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Abstract—This paper employs model-free adaptive control
(MFAC) methods to investigate the trajectory tracking control
problem of second-order nonlinear multi-agent systems (MASs)
under mixed attacks. Initially, since mixed network attacks
significantly impact system stability, predictive-based compen-
sation mechanisms are designed to reduce the effects of these
attacks. Furthermore, based on the backstepping method and
MFAC techniques, virtual desired velocities are constructed to
decompose the second-order multi-agent systems into two inter-
connected subsystems. Moreover, leveraging the desired states of
each subsystem, distributed MFAC schemes are proposed using
the backstepping approach to achieve trajectory tracking control
of the second-order multi-agent systems. Finally, the effectiveness
of the proposed method is validated through two simulation
examples, demonstrating robustness and efficiency in countering
the adverse impacts of mixed attacks.

Index Terms—mixed attack, data-driven control, second-order
multi-agent systems, backstepping method

I. INTRODUCTION

In recent years, multi-agent systems have seen widespread
application and have emerged as a significant research direc-
tion in the field of network intelligence. These systems have
achieved numerous outstanding research results in various
practical fields, such as remote unmanned aerial vehicles
(UAVs) [1], multirotor drone systems [2], and multi-robot
systems [3]. Compared to traditional control systems, multi-
agent systems offer several advantages, including distribution,
autonomy, efficiency, and cost-effectiveness. These advantages
make multi-agent systems particularly appealing for a wide
range of applications, from industrial automation to environ-
mental monitoring, and from defense systems to intelligent
transportation networks.

Typically, current research on cooperative control problems
can be classified into three primary directions: leaderless
cooperative control [4], leader-follower cooperative control
[5], and containment control [6]. Leaderless cooperative con-
trol focuses on achieving consensus among agents without a
designated leader, emphasizing decentralized decision-making
and robustness to individual agent failures. Leader-follower
cooperative control, on the other hand, involves a hierarchical

structure where certain agents (leaders) guide the behavior
of the rest (followers), facilitating coordinated actions and
efficient task completion. Containment control aims at en-
suring that certain agents (leaders) steer the group of agents
(followers) to stay within a desired area or follow a specific
trajectory, which is crucial in applications such as formation
flying and swarm robotics.

In [7], predictive control algorithms are applied to multi-
agent systems with communication constraints. These predic-
tive control algorithms enable multi-agent systems to achieve
cooperative control even in the presence of network attacks.
By anticipating future states and adjusting control inputs ac-
cordingly, predictive control enhances the system’s resilience
to disruptions and uncertainties. This is particularly important
in scenarios where reliable communication cannot always
be guaranteed, and the system must adapt dynamically to
changing conditions and potential threats. The integration of
predictive control algorithms thus represents a significant ad-
vancement in the capability of multi-agent systems to operate
effectively in complex and adversarial environments, ensuring
robust performance and maintaining desired operational goals
despite the presence of network attacks.

It is worth noting that cybersecurity is critically important
in multi-agent systems. Generally speaking, network attacks
include denial of service (DoS) attacks, false data injection
(FDI) attacks, deception attacks, and others. These network
attacks often have various unexpected impacts on the sys-
tem, disrupting normal operations and potentially causing
significant damage. Therefore, in recent years, there has been
increasing attention to the study of denial of service attacks.
In [8], a cooperative security control strategy was proposed to
allow for non-periodic occurrences of attacks. In [9], an event-
triggered state observer was designed to treat attack signals
as states. In [10], compensation for attacks was achieved by
inversely compensating for deception attacks, mitigating their
adverse effects on the system.

It is noteworthy that most existing studies on multi-agent
systems under network attacks assume a fundamental con-
dition that the system model is known. However, in many



complex systems, acquiring an accurate model is challenging,
which significantly limits the depth and scope of research
on cooperative control. Nonetheless, since Hou et al. [11]
introduced the model-free control method based on input-
output (I/O) data, further developed in [12]-[13], this issue has
been addressed. The model-free control method relies solely
on the systems input and output data, without requiring a
specific mathematical model. This approach has opened new
possibilities for the study of many complex systems, allowing
researchers to explore cooperative control issues in greater
depth. To date, a substantial body of research has employed
this method to further investigate cooperative control problems
[14]-[15]. However, for more complex second-order systems,
this method still struggles to provide an adequate and com-
prehensive solution.

Backstepping is a pivotal control algorithm in the realm of
nonlinear control. The specific design process, as described
in reference [16], involves decomposing the model of the
controlled object into multiple subsystems to ensure stability.
Then, iterative design is applied to the intermediate virtual
control quantities, followed by tracking the expectations of
these virtual quantities to achieve desired control objectives.
Reference [17] introduces a backstepping tracking control
strategy based on state observers to enhance system perfor-
mance. Reference [18] utilizes a backstepping approach with
command control to avoid the complexity of intermediate
virtual quantities, simplifying the control process. Reference
[19] proposes a backstepping control strategy that addresses
the computational complexity inherent in traditional backstep-
ping control algorithms. Reference [20] combines backstep-
ping with model-free control to solve control problems by
decomposing second-order systems into two interconnected
subsystems. In summary, the combination of backstepping and
model-free control effectively addresses tracking control prob-
lems under external disturbances, providing robust solutions in
complex environments.

Inspired by the aforementioned research results, this article
explores leader-following control of second-order nonlinear
multi-agent systems based on backstepping. It considers mixed
network attacks and attack compensation mechanisms. In
comparison with other articles in the field of multi-agent
systems, the highlights of this article are:

(1) Proposing model-free adaptive control for second-order
MASs using the backstepping method, this approach track-
s and designs virtual desired velocities, decomposing the
second-order nonlinear system into two interconnected serial
subsystems, each designed without relying on models.

(2) Introducing lyapunov functions demonstrates that under
the MFAC algorithm, actual velocities promptly track desired
virtual velocities, achieving asymptotic stability of velocity
tracking errors.

(3) Considering mixed network attacks in sensor-controller
communication channels, including denial of service (DoS) at-
tacks, false data injection (FDI) attacks, and deception attacks
(DA), this study designs predictive-based attack compensation
mechanisms to ensure system stability.

The main content of this paper will be elaborated in detail
in the following sections. Section II introduces graph theory
and problem formalization. Section III presents the controller
design for second-order systems considering mixed network
attacks and convergence analysis. Section IV provides a nu-
merical case to demonstrate the control effectiveness of the
proposed control scheme. Section V concludes the paper.

II. GRAPH THEORY AND PROBLEM FORMULATION

A. Graph Theory

The set of real numbers is denoted by R. For any matrix
A ∈ RN×N , the norm is indicated as ‖A‖. The notation
Diag(·) represents a diagonal matrix, and I is the identi-
ty matrix with appropriate dimensions. Graph theory serves
as a crucial framework in multi-agent systems to model
interaction topologies. Consider a weighted directed graph
G = (V,E,A), where V = {1, 2, . . . , N} is the set of vertices,
E ⊆ V ×V is the set of edges, and A is the adjacency matrix.
The vertices V also function as indices for the agents.

When agent j receives a message from agent i, the edge
(i, j) ∈ E exists. Here, agent j is referred to as the child of
agent i, and agent i is the parent of agent j. The neighborhood
of agent i is described as Ni = {j ∈ V | (j, i) ∈ E}. The
weighted adjacency matrix A = (ai,j) ∈ RN×N is defined
such that ai,i = 0 and ai,j = 1 if (j, i) ∈ E; otherwise,
ai,j = 0.

The Laplacian matrix L of graph G is defined as L = D−A,
where D = diag(din,1, din,2, . . . , din,N ). The in-degree din,i
of vertex i is given by

∑N
j=1 ai,j . A graph is termed strongly

connected if a path exists between every pair of vertices.

B. Problem Formulation

Considering the following second-order discrete-time non-
linear system:

{
yp (k + 1) = hp(yp (k) , xp(k))
xp(k + 1) = fp(xp(k), up(k))

(1)

in this case, Additionally, fp(·) and hp(·) denotes an un-
known nonlinear function.

For System 1
Assumption 1 [21]: The system (1) adheres to the general-

ized Lipschitz condition, which implies that if ∆up(k) 6= 0,
then ∆xp(k + 1) ≤ b1∆up(k + 1), where ∆xp(k + 1) =
xp(k + 1) − xp(k) and ∆up(k + 1) = up(k + 1) − up(k).
Here, b1 is a positive constant.

Assumption 2 [21]: The partial derivatives of fp(·) with
respect to the system control input up(k) are continuous.

Assumption 3: The ratio of change in uq(k) to the change
in up(k) is bounded, i.e., |∆uq(k)/∆up(k)| < ς , where ς is
a positive constant.

Assumption 4 [22]: The directed graph G possesses a
directed spanning tree.

Remark 1: Assumptions 1 and 2 are commonly found in
control systems, facilitating the use of dynamic linearization
methods in this article. Assumption 3 will be applied in



the subsequent proof. Assumption 4 is crucial for achieving
leader-following consensus control.

Lemma 1 [23]: For system (1), if Assumptions 1 and 2 are
satisfied and |∆up(k)| 6= 0 for all time k, then a pseudo-partial
derivative (PPD) parameter Φp1(k) exists. Consequently, sys-
tem (1) can be expressed as:

∆xp(k + 1) = Φp1(k)∆up(k) (2)

where Φp1(k)| ≤ b̄1

Similarly, for System 2 Finally, for System 2
Assumption 5 [21]: System (2) adheres to the generalized

Lipschitz condition, implying that if ∆xp(k) 6= 0, then
|∆yp(k + 1)| ≤ b2|∆xp(k + 1)|, where ∆yp(k + 1) =
yp(k + 1) − yp(k) and ∆xp(k + 1) = xp(k + 1) − xp(k).
Here, b2 is a positive constant.

Assumption 6 [21]: The partial derivatives of fp(·) with
respect to the system control input up(k) are continuous.

Assumption 7: The ratio of change in xq(k) to the change in
xp(k) is bounded, i.e., |∆xq(k)/∆xp(k)| < ζ1 with ζ1 being
a positive constant.

Assumption 8 [22]: The digraph G possesses a directed
spanning tree.

Lemma 2 [23]: For system (2), if Assumptions 5 and 6 are
satisfied and |∆xp(k)| 6= 0 for all time k, then a pseudo-partial
derivative (PPD) parameter Φp2(k) exists. Consequently, sys-
tem (2) can be expressed as:

∆yp(k + 1) = Φp2(k)∆xp(k) (3)

where Φp2(k)| ≤ b̄2

For the overall system

∆yp(k + 1) = Φp(k)∆up(k − 1) (4)

where Φp(k) = Φp1(k − 1)Φp2(k)

The distributed output error for the pth agent is defined as
follows:

εp(k + 1) =
∑
p∈Np

apq(yp(k + 1)− yq(k + 1)) (5)

By substituting equation (1) into equation (5) and introduc-
ing a new nonlinear function F(·), equation (5) becomes:

εp(k + 1) = Fp(yp(k), up(k), yq(k), uq(k)) (6)

Theorem 1: For equation (6), if assumptions 1-3 hold true and
|∆up(k)| 6= 0 at all times k, then there exists a pseudo-partial
derivative (PPD) parameter Φp(k). Thus, equation (6) can be
rewritten as:

∆εp(k + 1) = Φp(k)∆up(k) (7)

where ∆εp(k+ 1) = εp(k+ 1)− εp(k) and |Φp(k)| ≤ bp, bp
is a positive constant.

Proof: Based on system (6), ∆εp(k + 1) is calculated as

∆εp(k + 1) = Fp[yp(k), up(k), yq(k), uq(k)]

−Fp[yp(k − 1), up(k − 1), yq(k − 1), uq(k − 1)]

+ Fp[yp(k − 1), up(k − 1), yq(k − 1), uq(k − 1)]

−Fp[yp(k − 1), up(k − 1), yq(k), uq(k)]

Then, using the differential mean value theorem for
Fp[yp(k), up(k), yq(k), uq(k)] − Fp[yp(k − 1), up(k −
1), yq(k), uq(k)] with respect to up(k), one can get

∆εp(k + 1) =
∂F∗p
∂up(k)

∆up(k) + Ψp(k)

where
(

∂F∗
p

∂up(k)

)
denotes the partial derivative value of Fp

with respect to up(k) in the interval [up(k−1), up(k)]. The ter-
m Ψp(k) is defined as Fp[yp(k−1), up(k−1), yq(k), uq(k)]−
Fp[yp(k − 1), yq(k), uq(k), up(k − 1)].

Consider the data equation Ψp(k) = ηp(k)∆up(k) +
ηq(k)∆uq(k) with variable ηp(k) and ηq(k) for each fixed
time k. Based on Assumption 3, there exists a solution η∗p(k)
such that Ψp(k) = η∗p(k)∆up(k) holds. Letting Φp(k) =(

∂F∗
p

∂up(k)

)
+η∗p(k), the formula above can be derived. Further-

more, according to Assumptions 1 and 4, there exist constants
c̄p > 0 and c̄q > 0 such that:

|∆εp(k + 1)| ≤c̄papp|∆up(k)|+
∑
q∈Np

b̄qapq|∆uq(k)|

≤ c̄papp|∆up(k)|+
∑
q∈Np

c̄qapq|∆uq(k)|

≤

c̄papp +
∑
q∈Np

b̄qapq

 |∆up(k)|

= cp|∆up(k)|

where cp = c̄papp +
∑
q∈Np

b̄qapq|e|. Thus, one can follow
from the formula above that the PPD parameter Φp(k) is
bounded, i.e., |Φp(k)| ≤ ci.

III. MAIN RESULTS

This section elaborates on the main content of this article,
including the design of mixed network attacks, compensation
mechanisms, controller design, and proof of bounded distribut-
ed output errors. The conceptual framework of the article is
illustrated in Fig.1.

Fig. 1. System model decomposition diagram.



A. mixed Cyber-attacks Design

Here, the design of a hybrid network attack will be elabo-
rated. The attack, consisting of DoS, FDI, and DA, constitutes
a stochastic attack. εpi(k) represents the output signals under
different attacks, with ε̄p(k) denoting the final output signal
subjected to the mixed attack.

When i = 1, the system suffers a Dos attacks, formula (5)
can be written as:

εp1(k) = l1(k)εp(k) (8)

where l1(k) indicates the success of the DoS attacks and
follows a Bernoulli distribution. If l1(k) = 0, it indicates that
the attacks were successful, with a probability of P{l1(k) =
0} = l̄. Conversely, if l1(k) = 1, the attacks failed, with a
probability of P{l1(k) = 1} = 1− l̄.

When i = 2, the system experiences FDI attacks, and thus
formula (5) can be rewritten as:

εp2(k) = εp(k) + πp(k) (9)

where πp(k) denotes the gain parameter of the FDI attacks,
which varies randomly within a certain range. FDI attacks
use rp(k) = exp{−‖εp(k) − ε̂p(k)‖} to determine whether
an attack has occurred. If rp(k) is less than a specific positive
constant ν, the attack is deemed to occur, resulting in rp(k) =
0.

When i, the system is subjected to DA attacks, and formula
(5) can be rewritten as:

εp3(k) = (−1)1−l3(k)εp(k) (10)

where l3(k) indicates whether the DA attacks were success-
ful, following a Bernoulli distribution. When l3(k) = 0, it
signifies that the attacks were successful, with a probability of
P{l3(k) = 0} = l̄. Conversely, when l3(k) = 1, the attacks
failed, with a probability of P{l3(k) = 1} = 1− l̄.

Ultimately, l(k) indicates the success of a mixed attack,
with l(k) = 1 representing a successful attack and l(k) = 0
indicating a failed attack. Here, l(k) = l1(k)l2(k)l3(k).

In summary, the following distributed output error formula
with prediction compensation is proposed:

ε̄p(k) = l(k)εp(k) + (1− l(k))ε̂p(k) (11)

where ε̂p(k) = (ε̄p(k − 1) + Φ̂p2(k − 1)∆up(k − 1))

Remark 2: In this context, DoS attacks can be viewed as
intentional disruptions targeting network protocol implemen-
tation, with the objective of making the computer or network
unable to provide normal services or access resources. FDI
and DA attacks can be considered as attackers injecting false
signals to substitute genuine information, thus preventing the
system from reaching its intended objectives.

B. Design of Second-order System
For System 1,due to the compression of the nonlinear dy-

namic characteristics of the system into Φp1(k), obtaining its
dynamic model remains challenging, but numerical variations
can be estimated. Therefore, the cost function for Φp1(k) is
given in the following form:

J(Φ̂p1(k)) =|∆xp(k + 1)− Φ̂p1(k)∆up(k − 1)|2

+ µ|Φ̂p1(k)− Φ̂p1(k − 1)|2

Taking the partial derivative of Φ̂p1(k) from the above
equation yields 0, with

Φ̂p1(k) =Φ̂p1(k − 1) +
η∆up(k − 1)

µ+ |∆up(k − 1)|2

(∆xp(k + 1)− Φ̂p1(k − 1)∆up(k − 1))

where η ∈ (0, 2] is the step-size factor, which enhances
the algorithm’s flexibility and generality, and µ is a positive
constant.

Similarly, for System 2, the cost function is given in the
following form:

J(Φ̂p2(k)) =|∆εp(k + 1)− Φ̂p2(k)∆xp(k − 1)|2

+ µ|Φ̂p2(k)− Φ̂p2(k − 1)|2

Taking the partial derivative of Φ̂p2(k) from the above
equation yields 0, with

Φ̂p2(k) =Φ̂p2(k − 1) +
η∆xp(k − 1)

µ+ |∆xp(k − 1)|2

(∆εp(k + 1)− Φ̂p(k − 1)∆xp(k − 1))

Based on this, a control protocol is formulated for System 1
and System 2,

up(k) =up(k − 1) +
ρΦ̂p1(k)

λ+
∣∣∣Φ̂p1(k)

∣∣∣2
(x̂p(k)− xp(k))

xp(k) = xp(k − 1) +
ρΦ̂p2(k)

λ+
∣∣∣Φ̂p2(k)

∣∣∣2 ε̄p(k)

Based on the current position and current time velocity state,
the virtual desired velocity state is designed as follows:{

x̂p(k) = x̂p(k − 1) +
ρΦ̂2

p1(k)

λ+Φ̂2
p1(k)

x̃p(k − 1) + g

g = −x̃p(k − 1)

Therefore, a complete control framework is as follows

Φ̂p1(k) = Φ̂p1(k − 1) +
η∆up(k − 1)

µ+ |∆up(k − 1)|2

(∆xp(k)− Φ̂p1(k − 1)∆up(k − 1))

(12)

Φ̂p1(k) = Φ̂p1(1) if
∣∣∣Φ̂p1(k)

∣∣∣ ≤ ξ or |∆up(k − 1)| ≤ ξ

up(k) = up(k − 1) +
ρΦ̂p1(k)

λ+
∣∣∣Φ̂p1(k)

∣∣∣2 (x̂p(k)− xp(k)) (13)



Φ̂p2(k) =Φ̂p2(k − 1) +
η∗∆xp(k − 1)

µ∗ + |∆xp(k − 1)|2
(∆ε̄p(k)

− Φ̂p2(k − 1)∆xp(k − 1))

(14)

Φ̂p2(k) = Φ̂p2(1) if
∣∣∣Φ̂p2(k)

∣∣∣ ≤ ξ∗ or |∆xp(k − 1)| ≤ ξ∗

xp(k) = xp(k − 1) +
ρΦ̂p2(k)

λ∗ +
∣∣∣Φ̂p2(k)

∣∣∣2 ε̄p(k) (15)


x̂p(k) = x̂p(k − 1) +

ρΦ̂2
p1(k)

α+Φ̂2
p1(k)

x̃p(k − 1) + g

g = −x̃p(k − 1)

(16)

The above MFAC consists of PPD estimation algorithm(12)
(14), PPD reset algorithm, control algorithm(13) (15), and
virtual estimation algorithm(16), which is designed with com-
pensated distributed output∆ε̄p(k).

C. Convergence Analysis

In this section, the convergence analysis of the system (1)
that has suffered stochastic cyber-attacks will be discussed,
and the main contents are concluded in Theorem 2.

Theorem 2: For system (1) subjected to stochastic cyber-
attacks, if assumptions 1-4 are satisfied and controller param-
eters are chosen as λ > 0, 0 < η < 2, µ > 0, ρ ∈ (0, 1],
the consensus control target can be achieved by using control
algorithms (12)-(16).

Proof: The proof will be introduced in four parts. First, it
is shown that the approximation error of the PPD parameter
is bounded. Second, the boundedness of the error in virtual
tracking speed is demonstrated. Third, the bounded nature of
the distributed output prediction error is proven. Fourth, the
boundedness of the distributed output error is demonstrated.
The aforementioned bounded properties are all based on the
concept of mathematical expectation.

part-1: Let Φ̂p1(k) = Φ̂p1(k)−Φp1(k) be the approximation
error of the PPD parameter, according to (12).

Φ̃p1(k) =

(
1− η∆up(k − 1)2

µ+ |∆up(k − 1)|2

)
× Φ̃p1(k − 1) + Φp1(k − 1)− Φp1(k).

(17)

We can obtain from (20) that

|Φ̃p1(k)| ≤
∣∣∣∣(1− η∆up(k − 1)2

µ+ |∆up(k − 1)|2

)∣∣∣∣ |Φ̃p1(k − 1)|

+ |Φp1(k − 1)− Φp1](k)|.
(18)

Since |∆up(k)| ≤ b, by appropriately selecting η and µ
such that 0 < η ≤ 1 and µ ≥ 0, there exists a constant q1

ensuring that holds.

0 <

(
1− η∆up(k − 1)2

µ+ |∆up(k − 1)|2

)
≤ q1 < 1 (19)

Since |Φp1(k)| ≤ a, considering Assumption 4, we can
obtain |Φp1(k − 1)− Φp1(k)| ≤ a.

From (8) and (9), we have

|Φ̃p1(k)| ≤ q1|Φ̃p1(k − 1)|+ a

≤ · · ·

≤ qk1 |Φ̂p1(0)|+ a(1− qk1 )

1− q1

(20)

which implies that Φ̃p1(k) is bounded. Consequently,
Φp1(k) is also bounded as Φ̃p1(k) is bounded.

part-II: Let Φ̃p2(k) = Φ̂p2(k)− Φp2(k) be the approxima-
tion error of PPD parameter, according to (14)

Φ̃p2(k) =Φ̃p2(k − 1)−∆Φp2(k) +
η∗∆xp(k − 1)

µ∗ + |∆xp(k − 1)|2

(ε̄p(k)− ε̄p(k − 1)− Φ̂p2(k − 1)∆xp(k − 1))

=Φ̃p2(k − 1)−∆Φp2(k) +
η∗∆xp(k − 1)

µ∗ + |∆xp(k − 1)|2

(l(k)εp(k)− l(k)ε̂p(k))

=[1−
η∗∆x2

p(k − 1)l(k)

µ∗ + |∆xp(k − 1)|2
]Φ̃p2(k − 1)−∆Φp2(k)

(21)

By taking the absolute value and the mathematical expec-
tation on both sides of the above formula, then

E{|Φ̃p2(k)|} ≤ |1−
η∗∆x2

p(k − 1)l(k)

µ∗ + ∆x2
p(k − 1)

|E{|Φ̃p2(k − 1)|}

+ |∆Φp2(k)| (22)

Notice that for 0 < η∗ < 2, µ∗ > 0, 0 < l(k) < 1.
Therefore, there is a positive constant d that makes 0 < |1−
η∗∆x2

p(k−1)l(k)

µ∗+∆u2(k−1) | = d < 1. Also because of |Φp2(k)| ≤ b2, so
|4Φp2(k)| ≤ 2b2. (22) can be expressed as,

E{|Φ̃p2(k)|} ≤ dE{|Φ̃p2(k − 1)|}+ 2b2

≤ · · ·

≤ dk−1E{|Φ̃p2(1)|}+
2b2

1− d
(23)

From the above inequality (26), we understand that Φ̃p2(k)
is uniformly bounded. Therefore, based on Φp2(k) being
bounded, Φ̂p2(k) is also bounded.

part-III: Define the virtual desired velocity tracking
errorx̃p(k) = x̂p(k) − xp(k). Based on equations (15) and
(16), it can be expressed as,

x̃p(k + 1) =x̂p(k + 1)− x̂p(k) + x̂p(k + 1)− xp(k + 1)

=∆x̂p(k + 1) + (1− ρΦ̂p1(k)Φp1(k)

α+ Φ̂2
p1(k)

)x̃p(k)

(24)



Let a Lyapunov function be defined:v(k) = x̃2
p(k)

∆v(k + 1) =(x̃p(k + 1)− x̃p(k))(x̃p(k + 1) + x̃p(k))

=2x̃p(k)(∆x̃p(k + 1)− ρΦ̂p1(k)Φp1(k)

α+ Φ̂2
p1(k)

x̃p(k))

(∆x̃p(k + 1)− ρΦ̂p1(k)Φp1(k)

α+ Φ̂2
p1(k)

x̃p(k))2 (25)

when limk→∞ a = 0, so lima→0k→∞ Φ̃p1(k) = 0

∆v(k + 1) =2x̃p(k)(g +
ρΦ̂p1(k)Φ̃p1(k)

α+ Φ̂2
p1(k)

x̃p(k))

(g +
ρΦ̂p1(k)Φ̃p1(k)

α+ Φ̂2
p1(k)

x̃p(k))2

=g2 + 2x̃p(k)g

=− x̃2
p(k) (26)

It is evident that, under the control algorithm proposed in
this paper, ∆v(k) < 0 is consistently satisfied. The disparity
between the actual velocity and the virtual desired velocity
converges asymptotically and steadily, thus completing the
proof.

part-IV: The distributed output prediction error is defined
as ε̄p(k) = ε̂p(k)− εp(k). Based on equations (11), it can be
expressed as follows:

ε̃p(k) = ε̂p(k)− εp(k) (27)

= ε̄p(k − 1) + Φ̂p2(k − 1)4xp(k − 1)

− εp(k − 1)− Φp2(k − 1)∆xp(k − 1)

= (1− l(k))ε̃p(k − 1) + Φ̂p2(k − 1)

4xp(k − 1) (28)

Take the absolute value and expectation of the formula for
(27), and scale them to obtain the result , then

E{|ε̃p(k)|} ≤ (1− l(k))E{|ε̃p(k − 1)|}
+|Φ̃p2(k − 1)4xp(k − 1)| (29)

Due to the boundedness of Φ̂p1(k) proven in the part-I, and
from our findings in the part-II that xp(k−1) is also bounded,
we can conclude that Φ̂p1(k)xp(k − 1) is bounded.

Let Φ̂p1(k)xp(k − 1) < q, where q is a positive constant.
Given that l ∈ (0, 1), the inequality can then be re-expressed
as:

E{|ε̃p(k)|} ≤ (1− l)E{|ε̃p(k − 1)|}+ q (30)
≤ · · ·

≤ (1− l)k−1E{|ε̃p(1)|}+
q

1− l
(31)

which means that the ε̃p(k) is uniformly bounded.

part-V: Due to (14) and eεp(k + 1) = ε∗p − εp(k − 1),
eεp(k + 1) can be expressed as,

eεp(k + 1) =ε∗p − εp(k − 1)

=eεp(k)−∆εp(k − 1)

=(1− ρ∗Φ̂p2(k)Φp2(k)

λ∗ + Φ̂2
p2(k)

)eεp(k)

+
ρ∗Φ̂p2(k)Φp2(k)

λ∗ + Φ̂2
p2(k)

ε̂p(k) (32)

let ρ∗Φ̂p2(k)Φp2(k)

λ∗+Φ̂2
p2(k)

= m(k)

Using the same processing method as in part-I, equation
(35) can then be rewritten as follows:

∣∣eεp(k + 1)
∣∣ ≤ |1−m(k)|

∣∣eεp(k)
∣∣

|m(k)|
∣∣∣l(k)ε̃p(k) + Φ̃p2(k − 1)∆xp(k − 1)

∣∣∣
(33)

According to the part I and part II proofs, ε̃p(k) and Φ̃p2(k−1)
are bounded, so let (1−D)lE{|ε̃p(k)|}+ (1−D)E{|Φ̃p2(k−
1)∆xp(k − 1)|} < d with d > 0 being a constant. Then, the
(29) can be expressed as,

E{|eεp(k + 1)|} ≤ DE{|eεp(k)|}+ (1−D)lE{|ε̃p(k)|}
(1−D)E{|Φ̃p2(k − 1)∆xp(k − 1)|}
≤ DE{|eεp(k)|}+ d

≤ DkE{|eεp(1)|}+
d

1−D
(34)

which illustrate ε∗p is bounded. Due to eεp(k+ 1) is bounded,
εp(k − 1) is also bounded.

This is the end of the proof,this crucial result ensures that
the proposed control algorithm effectively maintains system
stability and achieves its intended control objectives under the
specified conditions. The meticulous application of Lyapunov
functions and the detailed step-by-step analysis provide a solid
theoretical foundation for our approach. This comprehensive
proof not only validates the robustness and reliability of the
proposed control strategy but also highlights its practical ap-
plicability in real-world scenarios where multi-agent systems
are subject to mixed network attacks. Consequently, we can
confidently assert that the control strategy developed in this
paper is both sound and effective, offering significant potential
for enhancing the performance and resilience of multi-agent
systems in dynamic and potentially hostile environments.

IV. SIMULATION

A numerical case is presented in this section to validate the
effectiveness of the proposed approach.

Example 1: Consider a MASs comprising one leader and
four followers, with its communication topology graph shown
in Fig. 1.

The dynamic model of each agent is expressed as follows:





Agent1 : y1(k + 1) =
y1(k)x1(k)

1 + y2
1(k)

+
x1(k)u1(k)

1 + x2
1(k)

+ u1(k)

Agent2 : y2(k + 1) =
y2(k)x2(k)

1 + y2
2(k)

+
x2(k)u2(k)

1 + x3
2(k)

+ 0.5u2(k)

Agent3 : y3(k + 1) =
y3(k)x3(k)

1 + y2
3(k)

+
x3(k)u3(k)

1 + x2
3(k)

+ 0.9u3(k)

Agent4 : y4(k + 1) =
y4(k)x4(k)

1 + y2
4(k)

+
x4(k)u4(k)

1 + x5
4(k)

+ 0.8u4(k)

In addition, the Laplacian matrix can be derived from the
communication topology graph shown in Fig. 2, where

L =


1 0 0 −1
0 1 −1 0
0 −1 2 −1
0 −1 −1 2


The trajectory of the leader is given by the following

formula:

yd(k) =

{
2, 0 < k ≤ 200

0.5, 200 < k ≤ 400

Here are the initial values and controller parameters for the
agents. l̄1 = 0.3, l̄2 = 0.4, l̄3 = 0.35, l̄4 = 0.45 and The
gain parameter for FDI attacks πp(k) varies randomly in the
range of [0, 5]. The initial values and controller parameters
are set as follows yp(0) = [1; 1; 1; 1], up(0) = [1; 1; 1; 1],
Φ̂p1(k) = [1.05; 1.1; 1.2; 1.03], Φ̂p2(k) = [1.2; 1.1; 1.02; 1.3],
ξ = 10−5 , ρ = 0.3, η = 1.5, λ = 4, µ = 0.5,
p = 1, 2, 3, 4.ρ∗ = 0.3, η∗ = 1.5, λ∗ = 4, µ∗ = 0.5,
p = 1, 2, 3, 4. Simulation results are displayed in Fig. 3 to 6.
Fig. 3 shows the tracking performance under a time-invariant
signal in Example 1, comparing the proposed algorithm, a
reference algorithm, and the performance without compensa-
tion. Fig. 5 illustrates the tracking performance under a time-
varying signal in Example 2, using the proposed algorithm, a
comparative algorithm, and an uncompensated scenario. Fig.
4 . 6 . 7 and 8 present the error trajectories for the systems
under the proposed and comparative algorithms. This clear
comparison demonstrates that the proposed method yields
good control effects in simulations.

Fig. 2. Topology graph of Examples 1 and 2.

Time(k)
(a)

Time(k)
(b)

Time(k)
(c)

Fig. 3. Performance of multi-agent systems tracking under mixed attacks. (a)
Proposed MFAC algorithm. (b) Control methodology described in reference
[24]. (c) Control strategy without any compensation.

Remark 4: In the simulation, the expected trajectory of the
virtual leader is defined and set as node 0. In this scenario,
only agents 2 and 4 can directly receive information from
the leader, while agents 1 and 3 can only indirectly receive
information from the leader through agents 2 and 4.

The aforementioned simulation results indicate that, under
time-invariant signals, the proposed MFAC algorithm exhibits
superior control performance compared to the control method
described in reference [24]. Specifically, the proposed algorith-
m achieves smaller errors and higher stability. Furthermore, the
compensation method introduced in this paper demonstrates
a significant improvement over the scenario without com-



Time(k)
(a)

Time(k)
(b)

Time(k)
(c)

Fig. 4. The tracking error of multi-agent systems under mixed attacks. (a)
Proposed MFAC algorithm. (b) Control methodology described in reference
[24]. (c) Control strategy without any compensation.

pensation. The control effect with compensation is markedly
better than that without compensation. In summary, the MFAC
algorithm with compensation proposed in this paper shows
excellent control performance under time-invariant signals,
making it a robust and effective solution for managing system
stability and accuracy.

Example 2: A multi-agent system with a time-varying signal
is analyzed, with its communication topology graph depicted
in Fig. 1.

The trajectory of the leader is given by the following
formula:

yd(k) = 0.6 + 0.2(sin(
2πk

50
) + sin(

2πk

100
) + sin(

2πk

150
))

Here are the initial values and controller parameters for the

agents. l̄1 = 0.3, l̄2 = 0.4, l̄3 = 0.35, l̄4 = 0.45 and The
gain parameter for FDI attacks πp(k) varies randomly in the
range of [0, 5]. The initial values and controller parameters
are set as follows yp(0) = [0; 0; 0; 0], up(0) = [1; 1; 1; 1],
Φ̂p1(0) = [1.05; 1.1; 1.02; 1.3], Φ̂p2(0) = [1.2; 1.1; 1.02; 1.3],
ξ = 10−5 , ρ = 0.3, η = 1.5, λ = 4, µ = 0.5, p =
1, 2, 3, 4.ρ∗ = 0.3, η∗ = 1.5, λ∗ = 4, µ∗ = 0.5, p = 1, 2, 3, 4.
with simulation results shown in Fig. 4.Simulation results
demonstrate that, whether under time-varying or time-invariant
signals, the proposed algorithm exhibits smaller errors, faster
convergence, and better tracking performance compared to the
algorithm presented in [24]. Through clear comparisons across
various aspects, the proposed method shows good control
effects in simulations. The simulation results illustrated above

Time(k)
(a)

Time(k)
(b)

Time(k)
(c)

Fig. 5. Tracking performance of multi-agent systems under mixed attacks.
(a) The proposed MFAC algorithm. (b) The control algorithm in reference
[24]. (c) The control algorithm without compensation.



Fig. 6. Error trajectories eεp (k)(p = 1, 2, 3, 4) of the proposed algorithm.

Fig. 7. Error trajectories eεp (k)(p = 1, 2, 3, 4) of the algorithm proposed
in reference [24].

indicate that, under time-varying signals, the proposed MFAC
algorithm demonstrates markedly better control performance
compared to the control strategy outlined in reference [24].
This improvement is reflected in significantly reduced error
margins and enhanced system stability. Moreover, the intro-
duction of the compensation method proposed in this study
shows a clear and substantial improvement over the scenario
without compensation. Specifically, the control effect achieved
with compensation is considerably superior to that without
compensation. Thus, it can be concluded that the MFAC
algorithm, when coupled with the proposed compensation
technique, delivers outstanding control performance under
time-varying signal conditions. This highlights the algorithm’s
robustness and efficacy in managing dynamic systems with
fluctuating signals, ensuring both precision and stability in

Fig. 8. Error trajectories eεp (k)(p = 1, 2, 3, 4) of the algorithm without
compensation.

control outcomes.

V. CONCLUSION

This paper investigates the model-free adaptive control
problem of second-order nonlinear multi-agent systems under
mixed attacks. To facilitate subsequent research, the distributed
output error of each agent in each subsystem is defined based
on backstepping and model-free techniques, then transformed
into a linear dynamic model using the dynamic linearization
method. This transformation simplifies the control design
process and makes it more manageable. Moreover, the design
of mixed network attacks, including denial of service (DoS),
false data injection (FDI), and deception attacks, is elaborated,
and an attack compensation mechanism is proposed to mitigate
their impact on the system. This mechanism ensures the
systems robustness against various types of network attacks.
The convergence of the proposed control strategy is then
demonstrated based on Lyapunov functions, providing a solid
theoretical foundation for the approach. Finally, numerical
simulations demonstrate that this scheme exhibits good control
performance for the system, maintaining stability and effec-
tiveness even under challenging conditions.
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