainty.
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Figure 2: (a) Proposed control framework for mobile robots, where MPC is adopted to determine
optimal control actions by predicting future trajectories with our proposed dynamics model (AD-
NODE). (b) Structure of AD-NODE: the state net models the derivatives of states evolution, the
environmental encoder processes privileged information, and the adaptive module reconstructs a
latent environmental vector from historical state-action data by regressing to the corresponding latent
vector from Phase 1. State prediction is obtained through numerical integration of the dynamics
function. Models with trainable weights are indicated with dashed lines.

2 RELATED WORK

Mobile robotics control can be approached using either model-free or model-based methods. Model-
free RL learns policies that map states to actions without explicitly modeling dynamics. Various
network architectures have been applied successfully to legged robots and quadrotors across diverse
terrains and wind conditions (Kumar et al., 2021; Zhang et al., 2023; Agarwal et al., 2023); however,
they require large amounts of interaction data and suffer from low sample efficiency (Yang et al.,
2020; Haarnoja et al., 2018). In contrast, model-based methods estimate a dynamics model and
combine it with planning algorithms to make informed control decisions (Zhang et al., 2024a; Lee
et al., 2020; Chua et al., 2018). There are multiple ways to learn dynamics: one approach is meta-
learning, which reduces the need for explicit physics priors by training the model over a distribution
of tasks to acquire an internal adaptation mechanism for new environments (Belkhale et al., 2021;
Nagabandi et al., 2018), but it often requires high task diversity and struggles with out-of-distribution
generalization. Inspired by adaptive control theory, another approach captures environmental vari-
ations by modeling residual errors from a reference model using low-pass filters (Hanover et al.,
2021; Huang et al., 2023), or by incorporating latent representations. These representations can be
implemented as parametric bias (Kawaharazuka et al., 2021) or well-designed encoders (Lee et al.,
2020; Li et al., 2019b;a). Building on these strategies, both model-free and model-based methods
can further enhance adaptability by incorporating online learning, where the model is refined based
on rollout trajectories to improve robustness in dynamic and uncertain environments (Jiahao et al.,
2023; Verma et al., 2025).

3 PROBLEM STATEMENT

We address the problem of goal reaching or path tracking of mobile robots as a discrete-time MPC,
which optimizes a sequence of future control actions over a finite time horizon. The dynamical
system we are considering is governed by

ẋ(t) = f(x(t), u(t), e(t)), xk+1 = xk +

∫ t=k+1

t=k

f(x(t), u(t), e(t)) dt (1)

where xk ∈ Rn denotes the state of the system at time step k, u(t) ∈ Rm is the control input,
e(t) ∈ Rl represents environmental factors that will influence the dynamics, and f represents the
continuous-time dynamics of the system that models ẋ(t). xk+1 can be obtained using a numerical
integrator such as Euler or Runge–Kutta methods. After discretization, u(t) is represented as uk,
and e(t) as ek.
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Over a prediction horizon H , the task can be formulated as an optimization problem that can be
solved using MPC (Morari & Lee, 1999; Garg et al., 2013; Chua et al., 2018) at each time step k:

min
uk:k+H−1

k+H−1∑
i=k

ℓ(xi, ui) + ℓf (xk+H)

s.t. xi+1 = ODESolve(xi, ui, f, ti, ti+1), i = k, . . . , k +H − 1,

ui ∈ U , x0 ∈ X0

(2)

where ℓ is the stage cost, ℓf is the terminal cost. U denotes the input constraint sets, and X0 is
an initial constraint set designed to ensure a robot starts from the designated state. After solving
Equation 2, only the first control input u⋆

k of the optimal sequence is applied to the system. In the
next time step, the horizon is shifted forward, and the optimization is repeated with updated state
information.

With a fixed dynamics model, MPC can handle a certain degree of uncertainty or disturbances via
solving Equation 2 on the fly during execution. However, it fails to handle systems that deviate too
much from the reference dynamics model, such as through unexpected environmental changes or
severe disturbances. To enable fast and effective adaptability, we propose to adapt the dynamics
function f by updating the environment (ek) between control steps. However, it is often hard to find
the complete environment information because the real-world system is often partially observed.
Therefore, the state-action history is used to recover the current environment. Inspired by RMA
(Kumar et al., 2021), we first encode environmental factors ek into an environment latent vector
zk and learn an adaptive module to encode state-action history into latent vector z̃k. Then, the
environment can be recovered by training encoders to align z̃k and its corresponding zk together.
The process can be expressed as

zk = g(ek), z̃k = h({(xi, ui)}k−1
i=k−M ), L = L2(zk, z̃k), (3)

where {(xi, ui)}k−1
i=k−M denotes state-action history over a horizon of length M . g denotes the

environmental encoder that encodes ek to zk, and h denotes the adaptive module that reconstructs
current environment by encoding state-action history to z̃k and regressing to zk by MSE loss. We
recover the environment in latent space because it is easier to align two different domains (the
domain of {(xi, ui)}k−1

i=k−M and its corresponding ek) in another lower-dimensional space. See
Figure 2 for the complete framework.

4 ADAPTIVE DYNAMICS MODEL WITH NODE

This section proposes an adaptive dynamics model with NODE (AD-NODE) for mobile robots,
which integrates environment-aware dynamics into MPC to obtain optimal actions for navigation.

4.1 TWO-PHASE FRAMEWORK FOR LEARNING ADAPTIVE DYNAMICS

In this section, we discuss how to learn the dynamics mapping from the current state xk and current
action uk to the next state xk+1 conditioned on M historical data {(xi, ui)}k−1

i=k−M . The objective of
learning the adaptive dynamics is to capture task-invariant environments based solely on historical
data (Equation 3), so that the dynamics function can be adjusted according to the inferred environ-
ment. While most model-based RL learns the mapping in an end-to-end manner, we decompose
dynamics learning into two phases as shown in Figure 2.

In Phase 1, we learn state evolution using privileged information ek, which is available in simula-
tion but may not be measurable during deployment. Conditioning on ek, which carries direct and
complete environmental information, facilitates learning the state evolution in response to control
actions. The state evolution is implemented in the state net with NODE to learn the first derivative
ẋ(t), and numerical integrators are used to compute the next state xk+1. This process models tra-
jectories as integration of the vector fields, inherently producing smooth and physically consistent
outputs. Appendices A.1 and A.4.3 present both theoretical and empirical evidence for the advan-
tages of modeling dynamics with a NODE over a Multi-Layer Perceptron (MLP). However, instead
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of inputting xk, uk, and ek directly into the state net, we apply an environmental encoder to first
turn ek into a latent vector zk, which is then passed to the state net.

After completing end-to-end training in Phase 1, Phase 2 addresses the original mapping problem
by learning to infer zk from historical data. Since Phase 1 is dedicated to modeling the temporal
evolution of system states, we fix the weights of the learned state net in Phase 2. We then regress the
historical data on their corresponding zk and obtain z̃k by following the process mentioned in Equa-
tion 3 and Figure 2. Since historical data carries distinct physical meanings and have significantly
different dimensionality compared to ek, it is effective to align two domains together in latent space.
A similar approach has been proven successful in style transfer, where a domain-invariant represen-
tation is learned in latent space to facilitate knowledge transfer or generate consistent outputs across
different styles (Gatys et al., 2016).

4.2 SAMPLING-BASED CONTROL WITH ONLINE DYNAMICS LEARNING

NODE results in strong extrapolation capabilities and temporal continuity, making it particularly
well-suited for integration with sampling-based MPC: in particular, we use the model predictive
path integral (MPPI) framework (Williams et al., 2017). Within the MPPI framework, a large set
of control sequences {u(i)

k:k+H−1}Ni=1 are sampled and propagated forward using Equation 1 to gen-
erate corresponding trajectories. The cost of each trajectory is evaluated using a task-specific cost
function J (i) consisting of stage cost l and terminal cost lf , and the optimal control is computed

as a weighted average u∗
k =

∑N
i=1 w

(i)u
(i)
k , w(i) =

exp(− 1
λJ(i))∑N

j=1 exp(− 1
λJ(j))

,where λ is a temperature

parameter controlling exploration. Appendix A.2 shows the convergence analysis of using Phase 2
model as dynamics function within MPC framework.

To improve performance across environments, we incorporate online fine-tuning of the learned dy-
namics model. As new observations {(xk, uk, xk+1)} become available during execution, we update
the parameters in the dynamics model on the fly to reduce prediction errors. To avoid catastrophic
forgetting as well as to balance exploration and exploitation, we use experience replay buffers to
record all the observations for online learning and enable a robot to select between a random ac-
tion and u∗

k. This continual learning process allows the model to refine its predictions and adapt to
distributional shifts, especially for unseen historical data.

4.3 ADDITIONAL TRAINING DETAILS

To improve long-horizon prediction accuracy, we apply curriculum learning to train NODE with
gradually increasing prediction horizons, from 1-step to H-step alignment. This mitigates the gra-
dient explosion and vanishing issues that commonly arise when training on long sequences or fine-
tuning an existing model. In addition, for the adaptive module design, using a 1D convolutional
neural network (CNN) to handle the high dimensionality of historical data shows benefits in quadro-
tor experiments by improving latent vector reconstruction through the extraction of local temporal
patterns. The sliding filters capture environmental changes regardless of their position in the se-
quence, which is useful in robotic motion, where accelerations or directional shifts can occur at ar-
bitrary points within a time sequence. Since each element in the state and action vectors represents
a distinct physical quantity, treating them as separate channels further enhances feature extraction.

5 SIMULATION EXPERIMENTS

5.1 BASELINE METHODS

MLP-based dynamics We consider two MLP-based dynamics: Phase 1 uses privileged information
and trains the model autoregressively with an L2 loss over a fixed horizon to assess the benefits
of NODE, and Phase 2 builds on the Phase 1 model by incorporating historical data for partially
observed settings.

Context-aware dynamics model (CaDM) Lee et al. (2020) trains the adaptive dynamics in an end-
to-end manner by using forward and backward loss to extract environmental factors. The comparison
evaluates the overall adaptability of the learned dynamics model under environmental changes.
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Meta-learning based dynamics model We adopt the concept of the meta-learning–based approach
in Belkhale et al. (2021) to design a context encoder using variational inference. The comparison
evaluates the overall adaptability of the learned dynamics model under environmental changes.

Fixed NODE-based dynamics A NODE-based model that does not update environmental informa-
tion during operation and relies solely on the initial environmental factors for inference.

AD-NODE AD-NODE is developed in two phases: Phase 1 is trained with privileged information
and serves as an upper bound for performance; it uses NODE and is solved with the Forward Euler
method. Phase 2 builds on the Phase 1 model by incorporating historical state-action information
through an encoder that reconstructs zk for partially observed settings.

5.2 DATA COLLECTION

Figure 3: Environment setup for
(a) 2D differential wheeled robot
and (b) 3D quadrotor.

We collect a dataset using the simulator by performing a grid
search over the span of the state and action spaces in different
environmental factors. Note that fully covering these spaces
is challenging, especially for the high-dimensional quadrotor
system. Therefore, we adopt a coarse sampling strategy: for
the differential wheeled robot, we grid-sample the initial states
and choose a random action but fix it along a trajectory; for the
quadrotor, we randomly sample initial states and apply random
actions. Each trajectory consists of 50 state-action pairs. If
the dynamics model trained on the dataset fails to accurately
capture the true system behavior, the online dynamics learning
approach discussed in Section 4.2 becomes essential as it helps
the robot explore and cover the critical portions of the state-
action space required to accomplish the task.

5.3 2D DIFFERENTIAL WHEELED ROBOT NAVIGATION

Table 1: Performance of the differential wheeled
robot under (i) spatially continuous friction. Suc-
cess rate (%) for goal-reaching and position
RMSE (m) for path-tracking.

Goal-reaching Path-tracking
MLP(Phase1) 2 > 0.1
MLP(Phase2) 2 > 0.1
CaDM 16 > 0.1
Meta-learning based 10 0.0534±0.0277
Fixed NODE 74 0.0451±0.0150
AD-NODE(Phase1) 76 0.0262±0.0133
AD-NODE(Phase2) 98 0.0206±0.0116

Setup Instead of relying on an equation-
based simulator, we implement the environ-
ment using MuJoCo physics engine (Todorov
et al., 2012) to provide more realistic simula-
tions for a contact-rich environment. The en-
vironment features a mobile robot with two
cylindrical wheels operating on a 2D surface.
The robot’s state is defined as [x, y, θ, ẋ, ẏ, ω]T ,
where x and y represent the position, ẋ and
ẏ represent the corresponding velocity, and θ
and ω denote the heading and angular veloc-
ity (Figure 3). The robot is driven by a dif-
ferential drive, which allows the wheels to ro-
tate at different speeds and directions, resulting
in two control actions: forward velocity command and steering angle command, represented as
[uforward, uturn]

T . Our proposed MPC controller will determine the uforward and uturn and a low-level
PID controller with fixed parameters is used to transform the high-level command to low-level motor
torque commands for each wheel.

Environmental variations are surface textures, characterized by sliding, turning, and rolling friction,
denoted as µsliding, µturning, µrolling. We assume isotropic friction for simplicity. During data collec-
tion, we pick two surface textures, one is easier to maneuver on, and the other is slippery and requires
more energy to move forward. See Appendix A.3.1 for simulation details. We collect trajectories
on each surface for training. During testing, the robot is expected to detect surface changes and
generalize to cases where the friction varies between the training values, as well as to cases where
its wheels contact both surfaces simultaneously.

Target tasks Figure 1 visualizes the two tasks under piecewise constant friction. In the goal-
reaching task, the differential wheeled robot starts from the left or right boundaries and uses a
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Table 2: Performance of the differential wheeled robot under (ii) time-varying friction updated
every 5, 10, or 20 control steps. Success rate (%) for goal-reaching and position RMSE (m) for
path-tracking.

Goal-reaching Path-tracking
5 steps 10 steps 20 steps 5 steps 10 steps 20 steps

MLP(Phase1) 2 2 0 > 0.1 > 0.1 > 0.1
MLP(Phase2) 0 0 2 > 0.1 > 0.1 > 0.1
CaDM 12 10 14 > 0.1 > 0.1 > 0.1
Meta-learning based 16 14 18 0.0296±0.0209 0.0397±0.0217 0.0540±0.0328
Fixed NODE 66 62 60 0.0382±0.0122 0.0347±0.0154 0.0436±0.0143
AD-NODE(Phase1) 74 76 74 0.0239±0.0154 0.0237±0.0150 0.0251±0.0158
AD-NODE(Phase2) 92 94 94 0.0242±0.0137 0.0283±0.0162 0.0305±0.0176

Table 3: Performance of the quadrotor is evaluated under (i) time-varying winds fluctuating sinu-
soidally around nominal, updated every 10 control steps, and (ii) spatially dissipating wind with
random time-varying noise modeled as Brownian motion. Shown as RMSE (m).

(i) (ii)
Goal-reaching Path-tracking Goal-reaching Path-tracking

MLP(Phase 1) > 0.2 > 0.2 > 0.2 > 0.2
MLP(Phase 2) > 0.2 > 0.2 > 0.2 > 0.2
CaDM > 0.2 > 0.2 > 0.2 > 0.2
Meta-learning based 0.0917±0.0227 0.1430±0.0741 0.0985±0.0209 0.1184±0.0661
Fixed NODE 0.0662±0.0106 0.0547±0.0190 0.0647±0.0083 0.0486±0.0132
AD-NODE(Phase 1) 0.0099±0.0044 0.0356±0.0203 0.0122±0.0073 0.0341±0.0115
AD-NODE(Phase 2) 0.0307±0.0156 0.0485±0.0258 0.0221±0.0137 0.0300±0.0182

controller to reach the target at the center, with varying initial headings. This set-up evaluates
performance across the entire domain. Success rate is defined as the percentage of episodes in
which the agent reaches the target within a 10 mm threshold and within 150 control steps, measured
over 50 runs. In the path-tracking task, the robot follows a predefined stadium-shaped path, with
performance measured by the RMSE between the robot’s position and the target path over a complete
lap. For both tasks, the test environments are evaluated in two environments: (i) spatially continuous
friction that changes with radial distance from the environment center; and (ii) time-varying friction,
updated every 5, 10, or 20 control steps. See Appendix A.6.2 for the cost functions used in MPC.

MPC performance In Table 1 and 2, we observe that our proposed model consistently outper-
forms the baselines, achieving higher goal-reaching success rates and lower path-tracking errors
under both environments. Intuitively, the Phase 1 model is expected to perform better due to access
to privileged information; however, Phase 2 achieves higher success rates in the goal-reaching tasks.
This may be because Phase 1 training does not include scenarios where the two wheels are on dif-
ferent surfaces, whereas the Phase 2 model, trained on historical data, may generalize better to such
cases. For path-tracking tasks, both Phase 1 and Phase 2 variants of our model show comparable
performance across the environments.

5.4 3D QUADROTOR TRAJECTORY PLANNING

Setup We use the quadrotor dynamics as the governing equation in our simulator (Huang et al.,
2023). Since we are only concerned with the position, velocity and orientation of a quadrotor, the
state that can capture the simplified dynamics model is defined as [p, v, q]T , where p, v and q are the
3D position, velocity, and quaternion. As shown in Figure 3, control action is defined as [fΣ, ω]T ,
where fΣ denotes the desired thrust and ω denotes the desired angular velocity in roll, pitch and
yaw direction [ωr, ωp, ωy]. The MPC controller will determine the high-level actions, thrust and
angular velocity, and we implement low-level controller including a PI controller that transforms the
high-level commands to thrust and torque followed by an inverse mapping of an actuation matrix
for obtaining the four motor speeds. To model a real-world quadrotor, we transform the continuous
dynamics model into a discrete one with the sampling time set as 0.02 seconds.

Environmental variations are different wind fields acting on the quadrotor system. The wind field
is modeled as a disturbance force along the x-direction. During data collection, we sample the
disturbance force in the range of [−1, 1] N and collect trajectories in each wind field. During testing,
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the quadrotor is subjected to wind fields beyond the [−1, 1] N range, representing out-of-distribution
environmental conditions.

Target tasks Figure 1 visualizes the two tasks under piecewise constant wind field. In the goal
reaching and hovering task, the goal is at the origin, and the quadrotor can start from each vertex of
a cube where the cube’s edge length is 0.4 meters long. The objective is to control the quadrotor to
reach and hover at the goal. We allow each controller 5 seconds to execute actions, then calculate
the average position error (RMSE) between the quadrotor position and goal over the final second. In
the path tracking task, the objective is to track a circle starting from the same positions as in the goal
reaching tasks, using the same RMSE metric. Test environments include two wind conditions: (i)
time-varying wind fluctuating sinusoidally around a nominal force, updated every 10 control steps;
and (ii) spatially dissipating wind with random time-varying noise modeled as Brownian motion
(Huang et al., 2023), which represents the wind field of a fan blowing on a quadrotor. See Appendix
A.6.2 for the cost function used in MPC.

MPC performance Table 3 shows the results of the two tasks in both environments after integrat-
ing the learned dynamics model with MPC. We also apply online dynamics learning, as described
in Section 4.2, to fine-tune the dynamics model (see Appendix A.6.3 for details). Similar to Sec-
tion 5.3, our approach successfully completes each navigation task in environments that vary across
space and time, achieving lower tracking errors than the baselines. While there is a slight perfor-
mance drop from Phase 1 (with privileged information) to Phase 2, the adaptive module in Phase
2 still reconstructs environmental factors and outperforms both the fixed NODE-based dynamics
model and other baselines.

6 REAL-WORLD EXPERIMENTS

6.1 SETUP

Figure 4: (a) Environment setup for the
real-world platform. (b) Examples of
friction layouts.

To demonstrate the effectiveness of deployment on real-
world robots, we evaluate the proposed framework on a
mobile robot platform (shown in Figure 4 (a)) where a
Sphero BOLT robot is operated on a pool table and a Lux-
onis Oak-D Pro camera is mounted above the table to de-
tect robot state. Although the robot has a spherical outer
shape, its internal actuation resembles a differential-drive
mechanism, so it cannot move sideways without first turn-
ing its heading. Therefore, this robot is a suitable plat-
form for testing planning algorithms for navigation tasks.

The state of the robot is defined as [x, y, dx, dy, ẋ, ẏ]T ,
where x and y represent the 2D position, dx and dy de-
note the cosine and sine of the robot heading, ẋ and ẏ rep-
resent the corresponding velocity. We use the frame cap-
ture loop of the camera, running at 60 fps with a frame
step size of ∆t = 0.0167 seconds, and obtain a control
frequency of 15 Hz and control step size of dt = 0.0667
seconds, by applying action every 4 frame capture loop.
To estimate the robot state, two colored patches (Figure
4(a), top left) are displayed on the LED array, and a blob detection algorithm identifies their centers
p1 = (u1, v1) and p2 = (u2, v2). Due to the symmetric design of two patches, the center of the robot
(x, y) can be calculated by the average of p1 and p2. To avoid ambiguity in the angle of the heading,
we represent the heading with two entries (dx, dy), which are calculated by (u1 − x, v1 − y). To
estimate the robot’s velocity (ẋ, ẏ), we record the robot center (xprev, yprev) two frames before each
control step. The velocity is then computed as ((x− xprev)/(2∆t), (y − yprev)/(2∆t)).

The action of the robot is defined as [uforward, uturn]
T , which represent the forward velocity command

and the steering angle command respectively. The proposed framework will determine the optimal
action at each control step and the internal low-level controller in the Sphero BOLT robot will track
the commanded action. We note that the actual run time of obtaining an optimized action from the

8
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Table 4: Performance of real-world experiments on navigation tasks with different friction layouts.
Shown as RMSE (mm).

Goal-reaching Path-tracking
Layout 1 Layout 2 Layout 1 Layout 2

Fixed NODE-based 21.2664 ± 12.3345 27.2460 ± 11.7591 45.6741 ± 21.0615 28.5800 ± 7.4442
AD-NODE (Phase 2) 7.6608 ± 3.0324 3.7221 ± 0.8207 20.7651 ± 3.3972 24.1680 ± 1.2369

framework is less than 0.01 seconds on a single Nvidia RTX 3090 GPU. The reason we slow down
the control rate is to accommodate the blob detection algorithm and the Bluetooth communication,
which take most of the time. To evaluate the capability of adapting to different environments, we
create different friction layouts (shown in Figure 4 (b)) by randomly placing papers (low friction)
on the pool table (high friction).

6.2 DATA COLLECTION

Since the low-level controller in the Sphero BOLT robot is embedded in the robot’s computational
board (unknown to users) and the uncertainty of the robot’s dynamics is complicated, it is hard to
build a simulation environment that has small sim-to-real gap to the real-world platform. Therefore,
we choose to collect data directly on the real-world platform by commanding the robot with random
actions from a randomly placed location on the pool table. In sum, we collect nearly 2,000 pairs of
(state, action, next state) for each texture. Regarding the privileged information in Phase 1 training,
we assign relatively accurate friction coefficients for each texture. Note that we do not collect
data for out-of-distribution situations in which the robot crosses between the paper and pool table
textures, and the dynamics learned in Phase 2 are expected to generalize to such scenarios.

6.3 RESULTS OF GOAL-REACHING AND PATH-TRACKING TASKS

In the goal-reaching task, each layout is tested from a random initial position with the table center as
the goal. The robot must reach and hover at the goal, and performance is measured by the minimum
distance between its trajectory and the goal. In the path-tracking task, each layout uses a similar start
position and the same circular path. The robot must follow the path, and performance is measured
by the average Euclidean distance between the trajectory and the closest path point. The cost design
follows J1 (goal reaching) and J2 (path tracking) in Section A.6.2. Table 4 reports results on two
friction layouts, each averaged over three runs from similar start poses. Layout 1 starts on the
pool table and Layout 2 on paper for both tasks. Since the fixed NODE model does not adapt to
environment changes, its dynamics use the friction coefficient at the start location. Results show
that AD-NODE achieves smaller errors, indicating effective adaptation to spatially varying friction.
It also achieves lower standard deviation, demonstrating greater robustness and higher repeatability
under real-world uncertainty. AD-NODE is deployable on real-world systems and outperforms the
fixed NODE, which treats environmental changes as disturbances. AD-NODE also handles surface
boundary crossings more reliably, while the fixed NODE often gets stuck or loses track.

7 CONCLUSION & FUTURE WORKS

In this paper, we propose Adaptive Dynamics learning based on NODE (AD-NODE), a method
that can be integrated into MPC to perform navigation tasks on mobile robotic systems. We adopt
a two-phase training process to reconstruct environmental factors and adjust state predictions ac-
cordingly. Simulation results demonstrate the superior performance of AD-NODE on a differential
wheeled robot and a quadrotor operating under out-of-distribution environmental conditions. We
also demonstrate the outstanding performance of applying the framework on a real-world mobile
robot. Compared to a method that does not adapt its dynamics, AD-NODE can adjust its dynamics
according to the environment and thereby achieve better performance in navigation tasks. In the
future, we hope to extend the framework to different robotic platforms such as quadruped robots or
humanoid robots.
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8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. Simulation details, including the Mujoco
simulation settings for the differential wheeled robot and the equations used in the quadrotor en-
vironment, are provided in Appendix A.3. Details of the dynamics learning setup, including the
model architectures for all baselines and our proposed model, as well as all training parameters of
our proposed model, are provided in Appendix A.4. The data collection procedure is described in
Section 5.2. Implementation details of the MPC, including controller parameters and the cost func-
tion, are included in Appendix A.6. All theoretical results are supported by complete derivations
and proofs in Appendices A.1 and A.2. The source code will be released upon acceptance.
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A APPENDIX

A.1 ERROR PROPAGATION IN NODE VS. DISCRETE-TIME MAP

We compare error growth when dynamics are approximated by (i) a continuous-time vector field
model (NODE), and (ii) a discrete-time map model (MLP). The difference lies in how approximation
errors propagate over long horizons.
Lemma A.1 (Error propagation for vector-field models (NODE)). Consider the true continuous-
time dynamics

ẋ(t) = f(x(t), u(t)), x(0) = x0, (4)
and the approximate continuous-time dynamics

˙̂x(t) = f̂(x̂(t), u(t)), x̂(0) = x0, (5)

where f, f̂ : Rd × U → Rd, f is Lipschitz continuous in x with Lipschitz constant L and let the
approximation error be

ϵ = sup
x∈Rd, u∈U

∥f(x, u)− f̂(x, u)∥. (6)

Based on δ(0) = 0, the trajectory error δ(t) = ∥x(t)− x̂(t)∥ satisfies the bound

δ(t) ≤ ϵ

L

(
eLt − 1

)
. (7)

Proof. Let e(t) = x(t)− x̂(t). Then

ė(t) = f(x(t), u(t))− f̂(x̂(t), u(t)).

Adding and subtracting f(x̂(t), u(t)) gives

ė(t) =
(
f(x(t), u(t))− f(x̂(t), u(t))

)
+

(
f(x̂(t), u(t))− f̂(x̂(t), u(t))

)
.

Taking norms and using the Lipschitz property,

∥ė(t)∥ ≤ L∥e(t)∥+ ϵ.

Applying Grönwall’s inequality with initial error ∥e(0)∥ = 0 yields

∥e(t)∥ ≤ ϵ

L
(eLt − 1).

□
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Lemma A.2 (Error propagation for discrete-time map models (MLP)). Consider the true discrete-
time dynamics

xk+1 = F (xk, uk), x0 ∈ Rd, (8)
and the approximate model

x̂k+1 = F̂ (x̂k, uk), x̂0 = x0, (9)

where F, F̂ : Rd × U → Rd, F is Lipschitz continuous in x with constant L, and the one-step
approximation error is bounded by

∥F (x, u)− F̂ (x, u)∥ ≤ ϵ, ∀(x, u) ∈ Rd × U . (10)

Based on zero initial error, after H steps, the trajectory error satisfies

∥xH − x̂H∥ ≤ ϵ
LH − 1

L− 1
. (11)

Proof. Define ek = xk − x̂k. Then

ek+1 = F (xk, uk)− F̂ (x̂k, uk).

Adding and subtracting F (x̂k, uk) gives

ek+1 =
(
F (xk, uk)− F (x̂k, uk)

)
+

(
F (x̂k, uk)− F̂ (x̂k, uk)

)
.

Taking norms,
∥ek+1∥ ≤ L∥ek∥+ ϵ.

By induction with e0 = 0, the recursive inequality solves to

∥eH∥ ≤ ϵ

H−1∑
i=0

Li = ϵ
LH − 1

L− 1
.

□

Summary The theoretical results above show that NODE suffers from exponential error growth
with horizon length and MLP suffers from geometrical error growth with horizon length. However,
the source of error differs: NODE accumulate error through the vector-field approximation, while
MLPs inject fresh error at every prediction step. Based on the results from Chen et al. (2018), this
structural distinction implies that NODE yield smoother and more consistent rollouts under bounded
model mismatch. Moreover, empirical evidence from Chen et al. (2018) demonstrates that NODE
can achieve comparable or superior performance to discrete models with fewer parameters. Taken
together, these results suggest that while NODE do not eliminate long-horizon error amplification,
they provide practical advantages in stability, efficiency, and trajectory consistency, making them a
favorable choice for model-based control.

A.2 CONVERGENCE ANALYSIS OF MPC BASED ON LEARNED DYNAMICS ERROR

In this section, we start deriving dynamics errors εf and analyze convergence of MPC with the
learned dynamics function.

The true plant dynamics function f is defined in Equation 1 and the learned dynamics model f̂ is
composed of two components:

1. Adaptive module: ẑk = h({(xi, ui)}k−1
i=k−M ) encodes the past M steps of observed state-

action history into an adaptive latent vector ẑk.
2. State network: n(xk, uk, ẑk) predicts the next state using the current state xk, current con-

trol uk, and the adaptive latent ẑk.

The overall learned-model one-step error is defined as

εf := ∥f(xk, uk, êk)− f(xk, uk, ek)∥,
which bounds the difference between the true next state and the predicted next state.

This error εf can be decomposed into two contributions:
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1. Adaptive module error: Let εz := ∥ẑk − z⋆k∥ denote the error of the adaptive module in
estimating the true latent environment variables. Assuming the state network is Lipschitz
in ẑ, i.e.,

∥n(x, u, ẑ1)− n(x, u, ẑ2)∥ ≤ Lz∥ẑ1 − ẑ2∥,
then the contribution of the adaptive module to the one-step approximation error of state
network is bounded by

∥n(xk, uk, ẑk)− n(xk, uk, z
⋆
k)∥ ≤ Lz εz.

2. State network approximation error: Even if the adaptive module were perfect (ẑk = z⋆k),
the state network n may still have intrinsic approximation error:

εs := ∥n(xk, uk, z
⋆
k)− f(xk, uk, ek)∥.

Combined one-step error: By the triangle inequality, the total one-step learned-model error is

εf = ∥f(xk, uk, êk)− f(xk, uk, ek)∥ ≤ Lz εz︸ ︷︷ ︸
adaptive module contribution

+ εs︸︷︷︸
state network contribution

.

After deriving one-step dynamics error εf , we start deriving the overall convergence of MPC using
this dynamics. We consider the learned dynamics model f̂(x, u, ê) with estimated environmental
factor ê, and assume:

1. Lipschitz dynamics: ∥f(x1, u, e)− f(x2, u, e)∥ ≤ Lx∥x1 − x2∥, ∀x1, x2, u.
2. Bounded one-step model error: εf .
3. Lipschitz stage and terminal costs: |ℓ(x1, u)−ℓ(x2, u)| ≤ Lℓ∥x1−x2∥, |lf (x1)−lf (x2)| ≤

Llf ∥x1 − x2∥.
4. Existence of terminal ingredients: terminal set Xf and terminal control law kf ensure

recursive feasibility and nominal decrease.

Lemma A.3 (Predicted vs actual finite-horizon cost difference). Let Û⋆
k be the optimal MPC se-

quence at time k with predicted states x̂k+i|k. Denote the true states under Û⋆
k by xk+i. Then∣∣∣∣∣

N−1∑
i=0

ℓ(xk+i, ûk+i|k) + lf (xk+N )−
N−1∑
i=0

ℓ(x̂k+i|k, ûk+i|k)− lf (x̂k+N |k)

∣∣∣∣∣ ≤ ΓN εf , (12)

where

ΓN = Lℓ

N−1∑
i=0

1− Li
x

1− Lx
+ Llf

1− LN
x

1− Lx
. (13)

Proof. Using the one-step model error bound and Lipschitz dynamics, the state prediction error
grows as

∥x̂k+i+1|k − xk+i+1∥ ≤ Lx∥x̂k+i|k − xk+i∥+ εf .

Then by the Lipschitz property of the stage and terminal costs,

|ℓ(xk+i, ûk+i|k)− ℓ(x̂k+i|k, ûk+i|k)| ≤ Lℓ∥x̂k+i|k − xk+i∥,

|lf (xk+N )− lf (x̂k+N |k)| ≤ Llf ∥x̂k+N |k − xk+N∥.
Summing over i = 0, . . . , N − 1 gives the stated bound.
Lemma A.4 (Descent inequality for the MPC value function). Let Vk(xk) denote the MPC value at
time k. Then, under recursive feasibility,

Vk(xk+1)− Vk(xk) ≤ −ℓ(xk, uk) + 2ΓNεf , (14)

where uk is the applied MPC control and ΓN is as in Lemma A.3.

Proof.

1. Construct the shifted candidate sequence for time k + 1: Ũk+1 =
{ûk+1|k, . . . , ûk+N−1|k, kf (x̂k+N |k)}.

14
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2. By definition of the MPC value function, Vk+1(xk+1) ≤ Jpred
k+1(Ũk+1).

3. Apply Lemma A.3 at time k + 1: |Jpred
k+1(Ũk+1)− J true

k+1(Ũk+1)| ≤ ΓNεf .

4. Relate the true tail cost to the full cost: J true
k+1(Ũk+1) = J true

k (Û⋆
k )− ℓ(xk, uk).

5. Apply Lemma A.3 at time k to relate J true
k (Û⋆

k ) to Vk(xk): J true
k (Û⋆

k ) ≤ Vk(xk) + ΓNεf .

6. Combining the above steps gives

Vk(xk+1)− Vk(xk) ≤ −ℓ(xk, uk) + 2ΓNεf .

Lemma A.5 (Uniformly Ultimate Boundedness). Assume Vk(x) is positive definite and satisfies
αV (∥x− x⋆∥) ≤ Vk(x) ≤ αV (∥x− x⋆∥). Define

r = α−1(2ΓNεf ), (15)
where α is the class-K function in Lemma A.4. Then the closed-loop is uniformly ultimate bounded:

lim sup
k→∞

∥xk − x⋆∥ ≤ r. (16)

Summary The overall one-step learned-model error εf , which combines contributions from the
adaptive module and the state network, directly determines the practical convergence bound of the
MPC. Specifically, under the robust descent inequality of Lemma A.4, the closed-loop trajectories
are guaranteed to converge to a neighborhood of the equilibrium of radius

r = α−1(2ΓNεf ),

where ΓN depends on the prediction horizon and Lipschitz constants of the stage and terminal costs,
and α characterizes the Lyapunov decrease. If α is quadratic, this simplifies to r =

√
2ΓNεf/α1,

showing that the attractor radius scales as the square root of the learned-model error. Therefore,
improvements in either the adaptive module (reducing εz) or the state network (reducing εs) directly
shrink εf , which in turn reduces the size of the practical attractor and brings the closed-loop system
closer to the true equilibrium.

A.3 SIMULATION DETAILS

A.3.1 2D DIFFERENTIAL WHEELED ROBOT WITH DIFFERENT SURFACE TEXTURES

Since MuJoCo physics engine (Todorov et al., 2012) provides good simulation for contact-rich sce-
narios, we built the differential wheeled robot environment from scratch in MuJoCo. To the best
of our knowledge, existing RL environments for ground vehicle navigation are either built using a
bicycle model or assume that the tire undergoes a pure rotation on the ground. In addition, they
often ignore turning friction or rolling friction, oversimplifying the real-world situations of a ground
vehicle that navigates on different surfaces.

To simulate real-world situations and evaluate the effectiveness of our approach, we build a differ-
ential wheeled robot with wheel torques as control input that considers slipping, turning, and rolling
frictions of the surface. However, such contact-rich scenes often lead to simulation instability, and
there are no constraints ensuring that the wheels remain in contact with the surface at all times during
the robot’s movement. Therefore, we set the damping coefficients for each joint at 0.1 Ns / m and
the integrator to be a fourth-order Runge-Kutta method to prevent the simulation from exploding.

To simulate real-world robots, we develop a low-level PID controller that can transform the high-
level control inputs, desired forward velocity uforward and desired steering angle uturn, to low-level
wheel torques. The implemented low-level controller is expressed as

uleft[k] = Kp,v · ev[k] +Ki,v ·
k∑

j=0

ev[j] · dt+Kp,h · uturn[k] +Kd,h ·
uturn[k]− uturn[k − 1]

dt

uright[k] = Kp,v · ev[k] +Ki,v ·
k∑

j=0

ev[j] · dt−Kp,h · uturn[k]−Kd,h ·
uturn[k]− uturn[k − 1]

dt
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Figure 5: The influence of environmental factors on differential wheeled robots and quadrotors
under identical control inputs: (a) It is more difficult for a differential wheeled robot to navigate on
a slippery surface compared to a non-slippery one. (b) Even when thrust is applied to a quadrotor,
strong wind can significantly alter its dynamics, causing it to drift in the x-direction.

where ev[k] = uforward−v[k], uleft denotes left wheel torque, uright denotes right wheel torque, and
dt denotes the control time step, which is set to be 0.04 seconds. Kp,v is the velocity proportional
control gain, Ki,v is velocity integral control gain, Kp,h is the heading proportional control gain,
and Kd,h is the heading derivative control gain.

However, the simulated differential wheeled robots often have jerky motions, but we still collect
data and test our framework in the environment to see whether our framework can handle complex
dynamics. Figure 5 shows the resulting trajectories on different surfaces with control inputs of
[0.5, 0.5]T applied for 80 steps. The surface conditions used to collect data are µsliding, µturning, µrolling
= [0.7, 0.04, 0.01] for the slippery surface and [2, 0.005, 0] for the non-slippery surface. Figure 5
demonstrate that surface friction significantly affects the dynamic behavior of a differential wheeled
robot. On a slippery surface, the robot travels a shorter distance and turns less under the same control
actions, highlighting the importance of dynamics adjustment for achieving a robust controller.

A.3.2 3D QUADROTOR WITH DIFFERENT WIND FIELDS

In the quadrotor platform, we consider the following quadrotor dynamics as our governing equations
in the simulator, which also follows the implementation from Huang et al. (2023).

ṗ = v, mv̇ = mg +Re3fΣ + d,

Ṙ = RS(ω), Jω̇ = Jω × ω + τ,

where p, v, g ∈ R3 are the position, velocity, and gravity vectors in the world frame, R ∈ SO(3) is
the attitude rotation matrix, and ω ∈ R3 is the angular velocity in the body frame. The parameters
m and J represent the mass and inertia matrix, respectively. The unit vector e3 = [0; 0; 1], and
S(·) : R3 → so(3) maps a vector to its skew-symmetric matrix form.

Regarding the environmental factors, d is the translational disturbance, which models the wind fields.
The control inputs are the total thrust fΣ and the torque τ in the body frame. For quadrotors, there
exists a linear and invertible actuation matrix between [fΣ; τ ] and the four motor speeds. Figure 5
shows the trajectories under different wind fields with a 0.1 N thrust applied for 50 steps. The strong
wind field introduces a 0.5 N disturbance in the positive x-direction. The resulting trajectories show
that the wind significantly alters the dynamics, posing challenges for the original MPC, which does
not adapt its model of the system dynamics.

A.4 IMPLEMENTATION DETAILS OF DYNAMICS LEARNING

A.4.1 MODEL STRUCTURES

We implement the backbone of the state net using an MLP. For the differential wheeled robot, it
consists of two hidden fully connected layers, each with 64 units followed by ReLU activation.
For the quadrotor, it has three hidden fully connected layers, each with 64 units followed by ReLU
activation. The method is implemented with Torchdiffeq package (Chen, 2018), and Euler integrator
is adopted as the ODE solver.
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Figure 6: Dynamics prediction errors (RMSE) for the differential wheeled robot on the test set over
different horizons: (a) position, (b) velocity, and (c) angle.

In the differential wheeled robot environment, both the environmental encoder and the adaptive
module are implemented using an MLP consisting of one hidden fully connected layer with 64 units,
followed by ReLU activation. For the quadrotor, the environmental encoder is also implemented
using an MLP with one hidden fully connected layer and 64 units, followed by ReLU activation.
The adaptive module is implemented using a 1D CNN consisting of three stacked 1D convolutional
layers (with kernel sizes of 5 and 3), each followed by ReLU activation and dropout. The extracted
features are then flattened and passed through an MLP comprising two linear layers with ReLU
activation and dropout.

A.4.2 HYPERPARAMETER

In both Phase 1 training and Phase 2 training, we use Adam as an optimizer and MSE as loss function
to train the networks. However, there are some differences in terms of training hyperparameters
between each phase and each environment.

For the differential wheeled robot environment, in Phase 1 training, a learning rate of 1 × 10−3 is
used and decayed to 1× 10−4, with a batch size of 512. In Phase 2 training, the learning rate is set
to 1 × 10−3, and the adaptive module is trained with a batch size of 128. The experiments of all
models were trained on a single NVIDIA RTX 3070 GPU on a personal workstation. Training time
for each experiment ranged from 1 to 5 hours, depending on model complexity and dataset size.

For the quadrotor environment, we apply curriculum learning during Phase 1 training. An expo-
nential learning rate scheduler is used, starting from a learning rate of 1 × 10−3 and decaying to
1 × 10−4. The training starts from learning to match 1 future step to 30 future steps. In each cur-
riculum, we train 10 epochs with 1024 batch size. Similar to the experiment done on the differential
wheeled robot platform, the training process is conducted on a single NVIDIA RTX 3090 GPU, the
runtime is around three hours. Regarding Phase 2 training, we set the learning rate to be 1 × 10−4

and train 100 epoch to learn the adaptive module with 1024 batch size. The entire training time on
a single NVIDIA RTX 3090 GPU is around one hour.

A.4.3 ADDITIONAL EVALUATION OF DYNAMICS MODEL PERFORMANCE

2D Differential Wheeled Robot We collect a test dataset using the same collection procedure
with a sampling parameter that differs from the one used during training data collection to evaluate
the long-horizon prediction error of a learned dynamics. Then, we compare each dynamics learning
method in terms of errors in position, velocity and heading angle at each prediction time up until 20
horizons. The errors are defined as RMSE between the prediction and the ground-truth.

Figure 6 shows the prediction errors of each dynamics learning method on the test dataset. Compared
to baselines such as CaDM and MLP, AD-NODE achieves lower prediction errors across all state
components. The results also align with the theoretical conclusion from Appendix A.1. Learning-
based dynamics models are typically prone to error accumulation over time, but our method miti-
gates this issue by using NODE as the backbone, which better captures the continuous-time evolu-
tion of robot dynamics. Models with access to privileged information achieve higher accuracy than
those relying solely on inferred context from historical state-action trajectories.
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Figure 7: Dynamics prediction errors (RMSE) for the quadrotor on the test set over different hori-
zons: (a) position, (b) velocity, and (c) angle.

3D Quadrotor We evaluate the dynamics model using the same procedure as for the differential
wheeled robot. However, since orientation lies in SO(3), orientation error is defined as the minimal
rotation angle between the predicted and ground-truth quaternions. Given a ground-truth quaternion
qgt and a predicted quaternion q̂, the error quaternion qe is defined as qe = qgt ⊗ q̂−1 where ⊗
denotes the quaternion product. The angle of the shortest rotation from q̂ to qgt can be computed as
2 · arccos (|qwe |), where qwe is the scalar (real) part of the quaternion qe.

Figure 7 presents the prediction error of each dynamics learning method on the test dataset. Similar
to the differential wheeled robot environment, our proposed dynamics model demonstrates lower
long-horizon prediction errors compared to the baselines. The accumulated error is particularly
evident in the MLP-based model, which fails to capture the continuity inherent in physical dynamics.
CaDM performs better than MLP due to its use of forward and backward loss.

A.5 IMPLEMENTATION DETAILS OF BASELINES

A.5.1 MODEL STRUCTURES

In this paper, we implement four baselines across both environments: (1) MLP-based dynamics with
privileged information, (2) MLP-based dynamics with historical information, (3) CaDM from Lee
et al. (2020), and (4) the meta-learning-based dynamics model from Belkhale et al. (2021). Below,
we describe the model architectures for these baselines.

The same model structures are used in both simulation environments. For the MLP-based dynamics
models (with privileged and historical information), the main network is implemented as an MLP
with three hidden fully connected layers (64 units, ReLU activation). The encoder is implemented
as an MLP with two hidden fully connected layers, also with 64 units and ReLU activation.

For CaDM, the dynamics model consists of an MLP with two hidden fully connected layers (128
units, ReLU activation) for both the forward and backward dynamics. The encoder is implemented
as an MLP with one hidden layer (64 units, ReLU activation).

For the meta-learning–based dynamics model, the context encoder is a variational encoder that maps
a history of state-action pairs to a latent context vector. It consists of a two fully connected hidden
layers (64 units, ReLU activation) shared between the mean and log-variance outputs, producing a
Gaussian distribution from which the latent vector can be sampled. The forward dynamics model is
an MLP with two hidden layers (128 units, ReLU activation). During training, the model minimizes
MSE loss between predicted and true states and the Kullback-Leibler divergence (KL divergence)
between the inferred context distribution and a standard Gaussian.

A.5.2 HYPERPARAMETER

The Adam optimizer is used for all baselines. For the MLP-based dynamics model with privileged
information, the number of training epochs is 100, with a learning rate of 1 × 10−4 and a batch
size of 128. In the Phase 2 counterpart of the MLP-based dynamics model, where the encoder is
retrained using historical information, training is conducted for 15 epochs with a learning rate of
5 × 10−5 and a batch size of 128. For CaDM, a batch size of 256, a learning rate of 1 × 10−4,
and 30 training epochs are used. When computing the loss, the weight ratio of the backward to the
forward models is set to 0.5. For the meta-learning-based method, a batch size of 256, a learning
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rate of 1× 10−4, and 50 training epochs are used. When computing the loss, the weight ratio of the
KL divergence term to the forward loss is set to 1× 10−2.

A.6 IMPLEMENTATION DETAILS OF MPC

A.6.1 HYPERPARAMETER

Hyperparameters of the MPPI controller vary based on the task, cost function design and dynamics
function. For the differential wheeled robot environment, in the goal-reaching task, the horizon is
set to 20, the number of samples to 500, and the temperature to 1 × 10−2. The sampling standard
deviation for each control dimension is [0.1, 0.1]T corresponding to uforward and uturn, respectively.
In the path tracking task, the horizon is set to 15, the number of samples to 800, and the temperature
to 1×10−4. The sampling standard deviation for each control dimension is [0.5, 0.3]T corresponding
to uforward and uturn. In the velocity tracking task, the horizon is set to 20, the number of samples to
800, and the temperature to 1× 10−4. The sampling standard deviation for each control dimension
is [0.2, 0.1]T corresponding to uforward and uturn. The length of the state-action history is set to 5 for
all tasks.

For the quadrotor environment, horizon is set at 40, number of sampling size is set at 4096, temper-
ature is set at 0.05, sampling standard deviation for each control dimension is [0.25, 0.7, 0.7, 0.7]T ,
each corresponds to thrust, angular velocity in raw, pitch and yaw direction. The length of the
state-action history is set at 10.

During inference, the length of the state-action history is shorter than the designated length in the
beginning of each episode. Therefore, we apply random actions at the beginning to fill the designated
length. Since the robot does not know the ground-truth environmental factors, this is a way for it to
capture the current environment by randomly exploring for a short time at the start of each episode.
Compared to the total length of the controller, which usually operates over hundreds or thousands
of steps, this initial exploration does not sacrifice the accuracy or success rate too much.

A.6.2 COST DESIGN

For the differential wheeled robot and the real-world deployment, we design two cost functions: J1
for goal reaching and J2 for path tracking. The two definitions are

J1 =

H∑
k=0

[
wv

(
vk − vref

k

)2
+ wθ

(
θk − θpp

k

)2]
,

J2 =

H∑
k=0

[
wp

∥∥pk − pref
k

∥∥2 + wv

(
vk − vref

k

)2
+ wθ

(
θk − θref

k

)2]
,

where

pk =

[
xk

yk

]
, pref

k is the reference position,

vk =

∥∥∥∥[ẋk

ẏk

]∥∥∥∥
2

, vref
k is the reference velocity,

θpp
k = arctan 2

(
ygoal − yk, xgoal − xk

)
,

θref
k is the reference heading,

and wp, wθ, wv are the positive scalar weights on position, heading, and velocity losses respectively.

The MPC cost function for a quadrotor performing a goal reaching and hovering or path tracking
task is defined as
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Algorithm 1 Online Dynamics Learning
1: Initialize: dataset D ← ∅, State Net parameters θ from Phase 1, Adaptive Module parameters

ϕ, environment E , environmental factors e, MPC controller πMPC
2: for episode = 1 to Nepisodes do
3: x1 ← E .reset()
4: for timestep k = 1 to T do
5: if explore(episode, k) then
6: uk ← sample random action from action space
7: else
8: uk ← πMPC(xk) ▷ Plan using current Adaptive Module and State Net
9: end if

10: xk+1, r ← E .step(uk)

11: D ← D ∪ {({(xi, ui)}k−1
i=k−M , ek)}

12: if model update condition met then
13: ϕ← update Adaptive Module using data D
14: end if
15: xk ← xk+1

16: end for
17: end for

J3 =

H∑
k=0

(
wp

∥∥pk − pref
k

∥∥2 + wq

(
1−

(
q⊤k q

ref
k

)2))
,

where

pref
k is the reference (goal or trajectory) position at time k,

qref
k is the reference quaternion at time k,

and wp, wq are weighting factors for the position and orientation errors, respectively.

A.6.3 ONLINE DYNAMICS LEARNING

Online dynamics learning follows the general procedure in model-based RL. The pseudo code of
online dynamics learning is shown at Algorithm 1.

Online learning is used in the quadrotor task, as described in Section 4.2, to refine our dynamics
model. To further evaluate the effectiveness of online learning under extreme conditions, we conduct
an experiment comparing performance before and after online adaptation. In scenarios where wind
forces exceed 3 N, which is far beyond the offline training range of −1 to 1 N, offline learning
yielded a position RMSE of 0.1649 m ± 0.0221, while online finetuning reduced it to 0.0646 m±
0.0153. The results demonstrate that online learning can significantly improve performance in new
environments by refining the dynamics model using rollout trajectories.

A.7 ADDITIONAL EVALUATION IN ENVIRONMENTS WITH PIECEWISE-CONSTANT FACTORS

A.7.1 2D DIFFERENTIAL WHEELED ROBOT WITH DIFFERENT SURFACE TEXTURES

For this experiment, we used the same setup and data collection method described in Section 5. Both
goal-reaching and path-tracking tasks were performed in environments with piecewise-constant fric-
tion, introducing drastic changes at the crossing boundaries. Examples of the test environment are
shown in Figures 1 and 5, and the results are summarized in Table 5. From the table, we can see that
the benefits of using AD-NODE persist in this test case.
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Table 5: Performance of differential wheeled robot with a piecewise-constant spatial friction layouts
that remain fixed over time.

Goal-reaching Path-tracking
Success rate (%) RMSE (m)

MLP (Phase 1) 2 > 0.1
MLP (Phase 2) 2 > 0.1
CaDM 28 > 0.1
Meta-learning based 12 0.0430 ± 0.0311
Fixed NODE-based 32 0.0463 ± 0.0153
AD-NODE (Phase 1) 94 0.0174 ± 0.0072
AD-NODE (Phase 2) 94 0.0207 ± 0.0130

Table 6: Performance of the quadrotor with piecewise-constant wind field layouts that remain fixed
over time.

Goal-reaching & hovering Path-tracking
RMSE (m) RMSE (m)

MLP (Phase 1) > 0.2 > 0.2
MLP (Phase 2) > 0.2 > 0.2
CaDM > 0.2 > 0.2
Meta-learning based 0.0516 ± 0.0412 > 0.2
Fixed NODE-based 0.0992 ± 0.0576 0.1218 ± 0.0372
AD-NODE (Phase 1) 0.0133 ± 0.0081 0.0813 ± 0.0302
AD-NODE (Phase 2) 0.0332 ± 0.0218 0.1026 ± 0.0468

A.7.2 3D QUADROTOR WITH DIFFERENT WIND FIELDS

Similar to differential wheeled task, we used the same setup and data collection method described
in Section 5. Both goal-reaching and path-tracking tasks were performed in environments with
piecewise-constant wind fields, introducing drastic changes at the crossing boundaries. The test
environments are shown in Figures 1 and 5, and the results are summarized in Table 6. From the
table, we can see that the benefits of using AD-NODE persist in this test case.

A.8 ADDITIONAL EVALUATION ON MASS-SPRING-DAMPING SYSTEM

In this experiment, we want to test our algorithm on a toy example with known dynamics to un-
derstand the generalization ability of the proposed model. We consider a mass moving along a
one-dimensional axis under an external force, connected to a spring and a damper. The system
dynamics are described by the state-space equation as shown below:

ẋ(t) = Ax(t) +Bu(t)

where

x(t) =

[
x1(t)
x2(t)

]
, A =

[
0 1
− k

m − b
m

]
, B =

[
0
1
m

]
, u(t) = F (t)

x1(t) represents the displacement and x2(t) the velocity of the mass. The environmental variation
here is the changing mass during movement. Generalization performance is evaluated across three
regimes in the test set: standard, moderate, and extreme. The standard regime uses masses within the
training range, the moderate regime includes slightly out-of-range values, and the extreme regime
includes the most distant values, similar to the definition in Lee et al. (2020). We evaluate our
proposed dynamics model on a goal-reaching task, where the mass is controlled to reach a target
location from various initial positions by applying an external force. Performance is reported as
errors of position and velocity after the mass reaches the goal, averaged over 20 runs per category.
The goal-reaching criterion requires the mass to have a position error of less than 10 mm and a
velocity error of less than 10 mm/s. The results are presented in Table 7. The positional errors
are comparable across categories, indicating that the model generalizes well. The fluctuations in
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Table 7: AD-NODE performance on test cases with different distances from the training distribution.
The RMSE and standard deviation of position and velocity errors for the three categories are reported
after the mass reaches the target. In the fixed-mass setting, the mass remains constant throughout the
task. In the changing-mass setting, the mass starts at 5 kg and transitions to the value corresponding
to each regime after 150 control steps.

Fixed-mass Changing-mass
Standard Moderate Extreme Standard Moderate Extreme

Position RMSE
(mm) 5.600 ± 0.524 5.500 ± 0.609 5.819 ± 1.106 5.682 ± 0.399 5.993 ± 0.734 5.884 ± 2.231

Velocity RMSE
(mm/s) 2.497 ± 0.746 3.890 ± 2.136 5.480 ± 3.675 2.131 ± 0.378 2.408 ± 0.581 3.668 ± 1.792

position and velocity of the mass in the standard test samples are smaller than those observed in the
extreme cases when the mass is near the target.

A.9 THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to improve the readability of this submission. Specifi-
cally, they assisted in correcting grammar, refining sentence structure, and polishing the wording of
the text. In addition, we took inspiration from LLMs and decided to use Grönwall’s inequality to
derive the results of Lemma A.1.
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