
Under review as a conference paper at ICLR 2024

TIME-SENSITIVE REPLAY FOR CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning closely emulates the process of human learning, which allows
a model to learn for a large number of tasks sequentially without forgetting knowl-
edge obtained from the preceding tasks. Replay-based continual learning meth-
ods reintroduce examples from previous tasks to mitigate catastrophic forgetting.
However, current replay-based methods often unnecessarily reintroduce training
examples, leading to inefficiency, and require task information prior to training,
which requires preceding knowledge of the training data stream. We propose a
novel replay method, Time-Sensitive Replay (TSR), that reduces the number of
replayed examples while maintaining accuracy. TSR detects drift in the model’s
prediction when learning a task and preemptively prevents forgetting events by
reintroducing previously encountered examples to the training set. We extend this
method to a task-free setting with Task-Free TSR (TF-TSR). In our experiments
on benchmark datasets, our approach trains 23% to 25% faster than current task-
based continual learning methods and 48% to 58% faster than task-free methods
while maintaining accuracy.

1 INTRODUCTION

Continual learning aims to emulate the process of human learning and produce a model that learns
a sequence of tasks over time. However, these learning systems suffer from catastrophic forgetting,
whereas humans experience a slow decline in performance (Wang et al., 2020). To overcome this,
a strand of continual learning known as replay learning imitates human memory consolidation by
reintroducing previously seen data to a model in conjunction with new data (van de Ven et al., 2020;
Zha et al., 2020; Wang et al., 2018). As replay generally occurs at every new training batch (Cory
et al., 2021; Korycki & Krawczyk, 2021; Wong et al., 2023), a limitation of current research is that
replay may occur more than needed, incurring excessive computational costs.

While prior research has predominantly concentrated on the selection of data for replay (Aljundi
et al., 2019; Bagus & Gepperth, 2021) and the strategies for reintegrating this data into models (Ko-
rycki & Krawczyk, 2021; Wang et al., 2022a; Caccia et al., 2022), there is limited investigation
of the temporal aspect of replay mechanisms, specifically, the optimal timing for executing replay
operations. We posit that the reiteration of data from tasks that exhibit resistance to memory decay
offers limited advantages in terms of enhancing model accuracy. Furthermore, a common assump-
tion in existing work is the availability of task information during the training phase (Cory et al.,
2021; Kirkpatrick et al., 2017; Zeng et al., 2019; Klasson et al., 2022). This assumption implies
that for a newly encountered example within a data stream, the associated task is explicitly known.
Unfortunately, this premise does not align with the reality of many real-world applications, where
the partitioning of training data into distinct tasks requires a priori knowledge of the temporal order
of examples within the data stream. This inherent limitation renders existing replay-based models
impractical for deployment in real-world data stream scenarios (Lee et al., 2020; Ye & Bors, 2022;
Aljundi et al., 2019; Jin et al., 2021; Wang et al., 2022b; Rolnick et al., 2019).

To address these challenges, we propose a novel replay strategy called Time Sensitive Replay (TSR).
TSR reintroduces data from previously learned tasks only when those tasks are at risk of being for-
gotten. Specifically, when distribution drift is detected in the model’s predictions for a previously
learned task, examples from that task are replayed in the subsequent training batch. TSR’s primary
objective is to reduce the amount of replay required throughout a model’s lifespan while maintaining
a similar level of accuracy compared to a full-replay model, thereby reducing computational train-
ing costs. Additionally, we extend the TSR method to Task-Free Time-Sensitive Replay (TF-TSR),

1

Under review as a conference paper at ICLR 2024

Stream of examples

Task Memory Buffer

Existing task with lowest
class difference (Eq 1) to

New
Task

Existing
Task

Tasks

True False

Hoeffding test (Eq 2)

?

Largest subset in
 is

(a) Task recognition.

Model Train

Validation
Set

Logit

Logit Sequence

Test

(b) Update model and
perform validation test.

Model

Replay
Examples Train

Prediction Sequence

Drift on ?

(c) Detect forgetting and re-
play.

Figure 1: An overview of the TF-TSR model. (a) Add a new example to a similar existing task, or
create a new task. (b) Update the model on a training example from a known task T and produce
a stream of prior logits from the validation set for task T . (c) Calculate a moving average from the
stream of logits from task T and replay examples from task T if drift exists.

which applies TSR without the need for explicit task information by establishing task boundaries
around classes with similar feature loss characteristics. This enables the method to adapt to chang-
ing class distributions over data streams without prior knowledge of future tasks. To mitigate the
detrimental effects of concurrently replaying dissimilar tasks, which can lead to a more pronounced
decrease in model accuracy (De Lange et al., 2023), we propose the use of a class difference metric
to estimate class similarity and dynamically group similar classes within tasks.

Figure 1 provides an overview of TF-TSR, divided into three components. The first component,
as depicted in Figure 1a, focuses on task recognition. It aims to group similar classes into tasks
stored in memory as new examples arrive in the data stream. If an arriving example carries a class
not yet associated with any task in memory, it is added to the Task Memory Buffer. This buffer
accumulates examples until a sufficiently large sample size is reached for effective task recognition.
When the buffer reaches its maximum capacity, denoted as Bmax, the most frequent class within
the buffer becomes a candidate for addition to an existing task in memory or for the creation of a
new task. In TF-TSR, the similarity between the most frequent class denoted as c, and the tasks
in memory are determined using a class difference measure. If the computed similarity is below
a certain threshold, a new task is warranted for class c, and a new task is created. Specifically,
if the average feature loss difference between examples from the task T ′ and class c exceeds the
Hoeffding bound threshold, a new task is created for class c. Conversely, if the similarity indicates
that class c can be associated with an existing task T ′, class c is appended to that task. The second
component in Figure 1b revolves around model training and validation over previous tasks. When
an example from the data stream carries a class already linked to an existing task in memory, the
example is utilized for model training and updating internal model parameters. Subsequently, a
validation test is conducted on a prior task, referred to as T . This test produces a sequence of
model predictions represented as logits. The third component, as illustrated in Figure 1c, deals
with replaying examples in response to signs of forgetting. A moving average is computed over the
sequence of logits obtained during validation on task T . If distribution drift is detected within this
moving average, stored examples from task T are reintroduced into the training process to update
the model. The code can be found at the anonymous link: https://anonymous.4open.
science/r/Task-Free-Time-Sensitive-Replay-6F3D/README.md.

2 RELATED WORK

This section summarizes existing work regarding replay-based approaches in continual learning. We
also provide an overview of task-free continual learning research.

Replay Learning. Recently, there has been a growing interest in replay-based research into the
selection or construction of replay data and how this data should be reintroduced to the model.
Reactive Subspace Buffer (RSB) (Korycki & Krawczyk, 2021) applies concept drift detection in a
replay learning context. RSB’s replay buffer adapts to drift in a class’s incoming data and prioritizes

2

https://anonymous.4open.science/r/Task-Free-Time-Sensitive-Replay-6F3D/README.md
https://anonymous.4open.science/r/Task-Free-Time-Sensitive-Replay-6F3D/README.md
Jack Julian

Under review as a conference paper at ICLR 2024

the replay of examples most representative of the current state of each class. RSB also replays con-
sistently even if a class is not undergoing forgetting. Continual Error Correction (CEC) (Cory et al.,
2021) aims to improve existing knowledge and mitigate catastrophic forgetting through replay. CEC
is built on a regularization method, Orthogonal Weight Modification (OWM) (Zeng et al., 2019),
which reduces the impact of catastrophic forgetting by limiting changes to parameters important to
classifying previous tasks. The number of replayed examples increases with the number of tasks, a
common problem with replay techniques. Little research has been conducted on when to replay in a
continual learning environment. Klasson et al. (2022) uses a Monte Carlo tree search (MCTS) to de-
cide on a replay schedule before model training; however, the schedule cannot change dynamically
during training to adapt to changes in the data stream.

Task-free Learning. Many methods mentioned in this section heavily rely on the definition of
task boundaries; however, tasks are rarely provided in real-world applications. Continual Neural
Dirichlet Process Mixture (CN-DPM) (Lee et al., 2020) expands a set of experts, each specializing
in a distinct class as new classes are introduced, removing the requirement for task information. CN-
DPM introduces short-term memory (STM) to store instances belonging to new classes and to decide
when to train a new expert. CN-DPM also measures discrepancies between tasks to ensure that
tasks comprise distinct classes. Online Discrepancy Distance Learning (ODDL) (Ye & Bors, 2022)
expands on this idea by establishing a theoretical framework to analyze the forgetting behaviour of
task-free models. While ODDL and CN-DPM apply STM and task discrepancy to an expert-based
model, it may also be useful in establishing task boundaries in a replay-based model.

3 NOTATIONS AND PRELIMINARIES

Here, we define the learning settings and notations used to describe our techniques.

Continual Learning. Continual learning aims to train a model on a stream of examples. While a
typical deep learning method has access to an entire dataset for training, a continual learning method
assumes that only an example (xt, yt) is available at time t during training. Typically, a continual
learning method encounters each example once during training (Chen & Liu, 2018; Jin et al., 2021).

Task-based Learning. We define a class as a set of objects with the same classification label y ∈ Y
and a task T as a set of one or more classes (Cory et al., 2021). We assume that examples across all
tasks have the same shape and modality. We define an example as an object (xT

t , y
T
t) belonging to

a task T . We define a task-free setting as an environment where T is unknown when encountering
a new example. TF-TSR creates a set of recognized tasks T as more classes are encountered during
training. A dataset in a continual learning setting is a sequence of examples S = {(xTi

t , yTi
t)}∞i=1,t=1

such that examples from task Ti do not overlap with examples from task Ti+1. A continual learning
model M in a task-based environment receives an input example (xTi

t , yTi
t) ∈ S and produces a

vector ŷTi
t = fM(xTi

t , yTi
t ; θt) parameterized by some parameter θt. The goal is to optimize θt

dynamically so that modelM maintains a high prediction accuracy on all observed tasks.

Confidence. Confidence is a value ranging between 0 and 1, representing the prior likelihood
that a model produced a correct classification. Specifically, for prediction ŷTt = [y1, . . . , y|Y |]

⊤,
where each scalar yi maps to a corresponding class, confidence CT

t = max(ŷTt). We define lTt =
ln (CT

t (1− CT
t)

−1) as the prediction logit of xT
t . When a stream of n validation examples from

task T is input to the model, we denote the resulting sequence of logits as {lTi }ni=1 = {lT1 , . . . , lTn }.

Whenever a new example (xT
n+1, y

T
n+1) is encountered in the data stream, lTn+1 is appended to

{lTi }ni=1 resulting in the sequence of logits {lTi }
n+1
i=1 . Logits can occasionally experience radical

changes due to anomalous examples, so a moving average of logits is used to smooth the sequence
and eliminate irregularities. This moving average, which we refer to as the prediction sequence, is
defined as {aTi }

n−m+1
i=1 with window size m, where

aTi =
1

m

i+m−1∑
j=i

lTj .

We define m as a hyperparameter indicating the sensitivity of the drift detector to individual logits.

Example. Consider the MNIST dataset (Deng, 2012) as an example. The MNIST dataset comprises
handwritten digits labelled 0 through 9 in 28×28 pixel images, with each image considered an

3

Jack Julian

Under review as a conference paper at ICLR 2024

Task batches

Update model
parameters Validation on

Misclassified

examples

Task batches

Update model
parameters

 Test

Task Training Task Training

Drift
Detected?

Figure 2: TSR learning the first two
tasks in the MNIST dataset.

Task Memory Buffer
Class = 2 Class = 6

New
 Example

Most
frequent

class in is
Class 2

?

Validation set

Hoeffding Test
(Eq 2)

Calculate Class Diff.

Existing Tasks
: Classes

3,9

If false, add class
2 to task

If true, create
new task

: Classes
7,1

: Classes
7,1,2

: Class
2

Figure 3: Task identification on the MNIST
dataset in TF-TSR.

example. When a model M takes a vectorized example as input, it produces a logit value for
each possible class, in this case, digits 0 through 9. The prediction is correct if the highest logit
corresponds to the correct classification. A task in MNIST may refer to all examples of a particular
digit, such as Digit 3. Thus, {l3i}ni=1 denotes the sequence of logits corresponding to the prediction
for Class 3 for the n most recently classified examples with Label 3.

4 TIME-SENSITIVE REPLAY

This section provides an overview of our Time-Sensitive Replay (TSR) method. Section 4.1 details
the architecture of TSR in a task-based environment, and Section 4.2 describes how TSR may be
applied to a task-free environment.

4.1 TIME-SENSITIVE REPLAY

TSR is a replay-based continual learning technique designed to improve the effectiveness of replay.
The goal of TSR is to reintroduce past examples only when a task is experiencing forgetting, thereby
enhancing the improvement to model accuracy with each replayed example. An overview of TSR
is presented in Figure 2 for a task-based environment. It can be divided into two steps: model
update and validation, and forgetting detection and replay. During model update and validation, new
examples from the data stream are introduced to the model for training and validation is performed
on previous tasks to acquire a prediction sequence. During forgetting detection and replay, the
prediction sequence is analyzed for signs of forgetting, and if forgetting is detected, examples from
previous tasks are reintroduced to the model for training.

Model Update and Validation. Let (xTi
t , yTi

t) ∈ S with i > 1 be a newly encountered example
from the data stream. First, modelM trains on (xTi

t , yTi
t) and updates its internal parameters θt to

θt+1. As TSR operates only at the data level, parameter updates are performed by the underlying
deep learning architecture. Second, let VTi be a validation set with examples belonging to task
Ti. We sample n examples from VTi

, V = {(xTi
1 , yTi

1), . . . , (xTi
n , yTi

n)}, for validation on M.
Each example in V is input to the model and outputs a logit lTi

j = max(fM(xTi
j , yTi

j ; θt+1)). We
assume that fM returns logit values directly. Each lTi

j is appended to the series {lTi

k }nk=1, where the
maximum number of logits in the sequence is n. When n is exceeded, the oldest logit, which is least
relevant to current forgetting trends, is discarded. In practice, the validation process is performed
after the model trains on batches of examples.

Forgetting Detection and Replay. First, the series of logits {lTi

k }nk=1 is smoothed to reduce the
impact of anomalies by calculating a prediction sequence {aTi

k }
n−m+1
k=1 with window size m from

{lTi

k }nk=1. To detect forgetting on task Ti, TSR monitors the prediction sequence with a drift detector
for Ti denoted as DTi

. We use Kolmogorov-Smirnov Windowing (KSWIN) (Raab et al., 2020) as the
drift detector, and the use of other drift detectors in TSR is explored in Appendix D. Distribution drift
detected by DTi is considered a symptom of forgetting, and replay is performed. TSR, therefore,

samplesR Rmax∼ RTi , whereRTi is a replay buffer containing misclassified examples from task Ti

and Rmax is a hyperparameter defining the maximum size for a replay batch. The selected replay

4

Jack Julian

Under review as a conference paper at ICLR 2024

examplesR are introduced to the subsequent training batch upon detection of distribution drift over
the prediction sequence for task Ti, and reinforce the model’s understanding of the task. As an
example of the TSR process, let us again consider the MNIST dataset. Figure 2 contains examples
of two tasks, T1 has examples of handwritten 2 and T2 has examples of handwritten 6. First, the
model is updated with examples from T1. As T1 is the first task the model learns, there are no
previous tasks to replay. Between training batches for T2, suppose the prediction sequence after
tests on VT1

is a decreasing series {aT1
i }10i=1. This series is input to the drift detector DT1

, which
detects distribution drift. A random selection ofRmax examples fromR is added to the next training
batch for T2, responding to the forgetting event to restore a potential drop in accuracy on T1.

4.2 TASK-FREE TIME-SENSITIVE REPLAY

In the previous section, TSR assumes a task T is known for each example. This task information
allowed us to initialize drift detectors for each task, establish VT for each task, and define task
segments for the replay buffer in advance. In reality, task information is often unavailable. To
alleviate this, we propose a task-free implementation of TSR, Task-Free Time-Sensitive Replay
(TF-TSR), where new tasks are recognized as new classes arrive. Figure 1 shows that TF-TSR has
two additional components: a Task Memory Buffer (TMB) and a class difference mechanism. The
TMB is a set of examples with classes that do not belong to existing tasks. The class difference
mechanism is applied to examples output by the TMB to determine which task the examples belong
to. The validation and replay buffers are also altered to sustain the task-free setting. A discussion of
the theoretical complexity of TSR and TF-TSR is provided in Appendix C.

Task Memory Buffer. Inspired by Short-Term Memory (Lee et al., 2020), we propose the TMB to
determine whether a newly encountered class should be incorporated into an existing task or treated
as a distinct task. If an example arrives with a class that does not exist within the established task
boundaries, that example is passed into the TMB, which we denote as B. Once |B| ≥ Bmax, where
Bmax is a hyperparameter, the most frequent class in the TMB is either added to an existing task or
a new task is created. A full TMB ensures the model can access a sample of examples from a new
class to compare with tasks in memory.

Class Difference. When the TMB produces a new class, the model either adds the class to an
existing task or creates a new task for the class. To decide which existing task the class should be
added to, we match a task containing similar classes to the new class. The similarity of classes
within a task is important because training on dissimilar classes can cause a steep decline in model
accuracy (De Lange et al., 2023). We therefore propose a class difference measure, denoted ∆F ,
to determine the similarity of examples Dc from class c and examples DT from task T . Class
difference is defined in Equation 1, where ℓM is the loss function for modelM.

∆F(Dc,DT) = |Ex∼Dc
[ℓM(x)]− Ex∼DT

[ℓM(x)]| (1)

Validation and Replay Buffer. Previously, we have assumed that a validation set is provided and
that the replay buffer has access to task information a priori to training. In TF-TSR, we eliminate
both of these assumptions. For a set of known tasks T, the replay buffer R = {RTi

: Ti ∈ T} and
the validation set V = {VTi

: Ti ∈ T}. When a new task is identified, a new subset is initialized in
V and R. A maximum number of examples per subset, Vmax, is set prior to training. For instance,
when |VTi | > Vmax, the oldest example is removed from the set. To initially populate VTi , all
examples from the TMB are placed in VTi when a new task is identified. Afterwards, each new
example from task Ti has a 10% chance of being added to VTi . The replay buffer is populated with
incorrectly classified examples from each task.

Task Recognition. When the TMB is full, the model retrieves a set of examples belonging to the
most frequent class c, Dc from the TMB. We then add this class to the task

T ′ = argmin
T∈T

(∆F(Dc,DT)).

A new task is created when c is not similar to any existing task. We use a Hoeffding test with
Bonferroni correction (Bifet & Gavalda, 2007) on ℓM(Dc) and ℓM(DT ′):

ϵ =

√
|Dc| · σ2

ℓM
ln

2|Dc|
δ

+
4

3|Dc|
ln

2|Dc|
δ

(2)

5

Jack Julian

Under review as a conference paper at ICLR 2024

where δ is the sensitivity to task creation and σ2
ℓM

is the variance of ℓM. A new task is created if∣∣∣ℓM(Dc)− ℓM(DT ′)
∣∣∣ ≥ ϵ.

As an example of the TF-TSR task identification process, we consider the MNIST dataset in Fig-
ure 3. When an example from a class that does not exist within any known task is encountered,
it is added to TMB. When TMB is full, examples with the most frequent class labels are stored
while the rest are discarded. In this case, examples with Class 2 are the most common. The set of
all examples from the TMB with Class 2 is denoted as Dc. The class difference is then calculated
between Dc and a sample of examples from existing tasks in the validation set V . The existing task
T ′ with the lowest class difference is identified; in the example, this is task T3. A Hoeffding bound
test is performed on ℓM(Dc) and ℓM(DT ′), and if the inequality is false, Class 2 is added to task
T3, otherwise a new task T4 is created for Class 2 and stored in memory.

5 EXPERIMENTS

In our experiments, we aim to answer the following research questions. RQ1: How can we decrease
the number of training examples for a continual learning system? RQ2: How can we dynamically
detect task boundaries for a continual learning system?

Datasets. We use five benchmark datasets and two synthetic dataset generators for our experi-
ments. In the benchmark datasets, we use the MNIST dataset (Deng, 2012) of handwritten digits,
Fashion MNIST (Xiao et al., 2017), which contains images of articles of clothing, and CIFAR-
100 (Krizhevsky et al., 2009), COIL-100 (Nayar, 1996) and Mini-ImageNet (Vinyals et al., 2016)
containing coloured images of various objects and animals. We order these datasets to be task-
sequential; where tasks are presented in a non-overlapping series one after the other, with each task
only appearing once. Further descriptions of the datasets are provided in Appendix E.

In a realistic setting, task boundaries may overlap. To better simulate performance in real-world
environments, we create two synthetic dataset generators to simulate environments where tasks in-
tersect, each taking an existing image dataset as an input and producing a different ordering of
examples. The first generator selects a proportion p of examples from each task Ti and inserts the
chosen examples uniformly throughout every other task Tj , where i, j ∈ {1, . . . , |T|} and i ̸= j.
This generator is intended to simulate task noise. The second generator selects a proportion q of
examples from task Ti and interleaves the chosen examples with the initial examples in Ti+1, where
i ∈ {1, . . . , |T| − 1}. This generator is intended to simulate a gradual transition between distribu-
tions. In our experiments, both p and q range from 0.2 to 0.8.

Baselines. We compare our results with three task-based baseline models and two task-free baseline
models. Our task-based baselines include the regularization model Orthogonal Weights Modifica-
tion (OWM) (Zeng et al., 2019) and the replay models Continual Error Correction (CEC) (Cory
et al., 2021) and Experience Replay (ER) (Riemer et al., 2018). We also define TSR Random, which
replays the same number of examples as regular TSR but selects random time intervals to replay for
random tasks. We compare these baselines to TSR in a task-based environment. Our task-free base-
lines include Online Discrepancy Distance Learning (ODDL) (Ye & Bors, 2022), Gradient-based
Memory Editing (GMED) (Jin et al., 2021), Continual Learning by Modelling Intra-Class Varia-
tion (MOCA) (Yu et al., 2023) and Proxy-based Contrastive Replay (PCR) (Lin et al., 2023). We
compare these baselines to TF-TSR in a task-free setting.

Architectures and Training Details. We use OWM as the underlying regularisation architecture for
TSR and TF-TSR. Task identifiers are only provided for experiments on OWM, CEC and TSR. All
results are reported across 10 trials for one epoch, each with different seeds and random task order-
ing. Each replay-based baseline replays the same number of examples. We randomise the classes in
each task for datasets with more than one class per task for task-based experiments. Further details
on reproducibility and the hyperparameters for all experiments are provided in Appendix E.1.

Classification Accuracy (RQ1, RQ2). Table 1 presents the accuracy of OWM, CEC, TSR, TSR
Random and the task-free models TF-TSR, ODDL and GMED over our datasets. Accuracy refers
to the average classification accuracy over all tasks. There is no significant difference in accuracy
between TSR, TF-TSR and other baseline models for task-based and task-free learning, respectively.

6

Jack Julian

Jack Julian

Jack Julian

Jack Julian

Under review as a conference paper at ICLR 2024

Table 1: Accuracy comparison of task-based and task-free models on a range of benchmark datasets.

Methods MNIST Fashion MNIST CIFAR-100 COIL-100 Mini ImageNet

Task-Based

TSR (Ours) 88.23±2.43 73.54±2.96 6.89±1.05 8.23±1.11 3.52±0.67
OWM (Zeng et al., 2019) 80.50±1.92 71.02±2.02 6.09±0.49 7.22±0.67 3.19±0.44
ER (Riemer et al., 2018) 80.98±0.48 72.07±0.43 6.14±0.52 7.35±0.72 3.22±0.46
CEC (Cory et al., 2021) 90.45±1.05 74.55±1.88 7.39±0.50 9.05±0.62 3.62±0.35

TSR Random (Ours) 80.89±2.31 72.34±2.12 6.15±0.76 7.59±1.01 3.32±0.32

Task-Free

TF-TSR (Ours) 90.07±1.12 75.42±1.62 10.45±0.62 13.10±3.58 3.40±0.48
ODDL (Ye & Bors, 2022) 91.31±0.12 75.82±0.32 7.62±0.54 13.06±0.63 3.31±0.31

GMED (Jin et al., 2021) 88.92±1.40 74.85±0.81 10.21±1.43 13.42±1.51 3.65±1.31
MOCA (Yu et al., 2023) 90.58±1.52 76.01±1.86 10.97±1.46 13.51±1.72 3.86±0.58

PCR (Lin et al., 2023) 89.78±0.97 75.49±1.02 11.03±1.52 13.78±1.45 4.01±0.62

There is no statistically significant difference between our methods and baseline models.

0
25
50
75

100

2 4 6 8 10
Tasks Learned

A
cc

ur
ac

y
(%

)

MNIST Task 1

0
25
50
75

100

2 4 6 8 10 12
Tasks Learned

A
cc

ur
ac

y
(%

)

Fashion MNIST Task 1

0
25
50
75

100

10 20 30 40 50
Tasks Learned

A
cc

ur
ac

y
(%

)

CIFAR100 Task 1

0
25
50
75

100

10 20 30 40 50
Tasks Learned

A
cc

ur
ac

y
(%

)

COIL100 Task 1

0
25
50
75

100

1020304050
Tasks Learned

A
cc

ur
ac

y
(%

)

Models

TSR
CEC
OWM

Mini ImageNet Task 1

0
25
50
75

100

2 4 6 8
Tasks Learned

A
cc

ur
ac

y
(%

)

MNIST Task 3

0
25
50
75

100

2 4 6 8 10
Tasks Learned

A
cc

ur
ac

y
(%

)

Fashion MNIST Task 3

0
25
50
75

100

10 20 30 40
Tasks Learned

A
cc

ur
ac

y
(%

)

CIFAR100 Task 10

0
25
50
75

100

10 20 30 40
Tasks Learned

A
cc

ur
ac

y
(%

)

COIL100 Task 10

0
25
50
75

100

10 20 30 40
Tasks Learned

A
cc

ur
ac

y
(%

)

Mini ImageNet Task 10

0
25
50
75

100

1 2 3 4 5 6
Tasks Learned

A
cc

ur
ac

y
(%

)

MNIST Task 5

0
25
50
75

100

2 4 6 8
Tasks Learned

A
cc

ur
ac

y
(%

)

Fashion MNIST Task 5

0
25
50
75

100

5 10 15 20 25 30 35
Tasks Learned

A
cc

ur
ac

y
(%

)

CIFAR100 Task 20

0
25
50
75

100

5 10 15 20 25 30 35
Tasks Learned

A
cc

ur
ac

y
(%

)

COIL100 Task 20

0
25
50
75

100

5 10 15 20 25 30 35
Tasks Learned

A
cc

ur
ac

y
(%

)

Mini ImageNet Task 20

Figure 4: Classification accuracy over a selection of tasks for each model over benchmark datasets.

Table 2: Average number of replayed examples.

Dataset CEC TSR TF-TSR

MNIST 77.26±23.22 5.54±0.65 4.21±0.52
Fashion MNIST 81.67±58.70 7.12±0.29 5.83±0.24
CIFAR-100 225.91±28.54 29.64±1.68 24.18±2.84
COIL-100 255.91±25.97 31.08±1.67 35.81±2.16
Mini ImageNet 329.07±74.39 172.61±10.53 204.43±15.82

Task-Specific Accuracy and Replayed Ex-
amples. We analyse how the models per-
form over individual tasks during one epoch
of model training. As new tasks are intro-
duced, we expect the performance of previ-
ous tasks to decrease due to forgetting. Fig-
ure 4 compares CEC and TSR accuracy as
tasks from benchmark datasets are learned.
TSR follows similar forgetting trends to
current replay baselines throughout training. Table 2 shows the number of replayed examples across
benchmark datasets as the CEC, TSR, and TF-TSR models train. TSR and TF-TSR replay less than
current replay baselines.

Table 3: Average APR (×10−2) across all tasks on
benchmark datasets.

Dataset CEC TSR Random TSR TF-TSR

MNIST 0.5±0.2 0.01±0.1 2.1±0.2 2.2±0.4
Fashion MNIST 0.7±0.1 0.3±0.1 1.6±0.2 2.1±0.3
CIFAR-100 0.3±0.1 0.1±0.2 0.6±0.1 0.8±0.1
COIL-100 0.5±0.1 0.1±0.1 1.1±0.2 1.2±0.1
Mini ImageNet 0.1±0.1 0.0±0.1 0.3±0.1 0.4±0.1

Accuracy Per Replay. Here, we define a
metric to formalize the relationship between
accuracy and replay. Existing research
tends to compare replay-based models by
model accuracy alone, however, model ac-
curacy fails to highlight the role that each
replayed example plays in improving over-
all accuracy. We propose a new metric, Ac-
curacy per Replay (APR), which uses the
average accuracy improvement from each
replayed example in a task to measure the
overall effectiveness of replay on that task.

CEC, TSR and TF-TSR models use the replay mechanisms from OWM as a base model. If a model
does not replay, it performs identically to OWM if trained under the same conditions. Moreover,

7

Jack Julian

Under review as a conference paper at ICLR 2024

90.0

92.5

95.0

97.5

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

MNIST

76

80

84

88

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

Fashion MNIST

10

12

14

16

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

CIFAR−100

0
10
20
30
40
50

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

COIL−100

3

4

5

6

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

Bmax

50
100
150
200

Mini ImageNet

90
92
94
96

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

MNIST

76

80

84

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

Fashion MNIST

10

12

14

16

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

CIFAR−100

10
20
30
40
50

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

COIL−100

3
4
5
6

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

Rmax

10
20
30
40

Mini ImageNet

89
90
91
92
93

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

MNIST

74
75
76
77
78

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

Fashion MNIST

9

10

11

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

CIFAR−100

0

10

20

30

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

COIL−100

2.5
3.0
3.5
4.0
4.5

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

Bmax

50
100
150
200

Mini ImageNet

89
90
91
92
93

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

MNIST

74
75
76
77

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

Fashion MNIST

9.5
10.0
10.5
11.0
11.5
12.0

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)
CIFAR−100

10

20

30

40

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

COIL−100

3.0
3.5
4.0
4.5

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

Rmax

10
20
30
40

Mini ImageNet

Figure 5: Accuracy comparison of TF-TSR on synthetic image datasets with p and q ranging from
0.0 to 0.8 with varied Bmax andRmax. Each row varies a single hyperparameter.

any increased accuracy observed over the lifespan of CEC, TSR or TF-TSR compared to OWM is
due to the replayed data introduced to the training data.

Equation 3 defines APR for task T in modelM (APRT
M), where accTM is the classification accuracy

of a model M with replay over task T , accTM′ is the classification accuracy of the same model
without replay, M′, over task T , and RT

M is the number of examples from T replayed byM. In
our case,M is CEC, TSR, TF-TSR or TSR Random, andM′ is OWM. The constant γ is a small
positive for Laplace correction. Here, we set γ = 0.001.

APRT
M =

accTM − accTM′

RT
M + γ

(3)

Table 3 shows the average APRT
M over all tasks. OWM isM′ for every model, andM is CEC,

TSR, TF-TSR or TSR Random. We observe that TSR produces a higher average APRT
TSR than

APRT
CEC, indicating that replayed examples after a forgetting event is detected have increased in-

fluence on model accuracy. On average, APRT
TFTSR is highest. This implies that drift detection for

forgetting performs more accurately over classes with a similar class difference.

Sensitivity Tests (RQ2). We conduct sensitivity tests for two key hyperparameters in TF-TSR: the
size of the replay batch Rmax, and the maximum size of the TMB Bmax. By varying these hyper-
parameters and observing the corresponding effects on the model’s accuracy, we aim to investigate
their influence and identify the optimal configurations. Figure 5 provides the accuracy of TF-TSR
on synthetic datasets for a range of p and q when Bmax and Rmax are varied. Further sensitivity
experiments are provided in Appendix E.4.

Computational Performance (RQ1). We present the time requirements of TF-TSR and TSR com-
pared to CEC and OWM. The advantage of TSR is that it replays fewer examples than standard
replay methods; thus, we expect that this reduces training time. Table 4 shows the time to train
each model on benchmark datasets. Timings are averaged over all trials in an identical environment.
OWM does not replay any examples and thus has the lowest training time. TSR’s training time is
lower than CEC, with a statistically significant difference over larger datasets such as CIFAR-100,
COIL-100 and Mini ImageNet. TF-TSR is more computationally expensive than TSR as it must
recognize new tasks; however, TF-TSR is between 48% to 58% faster than benchmark task-free
learning methods on large image datasets.

8

Under review as a conference paper at ICLR 2024

Table 4: Average training time in seconds on the benchmark image datasets.

Methods MNIST Fashion MNIST CIFAR-100 COIL-100 Mini ImageNet

Task-Based

TSR (Ours) 6.12±1.57 6.74±1.23 43.49±5.58 30.72±6.09 89.07±18.40
OWM (Zeng et al., 2019)* 2.81±0.89 2.84±0.93 14.40±0.93 14.34±0.95 28.61±1.38

ER (Riemer et al., 2018) 7.42±1.01 8.22±1.13 52.32±3.51 39.92±3.12 104.23±7.63
CEC (Cory et al., 2021) 7.65±1.12 8.43±1.23 56.54±4.65 43.01±4.12 118.76±9.80

Task-Free

TF-TSR (Ours) 11.25±1.57 12.70±0.93 126.66±38.00 131.36±36.62 199.63±47.11
ODDL (Ye & Bors, 2022) 14.63±1.05 16.38±0.78 506.64±9.50 442.26±10.46 972.15±18.84

GMED (Jin et al., 2021) 10.22±1.30 14.04±0.72 241.32±12.67 252.36±12.21 481.08±23.55
MOCA (Yu et al., 2023) 30.31±1.19 32.95±2.28 512.71±26.35 489.12±24.67 1078.18±63.19

PCR (Lin et al., 2023) 20.63±1.36 23.49±2.76 462.63±21.46 398.82±34.18 786.51±68.37

* OWM does not replay and is the baseline model for CEC and TSR.

Ablation Experiments (RQ1, RQ2). We conduct ablation experiments to assess the significance
of removing the replay and task recognition components from TF-TSR. Table 5 shows results for
two ablation experiments on TF-TSR over synthetic image datasets. The first experiment, replay
ablation, removes TF-TSR’s ability to revisit past data by eliminating the memory replay mechanism
while maintaining the task recognition module. The model is trained on a sequence of tasks without
the ability to re-experience previously encountered data. In the second experiment, task ablation, we
remove TF-TSR’s task recognition module and maintain the replay module. Instead, each new class
encountered is assigned an individual task.

Table 5: Accuracy of TF-TSR ablation studies on synthetic datasets.

Ablation Method Dataset
p

0 0.2 0.4 0.6 0.8

Replay Ablation

MNIST 89.83±1.29 91.79±1.13 93.68±1.20 95.15±1.12 96.77±0.71
Fashion MNIST 75.10±1.57 75.52±2.79 78.76±2.49 81.39±2.39 85.29±1.77

CIFAR-100 8.29±0.80 12.38±0.57 13.94±0.41 14.89±0.49 15.50±0.44
COIL-100 8.83±4.63 8.74±4.02 17.43±4.69 34.67±5.72 50.19±2.16

Mini ImageNet 2.57±0.32 3.71±0.36 4.57±0.32 5.48±0.32 6.17±0.32

Task Ablation

MNIST 89.89±1.21 91.94±1.07 93.66±1.21 95.16±1.15 96.73±0.75
Fashion MNIST 74.97±1.80 75.59±2.74 76.77±2.49 81.48±2.36 85.22±1.77

CIFAR-100 9.12±0.80 10.35±0.56 12.26±0.58 14.82±0.53 15.52±0.48
COIL-100 7.33±3.67 10.98±3.84 18.19±4.73 36.47±3.69 50.92±2.28

Mini ImageNet 2.65±0.31 3.73±0.27 4.58±0.32 5.49±0.23 6.22±0.27

Ablation Method Dataset
q

0 0.2 0.4 0.6 0.8

Replay Ablation

MNIST 89.83±1.29 91.24±0.84 91.35±0.75 91.67±0.85 91.82±1.29
Fashion MNIST 75.10±1.57 75.62±1.44 75.30±1.47 74.92±1.49 75.28±2.01

CIFAR-100 8.29±0.80 10.68±0.61 11.45±0.52 11.46±0.48 11.42±0.39
COIL-100 8.83±4.63 6.99±3.43 10.71±4.49 12.17±4.47 28.24±5.04

Mini ImageNet 2.57±0.32 2.98±0.33 3.26±0.31 3.39±0.24 3.58±0.23

Task Ablation

MNIST 89.89±1.21 91.30±0.79 91.33±0.74 91.64±0.89 91.79±1.21
Fashion MNIST 74.97±1.80 75.60±1.38 75.23±1.36 74.81±1.54 75.16±2.09

CIFAR-100 9.12±0.80 10.80±0.67 11.47±0.56 11.42±0.48 11.29±0.46
COIL-100 7.33±3.67 7.22±3.84 11.63±4.86 13.16±4.90 27.95±5.61

Mini ImageNet 2.65±0.31 2.99±0.30 3.38±0.32 4.31±0.35 4.82±0.37

6 CONCLUSION

We proposed a selective time-based replay approach that increases the effectiveness of each re-
played example and thereby decreases the computational cost of a replay model. We further posit
that the need for task information for replay methods can be avoided by dynamic task recognition
during training. We developed the Time Sensitive Replay (TSR) method, which improves training
time requirements by implementing replay only when forgetting is detected on previously learned
tasks. Beyond that, we extended the TSR method to Task-Free Time-Sensitive Replay (TF-TSR),
which eliminates the need for explicit task information. We demonstrated that our models decrease
the number of training replay examples, thereby decreasing training time while achieving similar
accuracy compared to current state-of-the-art task-free replay methods.

9

Jack Julian

Under review as a conference paper at ICLR 2024

7 ETHIC STATEMENT

No human subjects were involved during the research and development of this work. Our experi-
ments were conducted on publicly available benchmark datasets in a controlled environment. Thus,
our work has minimal ethical concerns.

8 REPRODUCIBILITY STATEMENT

We conduct all experiments ten times with randomized task order to avoid bias to a particular dataset
ordering and ten times for each task order to avoid bias due to a random seed. Each experiment is,
therefore, performed one hundred times. Our results report the mean and standard deviation values
to avoid bias from dataset ordering and random seeds. In Appendix E.1, we provide the full details
of our experimental settings.

REFERENCES

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, volume 32,
2019.

Benedikt Bagus and Alexander Gepperth. An investigation of replay-based approaches for continual
learning. In International Joint Conference on Neural Networks, pp. 1–9. IEEE, 2021.

Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive windowing. In
Society for Industrial and Applied Mathematics International Conference on Data Mining, pp.
443–448, 2007.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. International
Conference on Learning Representations, 2022.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1–207, 2018.

Callum Cory, Diana Benavides-Prado, and Yun Sing Koh. Continual correction of errors using smart
memory replay. In International Joint Conference on Neural Networks. IEEE, 2021.

Matthias De Lange, Gido van de Ven, and Tinne Tuytelaars. Continual evaluation for lifelong
learning: Identifying the stability gap. International Conference on Learning Representations,
2023.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift detection. In
Brazilian Symposium on Artificial Intelligence, pp. 286–295. Springer, 2004.

Xisen Jin, Arka Sadhu, Junyi Du, and Xiang Ren. Gradient-based editing of memory examples
for online task-free continual learning. In Advances in Neural Information Processing Systems,
volume 34, pp. 29193–29205, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017.

Marcus Klasson, Hedvig Kjellström, and Cheng Zhang. Learn the time to learn: Replay scheduling
in continual learning. arXiv preprint arXiv:2209.08660, 2022.

Lukasz Korycki and Bartosz Krawczyk. Class-incremental experience replay for continual learning
under concept drift. In Conference on Computer Vision and Pattern Recognition, pp. 3649–3658,
2021.

10

Under review as a conference paper at ICLR 2024

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009. URL https://www.cs.toronto.edu/˜kriz/cifar.html.

Kai A Krueger and Peter Dayan. Flexible shaping: How learning in small steps helps. Cognition,
110(3):380–394, 2009.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. In International Conference on Learning Representations,
2020.

Huiwei Lin, Baoquan Zhang, Shanshan Feng, Xutao Li, and Yunming Ye. Pcr: Proxy-based con-
trastive replay for online class-incremental continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

S Nayar. Columbia object image library (COIL100), 1996. URL http://www1.cs.
columbia.edu/CAVE/software/softlib/coil-100.php.

Christoph Raab, Moritz Heusinger, and Frank-Michael Schleif. Reactive soft prototype computing
for concept drift streams. Neurocomputing, 416:340–351, 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2016.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. arXiv preprint arXiv:1810.11910, 2018.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In Advances in Neural Information Processing Systems, volume 32,
2019.

Gido M van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual
learning with artificial neural networks. Nature communications, 11(1):1–14, 2020.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, volume 29, 2016.

Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing Hong, Shifeng
Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression for continual
learning. International Conference on Learning Representations, 2022a.

Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, and Xing Xie. A reinforcement learning
framework for explainable recommendation. In IEEE International Conference on Data Mining,
pp. 587–596. IEEE, 2018.

Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan, and Mingchen Gao. Improving task-
free continual learning by distributionally robust memory evolution. In International Conference
on Machine Learning, pp. 22985–22998. Proceedings of Machine Learning Research, 2022b.

Zifeng Wang, Tong Jian, Kaushik Chowdhury, Yanzhi Wang, Jennifer Dy, and Stratis Ioannidis.
Learn-prune-share for lifelong learning. In 2020 IEEE International Conference on Data Mining
(ICDM), pp. 641–650. IEEE, 2020.

Wernsen Wong, Yun Sing Koh, and Gillian Dobbie. Using flexible memories to reduce catastrophic
forgetting. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 219–230.
Springer, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Fei Ye and Adrian G Bors. Task-Free continual learning via online discrepancy distance learning.
In Advances in Neural Information Processing Systems, 2022.

Longhui Yu, Tianyang Hu, Lanqing Hong, Zhen Liu, Adrian Weller, and Weiyang Liu. Continual
learning by modeling intra-class variation. Transactions on Machine Learning Research, 2023.

11

https://www.cs.toronto.edu/~kriz/cifar.html
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Under review as a conference paper at ICLR 2024

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019.

Daochen Zha, Kwei-Herng Lai, Mingyang Wan, and Xia Hu. Meta-aad: Active anomaly detection
with deep reinforcement learning. In IEEE International Conference on Data Mining, pp. 771–
780. IEEE, 2020.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

In this appendix, we provide the pseudocode implementation of the TSR and TF-TSR algorithms,
we present an analysis of the theoretical complexity of the TSR and TF-TSR models, we discuss
the use of drift detectors in TSR and describe a range of different drift detection methods, we give
a detailed description of the datasets and hyperparameters adopted in our experiments, and finally
provide additional experimental results. In particular, we provide additional results of sensitivity
tests and comparisons between drift detectors, which validate our motivation and contribution.

B PSEUDOCODE FOR TSR AND TF-TSR

We present the pseudocode for the TSR and TF-TSR methods described in Sections 4.1 and 4.2
respectively. Algorithm 1 provides an overview of the TSR process and assumes a task-based en-
vironment. We leave the drift detection method DTi arbitrary in this pseudocode as drift detection
methods are not the focus of this work, however unless otherwise stated, KSWIN is used in our
experiments. For simplicity, we use ℓM(V) to denote the set of model loss values corresponding to
a set of examples V .

Algorithm 1 Time-Sensitive Replay (TSR)
Input: S - Training dataset, m - Window for moving average, VT - Validation set for task T , α -
Batch Size, n - Validation batch size,Rmax - Maximum replayed examples per batch.
Output: ModelM trained on all tasks

Initialize ModelM
T ∼ S ▷ Set of tasks split from the dataset
for Ti ∈ T do
RTi
← ∅

DTi
← DriftDetector()

BTi

α∼ Ti ▷ Sample a batch of data with size α from Ti

for Batch B ∈ BTi
do

for Tv ∈ {T1, . . . , Ti−1} do
V n∼ VTv ▷ Sample a batch of size n from VTv

{lTv
i }ni=1 ← ℓM(V) ▷ Model prediction
{aTv

i }
n−m+1
i=1 ← avg({lTi }ni=1)

if DTv
({aTv

i }
n−m+1
i=1) then ▷ Drift detected

B ← B ∪RTv

end if
end for
TrainM on B with regularization

end for
for VT ∈ {VT1

, . . . ,VTi
} do

R(all)
T ← Misclassified examples from VT
RT

Rmax∼ R(all)
T

end for
end for

Algorithm 2 provides an overview of the TF-TSR method. The primary difference to TSR is the need
to recognize tasks dynamically as examples arrive, and the replay buffer R is populated according
to known tasks. For simplicity, we use the function TSR(T,R) to denote the model training and
replay process with detected tasks T and the current replay bufferR.

In Section E.1, we provide a link to the implementation of Algorithms 1 and 2 in Python 3 and
TensorFlow, accompanied by example commands with preset hyperparameters. Instructions for
running the code are included in the repository as well as a list of dependencies.

13

Under review as a conference paper at ICLR 2024

Algorithm 2 Task-Free Time-Sensitive Replay (TF-TSR)
Input: S - Training dataset, Bmax - Maximum capacity for TMB, δ - Task creation sensitivity.
Output: ModelM trained on all tasks

T← ∅
B ← ∅ ▷ Task Memory Buffer.
R ← ∅ ▷ Replay Buffer.
for (x, y) ∈ S do

if y /∈ T then
B ← B ∪ (x, y)

else
for (xi, yi) ∈ R do ▷ Remove oldest example with label y.

if y == yi then
xold ← xi

break
end if

end for
R← R \ (xold, y)
R← R ∪ {(x, y)}

end if
if |B| ≥ Bmax then ▷ Add y to existing task.

Dc ← {(xi, yi) ∈ B : yi = argmax
yj

|{(xj , yj) ∈ B}|}

for T ∈ T do
DT ← {(xi, yi) : (xi, yi) ∈ R, yi ∈ T}

end for
T ′ ← argmin

T∈T
(∆F(Dc,DT))

d← ln(2|Dc|/δ)
ϵ←

√
|Dc| · σ2

ℓM
d+ (4d)/(3|Dc|)

if
∣∣∣ℓM(Dc)− ℓM(DT ′)

∣∣∣ ≥ ϵ then
T← T ∪ {y} ▷ Add new task.

else
T← T \ T ′ ▷ Add y to existing task.
T← T ∪ {T ′ ∪ y}

end if
end if
TSR(T,R) ▷ Perform TSR on T ∈ T.

end for

C THEORETICAL COMPLEXITY

This section discusses the computational complexity of the TSR and TF-TSR methods.

Replay Complexity. The computational complexity of TSR is dependent on the number of replayed
examples. In the best case, forgetting is not detected on any task, and TSR does not replay. In
this case, the number of additional training examples E is 0, and the computational complexity is
identical to the base model. We use OWM (Zeng et al., 2019) as the base model in our experiments.
OWM has complexity O(NnN

2
w), where Nn is the total number of neurons and Nw is the number

of input weights per neuron. In the worst case, a replay is performed on every previous task in every
batch. This is similar to the estimation used by Cory et al. (2021) as the same policy of selecting
misclassified examples from previous tasks is used. We assume that 0 < x̄i < 1 and predict
E according to Equation 4, where x̄i is the expected mean accuracy over task number i, vi is the
number of validation examples for task number i, and Fi is the expected number of forgetting events
detected on task number i over the lifespan of the model. TF-TSR has additional computational costs
from the process of task boundary identification. The computational cost of determining which task
a new class is added to is O(2|Dc||T |).

E =

|T |∑
i=1

Fi · (|T | − i)(1− x̄i)vi. (4)

14

Under review as a conference paper at ICLR 2024

We use Equation 4 to inform a validation set size Vmax. In task-based settings, we acquire V by
splitting the training dataset, so any increase in the size of V decreases the size of the training set.

We compare Equation 4 with the expected number of additional training samples for a full replay
model, ER which is given in Equation 5, where B is the number of trained batches.

ER =

|T |∑
i=1

|Ti|
α

(|T | − i)(1− x̄i)vi. (5)

TSR is more computationally efficient compared to baseline replay models when ER − E is large.
This will be true when Fi << |Ti|

α .

Validation Complexity. More validation examples are tested when TSR has trained on more tasks,
so the computational cost of the method increases with the number of trained tasks. With the size of
each task used for training |Ti| and the batch size α, the total number of validation examples tested
after x tasks is VTest = n

∑x
i=1

i|Ti|
α .

To constrain computational costs as the number of tasks increases, we set a hyperparameter n as the
sample size for V tested after each batch. We demonstrate in our experiments that TSR is effective
even with a low n. We therefore need to perform VTest forward-passes over our neural network.
For simplicity, we assume that a simple artificial neural network with dim(x) inputs, |Y | outputs,
and H hidden layers with hi neurons on layer i. We provide the complexity of validation tests in
Equation 6.

Θ

(
VTest

(
dim(x)h1 + hH |Y |+

H−1∑
i=1

hihi+1

))
(6)

D DISCUSSIONS ON DRIFT DETECTORS

This section describes the motivation for using drift detectors on output model logits to detect for-
getting and compares two different drift detector candidates for the TSR method. Particularly, we
compare the Drift Detection Method (DDM) and Kolmogorov-Smirnov Windowing (KSWIN) and
justify our decision in Section 4.1 to use KSWIN in our experiments.

Figure 6 shows the logit score and confidence of a single classifier in the MNIST dataset trained on
OWM (Zeng et al., 2019) as that task experiences forgetting. Logits change more immediately in
response to a forgetting event, so we monitor logits for drift during training.

0 10 20 30 40 50

1
2

3
4

5
6

7

Examples

Lo
gi

t

(a) An exert of logit val-
ues for an MNIST task in
OWM.

0 10 20 30 40 50

0.
7

0.
8

0.
9

1.
0

Examples

C
on

fid
en

ce

(b) An exert of confidence
values for an MNIST task in
OWM.

0 10 20 30 40 50

1
2

3
4

5
6

7

Examples

Lo
gi

t

(c) Logit values from (a)
with a line representing the
point at which DDM detects
a change in distribution.

Figure 6: Logit and confidence values for a stream of examples during training on a single MNIST
task. Examples within the red region were misclassified by the model.

D.1 DRIFT DETECTION METHOD

Drift Detection Method (DDM) (Gama et al., 2004) is a method of drift detection based on Probably
Approximately Correct (PAC) learning that for a stationary data distribution, the model’s error rate
decreases as the number of analysed examples increase. For a replay model, we expect that error
will decrease as the model trains on more data. After the model trains on a new example, DDM
calculates whether the error rate exceeds a given threshold.

15

Jack Julian

Under review as a conference paper at ICLR 2024

pt + st ≤ pmin + λsmin (7)

If the inequality in Equation 7 is true, where λ is the hyperparameter defining sensitivity, pt and
st are the error rate and standard deviation respectively at the current instant of time t and pmin

and smin are the minimum error rate and the minimum standard deviation, DDM will return that a
change has been detected. We apply DDM to a section of logits produced by a model training on
the MNIST dataset as a task experiences a forgetting event. For this example, we set λ = 3.0.

Figure 6 shows that DDM is successful in quickly identifying a decrease in logit values in this task.
As DDM was designed for multi-class imbalanced data streams with different drift types, which is
the scenario in a task-based continual learning setting, DDM is an appropriate candidate for TSR.

D.2 KOLMOGOROV-SMIRNOV WINDOWING

Kolmogorov-Smirnov Windowing (KSWIN) (Raab et al., 2020) is a concept drift detection method
predicated upon the Kolmogorov-Smirnov (KS) test. This test is capable of identifying changes
in data or performance distributions without any underlying assumptions regarding their specific
distribution. It is therefore a valid candidate to detect drift in a stream of logit predictions.

KSWIN maintains a sliding window Φ of size n, where the most recent r examples of Φ are assumed
to represent the most recent concept, R. From the first n− r examples of Φ, r examples are selected
uniformly, thereby approximating the previous window, W .

The KS-test is conducted on the windows R and W , which are of the same size. This test compares
the distance between the empirical cumulative data distribution dist(R,W).

dist(R,W) >

√
− ln(α)

r
(8)

KSWIN detects drift if Equation 8 is true, where α is the probability for the test statistic of the
KS-test.

E EXPERIMENTAL SETUP AND RESULTS

In this section, we first outline steps to reproduce our experiments in Section 5 and provide a link
to a code repository implementing TF-TSR. We then describe the benchmark image datasets used
in our experiments and their preprocessing steps. We also show TSR results when different drift
detectors are used, as well as when parameters specific to TSR are varied. Finally, we present
complete results for TF-TSR sensitivity experiments expanding on the content in Section 5. We use
parameters identical to those used for experiments in the core material.

E.1 REPRODUCABILITY

We perform 10 trials for each experiment, composing tasks of random classifiers and randomizing
the task ordering for each trial. This ordering is determined before each trial so that each model is
trained on the same number of examples from the same tasks. Each trial for each method is also
trained on identical examples. Each trial is repeated 10 times with random examples. Training and
testing sets are randomized between examples. This results in 100 experiments for each set of exper-
iments. The training and testing set sizes are shown in Appendix 6. All experiments are performed
on one NVIDIA Tesla V100 GPU. Our code is available at https://anonymous.4open.
science/r/Task-Free-Time-Sensitive-Replay-6F3D/README.md. A continual
learning system’s results are susceptible to the ordering of tasks, as previous research has indicated
that the shaping of data can influence how such models perform (Krueger & Dayan, 2009). We,
therefore, vary the ordering and composition of tasks for our experiments. For MNIST and Fashion
MNIST, each task contains only one class. For CIFAR-100, COIL-100, and Mini-ImageNet, each
task contains two classes.

16

https://anonymous.4open.science/r/Task-Free-Time-Sensitive-Replay-6F3D/README.md
https://anonymous.4open.science/r/Task-Free-Time-Sensitive-Replay-6F3D/README.md

Under review as a conference paper at ICLR 2024

E.1.1 HYPERPARAMETERS

Table 6 outlines the hyperparameters we selected for our experiment. The hyperparameters δOWM

and λ are directly associated with the original OWM method (Zeng et al., 2019), whereas the hy-
perparameter κ corresponds to the model learning rate. Values for κ were acquired through a grid
search. The batch sizes α and number of layers are similar to settings from CEC (Cory et al., 2021).
Hyperparameter αD is the error threshold of the drift detection method used in TSR and is not ap-
plicable to models that do not utilize TSR. We set αD = 0.01 for all experiments. As we have
employed KSWIN in our experiments, the value of αD is not recommended for other drift detectors.
The parameters for TSR are n = 50 and m = 2 for all experiments. The parameters for TF-TSR are
δ = 0.8,Rmax = 20, Bmax = 50 and Vmax = 50 unless otherwise stated.

Table 6: Hyperparameters used during experimentation.

Dataset δOWM λ (10−3) κ α Layers

MNIST 0.6 1.00 0.001 40 3
Fashion MNIST 0.6 1.00 0.020 40 3
CIFAR-100 1.0 0.01 0.020 64 2
COIL-100 1.0 0.01 0.020 64 2
Mini ImageNet 1.0 0.01 0.020 64 2

Models are trained over one epoch to mirror realistic continual learning environments where exam-
ples are rarely repeated in the data stream. Table 7 shows the training and testing set sizes.

Table 7: Dataset splits used during experimentation.

Dataset Train Size Val Size* Test Size Tasks

MNIST 55000 5000 10000 10
Fashion MNIST 55000 5000 10000 10
CIFAR-100 55000 5000 10000 50
COIL-100 5500 500 1200 50
Mini ImageNet 45000 5000 10000 50

* Only set for task-based models.

E.1.2 DATASETS

MNIST. The MNIST dataset (Deng, 2012) consists of 60, 000 training images and 10, 000 test
images of 28x28 pixel greyscale images of handwritten digits 0-9. Our validation set is a random
sample of 10% of the training images, resulting in 55, 000 training instances and 5000 validation
instances. Each set is composed of ten individual classes which we do not split further into tasks.
For our training set, in order to simulate a stream of data under continual learning conditions, we
randomly select 5% of training images to produce approximately 250 images for each of the ten
classes in each sample. For our validation set, we have 5000 examples and 500 images for each
task. Our test set of size 10, 000 contains approximately 1000 instances of each of the 10 classes
and is used to evaluate model accuracy.

Fashion MNIST. The Fashion MNIST dataset (Xiao et al., 2017) is similar to the MNIST dataset,
only it consists of 28x28 grayscale images of various articles of clothing. A series of 10 classes map
each image to a type of clothing such as dress, bag, coat or ankle boot. Fashion MNIST shares the
same dataset size and the same training and testing splits as the original MNIST, and therefore we
use the same validation split.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60, 000 32x32 colour
images and 100 classes representing an animal or mode of transportation. There are 600 images
per class. The training set consists of 50, 000 images with 500 images per class, and the testing set
consists of 10, 000 images with 100 images per class. Since the size of the dataset is identical to
MNIST, we use the same split for our validation set. The validation set contains 5000 images with 50
images per class. Each image is photo-realistic containing only one class to which it is relevant. The
object in the image may be seen from a variety of viewpoints and may be partially obstructed. The
CIFAR-100 dataset is a more complex dataset with more classes than the MNIST datasets, and so is
a further challenge for TSR. As CIFAR-100 contains 100 classes, each task contains two individual
classes. This results in 50 tasks where each set of two classes is randomly selected for each sample.

17

Under review as a conference paper at ICLR 2024

COIL-100. The COIL-100 (Nayar, 1996) dataset contains 7200 128x128 images of 100 classes
each representing a household object. There are 72 images per object each posed at a different angle.
Our training set consists of 60 examples for each class resulting in a training set of size 6000 and a
test set of size 1200. The validation set is split from the training set with the size of 500.

Mini ImageNet. The Mini ImageNet dataset Ravi & Larochelle (2016) contains 60000 coloured
images scaled to 64x64 evenly spread over 100 classes. Classes consist of everyday items, vehicles
and animals. Our training set consists of 50000 images and our test set consists of 10000 images.
Each class in our training set has 500 corresponding examples. The validation set is split from the
training set with a size of 5000.

Synthetic Datasets. We alter the ordering of examples in the above datasets to create synthetic
datasets. Our synthetic datasets contain a different distribution of tasks and ensure that task bound-
aries are not distinct, thereby testing the task identification mechanism and the forgetting detection
mechanism in realistic scenarios.

Distribution 1. The first generator simulates noise throughout all tasks. First, tasks are ordered
sequentially as described in previous datasets. A proportion p of examples from each task Ti is
selected, extracted from the dataset, and randomly inserted into all other tasks Tj , where i ̸= j. This
generator challenges the replay and task recognition mechanisms as examples belonging to any task
may be encountered at any time during training.

Distribution 2. The second generator creates a gradual shift between distributions, where previously
tasks would abruptly change during training. First, tasks are ordered sequentially as before. Then,
for each task Ti, a proportion q of examples are randomly selected and extracted from the dataset.
These examples are then interleaved with examples form task Ti+1 until the extracted examples are
exhausted. This generator tests whether the task recognition and replay mechanisms are able to
gradually adapt to changing distributions.

E.2 DDM VS KSWIN

Table 8 compares the average classification accuracy of TSR with DDM and KSWIN as drift detec-
tors over benchmark image datasets. When KSWIN is used, the classification accuracy is higher on
average than DDM. When DDM is used, there is a very high variance, suggesting that DDM relies
heavily on the ordering of tasks or examples to reliably detect concept drift in a stream of logits. We
therefore use KSWIN for all other experiments.

Table 8: Comparison of mean classification accuracy over benchmark image datasets when DDM
and KSWIN are used as drift detectors for TSR.

Drift Detector MNIST Fashion MNIST CIFAR-100 COIL-100

DDM 88.07 (3.02) 73.45 (12.96) 6.47 (11.18) 8.11 (10.81)
KSWIN 88.23 (2.43) 73.54 (2.96) 6.89 (1.05) 8.23 (1.11)

E.3 TSR SENSITIVITY

In this section, we perform sensitivity tests on TSR by varying two TSR hyperparameters,Rmax and
n. Replay per batch, denoted Rmax, is a hyperparameter in TSR defining the number of replayed
examples that should be introduced to the next batch if drift is detected on a task. For instance, if a
batch of size B is the next training batch and drift on a previous task is detected, the new batch size
is B+Rmax. Table 9 shows the average classification accuracy of TSR on benchmark datasets with
varied RB . Table 10 shows the average training time for TSR with variedRmax.

Table 9: Average accuracy for TSR with variedRmax on a range of benchmark image datasets.

Dataset 10 20 30 40

MNIST 88.01 (2.23) 88.23 (2.43) 88.34 (2.13) 88.52 (2.71)
Fashion MNIST 73.05 (2.91) 73.54 (2.96) 73.99 (2.82) 74.03 (2.63)
CIFAR-100 6.86 (1.12) 6.89 (1.05) 6.84 (1.16) 6.82 (1.25)
COIL-100 8.22 (1.01) 8.23 (1.11) 8.25 (1.15) 8.18 (1.13)

18

Jack Julian

Under review as a conference paper at ICLR 2024

Table 10: Average training time in seconds for TSR with varied Rmax on a range of benchmark
image datasets.

Dataset 10 20 30 40

MNIST 5.41 (1.98) 6.12 (1.57) 6.67 (1.31) 6.89 (1.63)
Fashion MNIST 6.55 (1.55) 6.74 (1.23) 7.14 (1.18) 7.53 (1.17)
CIFAR-100 40.76 (5.42) 43.49 (5.58) 48.12 (5.45) 50.98 (5.71)
COIL-100 29.34 (6.36) 30.72 (6.09) 31.95 (6.53) 33.01 (6.48)

Table 11 shows the average classification accuracy of TSR as it changes with varied validation batch
size n. There is not a statistically significant difference in mean accuracy between n = 50 and
n = 200 over any dataset. Table 12 shows the mean training time for TSR for varied n.

Table 11: Average accuracy for TSR with varied n on a range of benchmark image datasets.

Dataset 50 100 150 200

MNIST 88.23 (2.43) 88.52 (2.79) 88.64 (2.59) 88.62 (2.48)
Fashion MNIST 73.54 (2.96) 73.08 (2.25) 73.06 (2.51) 73.89 (2.43)
CIFAR-100 6.89 (1.05) 6.81 (1.55) 6.99 (1.23) 7.01 (1.71)
COIL-100 8.23 (1.11) 8.29 (1.67) 8.32 (1.72) 8.33 (1.62)

E.4 TF-TSR SENSITIVITY

In this section, we present the sensitivity of TF-TSR to its hyperparameters in terms of accuracy
and the number of recognized tasks. First, Table 13 shows the number of recognised tasks as task
creation sensitivity δ is varied between 0.2 and 0.8 on benchmark image datasets. We observe that
the number of tasks increases with δ.

Second, we conduct sensitivity tests for two key hyperparameters in TF-TSR: the maximum size
of the validation set Vmax, and the task creation sensitivity δ. By varying these hyperparameters
and observing the corresponding effects on the model’s performance, we aim to investigate their
influence and identify the optimal configurations. Figure 7 provides the accuracy of TF-TSR on
synthetic datasets for a range of p and q when Vmax and δ are varied.

Table 12: Average training time in seconds for TSR with varied n on a range of benchmark image
datasets.

Dataset 50 100 150 200

MNIST 6.12 (1.57) 6.64 (1.62) 6.77 (1.36) 6.89 (1.62)
Fashion MNIST 6.74 (1.23) 7.22 (1.39) 7.44 (1.23) 7.53 (1.22)
CIFAR-100 43.49 (5.58) 50.64 (5.44) 55.12 (5.54) 60.98 (5.21)
COIL-100 30.72 (6.09) 42.08 (6.87) 48.45 (6.21) 55.01 (6.37)

Table 13: Average number of recognized tasks for TF-TSR with varied δ.

δ 0.2 0.4 0.6 0.8

MNIST 3.61±1.31 4.16±1.38 4.88±1.27 5.35±1.36
Fashion MNIST 4.67±1.36 5.41±1.44 5.84±1.50 6.16±1.17
CIFAR-100 6.16±3.95 11.14±7.04 17.16±8.14 19.39±7.25
COIL-100 14.24±9.19 24.27±8.26 29.20±9.26 37.84±9.92
Mini ImageNet 11.73±6.60 20.49±7.75 25.73±8.69 32.08±10.27

19

Under review as a conference paper at ICLR 2024

90.0

92.5

95.0

97.5

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

MNIST

76

80

84

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

Fashion MNIST

10

12

14

16

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

CIFAR−100

10
20
30
40
50

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

COIL−100

3

4

5

6

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

Vmax

50
100
150
200

Mini ImageNet

90
92
94
96

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

MNIST

76

80

84

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

Fashion MNIST

10

12

14

16

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

CIFAR−100

10
20
30
40
50

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)
COIL−100

3
4
5
6

0.0 0.2 0.4 0.6 0.8
p

A
cc

ur
ac

y
(%

)

δ
0.2
0.4
0.6
0.8

Mini ImageNet

89
90
91
92

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

MNIST

74
75
76
77

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

Fashion MNIST

10.0

10.5

11.0

11.5

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

CIFAR−100

10

15

20

25

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

COIL−100

3.0
3.5
4.0
4.5

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

Vmax

50
100
150
200

Mini ImageNet

89
90
91
92
93

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

MNIST

74
75
76
77

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

Fashion MNIST

10.0
10.5
11.0
11.5
12.0

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

CIFAR−100

10

20

30

40

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

COIL−100

3.0

3.5

4.0

4.5

0.0 0.2 0.4 0.6 0.8
q

A
cc

ur
ac

y
(%

)

δ
0.2
0.4
0.6
0.8

Mini ImageNet

Figure 7: Accuracy comparison of TF-TSR on synthetic image datasets with p ranging from 0.0 to
0.8 with varied Bmax, Vmax,Rmax, and δ. Each row varies a single hyperparameter.

20

	Introduction
	Related Work
	Notations and Preliminaries
	Time-Sensitive Replay
	Time-Sensitive Replay
	Task-Free Time-Sensitive Replay

	Experiments
	Conclusion
	Ethic Statement
	Reproducibility Statement
	Appendix
	Pseudocode for TSR and TF-TSR
	Theoretical Complexity
	Discussions on Drift Detectors
	Drift Detection Method
	Kolmogorov-Smirnov Windowing

	Experimental Setup and Results
	Reproducability
	Hyperparameters
	Datasets

	DDM vs KSWIN
	TSR Sensitivity
	TF-TSR Sensitivity

