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ABSTRACT

Graph neural networks (GNNs) are prominent in the graph machine learning
domain, owing to their strong performance across various tasks. A recent focal
area is the space of graph self-supervised learning (SSL), which aims to derive
useful node representations without labeled data. Notably, many state-of-the-
art graph SSL approaches are contrastive methods, which use a combination of
positive and negative samples to learn node representations. Owing to challenges
in negative sampling (slowness and model sensitivity), recent literature introduced
non-contrastive methods, which instead only use positive samples. Though such
methods have shown promising performance in node-level tasks, their suitability for
link prediction tasks, which are concerned with predicting link existence between
pairs of nodes, and have broad applicability to recommendation systems contexts,
is yet unexplored. In this work, we extensively evaluate the performance of existing
non-contrastive methods for link prediction in both transductive and inductive
settings. While most existing non-contrastive methods perform poorly overall,
we find that, surprisingly, BGRL generally performs well in transductive settings.
However, it performs poorly in the more realistic inductive settings where the
model has to generalize to links to/from unseen nodes. We find that non-contrastive
models tend to overfit to the training graph and use this analysis to propose T-BGRL,
a novel non-contrastive framework that incorporates cheap corruptions to improve
the generalization ability of the model. This simple modification strongly improves
inductive performance in 5/6 of our datasets, with up to a 120% improvement
in Hits@50—all with comparable speed to other non-contrastive baselines, and
up to 14× faster than the best-performing contrastive baseline. Our work imparts
interesting findings about non-contrastive learning for link prediction and paves
the way for future researchers to further expand upon this area.

1 INTRODUCTION

Graph neural networks (GNNs) are ubiquitously used modeling tools for relational graph data, with
widespread applications in chemistry (Chen et al., 2019; Guo et al., 2021; 2022a; Liu et al., 2022),
forecasting and traffic prediction (Derrow-Pinion et al., 2021; Tang et al., 2020), recommendation
systems (Ying et al., 2018b; He et al., 2020; Sankar et al., 2021; Tang et al., 2022; Fan et al., 2022),
graph generation (You et al., 2018; Fan & Huang, 2019; Shiao & Papalexakis, 2021), and more.
Given significant challenges in obtaining labeled data, one particularly exciting recent direction is
the advent of graph self-supervised learning (SSL), which aims to learn representations useful for
various downstream tasks without using explicit supervision besides available graph structure and
node features (Zhu et al., 2020; Jin et al., 2021; Thakoor et al., 2022; Bielak et al., 2022).

One prominent class of graph SSL approaches are contrastive methods (Jin et al., 2020). These
methods typically utilize contrastive losses such as InfoNCE (Oord et al., 2018) or margin-based
losses (Ying et al., 2018b) between node and negative sample representations. However, such
methods usually require either many negative samples (Hassani & Ahmadi, 2020) or carefully chosen
ones (Ying et al., 2018b; Yang et al., 2020), where the first one results with quadratic number of
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in-batch comparisons, and the latter is especially expensive on graphs since we often store the sparse
adjacency matrix instead of its dense complement (Thakoor et al., 2022; Bielak et al., 2022). These
drawbacks motivated the development of non-contrastive methods (Thakoor et al., 2022; Bielak et al.,
2022; Zhang et al., 2021; Kefato & Girdzijauskas, 2021), based on advances in the image domain
(Grill et al., 2020; Chen & He, 2021; Chen et al., 2020), which do not require negative samples
and solely rely on augmentations. This allows for a large speedup compared to their contrastive
counterparts with strong performance (Bielak et al., 2022; Zhang et al., 2021).

However, non-contrastive SSL methods are typically evaluated on node-level tasks, which is a more
direct analog of image classification in the graph domain. In comparison, the link-level task (link
prediction), which focuses on predicting link existence between pairs of nodes, is largely overlooked.
This presents a critical gap in understanding: Are non-contrastive methods suitable for link prediction
tasks? When do they (not) work, and why? This gap presents a huge opportunity, since link prediction
is a cornerstone in the recommendation systems community (He et al., 2020; Zhang & Chen, 2019;
Berg et al., 2017).

Present Work. To this end, our work first performs an extensive evaluation of non-contrastive SSL
methods in link prediction contexts to discover the impact of different augmentations, architectures,
and non-contrastive losses. We evaluate all of the (to the best of our knowledge) currently existing
non-contrastive methods: CCA-SSG (Zhang et al., 2021), Graph Barlow Twins (GBT) (Bielak et al.,
2022), and Bootstrapped Graph Latents (BGRL) (Thakoor et al., 2022) (which has the same design
as the independently proposed SelfGNN (Kefato & Girdzijauskas, 2021)). We also compare these
methods against a baseline end-to-end GCN (Kipf & Welling, 2017) with cross-entropy loss, and two
contrastive baselines: GRACE (Zhu et al., 2020), and a GCN trained with max-margin loss (Ying
et al., 2018a). We evaluate the methods in the transductive setting and find that BGRL (Thakoor
et al., 2022) greatly outperforms not only the other non-contrastive methods, but also GRACE—a
strong augmentation-based contrastive model for node classification. Surprisingly, BGRL even
performs on-par with a margin-loss GCN (with the exception of 2/6 datasets). However, in the more
realistic inductive setting, which considers prediction between new edges and nodes at inference
time, we observe a huge gap in performance between BGRL and a margin-loss GCN (ML-GCN).
Upon investigation, we find that BGRL is unable to sufficiently push apart the representations of
negative links from positive links when new nodes are introduced, owing to a form of overfitting. To
address this, we propose T-BGRL, a novel non-contrastive method which uses a corruption function
to generate cheap “negative” samples—without performing the expensive negative sampling step
of contrastive methods. We show that it greatly reduces overfitting tendencies, and outperforms
existing non-contrastive methods across 5/6 datasets on the inductive setting. We also show that
it maintains comparable speed with BGRL, and is 14× faster than the margin-loss GCN on the
Coauthor-Physics dataset.

Main Contributions. In short, our main contributions are as follows:

• To the best of our knowledge, this is the first work to explore link prediction with non-contrastive
SSL methods.

• We show that, perhaps surprisingly, BGRL (an existing non-contrastive model) works well in
the transductive link prediction, with performance at par with contrastive baselines, implicitly
behaving similarly to other contrastive models in pushing apart positive and negative node pairs.

• We show that non-contrastive SSL models underperform their contrastive counterparts in the
inductive setting, and notice that they generalize poorly due to a lack of negative examples.

• Equipped with this understanding, we propose T-BGRL, a novel non-contrastive method that
uses cheap “negative” samples to improve generalization. T-BGRL is simple to implement, very
efficient when compared to contrastive methods, and improves on BGRL’s inductive performance
in 5/6 datasets, making it at or above par with the best contrastive baselines.

2 PRELIMINARIES

Notation. We denote a graph as G = (V, E), where V is the set of n nodes (i.e., n = |V|) and
E ⊆ V × V be the set of edges. Let the node-wise feature matrix be denoted by X ∈ Rn×f ,
where f is the number of raw features, and its i-th row xi is the feature vector for the i-th node.
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Let A ∈ {0, 1}n×n denote the binary adjacency matrix. We denote the graph’s learned node
representations as H ∈ Rn×d, where d is the size of latent dimension, and hi is the representation
for the i-th node. Let Y ∈ {0, 1}n×n be the desired output for link prediction, as E and A may have
validation and test edges masked off. Similarly, let Ŷ ∈ {0, 1}n×n be the output predicted by the
decoder for link prediction. Let ORC be a perfect oracle function for our link prediction task, i.e.,
ORC(A,X) = Y . Let NEIGH(u) = {v | (u, v) ∈ E ∨ (v, u) ∈ E}. Note that we use the terms
“embedding” and “representation” interchangeably in this work.

GNNs for Link Prediction. Many new approaches have also been developed with the recent advent
of graph neural networks (GNNs). A predominant paradigm is the use of node-embedding-based
methods (Hamilton et al., 2017; Berg et al., 2017; Ying et al., 2018b; Zhao et al., 2022b). Node-
embedding-based methods typically consist of an encoder H = ENC(A,X) and a decoder DEC(H).
The encoder model is typically a message-passing based Graph Neural Network (GNN) (Kipf &
Welling, 2017; Hamilton et al., 2017; Zhang et al., 2020). The message-passing iterations of a GNN
for a node u can be described as follows:

h(k+1)
u = UPDATE(k)

(
h(k)
u , AGGREGATE(k)({h(k)

v ,∀v ∈ NEIGH(u)})
)

(1)

where UPDATE and AGGREGATE are differentiable functions, and h
(0)
u = xu. The decoder model is

usually an inner product or MLP applied on a concatenation of Hadamard product of the source and
target learned node representations (Rendle et al., 2020; Wang et al., 2021).

Graph SSL. Below, we define a few terms used throughout our work which helps set the context for
our discussion.

Definition 2.1 (Augmentation). An augmentation AUG+ is a label-preserving random transfor-
mation function AUG+ : (A,X)→(Ã, X̃) that does not change the oracle’s expected value:
E[ORC(AUG+(A,X))] = Y .

Definition 2.2 (Corruption). A corruption AUG− is a label-altering random transformation AUG− :
(A,X) → (Ǎ, X̌) that changes the oracle’s expected value: E[ORC(AUG−(A,X))] ̸= Y .1

Definition 2.3 (Contrastive Learning). Contrastive methods select anchor samples (e.g. nodes) and
then compare those samples to both positive samples (e.g. neighbors) and negative samples (e.g.
non-neighbors) relative to those anchor samples.

Definition 2.4 (Non-Contrastive Learning). Non-contrastive methods select anchor samples, but only
compare those samples to variants of themselves, without leveraging other samples in the dataset.

BGRL. While we examine the performance of all of the non-contrastive graph models, we focus
our detailed analysis exclusively on BGRL2 (Thakoor et al., 2022) due to its superior performance
in link prediction when compared to GBT (Bielak et al., 2022) and CCA-SSG (Zhang et al., 2021).
BGRL consists of two encoders, one of which is referred to as the online encoder ENCθ; the other
is referred to as the target encoder ENCϕ. BGRL also incorporates a predictor PRED (typically a
MLP) and two sets of augmentations: A+

1 ,A+
2 . A single training step for BGRL is as follows: (a)

we apply these augmentations: (Ã(1), X̃(1)) = AUG+
1 (A,X); (Ã(2), X̃(2)) = AUG+

2 (A,X). (b)
we perform forward propagation H = ENC(Ã(1), X̃(1));H2 = ENC(Ã(2), X̃(2)). (c) we pass the
output through the predictor Z = PRED(H1). (d) we use the mean pairwise cosine distance of Z
and H2 as the loss (see Eqn. 2). (e) ENCθ is updated via backpropagation and ENCϕ is updated via
exponential moving average (EMA) from ENCθ. The BGRL loss is as follows:

LBGRL = − 2

n

n−1∑
i=0

z̃i · h(2)
i

||z̃i|| ||h(2)
i ||

(2)

In the next section, we evaluate BGRL and other non-contrastive link prediction methods against
contrastive baselines.

1Note that the definition of these functions are different from the corruption functions in Zhu et al. (2020)
(which we define as augmentations) and are instead similar to the corruption functions in Veličković et al. (2018).

2Self-GNN (Kefato & Girdzijauskas, 2021), which was published independently, also shares the same
architecture. As such, we refer to these two methods as BGRL.
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3 DO NON-CONTRASTIVE LEARNING METHODS PERFORM WELL ON LINK
PREDICTION TASKS?

Several non-contrastive methods have been proposed and have shown effectiveness in node classifica-
tion (Kefato & Girdzijauskas, 2021; Thakoor et al., 2022; Zhang et al., 2021; Bielak et al., 2022).
However, none of these methods evaluate or target link prediction tasks. We thus aim to answer
the following questions: First, how well do these methods work for link prediction compared to
existing contrastive/end-to-end baselines? Second, do they work equally well in both transductive
and inductive settings? Finally, if they do work, why; if not, why not?

Differences from Node Classification. Link prediction differs from node classification in several
key aspects. First, we must consider the embedding of both the source and destination nodes. Second,
we have a much larger set of candidates for the same graph—O(n2) instead of O(n). Finally, in real
applications, link prediction is usually treated as a ranking problem, where we want positive links to
be ranked higher than negative links, rather than as a classification problem, e.g. in recommendation
systems, where we want to retrieve the top-k most likely links (Cremonesi et al., 2010; Hubert et al.,
2022). We discuss this in more detail in Section 3.1 below. Given these differences, it is unclear if
methods performing well on node classification naturally perform well on link prediction tasks.

Ideal Link Prediction. What does it mean to perform well on link prediction? We clarify this point
here. For some nodes u, v, w ∈ V , let (u, v) ∈ E and (u,w) ̸∈ E . Then, an ideal encoder for link
prediction would have DIST(hu,hv) < DIST(hu,hw) for some distance function DIST. This idea
is the core motivation behind margin-loss-based models (Ying et al., 2018a; Hamilton et al., 2017).

3.1 EVALUATION

Datasets. We use datasets from three different domains: citation networks, co-authorship networks,
and co-purchase networks. We use the Cora and Citeseer citation networks (Sen et al., 2008),
the Coauthor-CS and Coauthor-Physics co-authorship networks, and the Amazon-Computers
and Amazon-Photos co-purchase networks (Shchur et al., 2018). We include dataset statistics in
Appendix A.1.

Metric. Following work in the heterogeneous information network (Chen et al., 2018), knowledge-
graph (Lin et al., 2015), and recommendation systems (Cremonesi et al., 2010; Hubert et al., 2022)
communities, we choose to use Hits@k over AUC-ROC metrics, since we often empirically prioritize
ranking candidate links from a selected node context (e.g. ranking the probability that user A will
buy item B, C, or D), as opposed to arbitrarily ranking a randomly chosen positive over negative
link (e.g. ranking whether the probability that user A buys item B is more likely than user C does
not buy item D). We report Hits@50 (k = 50) to strike a balance between the smaller datasets like
Cora and the larger datasets like Coauthor-Physics. However, for completeness of the evaluation,
we also include AUC-ROC results in Appendix A.8.

Decoder. Since our goal is to evaluate the performance of the encoder, we use the same decoder for
all of our experiments across all of the methods. The choice of decoder has also been previously
studied (Wang et al., 2021; 2022), so we use the best-performing decoder - a Hadamard product MLP.
For a candidate link (u, v), we have Ŷ = DEC(hu ∗ hv) where ∗ represents the Hadamard product,
and DEC is a two-layer MLP (with 256 hidden units) followed by a sigmoid. For the self-supervised
methods, we first train the encoder and freeze its weights before training the decoder. As a contextual
baseline, we also report results on an end-to-end GCN (E2E-GCN), for which we train the encoder
and decoder jointly, backpropagating a binary cross-entropy loss on link existence.

3.1.1 TRANSDUCTIVE EVALUATION

Transductive Setting. We first evaluate the performance of the methods in the transductive setting,
where we train on Gtrain = (V, Etrain) for Etrain ⊂ E , validate our method on Gval = (V, Eval)
for Eval ⊂ (E − Etrain), and test on Gtest = (V, Etest) for Etest = E − Etrain − Eval. Note that the
same nodes are present in training, validation, and testing. We also do not introduce any new edges
during inference time—inference is performed on Etrain.

Results. The results of our evaluation are shown in Table 1. As expected, the end-to-end GCN
generally performs the best across all of the datasets. We also find that CCA-SSG and GBT similarly
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Table 1: Transductive performance of different link prediction methods. We bold the best-performing
method and underline the second-best method for each dataset. BGRL consistently outperforms other
non-contrastive methods and GRACE, and also outperforms ML-GCN, on 3/6 datasets.

End-To-End Contrastive Non-Contrastive
Dataset E2E-GCN ML-GCN GRACE CCA-SSG GBT BGRL
Cora 0.816±0.013 0.815±0.002 0.686±0.056 0.348±0.091 0.460±0.149 0.792±0.015

Citeseer 0.822±0.017 0.771±0.020 0.707±0.068 0.249±0.168 0.472±0.196 0.858±0.020

Amazon-Photos 0.642±0.029 0.430±0.032 0.486±0.025 0.369±0.013 0.434±0.038 0.562±0.013

Amazon-Computers 0.426±0.036 0.320±0.060 0.240±0.027 0.201±0.032 0.258±0.008 0.346±0.018

Coauthor-CS 0.762±0.010 0.787±0.011 0.456±0.066 0.229±0.018 0.298±0.033 0.515±0.016

Coauthor-Physics 0.798±0.018 0.810±0.003 OOM 0.157±0.009 0.187±0.011 0.476±0.015
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Figure 1: These plots show similarities between node embeddings. Left: distribution of positive/nega-
tive link similarities for BGRL. Right: distribution of positive/negative link similarities for ML-GCN.
We can see that while they behave similarly, the ML-GCN does a better job of ensuring that posi-
tive/negative links are well separated. These scores are computed on Amazon-Photos.

perform poorly relative to the other methods. This is intuitive, as neither method was designed for
link prediction and were only evaluated for node classification in their respective papers. Surprisingly,
however, BGRL outperforms the ML-GCN (the strongest contrastive baseline) on 3/6 of the datasets
and performs similarly on 1 other (Cora). It also outperforms GRACE across all of the datasets.

Understanding BGRL Performance. Interestingly, we find that BGRL exhibits similar behavior
to the ML-GCN on many datasets, despite the BGRL loss function (see Equation (2)) not explicitly
optimizing for this. Relative to an anchor node u, we can express the max-margin loss of the ML-GCN
as follows:

L(u) = Ev∼NEIGH(u)

[
Ew∼E−NEIGH(u)J(u, v, w)

]
(3)

where J(u, v, w) is the margin ranking loss for an anchor u, positive sample v, and negative w:

J(u, v, w) = max{0,hu · hv − hu · hw +∆} (4)

and ∆ is a hyperparameter for the size of the margin. This seemingly explicitly optimizes for the
aforementioned ideal link prediction behavior (anchor-aware ranking of positive over negative links).
Despite these circumstances, Figure 1 shows that both BGRL and ML-GCN both clearly separate
positive and negative samples, although ML-GCN pushes them further apart. We provide some
intuition on why this may occur in Appendix A.10 below.

Why Does BGRL Not Collapse? The loss function for BGRL (see Equation (2)) is 0 when h
(2)
i = 0

or z̃i = 0, i.e., the loss is minimized when the model produces all-zero outputs. While theoretically
possible, this is clearly undesirable behavior since this does not result in useful embeddings. We refer
to this case as model collapse. It is not fully understood why non-contrastive models do not collapse,
but there have been several reasons proposed in the image domain with both theoretical and empirical
grounding. We discuss this more in Appendix A.9. Consistent with the findings from Thakoor et al.
(2022), we find that collapse does not occur in practice (with reasonable hyperparameter selection).

Conclusion. We find that CCA-SSG and GBT generally perform poorly compared to contrastive
baselines. Surprisingly, we find that BGRL generally performs well in the transductive setting by
successfully separating positive and negative link distance distributions. However, this setting may
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Table 2: Performance of various methods in the inductive setting. See Section 3.1.2 for an explanation
of our inductive setting. Although we do not introduce T-BGRL until Section 4, we include the results
here to save space.

End-To-End Contrastive Non-Contrastive

Dataset E2E-GCN ML-GCN GRACE GBT CCA-SSG BGRL T-BGRL

Overall

Cora 0.523±0.019 0.490±0.028 0.448±0.043 0.135±0.077 0.120±0.018 0.324±0.184 0.568±0.033

Citeseer 0.621±0.034 0.661±0.036 0.514±0.053 0.305±0.026 0.170±0.071 0.526±0.055 0.727±0.027

Coauthor-Cs 0.484±0.048 0.572±0.037 0.313±0.017 0.182±0.025 0.176±0.013 0.438±0.025 0.534±0.026

Coauthor-Physics 0.386±0.016 0.550±0.059 OOM 0.112±0.014 0.037±0.051 0.439±0.013 0.463±0.023

Amazon-Computers 0.179±0.010 0.279±0.044 0.212±0.057 0.172±0.015 0.155±0.013 0.270±0.034 0.312±0.027

Amazon-Photos 0.420±0.123 0.478±0.008 0.262±0.010 0.289±0.032 0.182±0.072 0.460±0.023 0.450±0.017

Performance on Observed-Observed Node Edges

Cora 0.574±0.020 0.490±0.029 0.557±0.038 0.149±0.084 0.124±0.026 0.345±0.196 0.624±0.027

Citeseer 0.610±0.023 0.621±0.021 0.602±0.050 0.358±0.031 0.197±0.082 0.605±0.045 0.768±0.021

Coauthor-Cs 0.504±0.047 0.591±0.034 0.332±0.018 0.187±0.023 0.177±0.013 0.462±0.025 0.535±0.026

Coauthor-Physics 0.390±0.015 0.566±0.058 OOM 0.117±0.014 0.039±0.054 0.445±0.012 0.469±0.023

Amazon-Computers 0.177±0.009 0.278±0.044 0.212±0.059 0.169±0.016 0.155±0.014 0.270±0.034 0.313±0.027

Amazon-Photos 0.418±0.123 0.483±0.009 0.265±0.011 0.295±0.031 0.185±0.070 0.467±0.023 0.457±0.015

Performance on Observed-Unobserved Node Edges

Cora 0.462±0.023 0.487±0.021 0.367±0.045 0.128±0.075 0.115±0.014 0.309±0.175 0.528±0.037

Citeseer 0.645±0.055 0.705±0.039 0.458±0.063 0.280±0.024 0.148±0.067 0.487±0.064 0.708±0.034

Coauthor-Cs 0.459±0.049 0.545±0.042 0.284±0.017 0.175±0.026 0.177±0.013 0.402±0.025 0.536±0.027

Coauthor-Physics 0.379±0.019 0.525±0.058 OOM 0.106±0.013 0.035±0.048 0.429±0.013 0.455±0.022

Amazon-Computers 0.183±0.010 0.281±0.045 0.213±0.056 0.177±0.014 0.155±0.011 0.270±0.034 0.312±0.027

Amazon-Photos 0.424±0.123 0.470±0.007 0.258±0.011 0.279±0.032 0.178±0.076 0.449±0.022 0.439±0.021

Performance on Unobserved-Unobserved Node Edges

Cora 0.239±0.027 0.507±0.063 0.252±0.066 0.100±0.076 0.125±0.020 0.287±0.164 0.463±0.065

Citeseer 0.595±0.073 0.681±0.101 0.287±0.039 0.137±0.019 0.126±0.043 0.271±0.078 0.595±0.045

Coauthor-Cs 0.372±0.043 0.483±0.046 0.230±0.019 0.159±0.037 0.157±0.011 0.341±0.032 0.517±0.032

Coauthor-Physics 0.365±0.024 0.505±0.065 OOM 0.098±0.013 0.034±0.047 0.424±0.014 0.445±0.026

Amazon-Computers 0.183±0.008 0.275±0.046 0.214±0.052 0.181±0.015 0.155±0.012 0.265±0.032 0.305±0.029

Amazon-Photos 0.419±0.126 0.461±0.014 0.251±0.010 0.265±0.044 0.172±0.084 0.442±0.028 0.416±0.027

not be representative of real-world problems. In the next section, we evaluate the methods in the
more realistic inductive setting to see if this performance holds.

3.1.2 INDUCTIVE EVALUATION

Inductive Setting. While we observe some promising results in favor of non-contrastive methods
(namely, BGRL) in the transductive setting, we note that this setting is not entirely realistic. In
practice, we often have both new nodes and edges introduced at inference time after our model is
trained. For example, consider a social network upon which a model is trained at some time t1 but is
used for inference (for a GNN, this refers to the message-passing step) at time t2, where new users
and friendships have been added to the network in the interim. Then, the goal of a model run at
time t2 would be to predict any new links at new network state t3 (although we assume there are
no new nodes introduced at that step since we cannot compute the embedding of nodes without
performing inference on them first). To simulate this setting, we first partition the graph into two
sets of nodes: “observed” nodes (that we see during training) and “unobserved nodes” (that are only
used for inference and testing). We then withhold a portion of the edges at each of the time steps
t3, t2, t1 to serve as testing-only, inference-only, and training-only edges, respectively. We describe
this process in more detail in Appendix A.4.

Results. Table 2 shows that in the inductive setting, BGRL is outperformed by the contrastive
ML-GCN on all datasets. It still outperforms CCA-SSG and GBT, but it is much less competitive in
the inductive setting. We next ask: what accounts for this large difference in performance?

Why Does BGRL Not Work Well in the Inductive Setting? One possible reason for the poor
performance of BGRL in the inductive setting is that it is unable to correctly differentiate unseen
positives from unseen negatives, i.e., it is overfitting on the training graph. Intuitively, this could
happen due to a lack of negative samples—BGRL never pushes samples away from each other. We
show that this is indeed the case in Figure 2, where BGRL’s negative link score distribution has heavy
overlap with its positive link score distribution. We can also see this behavior in Figure 1 where the
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Figure 2: These plots show similarities between node embeddings on Citeseer. Left: distribution
of similarity to non-neighbors for T-BGRL and BGRL. Right: distribution of similarity to neighbors
for T-BGRL and BGRL. Note that the y-axis is on a logarithmic scale. T-BGRL clearly does a better
job of ensuring that negative link representations are pushed far apart from those of positive links.

EMA

Figure 3: T-BGRL architecture diagram. The loss function is also shown in Equation (5).

ML-GCN does a clearly better job of pushing positive/negative samples far apart, despite BGRL’s
surprising success. Naturally, improving the separation between these distributions increases the
chance of a correct prediction. We investigate this hypothesis in Section 4 below and propose T-BGRL
(Figure 3), a novel method to help alleviate this issue.

4 IMPROVING INDUCTIVE PERFORMANCE IN A NON-CONTRASTIVE
FRAMEWORK

In order to reduce this systematic gap in performance between ML-GCN (the best-performing
contrastive model) and BGRL (the best-performing non-contrastive model), we observe that we need
to push negative and positive node pair representations further apart. This way, pairs between new
nodes—introduced at inference time—have a higher chance of being classified correctly. Contrastive
methods utilize negative sampling for this purpose, but we wish to avoid negative sampling owing to
high computational cost. In lieu of this, we propose a simple, yet powerfully effective idea below.

Model Intuition. To emulate the effect of negative sampling without actually performing it, we
propose Triplet-BGRL (T-BGRL). In addition to the two augmentations performed during standard
non-contrastive SSL training, we add a corruption to function as a cheap negative sample. For each
node, like BGRL, we minimize the distance between its representations across two augmentations.
However, taking inspiration from triplet-style losses (Hoffer & Ailon, 2014), we also maximize the
distance between the augmentation and corruption representations.

Model Design. Ideally, this model should not only perform better than BGRL in the inductive setting,
but should also have the same time complexity as BGRL. In order to meet these expectations, we
design efficient, linear-time corruptions (same asymptotic runtime as the augmentations). We also
choose to use the online encoder ENCϕ to generate embeddings for the corrupted graph so that
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T-BGRL does not have any additional parameters. Figure 3 illustrates the overall architecture of the
proposed T-BGRL, and Algorithm 1 presents PyTorch-style pseudocode. Our new proposed loss
function is as follows:

LT-BGRL =
λ

n

n−1∑
i=0

z̃i · ȟi

||z̃i|| ||ȟi||︸ ︷︷ ︸
T-BGRL Loss Term

− (1− λ)

n

n−1∑
i=0

z̃i · h(2)
i

||z̃i|| ||h(2)
i ||︸ ︷︷ ︸

BGRL Loss

(5)

where λ is a hyperparameter controlling the repulsive forces between augmentation and corruption.

Algorithm 1: PyTorch-style pseudocode for
T-BGRL
# Enc_o: online encoder network
# Enc_t: target encoder network
# Pred: predictor network
# lam: trade-off
# decay: EMA decay parameter
# g: input graph
# feat: node features

g1, feat1 = augment(g, feat) # augmentation #1
g2, feat2 = augment(g, feat) # augmentation #2
c_g, c_feat = corrupt(g, feat) # corruption

h1 = Enc_o(g1, feat1)
h2 = Enc_t(g2, feat2)
c_z = Enc_t(c_g, c_feat)
z1 = Pred(z1)

loss = lam*cosine_similarity(z1, c_z) \
- (1-lam)*cosine_similarity(z1, h2)

loss.backward() # backprop

# Update Enc_t with EMA
Enc_t.params = decay * Enc_t.params \

+ (1-decay) * Enc_o.params

Corruption Choice. We experiment with sev-
eral different corruptions methods, but limit
ourselves to linear-time corruptions in order
to maintain the efficiency of BGRL. We find
that SHUFFLEFEATRANDOMEDGE(A,X) =
(Ǎ, X̌), where Ǎ∼{0, 1}n×n and X̌ =
SHUFFLEROWS(X) works the best. We de-
scribe each of the different corruptions we ex-
perimented with in Appendix A.7.

Inductive Results. Table 2 shows that T-BGRL
improves inductive performance over BGRL in
5/6 datasets, with very large improvements in
the Cora and Citeseer datasets. The only
dataset where BGRL outperformed T-BGRL is
the Amazon-Photos dataset. However, this gap
is much smaller (0.01 difference in Hits@50)
than the improvements on the other datasets. We
plot the scores output by the decoder for unseen
negative pairs compared to those for unseen pos-
itive pairs in Figure 2. We can see that T-BGRL pushes apart unseen negative and positive pairs much
better than BGRL.

Table 3: Transductive performance of T-BGRL
compared to ML-GCN and BGRL (same numbers
as Table 1 above; full figure in Table 5).

Dataset ML-GCN BGRL T-BGRL

Cora 0.815 0.792 0.773±0.020

Citeseer 0.771 0.858 0.868±0.023

Coauthor-Cs 0.787 0.515 0.555±0.009

Coauthor-Physics 0.810 0.476 0.471±0.021

Amazon-Computers 0.320 0.346 0.315±0.015

Amazon-Photos 0.430 0.562 0.517±0.016

Transductive Results. We also evaluate the
performance of T-BGRL in the transductive set-
ting to ensure that it does not significantly re-
duce performance when compared to BGRL.
See Table 3 on the right for the results.

Difference from Contrastive Methods. While
our method shares some similarities with con-
trastive methods, we believe T-BGRL is strictly
non-contrastive because it does not require the
O(n2) sampling from the complement of the
edge index used by contrastive methods. This is clearly shown in Figure 4, where T-BGRL and BGRL
have similar runtimes and are much faster than GRACE and ML-GCN. The corruption can be viewed
as a “negative” augmentation—with the only difference being that it changes the expected label
for each link. In fact, one of the corruptions that we consider, SPARSIFYFEATSPARSIFYEDGE, is
essentially the same as the augmentations using by BGRL (except with much higher drop probability).
We discuss other corruptions below in Appendix A.7.

Scalability. We evaluate the runtime of our model on different datasets. Figure 4 shows the running
times to fully train a model for different contrastive and non-contrastive methods over 5 different
runs. Note that we use a fixed 10,000 epochs for GRACE, CCA-SSG, GBT, BGRL, and T-BGRL, but
use early stopping on the ML-GCN with a maximum of 1,000 epochs. We find that (i) T-BGRL is
comparable to BGRL in runtime owing to efficient choices of corruptions, (ii) it is about 4.3× faster
than GRACE on Amazon-Computers (the largest dataset which GRACE can run on), and (ii) it is
14× faster than ML-GCN. CCA-SSG is the fastest of all the methods but performs the worst. As
mentioned above, we do not compare with SEAL (Zhang & Chen, 2018) or other subgraph-based
methods due to how slow they are during inference. SUREL (Yin et al., 2022) is ~250× slower, and
SEAL (Zhang & Chen, 2018) is about ~3900× slower according to Yin et al. (2022). In conclusion,
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we find that T-BGRL is roughly as scalable as other non-contrastive methods, and much more scalable
than existing contrastive methods.

5 OTHER RELATED WORK
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Figure 4: Total runtime comparison of different
contrastive and non-contrastive methods. T-BGRL
and BGRL have relatively similar runtimes and are
significantly faster than the contrastive methods
(GRACE and ML-GCN).

Link Prediction. Link prediction is a long-
standing graph machine learning task. Some
traditional methods include (i) matrix (Menon &
Elkan, 2011; Wang et al., 2020) or tensor factor-
ization (Acar et al., 2009; Dunlavy et al., 2011)
methods which factor the adjacency and/or fea-
ture matrices to derive node representations
which can predict links equipped with inner
products, and (ii) heuristic methods which score
node pairs based on neighborhood and over-
lap (Yu et al., 2017; Zareie & Sakellariou, 2020;
Philip et al., 2010). Several shallow graph em-
bedding methods (Grover & Leskovec, 2016;
Perozzi et al., 2014) which train node embed-
dings by random-walk strategies have also been
used for link prediction. In addition to the node-
embedding-based GNN methods mentioned in Section 2, several works (Yin et al., 2022; Zhang &
Chen, 2018; Hao et al., 2020) propose subgraph-based methods for this task, which aim to classify
subgraphs around each candidate link. Few works focus on scalable link prediction with distillation
(Guo et al., 2022b), decoder (Wang et al., 2022), and sketching designs (Chamberlain et al., 2022).

Graph SSL Methods. Most graph SSL methods can be put categorized into contrastive and non-
contrastive methods. Contrastive learning has been applied to link prediction with margin-loss-based
methods such as PinSAGE (Ying et al., 2018a), and GraphSAGE (Hamilton et al., 2017), where
negative sample representations are pushed apart from positive sample representations. GRACE (Zhu
et al., 2020) uses augmentation (Zhao et al., 2022a) during this negative sampling process to further
increase the performance of the model. DGI (Veličković et al., 2018) leverages mutual information
maximization between local patch and global graph representations. Some works (Ju et al., 2022; Jin
et al., 2021) also explore using multiple contrastive pretext tasks for SSL. Several works (You et al.,
2020; Lin et al., 2022) also focus on graph-level contrastive learning, via graph-level augmentations
and careful negative selection. Recently, non-contrastive methods have been applied to graph
representation learning. Self-GNN (Kefato & Girdzijauskas, 2021) and BGRL (Thakoor et al., 2022)
use ideas from BYOL (Grill et al., 2020) and SimSiam (Chen & He, 2021) to propose a graph
framework that does not require negative sampling. We describe BGRL in depth in Section 2 above.
Graph Barlow Twins (GBT) (Bielak et al., 2022) is adapted from the Barlow Twins model in the
image domain (Zbontar et al., 2021) and uses cross-correlation to learn node representations with
a shared encoder. CCA-SSG (Zhang et al., 2021) uses ideas from Canonical Correlation Analysis
(CCA) (Hotelling, 1992) and Deep CCA (Andrew et al., 2013) for their loss function. These models
are somewhat similar in that it has also been shown that Barlow Twins is equivalent to Kernel
CCA (Balestriero & LeCun, 2022).

6 CONCLUSION

To our knowledge, this is the first work to study non-contrastive SSL methods and their performance
on link prediction. We first evaluate several contrastive and non-contrastive graph SSL methods
on link prediction tasks, and find that surprisingly, one popular non-contrastive method (BGRL)
is able to perform well in the transductive setting. We also observe that BGRL struggles in the
inductive setting, and identify that it has a tendency to overfit the training graph, indicating it fails
to push positive and negative node pair representations far apart from each other. Armed with
these insights, we propose T-BGRL, a simple but effective non-contrastive strategy which works by
generating extremely cheap “negatives” by corrupting the original inputs. T-BGRL sidesteps the
expensive negative sampling step evident in contrastive learning, while enjoying strong performance
benefits. T-BGRL improves on BGRL’s inductive performance in 5/6 datasets while achieving similar
transductive performance, making it comparable to the best contrastive baselines, but with a 14×
speedup over the best contrastive methods.
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A APPENDIX

A.1 DATASET STATISTICS

Table 4: Statistics for the datasets used in our work.

Dataset Nodes Edges Features
Cora 2,708 5,278 1,433
Citeseer 3,327 4,552 3,703
Coauthor-Cs 18,333 163,788 6,805
Coauthor-Physics 34,493 495,924 8,415
Amazon-Computers 13,752 491,722 767
Amazon-Photos 7,650 238,162 745

A.2 MACHINE DETAILS

We run all of our experiments on either NVIDIA P100 or V100 GPUs. We use machines with 12
virtual CPU cores and 24 GB of RAM for the majority of our experiments. We exclusively use V100s
for our timing experiments. We ran our experiments on Google Cloud Platform.

A.3 TRANSDUCTIVE SETTING DETAILS

We use an 85/5/10 split for training/validation/testing data—following Zhang & Chen (2018); Cai
et al. (2020).

A.4 INDUCTIVE SETTING DETAILS

The inductive setting represents a more realistic setting than the transductive setting. For example,
consider a social network upon which a model is trained at some time t1 but is used for inference (for
a GNN, this refers to the message-passing step) at time t2, where new users and friendships have
been added to the network in the interim. Then, the goal of a model run at time t2 would be to predict
any new links at new network state t3 (although we assume there are no new nodes introduced at that
step since we cannot compute the embedding of nodes without performing inference on them first).
To simulate this setting, we first perform the following steps:

1. We withhold a portion of the edges (and the same number of disconnected node pairs) to
use as testing-only edges.

2. We partition the graph into two sets of nodes: “observed” nodes (that we see during training)
and “unobserved nodes” (that can only be seen during testing).

3. We mask out some edges to use as testing-only edges.
4. We mask out some edges to use as inference-only edges.
5. We mask out some edges to use as validation-only edges.
6. We mask out some edges to use as training-only edges.

As the test edges are sampled before the node split, there will be three kinds of them after the splitting.
Specifically: edges within observed nodes, edges between observed nodes and unobserved nodes, and
edges within unobserved nodes. For ease of data preparation, we use the same percentages for the
test edge splitting, unobserved node splitting, and validation edge splitting. Specifically, we mask out
30% of the edges (at each of the above stages) on the small datasets (Cora and Citeseer), and 10%
on all the other datasets. We use a 30% split on the small datasets to ensure that we have a sufficient
number of edges for testing and validation purposes.

A.5 EXPERIMENTAL SETUP

To ensure that we fairly evaluate each model, we run a Bayesian hyperparameter sweep for 25 runs
across each model-dataset combination with the target metric being the validation Hits@50. Each run
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Table 6: Area under the ROC curve for the methods in the transductive setting.

End-To-End Contrastive Non-Contrastive
Dataset E2E-GCN ML-GCN GRACE CCA-SSG GBT BGRL T-BGRL
Cora 0.911±0.004 0.893±0.007 0.883±0.020 0.647±0.076 0.736±0.109 0.911±0.008 0.910±0.005

Citeseer 0.922±0.006 0.891±0.006 0.863±0.042 0.661±0.050 0.755±0.120 0.934±0.009 0.953±0.003

Coauthor-Cs 0.964±0.005 0.966±0.001 0.961±0.003 0.758±0.047 0.894±0.017 0.959±0.002 0.956±0.002

Coauthor-Physics 0.978±0.001 0.986±0.000 OOM 0.821±0.051 0.834±0.084 0.961±0.002 0.963±0.001

Amazon-Computers 0.985±0.001 0.983±0.001 0.951±0.011 0.907±0.025 0.946±0.007 0.969±0.002 0.976±0.001

Amazon-Photos 0.989±0.000 0.983±0.002 0.981±0.001 0.939±0.008 0.956±0.015 0.980±0.000 0.982±0.000

is the result of the mean averaged over 5 runs (retraining both the encoder and decoder). We used the
Weights and Biases (Biewald, 2020) Bayesian optimizer for our experiments. We provide a sample
configuration file to reproduce our sweeps, as well as the exact parameters used for the top T-BGRL
runs shown in our tables.

We used the reference GRACE implementation and BGRL implementation but modified them for link
prediction instead of node classification. We based our E2E-GCN off of the OGB (Hu et al., 2020)
implementation. We re-implemented CCA-SSG and GBT. The code for all of our implementations
and modifications can be found in the link in our paper above.

A.6 FULL RESULTS

Table 5 shows the results of all the methods (including T-BGRL) on transductive setting.

Table 5: Full transductive performance table (combination of Tables 1 and 3).

End-To-End Contrastive Non-Contrastive
Dataset E2E-GCN ML-GCN GRACE CCA-SSG GBT BGRL T-BGRL
Cora 0.816±0.013 0.815±0.002 0.686±0.056 0.348±0.091 0.460±0.149 0.792±0.015 0.773±0.020

Citeseer 0.822±0.017 0.771±0.020 0.707±0.068 0.249±0.168 0.472±0.196 0.858±0.020 0.868±0.023

Amazon-Photos 0.642±0.029 0.430±0.032 0.486±0.025 0.369±0.013 0.434±0.038 0.562±0.013 0.517±0.016

Amazon-Computers 0.426±0.036 0.320±0.060 0.240±0.027 0.201±0.032 0.258±0.008 0.346±0.018 0.315±0.015

Coauthor-Cs 0.762±0.010 0.787±0.011 0.456±0.066 0.229±0.018 0.298±0.033 0.515±0.016 0.555±0.009

Coauthor-Physics 0.798±0.018 0.810±0.003 OOM 0.157±0.009 0.187±0.011 0.476±0.015 0.471±0.021

A.7 CORRUPTIONS

In this work, we experiment with the following corruptions:

1. RANDOMFEATRANDOMEDGE: Randomly generate an adjacency matrix Ã and X̃ with
the same sizes as A and X , respectively. Note that Ã and A also have the same number of
non-zero entries, i.e., the same number of edges.

2. SHUFFLEFEATRANDOMEDGE: Randomly shuffle the rows of X , and generate a random Ã
with the same size as A. Note that Ã and A also have the same number of non-zero entries,
i.e., the same number of edges.

3. SPARSIFYFEATSPARSIFYEDGE: Mask out a large percentage (we chose 95%) of the entries
in X and A.

Of these corruptions, we find that SHUFFLEFEATRANDOMEDGE works the best across our experi-
ments.

A.8 AUC-ROC RESULTS

Here we include the area under the ROC curve for each of the different models under both the
inductive and transductive settings. Note that we perform early stopping on the validation Hits@50
when training the link prediction model, not on the validation AUC-ROC.
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Table 7: AUC-ROC of various methods in the inductive setting. See Section 3.1.2 for an explanation
of our inductive setting.

End-To-End Contrastive Non-Contrastive

Dataset E2E-GCN ML-GCN GRACE GBT CCA-SSG BGRL T-BGRL

Overall

Cora 0.788±0.015 0.842±0.008 0.858±0.012 0.704±0.032 0.595±0.035 0.814±0.022 0.920±0.008

Citeseer 0.810±0.016 0.873±0.004 0.886±0.010 0.691±0.007 0.621±0.070 0.891±0.006 0.954±0.003

Coauthor-Cs 0.881±0.040 0.956±0.001 0.944±0.001 0.875±0.036 0.831±0.068 0.968±0.001 0.958±0.001

Coauthor-Physics 0.957±0.004 0.976±0.001 OOM 0.818±0.092 0.614±0.050 0.974±0.001 0.976±0.001

Amazon-Computers 0.974±0.009 0.981±0.001 0.972±0.012 0.919±0.023 0.910±0.031 0.980±0.002 0.982±0.002

Amazon-Photos 0.976±0.003 0.982±0.001 0.977±0.002 0.962±0.011 0.885±0.057 0.984±0.000 0.981±0.001

Performance on Observed-Observed Node Edges

Cora 0.827±0.011 0.834±0.010 0.883±0.010 0.714±0.034 0.584±0.047 0.800±0.025 0.929±0.005

Citeseer 0.792±0.014 0.840±0.013 0.905±0.012 0.705±0.019 0.635±0.078 0.875±0.006 0.956±0.005

Coauthor-Cs 0.886±0.037 0.951±0.001 0.947±0.002 0.874±0.037 0.828±0.070 0.967±0.001 0.955±0.002

Coauthor-Physics 0.959±0.004 0.976±0.001 OOM 0.819±0.091 0.615±0.049 0.974±0.001 0.975±0.001

Amazon-Computers 0.974±0.010 0.981±0.001 0.971±0.012 0.918±0.024 0.910±0.030 0.979±0.002 0.981±0.002

Amazon-Photos 0.976±0.003 0.981±0.001 0.977±0.002 0.962±0.011 0.885±0.055 0.983±0.000 0.981±0.001

Performance on Observed-Unobserved Node Edges

Cora 0.741±0.022 0.844±0.010 0.840±0.017 0.696±0.030 0.602±0.024 0.818±0.023 0.912±0.010

Citeseer 0.841±0.019 0.901±0.005 0.877±0.012 0.687±0.016 0.610±0.069 0.904±0.006 0.955±0.004

Coauthor-Cs 0.877±0.045 0.964±0.001 0.940±0.001 0.876±0.036 0.836±0.067 0.969±0.001 0.964±0.001

Coauthor-Physics 0.953±0.004 0.975±0.001 OOM 0.817±0.093 0.612±0.052 0.975±0.001 0.976±0.000

Amazon-Computers 0.974±0.009 0.981±0.001 0.973±0.011 0.921±0.022 0.909±0.032 0.980±0.002 0.982±0.002

Amazon-Photos 0.977±0.003 0.983±0.001 0.977±0.002 0.963±0.012 0.884±0.059 0.986±0.000 0.981±0.002

Performance on Unobserved-Unobserved Node Edges

Cora 0.571±0.043 0.879±0.016 0.810±0.019 0.693±0.039 0.626±0.040 0.866±0.024 0.911±0.011

Citeseer 0.852±0.047 0.917±0.021 0.827±0.029 0.637±0.052 0.599±0.062 0.916±0.012 0.941±0.011

Coauthor-Cs 0.850±0.059 0.964±0.001 0.928±0.004 0.877±0.034 0.839±0.061 0.967±0.002 0.966±0.001

Coauthor-Physics 0.949±0.006 0.978±0.001 OOM 0.818±0.091 0.613±0.056 0.978±0.001 0.981±0.001

Amazon-Computers 0.970±0.010 0.979±0.001 0.969±0.011 0.914±0.022 0.899±0.035 0.977±0.002 0.979±0.003

Amazon-Photos 0.978±0.004 0.982±0.002 0.977±0.002 0.965±0.011 0.886±0.063 0.986±0.001 0.982±0.003

A.9 WHY DOES BGRL NOT COLLAPSE?

The loss function for BGRL (see Equation (2)) is 0 when h
(2)
i = 0 or z̃i = 0. While theoretically

possible, this is clearly undesirable behavior since this does not result in useful embeddings. We refer
to this case as the model collapsing. It is not fully understood why non-contrastive models do not
collapse, but there have been several reasons proposed in the image domain with both theoretical
and empirical grounding. Chen & He (2021) showed that the SimSiam architecture requires both the
predictor and the stop gradient. This has also been shown to be true for BGRL. Tian et al. (2021)
claim that the eigenspace of predictor weights will align with the correlation matrix of the online
network under the assumption of a one-layer linear encoder and a one-layer linear predictor. Wen &
Li (2022) looked at the case of a two-layer non-linear encoder with output normalization and found
that the predictor is often only useful during the learning process, and often converges to the identity
function. We did not observe this behavior on BGRL—the predictor is usually significantly different
from that of the identity function.

A.10 HOW DOES BGRL PULL REPRESENTATIONS CLOSER TOGETHER?

Here we clarify the intuition behind BGRL pulling similar points together. To simplify this analysis,
we assume that the predictor is the identity function, which Wen & Li (2022) found is true in the
image representation learning setting. Although we have not observed this in the graph setting, this
assumption greatly simplifies our analysis and we argue it is sufficient for understanding why BGRL
works.

Suppose we have three nodes: an anchor node u, a neighbor v, and a non-neighbor w. That is, we
have (u, v) ∈ E , (u,w) ̸∈ E , and (v, w) ̸∈ E . Let u,v,w be the embeddings for u, v, w, respectively
(e.g. u = ENC(u)).
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Assuming homophily between the nodes, we have u · v < u ·w. For ease of visualization, let us
project the points in a 2D space. Then, we have the following:

We then apply the two augmentations on u, producing ũ1 = AUG1(u) and ũ2 = AUG2(u). For the
sake of simplicity, let us assume that we perform edge dropping and feature dropping with the same
probability p (in practice, they may be different from each other). We represent the space of possible
values for ũ1 and ũ2 as a circle with radius r centered at u, where r is controlled by p.

{

The BGRL loss is stated in Equation (2) above, but we rewrite it relative to our anchor u and with our
assumption about the predictor:

Lu = − ũ1 · ũ2

||ũ1|| ||ũ2||
(6)

Minimizing this loss pushes ũ1 and ũ2 closer. Let us denote the encoder after one round of
optimization as ENC′. Then:

E
[
||ENC′(AUG(u))− ENC′(AUG(u))||

]
< E [||ENC(AUG(u))− ENC(AUG(u))||] (7)

Note that v in this example lies within the space of possible augmentations - that is, v ∈ A, where A
is the set of all possible values of AUG(u). This means, as we repeat this process, we implicitly push
u and v closer together - leading to distributions like those shown in Figure 1.
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A.11 ADDITIONAL PLOTS
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Figure 5: These plots show similarities between node embeddings on Coauthor-Cs. Left: distribu-
tion of similarity to non-neighbors for T-BGRL and BGRL (closer to 0 is better). Right: distribution
of similarity to neighbors for T-BGRL and BGRL (closer to 1 is better). Note that the y-axis is on a
logarithmic scale. T-BGRL clearly does a better job of ensuring that negative link representations are
pushed far apart from those of positive links.
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Figure 6: These plots show similarities between node embeddings on Cora. Left: distribution of
similarity to non-neighbors for T-BGRL and BGRL (closer to 0 is better). Right: distribution of
similarity to neighbors for T-BGRL and BGRL (closer to 1 is better). Note that the y-axis is on a
logarithmic scale. T-BGRL clearly does a better job of ensuring that negative link representations
are pushed far apart from those of positive links, but does not do as well at differentiating between
positive links.
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