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Deep neural network models perform very brightly in the field of artificial intelligence, but their
success is affected by hyperparameters, and the learning rate schedule is one of the most important
hyperparameters, while the search for the learning rate schedule is often time-consuming and compu-
tationally resource-intensive. In this paper, we proposed Distributed Population Learning Rate Schedule
(DPLRS) based on population joint optimization, which uses distributed data parallel deep neural
network training to implement a dynamic learning rate schedule optimization strategy based on the
population idea, with almost no loss of test accuracy. DPLRS is able to dynamically refine the learning
rate schedule during model training instead of following the usual suboptimal strategy. We conducted
experiments on typical AlexNet, VGG16, and ResNet18 using the Tianhe-3 supercomputing prototype.
The results illustrate that using DPLRS to dynamically update the learning rate can greatly reduce
the searching time of the learning rate schedule and meanwhile, can ensure the close performance
with the latest population hyperparameter algorithm. Also, In our experiments, DPLRS lead to 123.85x
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speedup maximum, which prove the effectiveness and robustness of DPLRS.
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1. Introduction

In recent years, deep learning, as an important branch of
artificial intelligence, has achieved world-renowned results [1]
in many areas such as image recognition [2], natural language
processing [3], and complex decision making [4], which often
benefit from a refined set of hyperparameters chosen.

Researchers have devoted themselves to improving the final
training performance of deep learning (e.g. accuracy of image
classification, BLEU scores in natural language processing, etc.) by
modifying hyperparameters such as dataset style, model struc-
ture, loss function, and optimizer parameters in conjunction with
specific application requirements. Sener et al. [5] and Yin et al. [6]
have used their respective improved active learning methods to
select the optimal range of training data; He et al. [2] and Devlin
et al. [7] proposed ResNet and BERT models that caused far-
reaching impact in the fields of image classification and natural
language processing, respectively; Lin et al. [8] and Liu et al. [9]
proposed Focal and SphereFace loss functions on the basis of
cross-entropy loss function produced significant improvement on
model training results in the fields of target detection and image
recognition.
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In this context, choosing the appropriate learning rate sched-
ule is a very critical hyperparameter that affects the model
training results [10], because most optimizers have difficulty in
traversing a non-convex, non-smooth loss function space with
numerous local minima and potential saddle points [11-13]. In
order to converge to a model with good generalization capability,
the learning rate schedule often requires extensive and trivial
tuning [10,14]. In addition, the widely used small-batch gradient
descent with uncertainty also makes the search for learning rate
tables difficult to be defined as a good optimization problem
and solved by standard optimization methods. Static or dynamic
built-in optimizers or predefined learning rate tables based on
Bayesian or massively parallel search are widely used [15,16].
Static optimizers tend to have simpler rules, such as exponen-
tial and cosine, which cannot be aligned with nonsmooth loss
functions, while dynamic optimizers, such as Adam [17] and
Adadelta [18], are extended from convex optimization requiring
strong assumptions to guarantee convergence. Therefore, using
a variety of learning rate table search methods can get better re-
sults than using a fixed optimizer. However, using Bayesian-based
search methods requires the constant generation and utilization
of prior knowledge, and thus has a significant serial dependence,
requiring a lot of time to perform multiple serial searches re-
peatedly; while large-scale grid and stochastic searches require
the use of a large number of computational resources, and during
the training process, the information of different nodes generally
cannot be shared during the training process. There are recent
studies based on the idea of the population for learning rate
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search, which allows multiple nodes trained independently to
exchange parameters and learning rates under specific condi-
tions [16,19,20], but these methods still require a single node to
complete the entire model training, with huge time overhead.

Therefore, we propose Distributed Population Learning Rate
Schedule (DPLRS) for Deep Learning. This method uses the idea of
population algorithm to dynamically and adaptively optimize the
learning rate during the training of parallel deep neural networks
with distributed data, and the learning rate is adjusted during
the distributed training process, and each node only needs to
complete 1/n (n is the number of nodes) of the whole dataset,
and the model training time is improved nearly n times with the
accuracy of the test set similar to the latest PBT [16] algorithm.

The main contributions of this work are summarized as fol-
lows:

1. We proposed a new distributed deep learning algorithm
DPLRS based on particle swarm algorithm and genetic op-
timization algorithm for a distributed computing environ-
ment.

2. We efficiently couple the learning rate schedule search
with the neural network model training process, solving
the problems of high computational overhead and serious
serial dependency of traditional search algorithms.

3. We achieve a significant reduction in overall training time
while achieving comparable training accuracy with the
state-of-the-art population search PBT algorithm.

4, We verified the effectiveness and reliability of the algo-
rithms on the Cifar10 and ImageNet datasets using the cur-
rent classical AlexNet, VGG16 and ResNet18 models in im-
age recognition on the Tianhe-3 supercomputing prototype
platform.

2. Related work

This section focuses on the development of deep neural net-
work hyperparameter search algorithm and neural network dis-
tributed training strategy related to DPLRS algorithm.

2.1. Hyperparameter search

With the deepening of neural network theory and the accu-
mulation of social production experience, the success of a neural
network model suffers from the learning framework composed of
model structure, data presentation, model details optimization,
and so on. Each component in the learning framework is con-
trolled by many hyperparameters, which will affect the learning
process and must be adjusted properly to fully demonstrate the
network performance [21-23].

At present, there are two main ways of hyperparameter search,
parallel search, and serial search, which make a trade-off between
consuming the number of computing resources and obtaining the
best results [24-26]. Parallel search starts multiple computing
nodes at the same time, uses a lot of computing resources to
independently perform several complete neural network training
processes, and there is less data interaction between them. And
the purpose is to identify a single optimal output from these
multiple nodes. Common parallel search algorithms include grid
search [27] and stochastic search [28]. Sequential search carries
out a small amount of parallel optimization and a large number of
sequential search, while each search will use the information ob-
tained from the previous training as much as possible to gradually
optimize the hyperparameters, and the results of each search will
also be used to guide the subsequent hyperparameter optimiza-
tion. The common serial search includes manual hyperparameter
adjustment and Bayesian search. Sequence optimization generally
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provides a better solution, but due to the long training process,
the time cost of multiple serial searches is often quite high [16].

Currently, most of the automatic hyperparameter adjustment
mechanisms adopt the sequential optimization algorithm, which
means the training results of each specific hyperparameter search
are used as the prior knowledge to inspire the hyperparameters of
the subsequent search. Srinivas et al. [29], Bergstra et al. [30] and
Snoek et al. [31] have used a Bayesian optimization framework
to exploit this knowledge by updating the posterior probabilities
of Bayesian models using successfully trained hyperparameters.
As noted in the previous section, these sequential algorithms
mentioned above will make the whole search process very long,
Gyorgy & Kocsis et al. [32], Sabharwal et al. [33], Springenberg
et al. [34], Lisha Liet et al. [35] and Tobias Domhan et al. [36]
used the methods of setting the early termination conditions
of training, using Intermediate loss values to predict the final
performance, and modeling the overall time and data-dependent
optimization process to reduce the number of steps required in
each training process and better explore the promising hyper-
parameter space to accelerate the overall hyperparameter search
process.

Shah & Ghahramani et al. [37], Gonzélez et al. [38], Wu &
Frazier [39], Patrick Koch [40], Richard Liaw [25], and Daniel
Golovin [26] have tried to parallelize Bayesian optimization by
training multiple models independently, but these methods still
need a large number of serial model updating operations in a
single model.

In terms of parallel search, Bergstra & Bengio et al. [24]
has proved the efficiency of random hyperparameter search.
Loshchilov & Hutter et al. [41], Smith et al. [42], and Massé
& Ollivier et al. [43] proved the effectiveness of adaptive ad-
justment of hyperparameters such as the learning rate in the
process of training optimization. Lisha Li et al. [44] and Kevin
Jamieson et al. [45] formulate hyperparameter optimization as
a pure-exploration non-stochastic infinite-armed bandit prob-
lem. Liam Li [46] proposed a parallelized SHA algorithm suitable
for large-scale distributed environments. Bdck et al. [47], Clune
et al. [48], Xue et al. [49], Salustowicz & Schmidhuber [50] used
the idea of genetic algorithm and Lamarckian evolutionary algo-
rithm (parameters are inherited, hyperparameters are evolved)
to realize population-based parallel search. Jaderberg et al. [16]
of Deep Mind proposed the PBT algorithm, which uses standard
optimization technology (gradient descent method) to replace
the evolutionary model for parameter optimization, and real-
ized an asynchronous hyperparameter search strategy. But the
above strategies still need each node to train a complete model
and dataset, which have the problems of excessive computing
resource overhead and node computing redundancy.

2.2. Parallelism and consistency models

Deep learning currently mainly implements parallel train-
ing through model parallelism or data parallelism [51]. Model
parallelism divides the deep neural network into multiple sub-
modules and assigns them to multiple computing nodes for
collaborative training. And data parallelism distributes the block
datasets with multiple computing nodes, and each node inde-
pendently completes the neural network training tasks on its
own datasets and completes the parameter exchange through
communication mechanisms such as parameter server or all-
reduce algorithm. In most cases, the cost of model parallelism
is much greater than that of data parallelism and the speedup is
lower. Therefore, we choose data parallelism [52], which is cur-
rently more concentrated, as the parallel strategy of DPLRS. In the
process of optimizing distributed parallel training, the main con-
sistency models include Bulk Synchronous Parallel (BSP) [53] and
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Asynchronous Parallel (ASP) [54] and their variants (SSP, ADSP,
etc.). We select the overall synchronization model of most deep
learning tasks in the data center environment: BSP ensures that
a group of distributed computing nodes can update the model
parameters with the same iteration by setting a synchronization
fence. After each iteration, the computing node will wait for
the synchronization instruction from the master node according
to the synchronization fence mechanism, and the master node
updates the parameters after obtaining the updated parameters
of all computing nodes and sends them to each computing node
to enter a new round of iteration. Common BSP model systems
include Spark [55] and Mahout [55].

2.3. Evolutionary computing algorithms

Evolutionary algorithms are a class of meta-heuristic opti-
mization methods with a certain level of robustness and general-
ity, which is quite attractive to be applied to system whose model
is difficult to build. Both Particle Swarm Optimization(PSO) [56]
and Genetic Algorithms(GA) [57] are highly representative evolu-
tionary computing techniques.

The PSO originated from the behavioral study of bird flock
predation. It makes use of the sharing of global optimal in-
formation (gbest) by individuals in the population, so that the
movement of the whole population produces an evolutionary
process from disorder to order in the problem-solving space. D.V.
Yamille et al. [58] applied PSO to the optimization of power
systems. A. Adid et al. [59] used PSO for feature selection thus
improving the accuracy of vehicle classification tasks.

Genetic algorithms are designed and proposed according to
the evolutionary laws of organisms in nature. They are com-
monly used to generate high-quality solutions to optimization
and search problems by relying on biologically inspired operators
such as mutation, crossover and selection. N. A. Al-Madi et al. [60]
used genetic algorithms to optimize traffic signal timers, thus re-
ducing congestion periods in urban traffic. H. M. Balaha et al. used
genetic algorithms for hyperparameter selection in the COVID-19
segmentation and identification framework to achieve state-of-
the-art metrics [61].

Evolutionary algorithms are well suited to black box problems
where mathematical optimization models are difficult to build. So
the ideas of these two algorithms can be well incorporated into
the searching process for learning rate schedules.

3. DPLRS

In this section, we model the core part of the distributed deep
learning training process and give the optimization of the model
solving process by DPLRS based on the population idea.

3.1. Deep learning model

The most common deep neural network formulation is de-
scribed as using the model f to optimize a set of parameters 6 to
obtain the minimum (or maximum) values of the objective func-
tion L (including classification, prediction, clustering, regression,
etc.). Usually, optimization methods such as stochastic gradient
descent are used to iteratively update the trainable parameters 0
until it makes the objective function meet a certain threshold or
reach a preset number of training times.

In each iteration, the updating of model parameters is affected
by learning rate A. DPLRS provides a method to optimize the
learning rate A for objective function L in distributed data parallel
environment. Each round of parameter updating is shown in the
following formula (1):

0 = Iteration(6|\) (1)

The common iterative updating of neural network is shown in
formula (2):
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01 =0, — A VL(O,)+ B(O; — 0._1) (2)

A and B represent the two most typical hyperparameters,
learning rate and momentum coefficient, And in the widely used
mini-batch gradient descent, (2) above is rewritten as:

N B
Et Z VLi(6;)+ B(0; — 0,_1)

i=1

01 =0, — (3)

Where B represents the batch size, we can intuitively see from
the above equation that adjusting the batch size and modifying
the learning rate are equivalent, and the paper [41] demonstrates
this experimentally, so we only need to adjust the learning rate
to take into account the effects of these two hyperparameters.

The parameters are updated in a chain, and the ideal optimal
solution should meet the following requirements:

6" = Optimize(8|(A,)_,)

4
= Iteration(Iteration(...Iteration(@|A1)...)|Ar_1| A1) “)

However, considering the iteration steps T and the calculation
cost of each step, it can be computationally expensive to find the
optimal parameter group for training, and it usually takes days,
weeks, or even months to optimize 6. In addition, this strategy is
also very sensitive to the learning rate schedule (A[)le, the wrong
choices of learning rate may lead to the bad solution or even the
optimization of 6 cannot converge. The correct choices of learning
rate schedule require the existence or finding of prior knowledge
about A. Therefore, the usual practice is to let the whole training
use constant learning rate A; or use a simple schedule (such as
using the scheduler provided by Pytorch to adjust the learning
rate every a few steps). No matter which of the two methods is
used, it is necessary to search over multiple possible values of the
learning rate A.

0" = Optimize(#|1*), A* = arg min L(optmise(0|)) (5)
reAT

3.2. Algorithm description

As an intelligent algorithm for efficient and fast execution of
formula(4), the DPLRS is shown in Algorithm 1:

We consider that the entire training cluster is composed of
N working nodes. Each node has its own combination of param-
eters and learning rate 6;, A;. Initially, all nodes have the same
parameters:

0; = 0o (6)

Then, in the process of iterative training of the deep learning
model, on the one hand, BSP is used to update the global param-
eters regularly; on the other hand, the optimal learning rates are
continuously explored according to the specific conditions. After
the training, the optimal model is obtained from the cluster.

In order to achieve the above goals, the DPLRS introduces
the basic idea of the population (evolutionary) algorithms. The
population algorithm draws on the evolutionary characteristics
of biological populations in nature, including elementary opera-
tions such as genetic coding, population initialization, crossover
mutation operators, and gene retention mechanisms. Compared
with optimization algorithms such as calculus-based methods
and exhaustive methods, population algorithms are a series of
mature global optimization algorithms with high robustness and
wide applicability [62]. They have the characteristics of self-
organization, self-adaptive, and self-learning. They can effectively
deal with complex problems (such as NP-hard optimization prob-
lems) which are difficult to solve by traditional optimization
algorithms without the limitation of the properties of the prob-
lem. Inspired by PSO and GA, we designed the genetic process
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Algorithm 1 Distributed Population Learning Rate Schedule(DPLRS)

0 is the initial parameter value of each node
A is the initial learning rate of each node
0" is the optimal model parameter value
p is the evaluation of the model’s performance
P is the Population
t means the current training is the t iteration.
i means the current training is the i epoch.
for (0, A,p) € P do
while not end of training do
0 = Iteration(6|A)
p+=1L0)
if readyp(p, P) then
if Completed an epoch training then
0,1 = allreduce(0;)/n
else
VL(6,) = allreduce(VL(6;))/n
Ory1 =0: — A VL(6,) + (0 — 0:—1)
if readyhp(p, P) then
Aiise = allgather([p;, A:])
L = min(Ayse)
if 1;! = A* then
Xir1 = inherit(A*)
Aip1 = mutate(diyq)
0" = getmaxAccuracy()
return best parameter 6*

> One iteration of DL training using learning rate A
> Evaluate the current model using loss values
> Allreduce and average model parameters over all nodes

> Allreduce and average model gradients over all nodes
> Updates the model parameters

> Allgather the combination of each node loss value and learning rate
> Select the learning rate with the smallest loss value as the optimal learning rate

> Replace the current learning rate with the optimal learning rate
> Generate new learning rate

> Obtain the global optimal model parameters

of learning rate (inherit(A+)), each node can inherit the optimal
learning rate of the entire cluster from the optimal node every
time the learning rate is updated. At the same time, we also de-
sign mutation operation(mutate(A)), which expands new learning
rates on the basis of the existing optimal learning rate and better
explores the search space of the learning rate.

Each node in the cluster is trained in data parallel. Each
node utilizes the rest of the node training results by sum() and
average() model parameter gradients at the completion of each
batch training and sum() and average() model parameters at the
completion of each epoch training. The Iteration() function is
called repeatedly to continuously update the local node param-
eters. The readyp(p, P) function is used to determine whether
the model satisfies the condition of parameter update, and if
the result is True, then parameter update is performed for all
nodes. And readyhp(p, P) function is used to determine whether
the model satisfies the condition of hyperparameter update, and
if the result is True, then hyperparameter update of all nodes
is performed. When all nodes in the cluster meet the readyp()
condition (for example, when all nodes have executed several
batches After training), the allreduce() function is called to syn-
chronously complete the reduction operation of all parameters,
and then the result obtained is divided by the number of nodes
as the parameters for further training of all working nodes; at
the same time, when all nodes conform with readyhp() condition
(readyhp() condition is irrelevant to readyp() condition), we call
the allgather() function to obtain the combination ([p;, A;]) of
the model performance evaluation p; (such as the cumulative
values of the loss function) and the learning rates A; at current
stage(from the last execution of readyhp() to this time) of each
node and then use the min() function to obtain the combination
of evaluation and learning rate with the optimal evaluation index
(e.g., lowest loss value), and record the optimal learning rate as
A*. Then each node will make a judgment, if its own hyperparam-
eters are A*, the hyperparameters remain unchanged, otherwise,
the inherit() and mutate() functions will be executed to update
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the hyperparameter values. After updating the parameters and
learning rates, continue to execute Iteration() function. Repeat the
above cyclic update process until the model converges.

Inherit() and Mutate() operations can be adjusted according
to the application requirements. In the deep learning training
environment described in this paper, Iteration() function is to
complete a mini-batch stochastic gradient descent (minibatch
SGD), L() function represents to calculate the loss values of each
training, and accumulate it in the variable p, Inherit() function
is to inherit the learning rates from the optimal node, Mutate()
function is to explore new learning rates for gradient based
learning by adding disturbance to the optimal learning rate at this
stage. The readyp() condition and readyhp() condition depend on
the choices of the update time, which are often triggered when
the cumulative gradient (loss function) is large enough to produce
significant gradient-based learning. In general, the update time of
learning rates and parameters does not have to be the same.

In this paper, the meaning of each function of Algorithm 1 is
shown in Table 1.

4. Experimental results and analysis

This section details the application of the DPLRS algorithm to
the classification task of typical deep models AlexNet, VGG16 and
ResNet18 trained in parallel on distributed synchronous data for
the Cifar-10 and ImageNet dataset using the Tianhe-3 supercom-
puting prototype platform.

4.1. Tianhe-3 supercomputing prototype

The processors used in the Tianhe-3 supercomputing proto-
type include FT-2000+ (FTP) and MT-2000+ (MTP). FTP contains
64 FTC662 processor cores of armv8 architecture, operating at
2.2-2.4 GHZ, with an on-chip integrated 32MB secondary cache,
providing 204.8GB/s access bandwidth and typical operating en-
ergy consumption of about 100 W. And the MTP processor, which
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Table 1
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DPLRS Function description.

Name

Descriptions

Iteration(0|A)

All nodes iteratively select data locally to perform the forward and backward propagation of
mini-batch gradient descent.

readyp(p, P)

Determine if the training status is in either of the following two conditions. First, the gradient update
of the model parameters is based on the condition that all nodes of the distributed cluster satisfy the
training batchsize = 64(Then each node performs allreduce() global gradient synchronization and
averaging, then uses the learning rate of each node to update the model parameters); second, when an
epoch is completed, all nodes also perform allreduce() to synchronize the model parameters once to
ensure that the initial weights of each node are the same at the beginning of each epoch training.

allreduce(6;)

Get the model parameters of each node and sum them up.

allreduce(VL(0;))

Get the model parameter gradients of each node and sum them up.

readyhp(p, P)

Determine if each node has completed an epoch training.

allgather([pi, Ail)

Get the combination of loss value and learning rate of each node, and aggregate the results into a list.

min(Arist )

Obtain the learning rate in the combination with the lowest loss value in Ajg.

inherit(1*)

Replace the local learning rate with the best performing learning rate from the previous epoch in the

node cluster.

mutate(Xit1)

Multiply the locally updated learning rate by a random perturbation of 0.8 to 1.2 as a new learning

rate to expand the learning rate search space.

getmaxAccuracy(6) Infer the test dataset using model parameters of each node to get the model parameters with the
highest accuracy.
Table 2
Basic Situation Of Tianhe-3 Prototype System.
Specifications FT-2000+ MT-2000+
Hardware Nodes 128 512
Cores in a node 32 32
Frequency 2.4 GHZ 2.0 GHZ
Memory 64 GB 16 GB
Interconnect bandwidth 200 Gbps 200 Gbps
Software 0S Kylin 4.0-1a OS with kernel v4.4.0
File system Lustre
MPI MPICH v3.2.1
Compiler GCC v4.9.1/v4.9.3
Supported libraries Boost, BLAS, OpenBLAS, Scalapack, etc.
e

_§
| |
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Fig. 1. FT2000+ Processor Architecture [63].

contains a total of 128 custom processor cores, is organized into
4 supernodes with a maximum main frequency of 2.0GHZ and
consumes 240 W. The processor architecture of FTP and MTP is
shown in the following Figs. 1 and 2 [63].

In the Tianhe-3 supercomputing prototype, as shown in Ta-
ble 2, both FTP and MTP are divided to use 32 cores as one
compute node(Unless otherwise specified, the FTP and MTP de-
scribed subsequently in this paper denote an FTP node (32 cores)
or MTP node (32 cores) in the Tianhe-3 supercomputing proto-
type, and not the FT-2000+ processor (64 cores) and the MT-
2000+ processor (128 cores)), which is probably done to provide
more compute nodes for complex computational tasks [30]. The
compute nodes are managed and allocated by a batch scheduling
system. In FTP, 32 cores share 64G of memory, while in MTP, 32
cores share 16G of memory. They both come with Kylin 4.0-1a
operating system with kernel v4.4.0. In addition, the prototype
cluster interconnect technology designed and implemented by
the National University of Defense Technology provides 200Gbps
bi-directional interconnect bandwidth.

44

Fig. 2. MT2000+ Processor Architecture [63].
4.2. Experimental environment setting

We complete the above training on PyTorch, a widely ac-
cepted deep learning training platform, in the environment of the
Tianhe-3 supercomputing prototype platform.

During the experiments, up to 128 MTP nodes (4096 proces-
sor cores) and 32 FTP nodes (1024 processor cores) were used
respectively for AlexNet, VGG16 and ResNet18 networks using
the DPLRS algorithm and the latest population algorithm PBT
and fixed learning rate strategy on the Cifar-10 and ImageNet
dataset, respectively 300 epochs were trained, and each set of
experiments was conducted 10 times, and then the mean value of
the 10 experiments was taken. The size of the batchsize of each
node was always kept as 64.

The source of the advancement of the DPLRS algorithm is the
use of a combination of distributed training and population algo-
rithms to optimize the learning rate schedule selection, and the
DPLRS algorithm can be combined with many existing learning
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rate optimizers. To validate the effectiveness and efficiency of our
algorithm, we combined the DPLRS algorithm with the SGDR [41]
learning rate optimization algorithm currently used on the WRN
(SAM) [64] model, which is the most advanced performer on the
Cifar-10, Cifar-100 and Food-101 image recognition datasets. In
order to minimize changes to the source code provided in [64]
and to keep the experimental environment as close as possi-
ble to [64], we used an LTHPC platform environment (64-core
Intel(R) Xeon(R) Silver 4216 CPU, 128 GB Memory, 2 NVIDIA
GeForce RTX 3090 GPUs). The initial learning rate for all learning
rate optimizers is 0.1, momentum is 0.9, total batchsize is 128,
and other dynamic optimizer parameters use the torch.optimize
default parameters.

The concrete implementation of the underlying communica-
tion code uses the “MPI” framework for the Tianhe-3 supercom-
puting prototype platform and the “GLOO” framework for the
GPU platform, both provided by the torch.distributed package.

4.3. Experimental results

4.3.1. DPLRS on the cifar-10 dataset

As shown in Table 3, Table 4, Table 5 below, the use of DPLRS
optimization algorithm has excellent performance in AlexNet,
VGG16 and ResNet18 models in training Cifar-10 dataset, and
significantly improves the training speed while ensuring that the
final model test set classification accuracy is comparable to that
of the PBT algorithm while using the same number of working
nodes and training the same number of epochs.

The time spent in training AlexNet, VGG16 and ResNet18 net-
works by DPLRS and PBT in the experiments using MTP is shown
in Table 3, the 8, 16, 32, 64, and 128 nodes were achieved at max
7.63x, 15.18x, 30.23x, 59.7 1%, and 123.85x speedups, respectively,
compared to the baseline PBT model.

As shown in Table 5, the DPLRS had the highest test set
classification accuracy both in AlexNet and ResNet18 models, and
achieved comparable results with PBT in the VGG16 model in
our experiments. Both DPLRS and PBT performed better than
static learning rate training in all three models. The experimental
results show that we can ensure the effectiveness of DPLRS well
by making each node use the results of the rest nodes at proper
scenarios for the update of the model parameters and the model
parameter gradients.

To fully validate the effectiveness of the algorithm, we con-
ducted similar experiments in using FTP, which showed that the
training speed of 8, 16, and 32 nodes in AlexNet, VGG16, and
ResNet18 networks was improved by 7.52x, 15.33x, and 30.40x,
respectively, compared to the baseline PBT model.

Although training the model using fixed epochs is the most
common training configuration, the data-parallel approach essen-
tially expands the batchsize of each Iteration and thus requires
more iterations to achieve the same convergence as the non-data-
parallel algorithm [65]. Therefore, in order to compare DPLRS and
PBT more fairly, we counted the time required to reach the same
loss value for different node configurations of the two algorithms
separately.

The experimental results are shown in Table 6. The exper-
imental results show that DPLRS achieves the highest 59.72x,
72.40x and 62.23x speedup ratios compared to PBT on AlxeNet,
VGG16 and ResNet18 models, respectively, when reaching the
same loss value.

In the process of training DNN models using the DPLRS al-
gorithm, the training dataset was first performed with data en-
hancement operations in the pre-processing stage, thus ensuring
good robustness of the DPLRS algorithm. To demonstrate the
robustness of the DPLRS algorithm, our experiments were per-
formed with random image rotation, flip and resize perturbations
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Fig. 3. Learning Rate during training of AlexNet.

on the test set samples when calculating the test set accuracy,
as shown in Table 7. AlexNet, VGG16 and ResNet18 all achieved
comparable accuracy to the original test set when tested using the
noisy dataset in. The experimental results provide good evidence
of the robustness of the DPLRS algorithm.

To verify the reliability of the DPLRS algorithm on large
datasets, we extend similar experiments to the ImageNet dataset,
where the highest 122.9x speedup ratio compared to PBT can
be obtained using DPLRS on the ImageNet dataset. Details of the
experimental results are shown in Appendix A.

4.3.2. DPLRS with SGDR

As shown in Tables 8 and 9, our DPLRS with SGDR achieves
a better performance than the SGDR algorithm in [64] on the
Cifar-10 and Cifar-100 datasets by up to 0.17% and 0.36% model
accuracy improvement, while ensuring that the training speed-up
ratio is consistent with the original DPLRS. Experimental results
show that if we use the same initial learning rate and batchsize
settings as the static method, the dynamic optimizer yields poor
results.

4.4. Experimental analysis

This section models the final classification accuracy improve-
ment of the model and the speed improvement of the pop-
ulation algorithm from DPLRS, respectively, and combines the
experimental results to fully demonstrate the effectiveness and
reliability of DPLRS.

4.4.1. Accuracy improvement analysis

The improvement of the DPLRS algorithm for model classifi-
cation results mainly stems from the ability to dynamically and
adaptively adjust the learning rate during training, so that the
learning rate during training is always in the best part of the
sampling range and is adjusted over time. As shown in Fig. 3
below, during the 300 rounds of training the AlexNet network(8
Nodes) using the DPLRS algorithm to adjust the learning rate, the
learning rate can automatically decay with the training process,
which is very consistent with previous experience in training
neural networks (see Fig. 4).

When the learning rate is large, the model will accelerate
learning, making it easier to approach the local or global optimal
solution, but at the same time there will be large fluctuations,
and when it is close to convergence, even the value of the loss
function hovers around the minimum value, always difficult to
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Table 3
Training Time of AlexNet, VGG16 and ResNet18 Models(mins) on Cifar-10 dataset.
8 MTPs 16 MTPs 32 MTPs 64 MTPs 128 MTPs 8 FTPs 16 FTPs 32 FTPs
PBT-Alex 15163.32 15314.44 15265.53 15313.13 16508.27 13414.42 13409.01 13431.62
DPLRS-Alex 1995.15 1026.03 522.36 256.47 13329 1785.55 887.70 455.07
PBT-VGG16 32407.41 32426.18 32752.02 32492.08 32925.31 28283.53 28522.15 28425.66
DPLRS-VGG16  4257.16 2136.65 1083.42 546.14 277.86 3765.54 1860.71 935.07
PBT-Res18 70108.91 69592.29 69709.30 70491.15 70224.28 60772.19 60768.75 60747.86
DPLRS-Res18 8952.02 4398.54 2265.16 1134.25 570.07 7796.13 3904.41 1951.20
Table 4
Average One Epoch Training Time of AlexNet, VGG16 and ResNet18 Models(mins) on Cifar-10 dataset.
8 MTPs 16 MTPs 32 MTPs 64 MTPs 128 MTPs 8 FTPs 16 FTPs 32 FTPs
PBT-Alex 50.54 51.05 50.88 51.04 55.02 4471 44.69 4477
DPLRS-Alex 6.65 3.42 1.7412 0.85 0.44 5.95 2.96 152
PBT-VGG16 108.02 108.08 109.17 108.30 109.75 94.27 95.07 94.75
DPLRS-VGG16 14.19 7.12 3.61 1.82 0.93 12.55 6.20 3.12
PBT-Res18 233.69 231.97 232.36 234.97 234.08 202.57 202.56 202.49
DPLRS-Res18 29.84 14.66 7.55 3.78 1.90 25.99 13.01 6.50
Table 5 although each node uses the same model at the initial moment of
Training Accuracy of AlexNet, VGG16 and ResNet18 Models on Cifar-10 dataset. each epoch, the model we use to discriminate between good and
AlexNet VGG16 ResNet18 bad learning rates is trained by each node using the same number
DPLRS 0.8474 0.864 0.8744 of different local data of each node, while the PBT algorithm
PBT 0.8458 0.8645 0.8738 requires that the models used for comparison are obtained from
Static 08272 08504 08551 the same models starting with the exact same data and trained
for the same number of iterations, so this restricts PBT from using
data parallelism, and only the same models with same datasets
224 8 MIPS.Alexhet can be trained at different learning rates at the same time. So that
1 8 FTPS AlexNet ) .
204 Although PBT also performs learning rate update after completing
1 the training of one epoch, the time to train one epoch for PBT is
87 about N times that of DPLRS (because PBT trains one epoch with
16 N times more data than DPLRS), which is the reason why DPLRS
w14 is N times faster than PBT for the same number of epochs trained.
i 1.0 We can relax the learning rate update based on mini-batch
g ]l SGD stochastic gradient descent is valid on the premise that
21044 each time the mini-batch data used for training satisfies the
Sosd I assumption of independent identical distribution, which means
aad | that although the models we compare each time are trained with
1 different data (of the same size), these data satisfy independent
041 N identical distribution, so the training results can reflect the good
0.2 ‘“\,,,% or bad learning rate, which was confirmed in our experiments.
004 Te—— : : . In the process of distributed deep learning training using mini-
0 100 200 300 batch stochastic gradient descent, the number of nodes involved
Epochs in training is N, the total number of training epochs is n, the Size

Fig. 4. Loss Values during training of AlexNet.

reach the optimum, so the introduction of learning rate decay,
first large and then small learning rate can improve the conver-
gence effect of the model. Compared with the static learning rate
adjustment methods of decaying the learning rate in specified
rounds and introducing exponential decay, DPLRS can select the
optimal learning rate in real time according to the training state
of each node, and the mutation operation can play the role of
simulated annealing to make the learning rate selection more
likely to go beyond the local optimum and tend to the global
optimum.

4.4.2. Acceleration efficiency analysis

The outperformance of DPLRS over PBT near-node number (N)
is mainly due to the fact that DPLRS relaxes the condition of
population learning rate update.

We make all nodes use only 1/N of the total data as their local
training dataset, and each node updates its learning rate using
the DPLRS algorithm after completing an epoch of training using
its own learning rate and local data, which means that for DPLRS,
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of the dataset is S, the Batchsize per node is B, the training time
of each node per batch is u, the communication time between
nodes is ¢. According to the Algorithm 1 (DPLRS) and the trigger
condition of each function in Table 1 the total single training time
Tppigs can be obtained as:

(7)

n
NB
Meanwhile, the total training time of the PBT algorithm is:

TppLrs = X (14 + @ppLrs) + NYDPLRS

(8)

We can find that the PBT training time is independent of the
number of nodes N by Eq. (8). No matter how many nodes we
use, each node processes the same amount of data (always the
whole training dataset). The training time for each epoch depends
on how long it takes for the slowest node in the cluster to finish
training. Our FTP cluster or MTP cluster are both homogeneous,
which means that the training time of each node is also almost
the same.

When the model has a large number of layers and depth and a
complex structure, the node computation overhead will be much
larger than the communication overhead. The computation and

ns
Tppr = 5K + 2ngppr
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Table 6
Training Time of AlexNet, VGG16 and ResNet18 Models(mins) on Cifar-10 dataset(end at same loss).
8 MTPs 16 MTPs 32 MTPs 64 MTPs 128 MTPs 8 FTPs 16 FTPs 32 FIPs

PBT-Alex 7214.20 7303.24 7261.56 7277.24 7833.17 6528.3462 6582.93 6522.15
DPLRS-Alex 1190.35 656.64 363.56 203.124 131.15 1059.43 568.83 313.21
PBT-VGG16 10370.37 10162.96 9858.07 10350.97 10557.99 9050.56 8960.05 9228.85
DPLRS-VGG16 1416.78 738.42 402.16 230.68 145.82 1253.17 714.51 448.83
PBT-Res18 20097.55 19717.81 19843.91 20113.43 20943.51 17421.30 17461.82 17434.63
DPLRS-Res18 3289.56 1710.15 942.17 538.99 336.57 2754.63 1489.92 799.73

Table 7
Training Accuracy of AlexNet, VGG16 and ResNet18 Models on Cifar-10 dataset
with noise.

AlexNet VGG16 ResNet18
DPLRS 0.8479 0.8628 0.8736
Table 8
Training Accuracy of Cifar-10 Dataset.
2 nodes 4 nodes 8 nodes
SGDR 97.02 97.05 97.16
ADAM 79.12 80.62 82.81
DPLRS 97.12 97.21 97.33
Table 9
Training Accuracy of Cifar-100 Dataset.
2 nodes 4 nodes 8 nodes
SGDR 83.00 83.03 83.18
ADAM 38.12 43.12 38.75
DPLRS 83.14 83.36 83.54
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Fig. 5. Computation and communication time using the AlexNet model on the
Cifar-10 dataset.

communication time per epoch during the training of AlexNet
model with different numbers of nodes are shown in Fig. 5(see
Appendix B for the detailed experimental results), Tppigs /Tppr Will
tend to be 1/n, which means that the algorithm proposed in this
paper will be n times faster than the PBT algorithm.

There exist studies parallelize population algorithms, which
may reduce the training time of PBT, but it can be a promising
approach needs further exploration.

If the termination condition of our training model is that the
model loss value reaches a certain threshold, the value of n in
Tppis is different from the value of n in Tppr at this point, and
the exact acceleration ratio depends on the actual situation of the
different n values in the two algorithms.
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4.4.3. Algorithm effectiveness analysis

The theoretical guarantee of using population algorithms in
deep neural network training is indeed a fundamental problem.
These papers [56,66,67] emphasize that the population algorithm
is highly dependent on stochastic processes, which makes it dif-
ficult to guarantee convergence. At the same time, the paper [10]
points out that the setting of the learning rate schedule requires a
large number of trial-and-error iterations, and is hard to directly
formulate the search of the learning rate schedule as a well-posed
optimization problem and address it through standard optimiza-
tion. Despite the lack of a theoretical proof, we demonstrate the
effectiveness of our algorithm through extensive experiments.
Theoretical proofs are not the subject of this paper and we will
explore the convergence to guarantee of population algorithms
such as DPLRS in more depth in subsequent research.

5. Conclusion

We propose a distributed deep learning DPLRS algorithm
based on the joint optimization of particle swarm algorithm and
genetic algorithm based on the population idea.

DPLRS utilizes data parallelism based on BSP synchronization
protocol, and jointly borrows the genetic operation designed by
particle swarm algorithm and the mutation operation designed
by genetic algorithm to automatically and periodically adjust the
learning rate according to the model’s performance during the
training process. Experimental results using different strategies
on several typical deep neural network models show that the
DPLRS algorithm can improve the training time by a factor of
nearly n (n is the number of training nodes) while maintaining
nearly the same final test set accuracy as the state-of-the-art
population algorithm.

In the future, we will try to use more advanced population
algorithms in combination with more hyperparameter optimiza-
tion. And, we will continue to explore theoretical guarantees
for the incorporation of population algorithms with deep neural
network learning rate schedule.
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Table 10
DPLRS compared to PBT speedup ratio on ImageNet dataset.
8 MTPs 16 MTPs 32 MTPs 64 MTPs 128 MTPs 8 FTPs 16 FIPs 32 FIPs
AlexNet 7.567 15.16 29.25 59.54 122.9 7.387 15.29 29.98
VGG16  7.497 15.10. 30.18 58.68 119.6 7577 1512 29.84
Res50 7.895 16.09 30.92 62.89 121.88 7.880  15.83 31.36
Table 11
DPLRS total training time and communication time.
8 MTPs 16 MTPs 32 MTPs 64 MTPs 128 MTPs 8 FIPs 16 FTPs 32 FIPs DataSet
AlexNet-TOTAL 6.651 3.422 1.7412 0.8549 0.4443 5.95 2.959 15169 Cifar-10
AlexNet-Comm 0.2432 0.1413 0.1634 0.6618 0.0512 0.3434 0.1776 0.1167 Cifar-10
VGG16-TOTAL 14.19 7.125 36114 1.820 0.9262 12.55 6.200 3.1169 Cifar-10
VGG16-Comm 0.3896 0.3208 0.1759 0.1005 0.0773 0.5513 0.2236 0.2035 Cifar-10
Res50-TOTAL 29.84 14.66 7.55 3.7821 1.901 25.98 13.01 6.5040 Cifar-10
Res50-Comm 0.4641 0.2834 0.3034 0.1828 0.1014 0.5317 0.3287 0.1295 Cifar-10
AlexNet-TOTAL 824.22 415.21 203.31 102.32 52.54 753.09 364.36 180.07 ImageNet
AlexNet-Comm 58.61 38.31 18.27 9.96 6.13 43.46 31.02 14.57 ImageNet
VGG16-TOTAL 1758 864.4 426.5 219.1 109.9 1588 769.7 370.9 ImageNet
VGG16-Comm 49.00 36.52 20.73 12.03 9.456 69.81 43.46 24.21 ImageNet
Res50-TOTAL 3253 1597 822.9 397.9 199.9 2832 1418 708.5 ImageNet
Res50-Comm 95.52 58.14 50.06 30.04.15 14.74 58.93 34.88 15.27 ImageNet
Appendix A. DPLRS training results on ImageNet dataset [6] T.Yin, N. Liu, H. Sun, Self-paced active learning for deep CNNs via effective
loss function, Neurocomputing (2021) 1-8.
We conducted 300 epoch experiments on ImageNet dataset [7] J.Pevlir}], M.-W Chang, K. Lee, K. Toutanova, Bertl: Pre-training of deep
. ? . bidirectional transformers for language understanding, North Am. Chapter
using AlexNet, VGQ]G and ResNet50 moglels respectively in order Assoc. Comput. Linguist. (2019) 4171-4186.
to verify the effectiveness of DPLRS algorithm on large dataset, we [8] T.. Lin, R. Goyal, et al., Focal loss for dense object detection, in: Proceed-
also used the experimental settings of minimum 8 and maximum ings Of The IEEE International Conference On Computer Vision, 2017, pp.
128 MTP nodes and minimum 8 and maximum 32 FTP nodes, 2980-2988. . ,
and the speedup of DPLRS over PBT algorithm under different (9] }N Liu, Y. Wen, Z. Yu, et al, Sphereface: Deep hypersphere embedding
. R . or face recognition, in: Proceedings Of The IEEE Conference On Computer
experimental settings are shown in Table 10 below. Vision And Pattern Recognition, 2017, pp. 212-220.
The above three models for experiments on ImageNet and [10] Y. Jin, T. Zhou, L. Zhao, et al., AutoLRS: Automatic learning-rate schedule
Cifar-10 were obtained by fine-tuning the models based on those by l?ayesian optimization on the fly, in: Proceedings Of The International
: fes : Conference On Learning Representations, 2021.
provided by .the torchvision.models() paCka.ge' reSpeCtlvely'Tl.]e [11] K. Kawaguchi, Deep lefrninpg without poor local minima, in: Proceedings
results of testing on the ImageNet dataset using a completely dif- Of The Conference On Neural Information Processing Systems, 2016, pp.
ferent test set of images to the training set provide good evidence 586-594.
of the algorithm’s generalization performance. The experimental [12] L Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
results also show that the DPLRS algorithm can also obtain high [13] C.Jin, R..Ge, P. Netrapalli, et gl., How to escape saddle ppints efﬁcjently, in:
speed—up ratios on large datasets. E;ocle;;l;nglsn?zf The International Conference On Machine Learning, 2017,
[14] Z.Li, S. Arora, An exponential learning rate schedule for deep learning, in:
Appendix B. DPLRS computing and communication overhead Proceedings Of The International Conference On Learning Representations,
2020.
To demonstrate that when the model is complex, as described [15] AH. Victoria, G. Maragatham, Automatic tuning of hyperparameters using
s . gt . . Bayesian optimization, Evol. Syst. (2021) 217-223.
in Section _4'4'2' the communication Flme is a low percentage of [16] M. Jaderberg, V. Dalibard, S. Osindero, et al., Population based training of
the total time during each Epoch training. We counted the total neural networks, 2017, arXiv preprint arXiv:1711.09846.
time and communication time during the training of AlexNet, [17] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
VGG16 and ResNet (using ResNet18 on the Cifar-10 dataset and Proceedings Of The International Conference On Learning Representations,
: 2015.
ResNet50 on the ImageNet .dataset) models on the Cifar-10 aqd [18] M.D. Zeiler, Adadelta: an adaptive learning rate method, 2012, arXiv
ImageNet datasets, respectively, and the results are shown in preprint arXiv:1212.5701.
Table 11.As the number of nodes increases, the number of times [19] R. Esteban, A. Alok, H. Yanping, L. Quoc V., Regularized evolution for image
each EpOCh performs communication is greatly reduced, resulting classifier architecture search, in: Proceedings Of The AAAI Conference On
in less overall communication time Artificial Intelligence, 2019, pp. 4780-4789.
[20] C. Edoardo, M. Vashisht, S.F. Petroski, et al., Improving exploration in evolu-
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