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Abstract

Despite being trained specifically to follow user instructions, today’s
instruction-tuned language models perform poorly when instructed to
produce random outputs. For example, when prompted to pick a num-
ber uniformly between one and ten Llama-2-13B-chat disproportionately
favors the number five, and when tasked with picking a first name at
random, Mistral-7B-Instruct chooses Avery 40 times more often than we
would expect based on the U.S. population. When these language models
are used for real-world tasks where diversity of outputs is crucial, such
as language model assisted dataset construction, their inability to produce
diffuse distributions over valid choices is a major hurdle. In this work, we
propose a fine-tuning method that encourages language models to out-
put distributions that are diffuse over valid outcomes. The methods we
introduce generalize across a variety of tasks and distributions and make
large language models practical for synthetic dataset generation with little
human intervention.1

1 Introduction

Consider a Dungeon Master (DM) trying to use a language model based chatbot to assist
in managing their Dungeons & Dragons campaign. The DM asks the chatbot to suggest
a random name for a character in the story. The first time she asks, it suggests “Anya,”
and the second time it also suggests “Anya.” In fact, almost 40% of the time, the suggested
name will be “Anya” even when the language model is deployed with full random sam-
pling. The DM then tries to use the chatbot to roll a twenty-sided die; over 60% of the dice
rolls come up as a 14. Frustrated, the DM gives up and brings out their physical dice.

Instruction-tuned language models are extremely bad at producing random outputs when
users want them to. Even when prompts are carefully constructed with instructions that
encourage randomness, both state-of-the-art open-source and industry language models
output very low-entropy distributions over the valid options. Beyond Dungeons & Drag-
ons, there are many practical applications where diversity across valid options is crucial
for language model outputs. For example, when language models are used to answer mul-
tiple choice or Likert-scale questions, a priori each option should be equally likely. When
language models are used for synthetic dataset construction, such as for synthetic biogra-
phies (Maini et al., 2024; Yuan et al., 2021) or instruction-tuning training sets (Wang et al.,
2023), diversity in the generations is essential but arduous to achieve through mere prompt
hacking.

In this work, we examine how far off language model generations are from user expec-
tations of randomness and diversity. While our experiments focus on instruction-tuned
models such as Llama-2-chat, our findings do generalize to pre-trained language models

∗Correspondence: Yiming Zhang, yimingz3@cs.cmu.edu.
1Code and data are available at https://github.com/y0mingzhang/diffuse-distributions.
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(a) BABYNAMES (top 10 names are shown).
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(b) RANDOM NUMBER GENERATION.

Figure 1: Language models do not produce diffuse probabilities. The output distribu-
tions of untuned Gemma and Llama-2 deviate from what we would expect from natu-
ral/random distributions. Our tuning method addresses this by diffusing the output dis-
tribution over valid candidates. The horizontal axes above are sorted in descending order
by probability of the output.

in general.2 We then show how language models can be fine-tuned to produce diffuse dis-
tributions over valid options, without sacrificing generation quality. Our method supports
tasks where the sample set of valid options is not easily enumerated, and we show that
models fine-tuned to produce diffuse probabilities for one set of tasks generalize to other,
very different tasks without degrading model utility.

This generalization allows us to promote diversity in complex settings, such as synthetic
dataset generation. On the task of generating a dataset of synthetic biographies (similar
to the dataset created by Maini et al. (2024) for benchmarking language model unlearn-
ing), our method generates four times as many unique first names, three times as many
unique birth places, and 1.5 times as many unique careers as the untuned baseline model,
all without any need for complex prompt engineering, decoding strategy tweaking or man-
ual re-writing.

2 Preliminaries

We begin with a formal definition of diffuse probabilities from language models. We then intro-
duce techniques for measuring diversity of models outputs and we show how to quantify
the differences in the observed output distributions and the desired distributions.

2.1 Problem setting

Consider a vocabulary V = {1, 2, ..., n}. An autoregressive language model takes a se-
quence of ℓ tokens x ∈ V ℓ as input and outputs a probability distribution pθ(· | x) ∈ ∆(V)
over all tokens in the vocabulary. We use ∆(V) to denote the probability simplex over V .

2For example, when GPT-2 (Radford et al., 2019) is prompted with “She rolled the 20-sided die. It
landed on the number”, the output distribution is similarly far from uniform.
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In generation, we are interested in computing the probability of a potentially multi-token
target y = [y1, y2, . . . , yn] ∈ Vn. For example, y could be a two-digit number or the biogra-
phy of a person. A language model factors the probability of a sequence y into the product
of probabilities of individual tokens (⊕ here indicates concatenation):

pθ(y | x) = pθ(y1 | x)pθ(y2 | x ⊕ y1) · · · pθ(yn | x ⊕ y<n)

=
n

∏
i=1

pθ(yi | x ⊕ y<i). (1)

2.2 Measuring output distributions

How do we measure if an LM produces diffuse probabilities? We consider one method for
cases where the sample space is enumerable, and another for when the full sample space
is unknown.

In settings such as random number generation within a range, we can enumerate the
set of valid generations T . For example, in the context of rolling a twenty-sided die,
T = {1, 2, ..., 20}, and we expect a perfectly diffuse language model to produce a uni-
form distribution over T . More generally, for a context x and a (not necessarily uniform)
ground truth probability distribution p⋆ ∈ ∆(V⋆) over generation targets, we can measure
the KL-divergence between the model distribution pθ and the ground truth distribution p⋆

as follows:

DKL (p⋆ ∥ pθ) = ∑
y∈T

p⋆ (y | x) log
(

p⋆(y | x)
pθ(y | x)

)
. (2)

KL-divergence measures the difference between the model distribution pθ and the ground
truth p⋆, and it attains its minimum at zero if and only if pθ = p⋆.

In many scenarios such as synthetic dataset generation, the support of the ground truth
distribution cannot feasibly be enumerated, and we instead measure the entropy and the
coverage of empirical distributions. In these cases, we sample a large number of generations
y1, . . . , yN from the model and use the empirical distribution p̃ derived from generations
to approximate pθ . Entropy of the empirical distribution quantifies the diversity of model
generation:

Entropy(p̃) = − ∑
y∈V⋆

p̃(y) log p̃(y). (3)

Coverage-N is defined as the number of unique generations produced by the model in N
samples:

Coverage-N(p̃) = |{yi | i ∈ [N]}|. (4)
For a sufficiently large N, coverage quantifies the number of unique generations a user
interacting with the system could practically observe.

3 Forcing Diffuse Probabilities

We introduce a method for fine-tuning language models to encourage diffuse probabilities
distributions. Our technique hinges on the fact that fine-tuned models generalize—a model
which is trained to produce diffuse probabilities for one task will also do so for tasks unseen
during training.

3.1 Distribution matching as language model fine-tuning

Suppose, for some task, we already know the target set T of possible outputs, and the
ground truth distribution p⋆ we would like the language model to produce. Our method
simply maximizes the sum of model log-likelihood over all targets, weighted by their
ground truth likelihoods:

L(pθ) = − ∑
y∈T

p⋆(y | x) log pθ(y | x). (5)
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This objective is, in fact, the cross-entropy loss ubiquitous in language modeling (Berger
et al., 1996) extended to multiple target sequences (Edunov et al., 2018). Since the model
distribution pθ is defined on sequences, this optimization relies on a mild condition that T
is prefix-free, namely no target sequence t should be the prefix of another target sequence
t′. This condition is necessary since we would otherwise always have pθ(t′ | x) < pθ(t | x),
and it would be impossible to, say, make a model output identical probability for t and
t′.3 Notice that minimizing the objective in Eq. 5 is equivalent to minimizing the KL-
divergence between the model and the ground truth distribution p⋆:

L(pθ) = ∑
y∈T

p⋆(y | x)
(

log
p⋆(y | x)
pθ(y | x)

− log p⋆(y | x)
)

= ∑
y∈T

p⋆ (y | x) log
(

p⋆(y | x)
pθ(y | x)

)
− ∑

y∈T
p⋆(y | x) log p⋆(y | x)

= DKL (p⋆ ∥ pθ)− Entropy(p⋆),

where the entropy term is independent from the model distribution. In this view, our
method can be seen as distribution matching, where we align the model distribution with an
ideal distribution.

In the more complex case where the ground truth distribution is not known, our method
assumes access to a small sample set (∼200 samples) and treats the empirical distribution
as a proxy of ground truth. While minimizing this loss to 0 could lead to a model that
exclusively produces targets from the sample set, which is not what we want in a case like
synthetic dataset generation, empirically, we find this not to be the case. We discuss results
on generalization beyond training distribution extensively in Section 5.

3.2 Parameter-efficient Fine-tuning

We use LoRA (Hu et al., 2021) to fine-tune models in a parameter-efficient way. This tech-
nique relies on optimizing low-rank additions to weight matrices, making fine-tuning large
language models (with ≥ 7B parameters) practical. It has the added benefit that LoRA
tuning tends to perform almost as well as full model fine-tuning and generalizes beyond
training instances (Malladi et al., 2023). From an implementational standpoint, LoRA re-
quires instantiating a new pair of relatively small matrices for every weight matrix in the
network. Consider one fully connected layer parameterized by W ∈ Rd×d. We instantiate
B ∈ Rd×r and A ∈ Rr×d where r ≪ d and reparametrize the layer as W + BA. When
fine-tuning the model, we exclusively optimize the weights of A and B rather than taking
gradient steps on W, enabling us to fine-tune large models such as Llama-2-13B with only
a small fraction of the memory overhead.4 We report training details in Appendix A.

4 Results on Simple Tasks

We begin by showing how state-of-the-art language models fail to produce diffuse distri-
butions on simple tasks, even when a user’s prompt requests randomness. We consider
two tasks: random baby name generation (BABYNAMES) and random number generation
(RNG). In BABYNAMES, the model is instructed to generate a random baby name in En-
glish. In RNG, we ask the model to generate a random number between 1 and 10. The
tasks have the following prompts:

1. BABYNAMES: “Please generate an English first name, chosen completely at ran-
dom. Output only the name between two curly braces, like this: {name}. Don’t
output code.”

3We can simply append an end-of-sequence token to each target if T is not already prefix-free.
4Empirically, we find that r = 4 is sufficiently expressive, which we use across all experiments.

On our models, this corresponds to tuning less than 0.1% of all model parameters.
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Table 1: Our method significantly increases the diversity of generations on the random
number and baby name generation tasks. Coverage-1000 is the number of unique out-
comes out of 1,000 trials.

Task Model Entropy ↑ Coverage-1000 ↑
Baseline Tuned Natural Baseline Tuned Natural

Gemma 1.16 2.28 8 10
RNG Llama-2 1.07 2.29 2.30 7 10 10

Mistral 1.88 2.30 9 10

Gemma 3.19 5.69 170 442
BABYNAMES Llama-2 3.24 5.83 6.43 129 490 714

Mistral 4.02 5.78 225 479

2. RNG: “Generate a random number between 1 and 10. Output only the number
between two curly braces, like this: {number}. Don’t output code.”5

We consider three state-of-the-art language models: Gemma-7B-instruct (Google, 2024),
Llama-2-13B-chat (Touvron et al., 2023) and Mistral-7B-instruct (Jiang et al., 2023). We use
chat/instruct versions of the models, which are fine-tuned on dialog data to make them
more suitable than base models for our test cases, which require instruction following. In
all experiments, we sample from models using a temperature of one, which is equivalent
to sampling from the maximally diffuse, unmodified model distributions.6 For each task,
we sample 1,000 generations from the model and report coverage and entropy statistics of
the empirical distributions of model generations.

4.1 Language models fail to follow instructions for randomness

Figure 1 shows output distributions of several untuned, baseline models for BABYNAMES
and RNG. Despite the prompts asking for randomness, these output distributions are ex-
tremely imbalanced.

For RNG, it is easy to see that the empirical distribution is far from the uniform distribution
we would expect. For BABYNAMES, it is less clear what we should expect from the model.
Do we want the generated names to be a uniform sample from the set of all names? Or do
we want the names to reflect the distribution of baby names among recently born babies
in the Unites States? To address this, we introduce the concept of a natural distribution for
each task. For RNG, this is simply the uniform distribution; for BABYNAMES, we compare
to a sample we draw from data on names used for babies born in the United States in the
year 2022, using birth data from the US Social Security Administration.7 We note, that we
are only using the natural distributions as reasonable baselines for comparison.

When generating names, we find that Llama-2 generates the name “Aurora” about 100
times more often than we would expect from the natural distribution, and Gemma assigns
40% probability to the name “Anya”, which did not appear even once in our sample of
the natural distribution. This is a clear indication that these large language models do not
sample diversely from a large space of valid generations (all English names) despite being
explicitly instructed to do so.

In the RNG task, we find that each model has a bias toward a different set of numbers. For
example, both Gemma and Llama-2 assign over 60% probability to the number five, while
Mistral assigned over 25% probability to the number eight. Surprisingly, in 1000 samples,

5We instruct the models to generate between curly braces to simplify output parsing. Gemma has
a strong tendency to output code and we add an explicit instruction to avoid code generation.

6We could technically set temperature to beyond one to smooth out the model distribution further,
but this is rarely done in practice due to degeneration. We also note that the untuned, baseline
models need to be sampled at a temperature > 10 to match the entropy of our fine-tuned models in
Section 4.2.

7https://www.ssa.gov/OACT/babynames
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(b) Varying sizes of random sample space.

Figure 2: Models tuned on RANDOM NUMBER GENERATION demonstrate generalization to
variations in both prompt format and number ranges. 95% confidence intervals are shown
in plots.

none of the models were able to generate all ten numbers. These results highlight that the
output distributions of large language models are far from diffuse, even in simple tasks
where a user may expect them to be.

4.2 Optimizing for BABYNAMES and RNG diversifies generation

We start by focusing on the setting where we are optimizing the model to produce diffuse
probabilities for the two individual tasks. For RNG, we fine-tune the model to produce a
uniform distribution from one to ten, and for BABYNAMES, we fine-tune the model to fit the
empirical distribution of a sample of 200 baby names drawn from the natural distribution.

In these experiments, we see our methods can very effectively align the model distribution
with the ideal distributions (Table 1). With RNG, tuned models produce near-uniform dis-
tributions over the valid choices with full coverage and near perfect entropy. With BABY-
NAMES, where the training set covers only a small portion of the possible outputs, we see
an encouraging indication of generalization: while the coverage remains smaller than that
of the natural distribution, it is over twice the baseline for all models and the majority of
outputs are not among targets in the fine-tuning set.

While RNG and BABYNAMES serve as toy problems, these settings have a major
limitation—the fine-tuned models are evaluated on the same prompts and sample spaces
in training. To further test the generalization performance of our models, we also consider
settings where the prompt and sample space differ between training and evaluation. We
fine-tune Llama-2 to produce diffuse probabilities over two ranges of random integers—
one to ten and one to 100—and test its generalization to different instruction formats and
unseen sample spaces (see Appendix B.1 for prompts). In Figure 2a, we observe encourag-
ing generalization trends: the tuned model produces near uniform distributions for unseen
prompt formats over number ranges not in the fine-tuning set, for example from 1 to 45.
When we vary the size of the random sample space of RNG (e.g., 154 to 204), the tuned
model still produces substantially higher entropy distributions than the untuned model
(Figure 2b). With these first experiments, we demonstrate that tuning models for diffuse
probabilities is a promising method for increasing generation diversity.

5 Generalization Across Tasks

It is not too surprising that a model optimized to output random numbers uniformly across
some range can generalize to other ranges of numbers. A much more interesting and prac-
tical test is if a model optimized for diffuse probabilities on one set of tasks can transfer to
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Figure 3: Entropy in leave-one-out generalization. The title of each plot indicates which
set of tasks we compute entropy over.

tasks with very different sample spaces. That is, a model optimized for picking a random
number or baby names should not overfit to generating samples from those distributions;
rather, it should be able to e.g. pick a random fruit or country name when prompted to do
so.

We use leave-one-out experiments on a set of six tasks to show that models tuned for dif-
fuse probabilities do, in fact, have strong transferability to tasks unseen during tuning. We
consider the following six tasks. Each task has several associated prompts, one of which is
shown below:

1. BABYNAMES: “Please generate an English first name, chosen completely at ran-
dom.”

2. COUNTRIES: “Output a random country in Africa, chosen completely at random.”
3. FRUITS: “Output a name of a fruit, chosen completely at random.”
4. DAYS AND DATES: “Provide a random date in June.”
5. NUMBERS: “Randomly pick a prime number between 1 and 50.”
6. OCCUPATIONS: “Output an occupation that starts with the letter “A”.”

By fine-tuning on five out of the six tasks listed above and evaluating performance on the
sixth, we can measure the ability of our method to handle out-of-distribution tasks.

In Figure 3, we report in-distribution (ID) and out-of-distribution (OOD) results, which
correspond to tuning sets that include or exclude the particular task, respectively. The
results show a convincing trend: for all three models, our tuning method led to substantial
improvements in entropy over the baselines, even when the task was held out from the
tuning set.8 Another interesting observation is that the baseline Mistral model consistently
produces more diffuse distributions than the baseline Gemma and Llama-2 models, but
after tuning, all three models have comparable entropy.

In two of the tasks (COUNTRIES and FRUITS), we observe sizable generalization gaps be-
tween in-distribution and out-of-distribution entropy, which suggest that task-specific tun-
ing remains useful, especially when we can come up with a reasonbly diverse set of gen-
eration targets for fine-tuning. However, coming up with a large enough target set isn’t
always easy. In these cases, we rely on the generalization of the models trained on a di-

8Coverage results show similar trends, and we report them in Table 5, Appendix C.1.
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Figure 4: Fine-tuned Llama-2 model improves the diversity of synthetic biographies.
We report coverage for categorical attributes in 4a and normalized unigram diversity of
generated achievements and the entire biography in 4b.
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verse set of tasks. For example, in OCCUPATIONS, the authors could only come up with
a small set of 17 professions that start with the letter “A,” and Llama-2 and Mistral (not
trained on OCCUPATIONS) generalize out-of-distribution to occupations beyond what we
provide in the fine-tuning set.9 Notably, our fine-tuning method does not substantially
change the general capabilities (e.g., writing and reasoning) of the models demonstrated
by evaluations on MT-Bench (see Appendix C.4), making our method compatible with tun-
ing general-purpose large language models.

6 Constructing More Diverse Synthetic Datasets

The leave-one-out experiments show that fine-tuning for diffuse outputs leads to task gen-
eralization. This is an important trait for real-world applications such as synthetic dataset
construction, where it might be not be feasible to tune on data that is identically formatted
to what we would like to synthesize.

In this section, we evaluate how well a model tuned on the six tasks from Section 5 per-
forms on a realistic dataset creation task—building a synthetic dataset of fictional biogra-
phies. Inspired by the synthetic datasets created in Maini et al. (2024) and Yuan et al. (2021),
these biographies include the following attributes: first and last name, gender, birth year,
birth place, profession and a description of the person’s achievements. We show how our
method results in biographical details that are much more diverse than those generated by
the baseline models.

6.1 Out-of-distribution training improves synthetic dataset diversity

We first consider a Llama-2-13B model fine-tuned on all tasks in Section 5 and not specif-
ically for biographies (Tuned-OOD), and compare its generations against the baseline
Llama-2 model over 1000 samples. In Figure 4, we report coverage results for categori-
cal attributes (e.g., Birth year), and normalized unigram diversity for achievements and
over the entire biography.10 In Table 2, we report the most frequently generated values for
categorical attributes, along with the frequencies out of 1000 generations.11

The results on the baseline Llama-2 model indicate that the biases we observe in Section 4.1
towards certain names and numbers expectedly show up in generation. For example, out

9For example, Llama-2 generated “Aromatherapist”, and Mistral generated “Agronomist.” Nei-
ther is among the fine-tuning targets of OCCUPATIONS.

10We report prompt used for biography generation and side-by-side qualitative examples in Ap-
pendix B

11A table of coverage and entropy statistics of generated biographies can be found in Appendix C.2.
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Table 2: The most frequently generated values for each attribute, along with the number
of times the value was generated (out of 1000 generations). Despite being tuned on out-
of-domain tasks, the tuned Llama model significantly improves in diversity. Some values in
table have been truncated for brevity.

First name Last name Gender Birth year Birth place Career

Baseline Llama-2

Evelyn 284 Nightingale 117 F 966 1985 764 Paris, FR 305 Astronaut 211
Luna 155 Aurora 104 NB 17 1987 46 Tokyo, JP 267 Astro. Engineer 66
Elara 87 Nova 98 M 13 1992 44 Stockholm, SE 33 Aero. Engineer 55
Adriana 42 Starling 53 1978 36 Mumbai, IN 32 Env. Activist 42
Aurora 38 Stardust 41 1975 31 Singapore, SG 32 Astrophysicist 32

Fine-tuned Llama-2 (OOD)

Luna 32 Nightingale 16 F 762 1985 211 Mumbai, IN 35 Astronaut 96
Zelda 14 Nightshade 12 M 189 1992 99 Lagos, NG 31 Aero. Engineer 50
Mila 14 Chen 8 NB 31 1987 77 Paris, FR 29 Soft. Engineer 47
Evelyn 11 Orion 6 1988 61 Tokyo, JP 27 Env. Activist 35
Althea 9 Sparks 6 1990 52 Nairobi, KE 21 Journalist 34

Fine-tuned Llama-2 (ID)

Hava 14 Kim 17 F 487 1921 39 Choloma, HN 16 Architect 140
Maria 14 Mohammed 16 M 478 1931 36 Rabat, MA 13 Journalist 74
Juan 14 Khan 13 NB 34 1942 35 Tainan, TW 10 Politician 35
Valcin 13 Abed 13 1916 30 Rajshahi, BD 10 Archaeologist 35
Issaka 12 Salah 12 1984 29 Budapest, HU 10 Mar. Biologist 26

of 1000 biographies generated by the baseline Llama-2 model, 284 have the first name ’Eve-
lyn,’ and 966 are females. Such a high level of repetition makes the resulting dataset ba-
sically unusable without substantial human intervention. In constrast, our model signif-
icantly improves the diversity of generated biographies, despite not trained specifically
for generating biographies. For example, we see an >2X increase in coverage for most
categorical attributes. There are also substantial improvements in generation diversity for
achievements and over the entire biography (Figure 4b), although our training does not
optimize for open-ended text generation.

The top five most frequent values for attributes (Table 2) help contextualize these improve-
ments in diversity: there are significant reductions in biases towards certain attribute val-
ues. E.g., the frequency of the name “Evelyn” decreased by 25X, and the birth year 1985 by
over 3X.

6.2 Diversifying distributions of categorical attributes

Despite this improvement over base model, certain biases, as seen in the high frequencies
of female biographies (76.2%) and the birth year 1985 (21.1%), still persist, which could
limit the utility of the dataset. Our fine-tuning method can in fact be directly applied to
balance the distribution of categorical attributes. As a proof of concept, we create a tar-
get set containing 210 programmatically generated tuples of categorical attributes, with
roughly balanced gender, birth year and birth place distributions without the open-ended
achievement descriptions. We then fine-tune a Llama-2 model (Tuned-ID) only on categor-
ical attributes and evaluate another sample of 1000 biographies.

At a comparable level of generation diversity to the Tuned-OOD model (Figure 4), the
Tuned-ID model is able to generate biographies with much more balanced distributions
of categorical attributes: Table 2 shows that both gender and birth years are roughly uni-
formly distributed, and a wider range of birth places are produced by the model.12 Cru-
cially, the model remains highly diverse on open-ended generation of achievements even
when being trained exclusively on categorical attributes. This result highlights the poten-
tial in extending our fine-tuning method towards improving diversity in open-ended text
generation.

12See maps of generated birth places for all three models in Figure 5, Appendix C.
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7 Related Work

Diversity in Text Generation The lack of diversity has been a long-standing issue in gen-
eration due to the tension between generation quality and diversity (Zhang et al., 2020):
sampling at low temperature causes boring and repetitive text, while sampling at higher
temperatures could lead to nonsensical output (Tevet & Berant, 2021). Much of the ex-
isting literature approaches the quality-diversity tradeoff by coming up with new decod-
ing strategies, which often involve either shaping the model distribution (e.g., top-p sam-
pling (Holtzman et al., 2020) and top-k sampling (Fan et al., 2018)) and diversity-promoting
constraints during decoding (Li et al., 2016; Vijayakumar et al., 2018) or training (Welleck
et al., 2019; Edunov et al., 2018). Our setting is distinct from prior work in that we already
assume a “maximally” diverse decoding strategy (i.e., sampling from the model with tem-
perature one), and yet instruction-tuned language models still fail to generate diversely.

Language Model for Dataset Creation As more capable language models emerge (Tou-
vron et al., 2023; Jiang et al., 2023; Google, 2024), language model-based dataset creation
becomes increasingly practical. Prior work has largely focused on generating specialized
data for augmenting NLP tasks (Ye et al., 2022b) including semantic similarity (Schick &
Schütze, 2021), relationship extraction (Chia et al., 2022), natural language understand-
ing (Meng et al., 2022) and instruction following (Honovich et al., 2022). A LM-based
dataset creation pipeline is usually an iterative and arduous process (Ye et al., 2022a), in
which significant human intervention is needed to ensure the model generates diverse and
high-quality data (Yuan et al., 2021; Liu et al., 2022; Maini et al., 2024). Our work aims to
make progress towards the goal of automating data creation by improving the diversity of
language model generation and thereby reducing the need for human intervention.

8 Concluding Discussion and Future Directions

In this work, we propose a method for fine-tuning language models to generate diffuse
probability distributions, and show that this method leads to sizable and transferrable im-
provements in generation diversity. We showcase a practical application of our method in
synthetic dataset generation, demonstrating improvements in the quality of generated data
by a large margin, with or without task-specific tuning. Our experiments reveal interesting
insights on the surprising capability of language models to learn diffuse distributions and
generalize to new prompts and output spaces. An important direction for future work is
the application of our method (and distribution matching techniques in general) to debias-
ing language models (Liang et al., 2021), which are shown to be rife with harmful stereo-
types (Bolukbasi et al., 2016). Given the strong generalization properties of our method,
it is plausible that aligning language models with an ideal distribution of representative
instances could reduce model bias.

Since our method requires access to a set of valid output sequences, a structured output
space is assumed. In other words, this method is not directly applicable to open-ended
generation tasks where the number of valid targets is practically infinite. Future work
should further explore the limits of our approach, especially in the context of improving
diversity of open-ended generation. Although our method is independent from the fine-
tuning procedure, we find LoRA (Hu et al., 2021) to be substantially more efficient and
effective compared to other techniques such as prefix-tuning (Li & Liang, 2021) and dis-
crete prompt search (Zou et al., 2023). Since they could potentially guide closed-source
models to generate more diverse outputs, identifying diversity-inducing discrete prompts
is a particularly interesting research question, which we leave for future work.
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A Training details

For all experiments, we use LoRA to fine-tune models for up to 50 steps over all target
prompts. In tasks where the ground truth distribution cannot be enumerated (e.g., syn-
thetic biographies), we stop fine-tuning early when the training loss is within 20% of the
minimum loss, which is the entropy of the target distribution. We use an AdamW opti-
mizer (Loshchilov & Hutter, 2019) with a learning rate of 5 × 10−5 and a batch size of 32.
All experiments are conducted on a single NVIDIA A100 GPU, using a total of approxi-
mately 50 GPU hours. Code and prompts used to reproduce our results are available at the
open-source GitHub repository.13

B Prompts and Qualitative Results

B.1 Prompts used for Figures 2

The y-axis in Figure 2a gives the average entropy over the following five prompts, where
low is set to 1, and high is the value on the x-axis.

1. “Randomly pick an integer between low and high. Do not provide any code. Out-
put only the number between two curly braces, like this: {number}. Don’t output
code.”

2. “Output a number uniform randomly from the range low to high, inclusive. Out-
put the number between two curly braces, like this: {number}. Don’t output
code.”

3. “Choose a number at random between low and high. Output your chosen number
bweet two curly braces, like this {number}.”

4. “Select an integer completely at random from the interval [low, high]. Output the
selected integer between two curly braces, like this {n}.”

5. ”I need you to pick a number completely at random. The number should be be-
tween low and high. Print the number between two curly braces, like this: {n}.”

The y-axis in Figure 2b gives the average entropy over five versions of Prompt 1 above,
where low is chosen randomly to be between 1 and 900, and high is the value on the x-axis.

13https://github.com/y0mingzhang/diffuse-distributions
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B.2 Prompt used for synthetic biography generation

Table 3: Prompt used for synthetic biography generation.

Generate a random biography sketch of a fictional, notable person. Output name,
gender, time of birth, place of birth, profession and accomplishments individually
between two braces and generate nothing else. Please follow the format below.

{First name and last name}
{Gender - Female/Male/Non-binary}
{Date and year of birth}
{City and country of birth}
{Profession}
{One sentence description of accomplishments}

Example
{David Hippocampus}
{Male}
{June 30, 1960}
{Cambridge, Massachusetts, USA}
{Neuroscientist}
{Revolutionized cognitive science by elucidating the mechanisms underlying memory
formation and retrieval through groundbreaking research and innovative methodolo-
gies, advancing our understanding of the human brain’s intricacies}
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B.3 Side-by-side comparison of generated biographies across systems

In Table 4, we show five randomly sampled biographies generated by the baseline Llama-2
model and our fine-tuned models, both out-of-distribution and in-distribution. We note
that just in 5 examples, there are noticeable quality issues with the baseline model, such
as repetition of the same birth date, birth place and professions, as well as largely similar
descriptions of accomplishments. In contrast, our fine-tuned models generate more diverse
biographies.

Table 4: Five randomly sampled biographies generated by the baseline Llama-2 model and
our fine-tuned models.

Llama-2 (Baseline) Llama-2 (Tuned-OOD) Llama-2 (Tuned-ID)

{Cesar Season}
{Male}
{March 22, 1985}
{Montevideo, Uruguay}
{Chef}
{”Reimagined the flavors of South Amer-
ican cuisine with his avant-garde dishes,
earning him numerous accolades and
characteristics for his culinary innovation
and experimentation.”}

{Teagan Sunshine}
{Female}
{July 12, 1998}
{Copenhagen, Denmark}
{Chef}
{Pioneered a sustainable, seasonal, and
socially conscious gastronomy movement
by founding a Michelin-starred restaurant
that sources exclusively from local farm-
ers}

{Flick Monteiro}
{Female}
{March 18, 1942}
{Vaduz, Liechtenstein}
{Nurse}
{Pioneered community health outreach
programs in developing regions, span-
ning decades to uplift displaced per-
sons and marginalized villagers, garnering
widespread recognition and accolades for
her dedication to improving global well-
being}

{Luna Nightingale}
{Female}
{May 15, 1985}
{Paris, France}
{Renowned Astrophysicist}
{Discovered the existence of a previously
unknown planetary system, challenging
long-held assumptions about the forma-
tion of our solar system and expanding the
search for extraterrestrial life}

{Yuna Jolin}
{Female}
{April 10, 1995}
{Seoul, South Korea}
{Grammy Award-Winning Singer and
Songwriter}
{Pioneered a unique fusion of K-pop, hip-
hop, and electronic dance music, captivat-
ing audiences worldwide with her soul-
ful voice, powerful stage presence, and so-
cially conscious lyrics}

{Sandra Guerra}
{Female}
{June 25, 1948}
{Chicago, United States}
{Psychologist}
{Significantly contributed to the field of
child development by conducting influen-
tial studies on early language acquisition
and cognitive growth}

{Isadora Flux}
{Female}
{March 12, 1985}
{Tokyo, Japan}
{Renowned artist}
{Challenged traditional notions of art and
beauty with her abstract, multimedia in-
stallations that blur the lines between sci-
ence and art, winning numerous accolades
for her groundbreaking work}

{Robert Chomsky}
{Male}
{December 7, 1928}
{Boston, Massachusetts, USA}
{Linguist}
{Developed and propagated the theory
of generative grammar, transforming the
field of linguistics and influencing the
study of cognitive science, philosophy,
and artificial intelligence}

{Noor Khan}
{Female}
{September 03, 1911}
{Al Rayyan, Qatar}
{Judge}
{Will be remembered for her trailblazing
tenure as the first female judge to preside
over a Supreme Court in the Middle East,
setting a precedent for feminist empower-
ment and disparity reduction in the region
through her stringent yet compassionate
judgments}

{Evelyn Stellar}
{Female}
{March 22, 1985}
{Paris, France}
{Astronaut}
{Pioneered the field of interstellar travel,
becoming the first human to set foot on an
exoplanet and expanding our knowledge
of the cosmos with her daring explorations
and groundbreaking discoveries}

{Kingston Wellspring}
{Non-binary}
{April 4, 1992}
{Townsville, Australia}
{Astronaut}
{Pioneered the first human mission to
Mars, showcasing exceptional leadership,
resourcefulness, and adaptability in the
face of unprecedented challenges, paving
the way for future interplanetary explo-
ration and collaboration}

{Marija Lovrencic}
{Female}
{March 02, 1921}
{Rijeka, Croatia}
{Astronomer}
{Contributed significantly to the fields
of astrometry and galactic astronomy
through pioneering observing programs
and innovative numerical simulations,
leading to numerous discoveries and a
deeper comprehension of the cosmos}

{Lena Proxima}
{Female}
{March 22, 1985}
{Seoul, South Korea}
{Astronaut and Engineer}
{Pioneered the development of advanced
life support systems for long-duration
space missions, enabling human explo-
ration of the solar system and beyond.}

{Sandy Fulgar}
{Female}
{December 14, 1985}
{Laguna Beach, California, USA}
{Scientist and Inventor}
{Developed a revolutionary technology
for harnessing solar power, reducing car-
bon emissions and promoting sustainable
energy solutions}

{Noof Kabirah}
{Female}
{April 08, 1935}
{Mecca, Saudi Arabia}
{Architect}
{Explored innovative architectural de-
signs and sustainable building materials to
create culturally responsive and environ-
mentally conscious structures, positively
impacting urban landscapes worldwide}
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C Additional Results

C.1 Leave-one-out generalization results

Table 5: Mean coverage results (higher is better). Better result for each model-task pair is
in bold.

Gemma Llama Mistral

Baseline Ours (OOD) Baseline Ours (OOD) Baseline Ours (OOD)

BABYNAMES 170.0 346.0 129.0 426.0 225.0 493.0
COUNTRIES 23.3 53.3 17.8 43.0 44.0 71.5
FRUITS 20.5 62.0 45.0 60.5 46.0 64.0
DAYS AND DATES 18.5 23.0 14.3 22.5 22.7 22.5
NUMBERS 16.0 31.0 10.0 31.9 29.3 32.0
OCCUPATIONS 51.7 148.0 192.7 313.3 180.3 305.0

Table 6: Mean entropy results (higher is better). Better result for each model-task pair is in
bold.

Gemma Llama Mistral

Baseline Ours (OOD) Baseline Ours (OOD) Baseline Ours (OOD)

BABYNAMES 3.20 5.03 3.24 5.57 3.24 5.57
COUNTRIES 1.58 2.59 1.19 2.73 1.19 2.73
FRUITS 1.96 2.82 2.33 3.28 2.33 3.28
DAYS AND DATES 1.82 2.71 1.47 2.81 1.47 2.81
NUMBERS 1.28 2.65 0.91 2.70 0.91 2.70
OCCUPATIONS 1.59 3.40 3.21 4.68 3.21 4.68
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C.2 Coverage and entropy of generated biographies

Table 7: Llama-2 results on synthetic biography generation.

First name Last name Birth year

Base ID OOD Base ID OOD Base ID OOD

Coverage 158 637 375 288 845 557 26 67 89
Entropy 3.23 5.58 6.18 4.30 5.96 6.63 1.10 4.22 3.15

Table 8: Llama-2 results on synthetic biography generation.

Birth place Profession

Base ID OOD Base ID OOD

Coverage 98 305 533 178 276 198
Entropy 2.65 5.98 5.08 3.81 4.33 4.61
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C.3 Maps of birth places in generated biographies

We plot birth places of 500 biographies generated by the baseline Llama-2 model and our
fine-tuned models in Figure 5, respectively. The baseline model appears to have fewer
data points, which is simply because most of the generated cities are duplicates and they
overlap on the plot.

Figure 5: Fine-tuned Llama-2 models generate more diverse birth places in biographies.
Each circle represents the birth place corresponding to a single biography in our dataset.

(a) A map of birth places generated by the baseline Llama-2 model.

(b) A map of birth places generated by the Llama-2 (Tuned-OOD) model.

(c) A map of birth places generated by the Llama-2 (Tuned-ID) model.
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C.4 MT-Bench

After fine-tuning the models on all six tasks in Section 5, we evaluate utility of the models
on the MT-Bench (Zheng et al., 2023) benchmark. The results show minimal differences
between the baseline and our fine-tuned models, suggesting that our optimization does
not have a significant impact on the general capabilities of models.

Figure 6: Evaluation results for baseline and fine-tuned models on MT-Bench (Zheng et al.,
2023).
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