
Efficient Optimization with Orthogonality Constraint:
a Randomized Riemannian Submanifold Method

Andi Han 1 2 Pierre-Louis Poirion 1 Akiko Takeda 1 3

Abstract
Optimization with orthogonality constraints fre-
quently arises in various fields such as machine
learning. Riemannian optimization offers a pow-
erful framework for solving these problems by
equipping the constraint set with a Riemannian
manifold structure and performing optimization
intrinsically on the manifold. This approach typ-
ically involves computing a search direction in
the tangent space and updating variables via a re-
traction operation. However, as the size of the
variables increases, the computational cost of the
retraction can become prohibitively high, limiting
the applicability of Riemannian optimization to
large-scale problems. To address this challenge
and enhance scalability, we propose a novel ap-
proach that restricts each update on a random
submanifold, thereby significantly reducing the
per-iteration complexity. We introduce two sam-
pling strategies for selecting the random submani-
folds and theoretically analyze the convergence of
the proposed methods. We provide convergence
results for general nonconvex functions and func-
tions that satisfy Riemannian Polyak–Łojasiewicz
condition as well as for stochastic optimization
settings. Additionally, we demonstrate how our
approach can be generalized to quotient manifolds
derived from the orthogonal manifold. Extensive
experiments verify the benefits of the proposed
method, across a wide variety of problems.

1. Introduction
In this paper, we consider optimization problems with or-
thogonality constraint, i.e.,

min
X∈Rn×p:X⊤X=Ip

F (X) (1)
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Figure 1: Proposed random sub-
manifold method on 2-sphere.
Each iteration restricts the update
to a 1-dimensional randomly se-
lected submanifold, i.e., a circle.

where the matrix variable X ∈ Rn×p with n ≥ p is column
orthonormal and F : Rn×p → R. Optimization with orthog-
onality constraint arises naturally in various domains of ap-
plications because it is crucial for achieving certain desired
properties, such as linear independence, numerical stability
and geometry preserving. Examples of applications include
principal component analysis (Hotelling, 1933), indepen-
dent component analysis (Theis et al., 2009), multi-view
clustering (Khan & Maji, 2021; Liu et al., 2021; Chen et al.,
2022), low-rank matrix completion (Vandereycken, 2013;
Mishra et al., 2014), robust optimal transport (Lin et al.,
2020; Huang et al., 2021), training of deep neural networks
(Helfrich et al., 2018; Li et al., 2019; Wang et al., 2020),
continual learning (Chaudhry et al., 2020) and fine-tuning
large foundation models (Qiu et al., 2023; Liu et al., 2024),
among many others.

Riemannian optimization (Absil et al., 2008; Boumal, 2023;
Han et al., 2024b) provides a powerful framework for solv-
ing (1) by leveraging the geometry of the orthogonality
constraint. Indeed, the set of orthogonal constraint forms a
smooth manifold known as the Stiefel manifold, denoted by
St(n, p) := {X ∈ Rn×p : X⊤X = Ip}. By equipping the
manifold with a suitable Riemannian metric, optimization
can be performed intrinsically on the manifold. A crucial
step in this process is the retraction operation, which ensures
that iterates remain on the manifold after each update. Vari-
ous retractions have been proposed for the Stiefel manifold,
such as those based on QR factorization (Absil et al., 2008),
polar decomposition (Absil & Malick, 2012), the Cayley
transform (Wen & Yin, 2013), and the matrix exponential
(Edelman et al., 1998). All these retractions require non-
standard linear algebra operations with a complexity of at
least O(np2) (see Section 2 for details). As a result, the
retraction step becomes the primary bottleneck for Rieman-
nian optimization solvers as n and p increase.
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In this work, we propose a novel approach that updates
the variable on a random submanifold. In particular, our
contributions are summarized as follows.

• We propose a novel parameterization for the update via
the action of orthogonal group. This allows to update
the current iterate in a random submanifold of orthogo-
nal group. This reduces the complexity of non-standard
linear algebra operations (such as matrix decomposition,
matrix inverse, and matrix exponential) from O(np2) to
O(r3), where r is the dimension of the submanifold se-
lected.

• We introduce two strategies for the parameterization,
through permutation and orthogonal transformation. We
derive the convergence results both in expectation and
in high probability. We show the trade-off between the
two in terms of efficiency and convergence guarantees.
We show the other standard computations are reduced
from O(np2) to O(nr2) or O(npr) under permutation
and orthogonal sampling respectively.

• We establish convergence guarantees for a range of set-
tings, including general nonconvex optimization prob-
lems, nonconvex functions that satisfy the Riemannian
Polyak-Łojasiewicz (PL) condition, and stochastic set-
tings under both general nonconvex and PL conditions.
We show how our developments can be extended to quo-
tient manifolds derived from the orthogonal manifold,
including Grassmann and flag manifolds.

• We validate the effectiveness of the proposed method
through extensive experiments, showcasing its fast con-
vergence across a variety of problems, spanning both
synthetic and real-world applications.

1.1. Related Works

Lezcano-Casado & Martınez-Rubio (2019) re-parameterizes
the orthogonality constraint in Euclidean space via the Lie
exponential map. However, this approach requires differen-
tiating through the exponential map, which can be computa-
tionally expensive. Recently, Shalit & Chechik (2014); Gut-
man & Ho-Nguyen (2023); Yuan (2023); Han et al. (2024a);
Cheung et al. (2024) extend the idea of coordinate descent
to Stiefel manifold by only updating a few rows/columns
while adhering to the orthogonality constraint. Despite the
promise in cheap per-iteration update, they either suffer
from poor runtime on modern hardware, such as GPUs
by requiring a significant number of iterations to converge
(Shalit & Chechik, 2014; Gutman & Ho-Nguyen, 2023;
Han et al., 2024a) or involve a subproblem that may become
difficult to solve in general (Yuan, 2023). It is worth high-
lighting that Cheung et al. (2024) lift the coordinate updates
to the ambient space and then project back to the manifold.
Their algorithms still require non-standard linear algebra

operations that cost O(nr2), where our method scales with
O(r3). As we elucidate the differences to these works in
Section 4, our proposed submanifold update includes the
coordinate descent as a special case, yet being more efficient
in runtime empirically. Another line of research, including
(Gao et al., 2019; Xiao et al., 2022; Ablin & Peyré, 2022;
Ablin et al., 2023) develop infeasible methods for solving
(1), where the updates do not necessarily satisfy the orthog-
onality constraint. A recent work (Shustin & Avron, 2024)
proposes a randomized sketching method on the generalized
Stiefel manifold with constraint X⊤BX = Ip. However,
they assume B = Z⊤Z, with Z ∈ Rd×n with d ≫ n.
The aim is to reduce complexity in constructing B and im-
prove the conditioning of optimization, which is different
to our setting where B = In and the aim is to reduce the
complexity related to retraction.

2. Preliminaries
Stiefel manifold St(n, p) = {X ∈ Rn×p : X⊤X = Ip}
is the set of column orthonormal matrices. When n = p,
St(n, p) ≡ O(n), which is called orthogonal manifold, also
forming a group. We use TXSt(n, p) to denote the tangent
space at X ∈ St(n, p) and consider the Euclidean metric
as the Riemannian metric, i.e., for any U, V ∈ TXSt(n, p),
⟨U, V ⟩X = ⟨U, V ⟩, we use ⟨·, ·⟩ to represent the Euclidean
inner product. For a smooth function F : St(n, p) → R, the
Riemannian gradient gradF (X) ∈ TXSt(n, p) is derived
as gradF (X) = ∇F (X) − X{X⊤∇F (X)}S, where
∇F (X) is the Euclidean gradient and {A}S := (A+A⊤)/2.
Retraction RetrX : TXSt(n, p) → St(n, p) is a smooth
map that allows to update iterate following a tangent
vector direction. Many retractions are proposed on
Stiefel manifold, including (1) QR-based retraction:
RetrX(U) = qf(X + U), where qf extracts the Q-
factor from the QR decomposition; (2) Polar retraction:
RetrX(U) = (X + U)(Ip + U⊤U)−1/2; (3) Cayley
retraction: RetrX(U) = (In − W )−1(In + W )X
where U = WX for some skew-symmetric
W ∈ Rn×n; (4) Exponential retraction: RetrX(U) =[
X U

]
expm(

[
X⊤U −U⊤U
Ip X⊤U

]
)

[
expm(−X⊤U)

0

]
,

where expm(·) denotes matrix exponential. We highlight
that all retractions require linear algebra operations other
than matrix multiplications that costs at least O(np2).

One classic Riemannian solver is the Riemannian gradi-
ent descent (Udriste, 2013) that updates the variable as
Xk+1 = RetrXk

(
− ηkgradF (Xk)

)
, where ηk > 0 is the

stepsize. Other more advanced solvers include Riemannian
accelerated gradient methods (Ahn & Sra, 2020; Alimisis
et al., 2021; Han et al., 2023b), variance reduced gradient
methods (Bonnabel, 2013; Zhang et al., 2016; Kasai et al.,
2018; Han & Gao, 2020; 2021a;b; Utpala et al., 2023), quasi-
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Newton methods (Qi et al., 2010; Huang et al., 2015; 2018),
and second-order methods (Absil et al., 2007; Agarwal et al.,
2021), just to name a few. Some more recent works develop
algorithms for solving non-smooth optimization (Ferreira
& Oliveira, 1998; Chen et al., 2020; Li et al., 2024), min-
max optimization (Zhang et al., 2023; Han et al., 2023a;c),
bi-level optimization problems (Han et al., 2024c; Li & Ma,
2025) on Riemannian manifolds.

Despite the recent progress in Riemannian optimization, All
the aforementioned methods utilize the retraction operation
and thus it becomes critical to reduce its complexity before
scaling to large problems.

Notations. We use O(·) and Ω(·) to denote the big-O and
big-Omega notation and O(n) to represent the orthogonal
manifold of size n× n. P(n) ⊂ O(n) represents the set of
permutation matrices and Sn = {v ∈ Rn : v⊤v = 1}
is the unit sphere. We use ∼= to represent a diffeomor-
phism between two manifolds. We use ⟨·, ·⟩, ∥ · ∥ to denote
the Euclidean inner product and Euclidean norm, and use
⟨·, ·⟩X , ∥ · ∥X to denote Riemannian inner product and norm
on TXSt(n, p). Because we only consider Euclidean metric
as the Riemannian metric in this work, we use ∥ · ∥ and
∥ · ∥X interchangeably. We use P (r) to denote the first r
rows of a matrix P .

3. Riemannian Random Submanifold Descent
This section introduces the proposed method that reduces
the complexity of retraction by restricting the update to a
random submanifold. In particular, at each iteration k, we
parameterize the next iterate as Xk+1 = UkXk for some
Uk ∈ O(n) and thus converts the problem to optimization
over Uk ∈ O(n) on the orthogonal manifold. Such a param-
eterization can be justified by the fact that the action of the
orthogonal group O(n) over St(n, p) is transitive. Hence,
at any point Xk, there exists a matrix U∗

k ∈ O(n) such that
X∗ = U∗

kXk, where X∗ is any local minimizer. Further, we
parameterize the orthogonal matrix Uk by a random orthog-
onal matrix Pk ∈ O(n) and a low-dimensional orthogonal
matrix Y ∈ O(r) where r is the lower dimension that we
choose, and we define

Uk(Y ) = P⊤
k

[
Y 0
0 In−r

]
Pk. (2)

By minimizing F̃k(Y ) := F (Uk(Y )Xk) over Y instead
of minimizing Fk(U) := F (UXk) over U , we update the
iterates on a random submanifold defined via (the first r
rows of) the random orthogonal matrix Pk. Rather than min-
imizing F̃k to global optimality, we minimize the first-order
approximation of the function F̃k around Ir such that the
update remains close to Xk. This suggests we can compute
Y by taking a Riemannian gradient update from Ir, i.e.,
Y = RetrIr (−ηk gradF̃k(Ir)) for some stepsize ηk > 0.

Algorithm 1 RSDM

1: Initialize X0 ∈ St(n, p).
2: for k = 0, ...,K − 1 do
3: Sample Pk ∈ O(n) and let F̃k(Y ) = F (Uk(Y )Xk)

where Uk(Y ) is defined in (2).
4: Compute Riemannian gradient gradF̃k(Ir).
5: Update Yk = RetrIr (−η gradF̃k(Ir)).
6: Set Xk+1 = Uk(Yk)Xk.
7: end for

We remark that our approach can be viewed as a gener-
alization of the random subspace gradient descent in the
Euclidean space (Kozak et al., 2021) to the Stiefel manifold.
Specifically, the Euclidean random subspace updates the
variable as xk+1 = xk + uk(y) where uk(y) = P⊤

k y for
some random matrix Pk that spans the subspace.

To compute the Riemannian gradient gradF̃k(Ir), let
Pk(r) ∈ Rr×n denote the first r rows of Pk. Using the
expression of Riemannian gradient, we can derive

gradF̃k(Ir) =
1

2
(∇F̃k(Ir)−∇F̃k(Ir)

⊤)

=
1

2
Pk(r)

(
∇F (Xk)X

⊤
k −Xk∇F (Xk)

⊤
)
Pk(r)

⊤

= Pk(r)gradFk(In)Pk(r)
⊤ (3)

To ensure the updates adequately explore the full space
with high probability, we re-sample the orthogonal matrix
Pk ∈ O(n) each iteration. The distribution from which the
orthogonal matrix is sampled will be discussed in detail in
the subsequent section. The full algorithm is outlined in Al-
gorithm 1, where we call the proposed method Riemannian
random submanifold descent (RSDM).

4. Sampling Strategies and Complexities
In this section, we introduce two sampling strategies and re-
spectively analyze the per-iteration complexity of Algorithm
1. We propose to sample Pk from two distributions, (1) a
uniform distribution over the set of orthogonal matrices and
(2) a uniform distribution over the set of permutation matri-
ces. The second strategy of sampling from a permutation
matrix is considered due to its sampling and computational
efficiency compared to the orthogonal sampling.

The per-iteration complexity of Algorithm 1 is attributed to
four parts, i.e., sampling, gradient computation, gradient
descent update and iterate update. For both sampling strate-
gies, the gradient descent update (Step 5) shares the same
complexity. In particular, the gradient update involves the
retraction on O(r), which is on the order of O(r3). Next
we respectively discuss the sampling and computational
cost of each sampling strategy. As we show later, the per-
iteration cost of orthogonal sampling strategy is O(npr)
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while the per-iteration cost of permutation sampling strategy
is O(nr2).

Uniform Orthogonal. We first consider sampling Pk from
the unique translation invariant probability measure (i.e. the
Haar measure) on O(n). Because only r rows of Pk is
required, the sampling can be performed using QR decom-
position (with Gram-Schmidt method) on a randomly sam-
pled Gaussian matrix P ∈ Rr×n (Meckes, 2019). Hence,
the cost of sampling is O(nr2). Furthermore, from (3),
the computation of gradF̃k(Ir) requires a complexity of
O(npr) by first computing Pk(r)∇F (Xk) and Pk(r)Xk

before multiplication. For the iterate update, the computa-
tion of Uk(Yk)Xk only depends on the first r rows of Pk

as Uk(Yk)Xk = Xk + Pk(r)
⊤(Y − Ir)Pk(r)Xk, which

requires O(npr). This suggests the total per-iteration com-
plexity for uniform orthogonal sampling is O(npr).

Uniform Permutation. Sampling from a uniform distri-
bution on permutation matrices corresponds to sampling a
permutation π : [n] → [n], and thus the sampling complex-
ity is negligible compared to other operations. In practice,
sampling r indices without replacement from [n] is suffi-
cient. In terms of gradient computation, because Pk(r) is a
truncated permutation matrix, Pk(r)∇F (Xk) and Pk(r)Xk

corresponds to permuting the rows of ∇F (Xk) and Xk.
This largely reduces the cost compared to matrix multiplica-
tion. Thus the gradient computation only requires O(nr2).
Lastly, for the iterate update, we highlight matrix multi-
plication involving both Pk(r) and Pk(r)

⊤ corresponds to
rearranging the rows and thus the cost can be reduced to
O(nr2). Thus the total cost is O(nr2).
Remark 4.1 (Riemannian coordinate descent is a special
case). We show that with the permutation sampling and
r = 2, RSDM is equivalent to the Riemannian coordinate
descent on Stiefel manifold (Shalit & Chechik, 2014; Han
et al., 2024a; Yuan, 2023). To see this, we first recall that
a Givens rotation Gk,l(θ) ∈ O(n) represents a sparse or-
thogonal matrix such that its non-zero entries satisfy (1)
[Gk,l(θ)]i,i = 1 for all i ̸= k and i ̸= l; (2) [Gk,l(θ)]i,i =
cos θ for all i = k, l; (3) [Gk,l(θ)]k,l = −[Gk,l(θ)]l,k =
− sin θ. Further we know that when r = 2, any Y ∈ O(2)
can be parameterized by an angular parameter θ and is

either a rotation matrix R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
or a

reflection matrix F (θ) =

[
cos θ sin θ
sin θ − cos θ

]
. Thus it is

easy to verify that Gk,l(θ) = Pk,l

[
R(θ) 0
0 In−2

]
P⊤
k,l,

where Pk,l corresponds to the permutation π such that
π(1) = k, π(2) = l. This suggests that the update of RSDM
reduces to Xk+1 = Gk,l(θ)Xk, which is how coordinate
descent is implemented in (Shalit & Chechik, 2014; Han
et al., 2024a; Yuan, 2023). In (Yuan, 2023), F (θ) is further
considered as an alternative to the rotation.

5. Theoretical Guarantees
In this section, we analyze the convergence guarantees for
the proposed RSDM under both orthogonal sampling and
permutation sampling. The proofs of all results are included
in Appendix sections. We make use of the following nota-
tions throughout the section. Recall we have defined in Sec-
tion 3 that Fk(U) = F (UXk) and F̃k(Y ) = F (Uk(Y )Xk)
at iteration k. We also introduce generic notations that
FX(U) := F (UX) and F̃X(Y ) = F (U(Y )X) for some
sampled P ∈ O(n).
Assumption 5.1. F has bounded gradient and Hessian in
the ambient space, i.e., ∥∇F (X)∥ ≤ C0, ∥∇2F (X)[U ]∥ ≤
C1∥U∥ for any X ∈ St(n, p), U ∈ Rn×p.

Assumption 5.1 is naturally satisfied given X ∈ St(n, p),
which is a compact submanifold of the ambient Euclidean
space Rn×p. The next lemma verifies the (Riemannian)
smoothness of F̃X(Y ), which is due to Assumption 5.1.
Lemma 5.2. Under Assumption 5.1, for any X ∈ St(n, p),
F̃X(Y ) is (C0 + C1)-smooth on O(r).

Further, we show the following lemma that relates the gra-
dient of FX at identity to gradient of F (X).
Lemma 5.3. For any X ∈ St(n, p), we can show
∥gradFX(In)∥2 ≥ 1

2∥gradF (X)∥2.

Apart from general non-convex functions, we also analyze
convergence of RSDM under (local) Riemannian Polyak-
Łojasiewicz (PL) condition.
Definition 5.4 (Riemannian Polyak-Łojasiewicz). For a
subset U ⊆ St(n, p), a smooth function F : U → R satisfies
the Riemannian Polyak-Łojasiewicz (PL) condition on U
if there exists µ > 0 such that ∀X ∈ U , we have F (X)−
minX∈U F (X) ≤ 1

2µ∥gradF (X)∥2.

5.1. Main Results

This section derives theoretical guarantees for the proposed
method. A summary of the main results are presented in
Table 1. We first give the following proposition that relates
the gradient of F̃ to gradient of F at identity.
Proposition 5.5. Assume that P is uniformly sampled
from P(n) or uniformly sampled from O(n). Then
for any X ∈ St(n, p), we have E∥gradF̃X(Ir)∥2 =
r(r−1)
n(n−1)∥gradFX(In)∥2, where the expectation is with re-
spect to the randomness in P .
Remark 5.6 (Proof techniques of Proposition 5.5). We ob-
tain the same rate for both the permutation and orthogonal
sampling strategies. Nevertheless, the proof techniques are
largely different. In the permutation case, the proof boils
down to counting the number of permutations that satisfy
some criterion and in the orthogonal case, we have to com-
pute, for all set of indices, E[Pik1Pjl1Pik2Pjl2 ] for i ̸= j.
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Table 1: Summary of the main results under deterministic and stochastic settings, with both orthogonal (ortho.) and
permutation (permu.) sampling. The global and local rates refer to the convergence under general nonconvex and PL
conditions respectively. Size of Stiefel manifold is n× p and k is the iteration number. Function constants L, µ are ignored.

EXPECTATION HIGH PROBABILITY

GLOBAL LOCAL (PL) GLOBAL LOCAL (PL)

Deterministic
(Theorem 5.7, 5.9)

Ortho.
O
(

n2

r2k

)
O
(
exp(− r2

n2 k)
) O( n2

r2k ) O
(
exp(− r2

n2 k)
)

Permu. O( n2

r2k

(
n
r

)
) O

(
exp(− r2

n2

(
n
r

)−1
k)
)

Stochastic
(Theorem 5.13)

Ortho.
O
(

n2

r2
√
k

)
O
(
exp(− r2

n2 k) +
n2σ2

r2

)
—

Permu.

This is achieved by leveraging the rotational invariance of
the distribution of P .

Proposition 5.5 shows that the submanifold gradient is on
the order of O(r2n−2) of the full-space gradient. In con-
trast, the Euclidean subspace gradient method (Kozak et al.,
2021) achieves a scaling of O(rn−1). This is because our
proposed submanifold approach requires applying the pro-
jection matrix Pk twice, whereas the Euclidean subspace
method requires only a single Pk.

5.1.1. CONVERGENCE IN EXPECTATION

Theorem 5.7. When Pk is sampled uniformly from P(n)
or O(n), under Assumption 5.1 and select η = 1

L with
L = C0 + C1, we obtain that for all k ≥ 1,

min
i=0,...,k−1

E[∥gradF (Xi)∥2] ≤
4L∆0

k

n(n− 1)

r(r − 1)
,

where we denote ∆0 = F (X0)− F ∗. Suppose further Xk

converges to a neighborhood U that contains an (isolated)
local minimizer X∗. Further, F satisfies Riemannian PL
condition on U . Let k0 be that Xk0

∈ U . Then we have
Xk0+k ∈ U , ∀k ≥ 1 and E[F (Xk0+k)−F (X∗)] ≤ exp

(
−

µ
2L

r(r−1)
n(n−1)k

)
E[F (Xk0

)− F (X∗)].

Theorem 5.7 shows that the convergence rate for general
non-convex functions maintains the same sublinear con-
vergence, compared with the Riemannian gradient descent
(RGD) (Boumal, 2023), albeit with an additional O(n2r−2)
factors. Such a factor can be compensated by the lower per-
iteration complexities of RSDM, which leads to a matching
total complexity compared to RGD.
Remark 5.8 (Total complexity of RSDM to RGD). In The-
orem 5.7, we show the convergence is at most O(n2r−2/k)
for both sampling strategies. This implies that in or-
der to reach an ϵ-stationary point in expectation with
mini=0,...,k−1 E[∥gradF (Xi)∥2] ≤ ϵ2, we require an it-
eration complexity of O(n2r−2ϵ−2), where per-iteration
complexity is either O(npr) for orthogonal sampling or
O(nr2) for permutation sampling strategy for permutation
sampling, as analyzed in Section 4. This gives a total com-
plexity of at least O(n3ϵ−2).

This suggests RSDM matches the O(np2ϵ−2) complexity
of Riemannian gradient descent (RGD) in the regime when
p ≥ Cn for some constant C > 0. This corresponds to
the challenging regime where the retraction cost dominates
other matrix operations. In contrast, when p ≪ n, the cost
of retraction becomes relatively negligible.

5.1.2. CONVERGENCE IN HIGH PROBABILITY

Theorem 5.7 suggests both permutation and orthogonal sam-
pling guarantee the same convergence rate in expectation.
However, we show in the following theorem that orthogonal
sampling achieves much tighter convergence bound in high
probability compared to the permutation sampling.

Theorem 5.9. Under Assumption 5.1 and η = 1
L with

L = C0 + C1, if we use orthogonal sampling, we obtain
and for all k ≥ 1, with probability at least 1 − exp

(
−

1
8 (1− τ(n, r))k

)
,

min
i=0,...,k−1

∥gradF (Xi)∥2 ≤ 16L∆0

k

n(n− 1)

(1− τ(n, r))r(r − 1)

where τ(n, r) = exp
(
− r2(r−1)2

2048n2(n−1)2

)
. If we use per-

mutation sampling, with probability at least 1 − exp
(
−

1
8

(
n
r

)−1
k
)
,

min
i=0,...,k−1

∥gradF (Xi)∥2 ≤ 16L∆0

k

n(n− 1)

r(r − 1)

(
n

r

)
Hence, in both cases, we have that almost surely,
lim inf
k→∞

∥gradF (Xk)∥2 = 0.

Under the same setting in Theorem 5.7, suppose Xk0
∈

U . Then for orthogonal sampling, with probability at
least 1 − exp(− 1

8 (1 − τ(n, r))k), we have F (Xk0+k) −
F (X∗) ≤ exp

(
− µ

8L
r(r−1)
n(n−1) (1 − τ(n, r))k

)(
F (Xk) −

F (X∗)
)
. For permutation sampling, with probability at

least 1−exp
(
− 1

8

(
n
r

)−1
k
)
, we have F (Xk+1)−F (X∗) ≤

exp
(
− µ

4L
r(r−1)
n(n−1)

(
n
r

)−1
k
)(
F (Xk)− F (X∗)

)
.

Theorem 5.9 derives a high-probability bound for for both
orthogonal and permutation sampling strategies. For gen-
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Algorithm 2 RSDM with partial deterministic sampling

1: Initialize X0 ∈ St(n, p).
2: for k = 0, ...,K − 1 do
3: Sample {P s

k}
S−1
s=0 such that condition (4) holds.

4: Set X0
k = Xk.

5: for s = 0, ..., S − 1 do
6: Let F̃ s

k (Y ) = F (Us
k(Y )Xk) where Us

k(Y ) is de-
fined in (2) with random matrix P s

k .
7: Compute Riemannian gradient gradF̃ s

k (Ir).
8: Update Y s

k = RetrIr (−η gradF̃ s
k (Ir)).

9: Set Xs+1
k = Us

k(Y
s
k )X

s
k .

10: end for
11: Set Xk+1 = XS

k .
12: end for

eral nonconvex functions, it can be seen that the high-
probability bound for permutation sampling can be much
worse than for the orthogonal sampling due to the addi-
tional binomial factor. In addition, compared to orthog-
onal sampling, permutation sampling requires the num-
ber of iteration to be significantly larger in order for the
bound to hold with arbitrary probability. To see this,
we first can bound τ(n, r) ∈ (0, 0.9995) due to r ≤ n.
0.0005 ≤ 1 − τ(n, r) ≤ 1 and thus 1 − τ(n, r) = Θ(1).
In order to require the high probability bound to hold with
probability 1 − δ′ (for arbitrary δ′ ∈ (0, 1), we require
k ≥ 4000 log(1/δ′)δ−2 = Ω̃(1) for the orthogonal case but
require k ≥ 2

(
n
r

)
log(1/δ′)δ−2 = Ω̃(

(
n
r

)
), which can be

significantly large when n ≫ r.

Remark 5.10 (The trade-off between efficiency and con-
vergence). The worse convergence guarantee of permuta-
tion sampling relative to orthogonal sampling in high prob-
ability indicates a trade-off between efficiency and conver-
gence. Specifically for general nonconvex functions, permu-
tation sampling requires only O(nr2) complexity per itera-
tion while suffering from a convergence of O

(
n2r−2

(
n
r

)
/k
)

in high probability. In contrast, orthogonal sampling re-
quires O(npr) complexity per iteration but converges with
a rate of O(n2r−2/k) with high probability. Similar ar-
guments also hold for local linear convergence under PL
condition.

5.2. Exact Convergence of RSDM

In the previous section, we have derived the convergence
rate of RSDM in both expectation and with high probabil-
ity. Here we adapt RSDM to achieve exact convergence.
To this end, we adapt RSDM as described in Algorithm
2. Specifically, we implement RSDM with a double-loop
procedure, where for each outer iteration k, we sample pro-
jection matrices {P s

k}
S−1
s=0 for the S inner iterations, such

that the following non-degenerate condition (4) holds:

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 ≥ Cp∥gradFk(In)∥2

(4)
Such a non-degenerate condition over the selection of ran-
dom matrix P s

k ensures the projected gradient does not
vanish. We show in Appendix F that there exist certain
sampling schemes that satisfy condition (4).

We now derive the exact convergence guarantees as follows.

Theorem 5.11. Under Assumption 5.1, suppose RSDM is
implemented as in Algorithm 2. Then let η = 1

L , with
L = C0 + C1. We can obtain for all k ≥ 1,

min
i=0,...,K−1

∥gradF (Xi)∥2 ≤ 1

K

2L∆0

Cp(1 + C2
1L

−2M2S2)
,

where S is the inner iteration number, M is a constant
depending on the retraction, Cp depends on the sampling.

5.3. Stochastic and Finite-sum Optimization

This section adapts Algorithm 1 for stochastic optimization,
defined as

min
X∈Rn×p:X⊤X=Ip

{F (X) := Eξ[f(X; ξ)]},

where we obtain noisy estimates of the gradients by query-
ing ξ. In Algorithm 1, we replace the Riemannian gradi-
ent gradF̃k(Ir) with the stochastic gradient gradf̃k(Ir; ξk),
where we denote f̃(Y ; ξ) := f(Uk(Y )Xk; ξk) for some
randomly sampled ξk at iteration k.

For convergence analysis, apart from Assumption 5.1, we
also require the assumption of stochastic gradients being
unbiased and having bounded variance, which is standard
in analyzing stochastic algorithms (Ghadimi & Lan, 2013).

Assumption 5.12. The stochastic gradient is unbiased, i.e.,
Eξ[∇f(X; ξ)] = ∇F (X) and has bounded variance, i.e.,
Eξ[∥∇f(X; ξ)−∇F (X)∥2] ≤ σ2, for all X ∈ St(n, p).

Theorem 5.13. Under Assumption 5.1 and 5.12, suppose
we choose η = min{L−1,

√
∆0/Lσ

−1K−1/2}, where we
denote ∆0 = F (X0)− F ∗. Then we can show

min
i=0,...K−1

E∥gradF (Xk)∥2 ≤ 4n(n− 1)

r(r − 1)

L∆0 + 2σ
√
∆0LK

K

Suppose there exist Xk0
, ..., Xk1

∈ U for some k1 >
k0, where U is defined in Theorem 5.7. Then we
have E[F (Xk1

) − F (X∗)] ≤ exp
(
− µ

2L
r(r−1)
n(n−1) (k1 −

k0)
)
E[F (Xk0

)− F (X∗)] + σ2

µ
n(n−1)
r(r−1) .

Theorem 5.13 derives convergence guarantees for stochastic
optimization and is comparable to Euclidean analysis under
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(b) Procrustes (2000, 2000)
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(c) PCA (2000, 1500)
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Figure 2: Experiments on Procrustes problem and PCA problem under various settings. The numbers in brackets represent
the size of n, p. For the Procrustes problem, we see RSDM converges competitively against the best baselines due to the
simplicity of the problem. For PCA problem, we see RSDM converges the fastest.

general nonconvex functions (Ghadimi & Lan, 2013) and
under PL conditions (Garrigos & Gower, 2023). The intro-
duction of additional factor of O(n2r−2) is consistent with
the deterministic setting, analyzed in Section 5.1. Lastly,
we remark that although we focus on stochastic gradient
in the main paper, the analysis can be easily extended to
mini-batch gradient descent, as we show in Appendix E.

5.4. Generalization to Quotient Manifolds

We now extend the developments of RSDM to general quo-
tient manifolds. In fact, Stiefel manifold can be equiva-
lently viewed as the quotient space of orthogonal mani-
fold (Edelman et al., 1998). More precisely, we can write
St(n, p) ∼= O(n)/O(n− p), i.e., a point in the Stiefel man-
ifold corresponds to the equivalence class

[Q] =

{
Q

(
Ip 0
0 U

)
: U ∈ O(n− p)

}
.

In other words, each point in St(n, p) is the set of all or-
thogonal matrices with the same first p columns. Such a
viewpoint allows to generalize the previous developments
and analysis to more general quotient manifolds of the form

M ∼= O(n)/K = {K · U : U ∈ O(n)} (5)

where K is a closed subgroup of O(n). An element of M
is the equivalence class [Q] = {K · Q : K ∈ K}. Quo-
tient manifold of the form (5) includes the famous Grass-
mann manifold (Edelman et al., 1998), i.e., Gr(n, p) ∼=
O(n)/(O(p)×O(n−p)) as well as the flag manifold (Zhu
& Shen, 2024), i.e., Flg(n1, · · · , nd;n) ∼= O(n)/(O(n1)×
O(n2 − n1)× · · · × O(nd − nd−1)×O(n− nd)). Since
the action of O(n) over M is transitive, we can follow the
same approach for St(n, p), and introduce a function Fk :

O(n) 7→ R and F̃k : O(r) 7→ R, where Fk(U) = F (UXk)

and F̃k(Y ) = Fk(Uk(Y )), where Uk(Y ) is defined as in
(2). We highlight that Xk ∈ M is a representation of the
equivalence class. For example, in the Grassmann manifold

case, Xk is a column orthonormal matrix whose columns
span the subspace. Therefore, Algorithm 1 can be directly
applied to the quotient manifolds. Because Fk and F̃k are
only defined on the orthogonal manifold, all our results de-
rived for the Stiefel manifold still hold for general quotient
manifolds. Apart from the orthogonal group, our develop-
ments can also be similarly generalized to other compact
matrix groups, such as SO(n).

6. Experiments
This section conducts experiments to verify the efficacy of
the proposed method. We benchmark our methods with
several baseline: (1) Riemannian gradient descent (RGD)
on Stiefel manifold (Absil et al., 2008; Boumal, 2023); (2)
Coordinate descent type of algorithms on Stiefel manifold,
namely RCD (Han et al., 2024a) and TSD (Gutman & Ho-
Nguyen, 2023); (3) Infeasible and retraction-free methods,
including PCAL (Gao et al., 2019) and Landing (Ablin &
Peyré, 2022; Ablin et al., 2023).

For all experiments, we tune the learning rate in the range of
[0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0]. For the infeasible meth-
ods, we tune the regularization parameter in the range of
[0.1, 0.5, 1.0, 1.5, 2.0]. For the proposed method (RSDM),
we consider both permutation sampling and orthogonal sam-
pling for Pk, which we denote as RSDM-P and RSDM-O
respectively. We set the submanifold dimension accord-
ingly based on the problem dimension and fix for both
sampling strategies. By defaults, we use QR-based re-
traction for RGD and proposed RSDM. All experiments
are implemented in Pytorch and run on a single RTX4060
GPU. The code is available on https://github.com/
andyjm3/RSDM.

6.1. Procrustes Problem

We first consider solving the Procrustes problem as to
find an orthogonal matrix that aligns two matrices, i.e.,
minX∈St(n,p) f(X) = ∥XA − B∥2 for some matrix A ∈
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(b) Varying randomness

0 20 40 60 80 100 120 140
Time

10 6

10 5

10 4

10 3

10 2

10 1

100

Op
tim

al
ity

 G
ap

RGD (qr)
RGD (exp)
RGD (polar)
RGD (cayley)
RSDM (qr)
RSDM (exp)
RSDM (polar)
RSDM (cayley)

(c) Varying retraction

Figure 3: Experiment results on PCA (n = 2000, p = 1500) by (a) varying low-dimension
r and (b) random seed with r = 700. The results suggest the outperformance of proposed
RSDM over RGD is robust to changes in r as well as random seed.
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(a) QUAD

Figure 4: Experiment results
on quadratic assignment prob-
lem (QUAD), n = p = 1000.

Rp×p, B ∈ Rn×p. The optimal solution of this problem is
X∗ = UV ⊤ where UΣV ⊤ = BA⊤ is the thin-SVD of the
matrix BA⊤. Hence the optimal solution is computed as
f(X∗) = ∥A∥2F + ∥B∥2F − 2tr(Σ).

Setting and Results. We explore small-size as well as
large-size problems by considering (1) n = p = 200 and
(2) n = p = 2000. For the two settings, we set r = 150
and r = 900 for RSDM respectively. We generate A,B
where each entry follows a random Gaussian distribution.
For this problem, we compute the closed-form solution
X∗ by taking SVD of BA⊤ and measure the optimality
gap in terms of optgap(X) = |f(X) − f(X∗)|/|f(X∗)|.
We notice that for feasible methods, like RGD, RCD and
proposed RSDM, the problem can be reduced to a linear
function as maxX∈St(n,p)⟨X,BA⊤⟩ while for infeasible
methods, the problem remains quadratic. We highlight that
because n = p, RCD and TSD are equivalent.

In Figure 2(a) under the setting n = p = 200, we see RCD
performs notably worse compared to other benchmarks in
runtime. This is because, although requiring fewer floating
point operations (as shown in (Han et al., 2024a)), RCD
requires more iterations, which is not GPU-friendly. On
the other hand, we see the proposed RSDM performs com-
petitively compared to RGD. When increasing the dimen-
sionality to n = p = 2000, we notice RCD requires overly
long runtime to progress and thus we remove from the plots.
From Figure 2(b), we verify the superiority of RSDM over
RGD.

6.2. PCA Problem

Next, we consider a quadratic problem, originating from
principal component analysis (PCA), as to find the largest
eigen-directions of a covariance matrix. This can be for-
mulated as minX∈St(n,p) F (X) = −tr(X⊤AX), where
A ∈ Rn×n. This problem also has analytic solution given
by the top-p eigenvectors of A.

Setting and Results. We create A to be a positive definite

matrix with a condition number of 1000 and exponentially
decaying eigenvalues. Due to the existence of an analytic
solution, we measure the optimality gap in the same way
as in Section 6.1. In Figure 2(c) and (d), we consider the
setting of n = 2000, p = 1500 and n = 3000, p = 2500,
which represent large-scale scenarios. For the two settings,
we set r = 700, 1000 respectively. We see RSDM achieves
the fastest convergence among all the baselines. Especially
around optimality, we see RSDM switches from the sub-
linear convergence to linear in contrast to other baselines
that maintains the sublinear convergence throughout. This
behavior may be attributed to the random projection, which
potentially provides a more favorable optimization land-
scape close to optimum (Fuji et al., 2022). A formal
theoretical verification of this claim is left for future work.

To further validate the robustness of RSDM, we conduct
additional experiments by varying the low dimension r, al-
tering the random seed and utilizing different retractions.
The results, presented in Figure 3, demonstrate that the per-
formance of RSDM is largely insensitive to the choice of r
(within a reasonable range) and the randomness throughout
the iterations. RSDM also consistently outperforms RGD
across all available retractions.

6.3. Quadratic Assignment Problem

The quadratic assignment problem (Burkard et al., 1997;
Wen & Yin, 2013) aims to minimize a quadratic function
over permutation matrix. In (Wen & Yin, 2013), the problem
is re-formulated as a problem over the Stiefel manifold:
minX∈St(n,n) F (X) = tr(A⊤(X ⊙X)B(X ⊙X)⊤).

Setting and Results. We consider the setting of n = 1000
and generate A,B as random normal matrices. Since no
closed-form solution exists for this problem, we first run
RGD for sufficient number of iterations, using the result-
ing variable as the optimal solution. As shown in Figure
4(a), RSDM converges the fastest among the baselines, espe-
cially near the optimal solution. Moreover, in this example,
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(a) O-FFN on MNIST
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Figure 5: Test accuracy for training orthogonal neural network (O-FNN) and orthogonal vision transformer (O-ViT) on
MNIST dataset and CIFAR10 dataset in five runs.

orthogonal sampling outperforms the permutation sampling.

6.4. Orthogonal Neural Networks

We consider optimizing a neural network with orthogo-
nal constraints. We first consider a feedforward neural
network (FFN) with ReLU activation for image classifi-
cation task, i.e., min{Wℓ∈St(dℓ,dℓ+1)} L(nn(X), y), where
nn(X) = σ(· · ·σ(XWℓ + bℓ) · · · )WL + bL denotes a L-
layer feedforward neural network with bias terms and L(·, ·)
denotes the cross-entropy loss. Apart from the feedforward
neural network, we also consider optimizing an (orthogonal)
vision transformer (ViT) (Fei et al., 2022). We follow (Fei
et al., 2022) to impose orthogonality constraint on the query,
key and value projection matrices.

Setting and Results. We optimize neural networks (orthog-
onal FFN and orthogonal ViT) to classify MNIST (LeCun
et al., 1998) and CIFAR10 (Krizhevsky et al., 2009) im-
ages. For preprocessing, the MNIST images are resized into
32×32 for MNIST and CIFAR10 images to 20×20×3. The
images are then normalized into [−1, 1] and vectorized as
input for the neural network with a size of 1024 for MNIST
and 1200 for CIFAR10. We train a 6-layer FFN, where
we constrain the weight of the first 5 layers to be column
orthonormal with a hidden size of 1024. The output layer
weight, with a size of 1024 × 10, remains unconstrained.
We also train a 6-layer, 4-head ViT with embedding dimen-
sion 1024 and 64 patches, and constrain the query, key and
value matrices of all attention layers to be orthogonal. For
optimization, we employ RGD and RSDM with a batch size
of 16. We set learning rate for unconstrained parameters
to be 0.1 and only tune the learning rate for the orthogonal
parameters. We plot the test accuracy in Figure 5 where we
compare RGD with RSDM-P with five independent runs.

When training an orthogonal FFN, we observe that RSDM
achieves faster convergence during the early iterations in
terms of runtime, indicating its greater efficiency in quickly
reaching high accuracy. On the other hand, when training
an orthogonal ViT, RSDM consistently outperforms RGD
in test accuracy throughout the training process, with a

non-negligible performance gap. This suggests that RSDM
may offer greater advantages for training larger and more
complex architectures such as ViTs.

7. Conclusion
In this paper, we have introduced a novel randomized sub-
manifold approach for optimization problems with orthog-
onality constraints in order to reduce the high complexity
associated with the retraction. We have derived convergence
guarantees of the proposed method on a variety of func-
tion classes and empirically demonstrated its superiority
in a number of problem instances. We also discuss two
sampling strategies based on orthogonal and permutation
matrices, and discuss the trade-off in terms of computational
efficiency versus convergence guarantees.

We believe our developments represent a significant ad-
vancement in scalable Riemannian optimization by offering
a simple, yet effective solution for large-scale problems
with orthogonality constraints. In the paper, we only dis-
cuss the application of randomized submanifold strategy
to Riemannian gradient descent. Nonetheless, we believe
such a strategy can be combined with more advanced opti-
mization techniques, such as line-search (Boumal & Cartis,
2019), momentum (Li et al., 2020; Kong et al., 2023), pre-
conditioning (Kasai et al., 2019) and higher-order methods
(Huang et al., 2015; Absil et al., 2007), to further enhance
convergence efficiency and robustness with orthogonality
constraints and beyond.

Limitation. We remark that our random submanifold
method has a matching complexity as RGD when p = Ω(n).
Extending our development to the case where p ≪ n re-
mains an important future direction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Other related works
Apart from orthogonality constraints, Han et al. (2024a) derive efficient coordinate updates for other matrix manifolds, such
as Grassmann and positive definite manifolds. Vary et al. (2024) extend the idea of infeasible update for generalized Stiefel
manifold and Darmwal & Rajawat (2023) propose efficient subspace descent algorithms for positive definite manifold with
affine-invariance metric. Several other studies (Huang et al., 2021; Peng & Vidal, 2023) investigate (block) coordinate
descent on a product of manifolds, where each update targets an individual component manifold. This however is less
relevant to our setting, where we exploit submanifolds on a single manifold.

B. Preliminaries on Stiefel manifold and Riemannian optimization
In this section, we provide more detailed introduction to the Stiefel manifold and Riemannian optimization. Stiefel manifold
St(n, p) = {X ∈ Rn×p : X⊤X = Ip} is the set of column orthonormal matrices. When n = p, St(n, p) ≡ O(n),
which is called orthogonal manifold, also forming a group. The tangent space of Stiefel manifold is TXSt(n, p) = {U ∈
Rn×p : X⊤U + U⊤X = 0}. One can choose the Euclidean metric (restricted to the tangent space) as a Riemannian
metric for St(n, p), i.e., for any X ∈ St(n, p), and U, V ∈ TXSt(n, p), Riemannian metric ⟨U, V ⟩X = ⟨U, V ⟩ where we
use ⟨·, ·⟩ to represent the Euclidean inner product. Other metrics such as canonical metric (Edelman et al., 1998) can also
be considered. Orthogonal projection of any W ∈ Rn×p to TXSt(n, p) with respect to the Euclidean metric is derived
as PX(W ) = W − X{X⊤W}S, where we denote {A}S := (A + A⊤)/2. For a smooth function F : St(n, p) → R,
Riemannian gradient of F at X ∈ St(n, p), denoted as gradF (X), is a tangent vector that satisfies for any U ∈ TXSt(n, p),
⟨gradF (X), U⟩X = ⟨∇F (X), U⟩, where ∇F (X) denotes the classic Euclidean gradient. The Riemannian gradient on
Stiefel manifold can be computed as gradF (X) = PX(∇F (X)) = ∇F (X)−X{X⊤∇F (X)}S.

Riemannian optimization works by iteratively updating the variable on the manifold following some descent direction.
Throughout the process, a retraction is required to ensure that the iterates stay on the manifold. Specifically, a retraction,
denoted as RetrX : TXSt(n, p) → St(n, p) is a map from tangent space to the manifold that satisfies RetrX(0) = X
and DRetrX(0)[V ] = V for any V ∈ TXSt(n, p), where D is the differential operator. There exist various retractions on
Stiefel manifold, including (1) QR-based retraction: RetrX(U) = qf(X + U), where qf extracts the Q-factor from the
QR decomposition; (2) Polar retraction: RetrX(U) = (X + U)(Ip + U⊤U)−1/2; (3) Cayley retraction: RetrX(U) =
(In −W )−1(In +W )X where U = WX for some skew-symmetric W ∈ Rn×n; (4) Exponential retraction: RetrX(U) =[
X U

]
expm(

[
X⊤U −U⊤U
Ip X⊤U

]
)

[
expm(−X⊤U)

0

]
, where expm(·) denotes matrix exponential. We highlight that all

retractions require linear algebra operations other than matrix multiplications that costs at least O(np2).

C. Additional experiment results
In the main text, we present the convergence results only in terms of runtime. Here we also plot the convergence with
respect to iteration number in Figure 6. We see for Procrustes problem, one of the simplest optimization problems on Stiefel
manifold, both RGD and Landing algorithm yields fastest convergence in iteration number. We also notice in small-sized
problem, RCD converges quickly. Nonetheless, each iteration of RCD requires to loop through all the n2 indices, resulting
in poor parallelizability. This is reflected in the runtime comparisons presented in the main text. For other problem instances,
including PCA and quadratic assignment, RSDM attains the fastest convergence not only in runtime (as shown in the main
text) but also in terms of iteration count (Figure 6).

Finally, we plot the convergence in iteration for training orthogonal neural networks on MNIST and CIFAR10. We see that
RSDM is not able to beat the RGD in terms of convergence in iteration, due to the difficulty of the optimization problems.

D. Proofs
D.1. Proof of Lemma 5.2

We first recall the Hessian of a function G : St(n, p) → R along a any tangent vector V is

HessG(X)[V ] = PX(∇2G(X)[V ]− V {X⊤∇G(X)}S)

where {A}S = (A+A⊤)/2 and PX(ξ) = ξ −X{X⊤ξ}S.
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(c) PCA (2000, 1500)
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Figure 6: Convergence in terms of iteration on Procrustes problem and PCA problem and quadratic assignment problem
under various settings. We observe that except for the Procrustes problem and training of orthogonal neural network, RSDM
also converges the fastest in terms of iteration number.
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Figure 7: Convergence in loss plot for on image classification.

Proof of Lemma 5.2. Recall the (Euclidean) gradient and Hessian of F̃X(Y ) is derived as

∇F̃X(Y ) = P (r)∇F
(
U(Y )X

)
X⊤P (r)⊤

∇2F̃X(Y )[V ] = P (r)∇2F
(
U(Y )X

)
[U(V )X]X⊤P (r)⊤

for any V ∈ TY O(r). This leads to the following Riemannian Hessian

HessF̃X(Y )[V ] = PY

(
∇2F̃X(Y )[V ]− V {Y ⊤∇F̃X(Y )}S

)
.

We wish to bound ∥HessF̃X(Y )[V ]∥Y in terms of ∥V ∥Y . First we notice that ∥HessF̃X(Y )[V ]∥Y ≤ ∥∇2F̃X(Y )[V ] −
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V {Y ⊤∇F̃X(Y )}S∥ because for any ξ,

∥PY (ξ)∥2Y =
1

4
∥ξ − Y ξ⊤Y ∥2 =

1

4

(
2∥ξ∥2 − 2⟨ξ, Y ξ⊤Y ⟩

)
=

1

4

(
2∥ξ∥2 − 2vec(ξ)⊤(Y ⊤ ⊗ Y )vec(ξ⊤)

)
≤ 1

4

(
2∥ξ∥2 + 2∥ξ∥2

)
= ∥ξ∥2

where we use the fact that ∥(Y ⊤ ⊗ Y )v∥ = ∥v∥ for any v and Y ∈ O(r).

Then we bound

∥∇2F̃X(Y )[V ]− V {Y ⊤∇F̃X(Y )}S∥ ≤ ∥∇2F̃X(Y )[V ]∥+ ∥V ∥∥{Y ⊤∇F̃ (Y )}S∥
≤ ∥∇2F

(
U(Y )X

)
[U(V )X]∥+ ∥V ∥∥∇F (U(Y )X)∥

≤ C1∥U(V )∥+ C0∥V ∥
= (C0 + C1)∥V ∥

where we use triangle inequality in the first inequality. The second inequality uses ∥P (r)∥ ≤ 1, ∥X∥, ∥Y ∥ ≤ 1. The third
inequality is by assumption on ∇2F (X),∇F (X). The last equality is by definition of U(V ).

D.2. Proof of Lemma 5.3

Proof of Lemma 5.3. From the definition that FX(U) = F (UX), we let

A := ∥gradFX(In)∥2 =
1

4
∥∇F (X)X⊤ −X∇F (X)⊤∥2

B := ∥gradF (X)∥2 = ∥∇F (X)−X{X⊤∇F (X)}S∥2

We first notice that

A =
1

4

(
∥∇F (X)X⊤∥2 + ∥X∇F (X)⊤∥2 − 2tr(X∇F (X)⊤X∇F (X)⊤)

)
=

1

2

(
∥∇F (X)∥2 − tr(X∇F (X)⊤X∇F (X)⊤)

)
.

Similarly,

B = ∥∇F (X)∥2 + ∥X{X⊤∇F (X)}S∥2 − 2tr(∇F (X)⊤X{X⊤∇F (X)}S)
= ∥∇F (X)∥2 + ∥X{X⊤∇F (X)}S∥2 − tr(∇F (X)⊤X(X⊤∇F (X) +∇F (X)⊤X)

= ∥∇F (X)∥2 − tr(X∇F (X)⊤X∇F (X)⊤) + C,

where we let C := ∥X{X⊤∇F (X)}S∥2 − tr(∇F (X)⊤XX⊤∇F (X)). Then we have

C =
1

4
∥XX⊤∇F (X)∥2 + 1

4
∥X∇F (X)⊤X∥2 + 1

2
tr(∇F (X)⊤X∇F (X)⊤X)

− tr(∇F (X)⊤XX⊤∇F (X))

=
1

4
tr(∇F (X)⊤XX⊤∇F (X)) +

1

4
tr(X⊤∇F (X)∇F (X)⊤X) +

1

2
tr(∇F (X)⊤X∇F (X)⊤X)

− tr(∇F (X)⊤XX⊤∇F (X))

= −1

2
tr(∇F (X)∇F (X)⊤XX⊤) +

1

2
tr(∇F (X)⊤X∇F (X)⊤X)

Therefore,

B = ∥∇F (X)∥2 − 1

2
tr(∇F (X)⊤XX⊤∇F (X))− 1

2
tr(∇F (X)⊤X∇F (X)⊤X).

15



Efficient Optimization with Orthogonality Constraint

and,

A−B =
1

2
(tr(∇F (X)⊤XX⊤∇F (X))− ∥∇F (X)∥2).

We will now prove that
A−B ≥ −A.

To this end, we consider the quantity ∥F (X)⊤X −X⊤F (X)∥2 ≥ 0. By expanding we obtain

∥F (X)⊤X −X⊤F (X)∥2 = ∥F (X)⊤X∥2 + ∥X⊤F (X)∥2 − 2tr(F (X)⊤XF (X)⊤X)

= 2(∥F (X)⊤X∥2 − tr(XF (X)⊤XF (X)⊤)

= 2(tr(∇F (X)⊤XX⊤∇F (X)− tr(XF (X)⊤XF (X)⊤)) ≥ 0.

This shows
tr(X∇F (X)⊤X∇F (X)⊤) ≤ tr(∇F (X)⊤XX⊤∇F (X)),

which concludes A−B ≥ −A and thus A ≥ B/2.

D.3. Proof of Proposition 5.5

Proof of Proposition 5.5. We separately prove the results for the strategies of permutation sampling and orthogonal sampling.

Permutation sampling. Recall that the gradient gradFX(In) on O(n) is given by

gradFX(In) =
1

2
(∇F (X)X⊤ −X∇F (X)⊤).

Hence by (3) and using the fact that P is a permutation matrix, we have

gradF̃X(Ir) = P (r)gradFX(In)P (r)⊤,

where P (r) ∈ Rr×n consist of the first r rows of P . Let us define by Sr
n the set of all truncated permutation matrix

P (r) ∈ Rr×n. To each element P of Sr
n, we can associate a unique ”truncated” permutation π defined by

∀i ≤ r : π(i) is such that P⊤ei = eπ(i).

Notice that π is defined only for the first r integers as the matrix P ∈ Sr
n has only r rows. Using the fact that gradFX(In)

is Skew-symmetric, we have

∥P (r)gradFX(In)P (r)⊤∥2 = 2
∑

1≤i<j≤r

(gradFX(In))
2
(π(i),π(j)) =

∑
1≤i,j≤r

(gradFX(In))
2
(π(i),π(j)).

We can check the number of element in Sr
n is given by

|Sr
n| =

n!

(n− r)!
,

as n! is the number of permutations on {1, · · · , n} and (n− r)! is the number of way to complete the truncated permutation
into a permutation on {1, · · · , n}. Therefore, we deduce that

E∥gradF̃X(Ir)∥2 = 2
(n− r)!

n!

∑
π∈Sr

n

∑
i<j

(gradFX(In))
2
(π(i),π(j)).

Let us now fix 1 ≤ k, l ≤ n. We will now count how many times does the term (gradFX(In))
2
(k,l) appears in the sum∑

π∈Sr
n

∑
i<j

(gradFX(In))
2
(π(i),π(j)).
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More formally, let us denote by nk,l ∈ N, the number of time (gradFX(In))
2
(k,l) appears in the above sum. Then we have

that

E∥gradF̃X(Ir)∥2 = 2
(n− r)!

n!

∑
1≤k,l≤n

nk,l(gradFX(In))
2
(k,l).

Let us now compute nk,l. For that it is equivalent to count how the number of elements π ∈ Sr
n, such that (k, l) ∈

{(π(i), π(j)) | i < j}. This equivalent to choosing an ordered pair (i, j) inside {1, · · · , r}2 and then count the number of
elements π in Sr

n such that (k, l) = (π(i), π(j)). Hence, we deduce that

nk,l =
r(r − 1)

2

(n− 2)!

(n− r)!
,

as there is exactly (n− 2)! permutation π such that for fixed (i, j), (k, l) = (π(i), π(j)). We deduce therefore that

E∥gradF̃X(Ir)∥2 = 2
(n− r)!

n!

r(r − 1)

2

(n− 2)!

(n− r)!

∑
1≤k,l≤n

(gradFX(In))
2
(k,l)

=
r(r − 1)

n(n− 1)
∥gradFX(In)∥2,

which completes the proof.

Orthogonal sampling. Recall
gradF̃X(Ir) = P (r)gradF (In)P (r)⊤,

where P (r) ∈ Rr×n consist of the first r rows of P . Let us denote by M := gradFX(In). We have

∥gradF̃X(Ir)∥2 =

r∑
i,j=1

 n∑
k,l=1

PikMklPjl

2

=

r∑
i,j=1

n∑
k1,l1,k2,l2=1

Pik1
Mk1l1Pjl1Pik2

Mk2l2Pjl2

=

r∑
i̸=j=1

n∑
k1,l1,k2,l2=1

Pik1
Pjl1Pik2

Pjl2Mk1l1Mk2l2

where the last inequality holds as PMP⊤ is skew symmetric as M is, hence (PMP⊤)ii = 0 for all i. Hence, to prove the
theorem, we must compute, for all set of indices, E[Pik1

Pjl1Pik2
Pjl2 ] for i ̸= j.

First, let us consider the case where all indices k1, l1, k2, l2 are different. We will prove that in such case
E[Pik1

Pjl1Pik2
Pjl2 ] = 0. Indeed, notice that since all the four indices are different, Pik1

, Pjl1 , Pik2
, Pjl2 belongs to

four different columns of P . Hence, by multiplying P on the left by an identity matrix where the 1 are k1 position on the
diagonal has been replaced by −1, we can change Pik1

to −Pik1
and Pik1

Pjl1Pik2
Pjl2 to −Pik1

Pjl1Pik2
Pjl2 . Since the

distribution of P is invariant with such operation, we deduce, by symmetry, that E[Pik1
Pjl1Pik2

Pjl2 ] = 0.

More generally, let us now consider the case where k1, l1, k2, l2 take at least 3 different values. Then by a similar reasoning,
since once column of P must contain at least a single index among k1, k2, l1, l2 then we can show (by multiplying this column
by −1) that Pik1Pjl1Pik2Pjl2 has the same distribution as −Pik1Pjl1Pik2Pjl2 , proving again that E[Pik1Pjl1Pik2Pjl2 ] = 0.
Hence, we need to consider two cases: k1 = k2, or k1 = l1 (notice that k1 = l2 is the same case as k1 = l1).

First, let us assume that k1 = k2. Then, by the previous point, we must also have that l1 = l2. Now, let us consider the case
k1 = l1. Again, we must have k2 = l2, otherwise we would have at least 3 distinct columns.

In summary, we have proved, by considering the three cases: k1 = k2, l1 = l2; k1 = l1, k2 = l2 ; andk1 = l2, k2 = l1, that:

E
[
∥gradF̃X(Ir)∥2

]
=

r∑
i ̸=j=1

 n∑
l,k=1

E[P 2
ikP

2
jl]M

2
kl +

n∑
l,k=1

E[PikPjkPilPjl]MkkMll +

n∑
l,k=1

E[PikPjkPilPjl]MklMlk

 .
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Which implies, by anti-symmetry of M (Mlk = −Mkl and Mkk = Mll = 0):

E
[
∥gradF̃X(Ir)∥2

]
=

r∑
i ̸=j=1

n∑
l ̸=k=1

(
E[P 2

ikP
2
jl]− E[PikPjkPilPjl]

)
M2

kl. (6)

Let us now compute E[P 2
ikP

2
jl], for k ̸= l. Notice for all i,

∑n
k=1 P

2
ik = 1. Hence, by multiplying two of this equality (for i

and j) and taking the expectation, we get that for all i ̸= j,

n∑
l,k=1

E[P 2
ikP

2
jl] = 1,

which implies that
n∑

l ̸=k=1

E[P 2
ikP

2
jl] = 1−

n∑
k=1

E[P 2
ikP

2
jk].

However, notice that for all k ̸= l, the joint law of Pik, Pjl is the same. Indeed the law of P does not change by permuting
the columns of P , which implies that for all k, l, the law of Pik, Pjl is the same as the joint law of Pi1, Pj2. Hence we have
that from the previous equation that

(n2 − n)E[P 2
i1P

2
j2] = 1− nE[P 2

i1P
2
j1] (7)

Furthermore using that (
n∑

k=1

PikPjk

)2

= 0,

leading to
n∑

k ̸=l=1

PikPjkPilPjl +

n∑
k=1

P 2
ikP

2
jk = 0.

Since, by permuting the rows of P , PikPjkPilPjl has the same law as Pi1Pj1Pi2Pj2, we found that

(n2 − n)E[Pi1Pj1Pi2Pj2] + nE[P 2
i1P

2
j1] = 0. (8)

Notice that (6) leads to

E
[
∥gradF̃X(Ir)∥2

]
=

r∑
i ̸=j=1

n∑
l ̸=k=1

(
E[P 2

i1P
2
j2]− E[Pi1Pj1Pi2Pj2]

)
M2

kl.

Hence
E
[
∥gradF̃X(Ir)∥2

]
= (r2 − r)

(
E[P 2

i1P
2
j2] + E[Pi1Pj1Pi2Pj2]

)
∥gradFX(In)∥2. (9)

Using (7), we found that

E[P 2
i1P

2
j2] =

1− nE[P 2
i1P

2
j1]

n2 − n
,

and using (8), we found that

E[Pi1Pj1Pi2Pj2] = −
nE[P 2

i1P
2
j1]

n2 − n

Hence,

E
[
∥gradF̃X(Ir)∥2

]
=

r2 − r

n2 − n
∥gradFX(In)∥2.

Thus the proof is now complete.
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D.4. Proof of Theorem 5.9

Here we first prove Theorem 5.9, which is the high probability convergence guarantees. Towards this end, we require the
following proposition that deduces a concentration inequality on ∥gradF̃X(Ir)∥2.

Proposition D.1. When P is sampled uniformly from O(n), we have that

P
(
∥gradF̃X(Ir)∥2 ≥ r(r − 1)

2n(n− 1)
∥gradFX(In)∥2

)
≥ 1− exp

(
− r2(r − 1)2

2048n2(n− 1)2

)
When P is sampled uniformly from P(n) we have that

P
(
∥gradF̃X(Ir)∥2 ≥ r(r − 1)

n(n− 1)
∥gradFX(In)∥2

)
≥
(
n

r

)−1

Proof of Proposition D.1. First, let us consider the case where P is sampled uniformly from O(n). When P is sampled
uniformly from O(n), we can see P (r) is sampled uniformly from St(n, r). Then by Proposition 5.5,

E∥gradF̃X(Ir)∥2 =
r(r − 1)

n(n− 1)
∥gradFX(In)∥2.

In order to derive a high-probability result, we define the following function h : St(n, r) → R that h(X) = ∥X⊤MX∥2
where M ∈ Rn is any Skew-symmetric matrix. And it can be verified that when M = gradFX(In), we can show
h(P (r)⊤) = ∥gradF̃X(Ir)∥2.

Let us now compute a Lipschitz constant Lh for the function h. For that, we compute the Riemannian gradient gradh(X).
Le us first compute the Euclidean gradient ∇h(X). We have, by anti-symmetry of M :

∇h(X) = −4MXX⊤MX.

We therefore deduce the Riemannian gradient:

gradh(X) = −4MXX⊤MX + 4X{X⊤MXX⊤MX}S
= −4MXX⊤MX + 4XX⊤MXX⊤MX

This implies that in order to find the Lipschitz constant Lh, we need to bound ∥MXX⊤MX∥ and ∥XX⊤MXX⊤MX∥.
Using that for any matrix A,B, we have that ∥AB∥F ≤ ∥A∥2∥B∥F and that ∥X∥2 ≤ 1 for any X ∈ St(n, r), we can
bound the two term above by ∥M∥2F . Hence, we deduce that we can take Lh = 8∥M∥2 as the Lipschitz constant for h.
From (Götze & Sambale, 2023), we deduce that for any t > 0, we have

P
(
h(X) ≤ r(r − 1)

n(n− 1)
∥M∥2 − t

)
≤ exp

(
− (n− 1)t2

512∥M∥4

)
.

Hence, by taking t = 1
2

r(r−1)
n(n−1)∥M∥2, we deduce that

P
(
h(X) ≤ r(r − 1)

2n(n− 1)
∥M∥2

)
≤ exp

(
− r2(r − 1)2

2048n2(n− 1)2

)
.

This ends the proof for the case where P is sampled uniformly from O(n). Notice that the permutation case is obvious as
each element is sampled with probability

(
n
r

)−1
, and at least one element P should induce a value h(P (r)⊤) larger than

E[h(P (r)⊤)].

Proof of Theorem 5.9. By Lemma 5.2, we see F̃X(Y ) is L-smooth with L = C0 + C1. Then we have for any Y and
W ∈ TY O(r, r),

F̃X(RetrY (W )) ≤ F̃X(Y ) + ⟨gradF̃X(Y ),W ⟩+ L

2
∥W∥2.
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Applying this inequality to the update and recalling F̃k(Y ) = F (U(Y )Xk), we have

F (Xk+1) = F̃k(RetrIr (−η gradF̃ (Ir))) ≤ F̃k(Ir)−
(
η − η2L

2

)
∥gradF̃k(Ir)∥2

= F (Xk)−
1

2L
∥gradF̃k(Ir)∥2 (10)

where we note that F̃k(Ir) = F (Xk).

Hence, we deduce from Proposition D.1 and Lemma 5.3, that

F (Xk+1)− F (Xk) ≤ − 1

4L

r(r − 1)

n(n− 1)
∥gradFk(In)∥2 ≤ − 1

8L

r(r − 1)

n(n− 1)
∥gradF (Xk)∥2,

holds with probability at least 1 − exp
(
− r2(r−1)2

2048n2(n−1)2

)
:= 1 − τ(n, r). Let us denote, for all k, by Yk ∈ {0, 1} the

random variable equal to one if and only if the above inequality holds. We have that E[Yk] ≥ 1− τ(n, r), furthermore since
F (Xk+1) ≤ F (xk), we have that for all k,

∥gradF (Xk)∥2Yk ≤ 8L
n(n− 1)

r(r − 1)
(F (Xk)− F (Xk+1)).

Hence (
min

i=0,...,k−1
∥gradF (Xi)∥2

)
1

k

k−1∑
i=0

Yi ≤
1

k

k−1∑
i=0

∥gradF (Xi)∥2Yi ≤
8L

k

n(n− 1)

r(r − 1)
(F (X0)− F ∗).

We have by a Chernoff bound (see (Vershynin, 2018)), that for all δ ∈ (0, 1),

P

(
k−1∑
i=0

Yi ≥ (1− δ)(1− τ(n, r))k

)
≥ 1− exp

(
−δ2

2
(1− τ(n, r))k

)
. (11)

Hence, we deduce that with probability at least 1− exp
(
− δ2

2 (1− τ(n, r))k
)

,

min
i=0,...,k−1

∥gradF (Xi)∥2 ≤ 8L

k

n(n− 1)

(1− δ)(1− τ(n, r))r(r − 1)
(F (X0)− F ∗).

Finally, the proof for the permutation case is exactly similar and thus we omit here. This suggests
lim infk→∞ ∥gradF (Xk)∥2 = 0 almost surely.

For the analysis under the Riemannian PL condition, once there exists k0 such that Xk0
∈ U , then by the convergence

almost surely in gradient norm and the fact that X∗ is an isolated local minima, we conclude that there exists a subsequence
Xkj , for k0 ≤ k1 < k2 < ... converging to X∗. For such a subsequence, it is clear that F (Xkj ) converges to F (X∗).
Furthermore, because F (Xk) converges as in (10), then F (Xk) must converge to F (X∗) almost surely. By (Rebjock &
Boumal, 2024), we also know that quadratic growth holds (due to PL condition), i.e., F (Xk)− F (X∗) ≥ µ

2 ∥Xk −X∗∥2
(by X∗ is isolated). Then we have ∥Xk −X∗∥2 → 0 almost surely. Thus, Xk ∈ U for all k ≥ k0.

Next, we derive the convergence rate. If we use orthogonal sampling, we show the following results by induction:

F (Xk0+k)− F (X∗) ≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k−1
i=0 Yi (

F (Xk0
)− F (X∗)

)
where Yi ∈ {0, 1} is the same random variable defined above. It is clear at k = 1, by (10) and by the same argument as
above, we have

F (Xk0+1)− F (X∗) = F (Xk0+1)− F (Xk0) + F (Xk0)− F (X∗)

≤ − 1

8L

r(r − 1)

n(n− 1)
∥gradF (Xk0

)∥2Y0 + F (Xk0
)− F (X∗)

≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)Y0 (
F (Xk0

)− F (X∗)
)
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Now there exists an iteration k′ ≥ 1 such that for all k < k′, we have

F (Xk0+k)− F (X∗) ≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k−1
i=0 Yi (

F (Xk0)− F (X∗)
)
.

Then we verify for k = k′,

F (Xk0+k′)− F (X∗) = F (Xk0+k′)− F (Xk0+k′−1) + F (Xk0+k′−1)− F (X∗)

≤ − 1

8L

r(r − 1)

n(n− 1)
∥gradF (Xk0+k′−1)∥2Yk′−1 + F (Xk0+k′−1)− F (X∗)

≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)Yk′−1 (
F (Xk0+k′−1)− F (X∗)

)
≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)Yk′−1
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k′−2
i=0 Yi (

F (Xk0
)− F (X∗)

)
≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k′−1
i=0 Yi (

F (Xk0)− F (X∗)
)

where the second last inequality is by induction. This completes the induction. Then using a similar argument, we have

F (Xk0+k)− F (X∗) ≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k−1
i=0 Yi (

F (Xk0
)− F (X∗)

)
≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)(1−δ)(1−τ(n,r))k (
F (Xk0

)− F (X∗)
)

≤ exp

(
− µ

4L

r(r − 1)

n(n− 1)
(1− δ)(1− τ(n, r))k

)(
F (Xk0)− F (X∗)

)
with probability at least 1− exp

(
− δ2

2 (1− τ(n, r))k
)

by (11). The proof for the permutation case is the same and thus
omitted.

For simplicity, we fix δ = 1/2 such that the results hold with probability at least 1−exp (−(1− τ(n, r))k/8) for orthogonal
sampling and results hold with probability at least 1− exp(−

(
n
r

)−1
k/8) for permutation sampling.

D.5. Proof of Theorem 5.7

Proof of Theorem 5.7. By Lemma 5.2, we see F̃X(Y ) is L-smooth with L = C0 + C1. Then we have for any Y and
W ∈ TY O(r, r),

F̃X(RetrY (W )) ≤ F̃X(Y ) + ⟨gradF̃X(Y ),W ⟩+ L

2
∥W∥2.

Applying this inequality to the update and recalling F̃k(Y ) = F (U(Y )Xk), we have

F (Xk+1) = F̃k(RetrIr (−η gradF̃ (Ir))) ≤ F̃k(Ir)−
(
η − η2L

2

)
∥gradF̃k(Ir)∥2

= F (Xk)−
1

2L
∥gradF̃k(Ir)∥2

where we note that F̃k(Ir) = F (Xk). Taking expectation on both sides with respect to the randomness in the current
iteration, we have

EkF (Xk+1) ≤ F (Xk)−
1

2L
Ek∥gradF̃k(Ir)∥2

= F (Xk)−
1

2L

r(r − 1)

n(n− 1)
∥gradFk(In)∥2
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where recall Fk(U) = F (UXk).

Hence by Lemma 5.3, we have ∥gradFk(In)∥2 ≥ 1
2∥gradF (Xk)∥2 and taking full expectation,

E[F (Xk+1)− F (Xk)] ≤ − 1

4L

r(r − 1)

n(n− 1)
E[∥gradF (Xk)∥2], (12)

Hence telescoping the inequality from i = 0, ..., k − 1 gives

1

k

k−1∑
i=0

E[∥gradF (Xi)∥2] ≤
4L

k

n(n− 1)

r(r − 1)
(F (X0)− F ∗).

Then we notice that mini=0,...,k−1 E[∥gradF (Xi)∥2] ≤ 1
k

∑k−1
i=0 E[∥gradF (Xi)∥2] finishes the proof for the non-convex

case.

To show the second result on convergence under PL condition, we notice that by Definition 5.4, and that minX∈U F (X) =
F (X∗). Then once Xk0 ∈ U , we can follow the same proof that Xk ∈ U for all k ≥ k0. Then we have using, (12) and
Definition 5.4 that

E[F (Xk+1)− F (X∗)] = E[F (Xk+1)− F (Xk)] + E[F (Xk)− F (X∗)]

≤ − 1

4L

r(r − 1)

n(n− 1)
E[∥gradF (Xk)∥2] + E[F (Xk)− F (X∗)]

≤ − 2µ

4L

r(r − 1)

n(n− 1)
E[F (Xk)− F (X∗)] + E[F (Xk)− F (X∗)]

≤
(
1− µ

2L

r(r − 1)

n(n− 1)

)
E[F (Xk)− F (X∗)].

Let k0 be a sufficiently large iteration such that Xk0 ∈ U . Then, we have E[F (Xk0+k) − F (X∗)] ≤
exp(− µ

2L
r(r−1)
n(n−1)k)E[F (Xk)− F (X∗)], where we use (1− a)k ≤ exp(−ak) for k > 0.

D.6. Proof of Theorem 5.13

Proof of Theorem 5.13. From Lemma 5.2, we know that F is L-smooth, where L = C0 + C1. Then

F (Xk+1) = F̃k(RetrIr (−ηgradf̃k(Ir; ξk)))

≤ F̃k(Ir)− η⟨gradF̃k(Ir), gradf̃k(Ir; ξk)⟩+
η2L

2
∥gradf̃k(Ir; ξk)∥2.

Taking expectation with respect to ξk, we obtain

Eξk [F (Xk+1)] ≤ Eξk [F (Xk)]− η∥gradF̃k(Ir)∥2 +
η2L

2
Eξk∥gradf̃k(Ir; ξk)∥2,

where we notice F̃k(Ir) = F (Xk) and use the unbiasedness assumption. In addition, we can bound

Eξk∥gradf̃k(Ir; ξk)− gradF̃k(Ir)∥2

= Eξk∥Pk(r)
(
gradfk(In; ξk)− gradFk(In)

)
Pk(r)

⊤∥2

≤ 1

4
Eξk∥

(
∇f(Xk; ξk)X

⊤
k −∇F (Xk)X

⊤
k

)
+
(
Xk∇F (Xk)

⊤ −Xk∇f(Xk; ξk)
)
∥2

≤ Eξk∥∇f(Xk; ξk)−∇F (Xk)∥2 ≤ σ2

where we use the definition of f̃k, fk, F̃k, Fk and orthogonality of Pk(r) and Xk. The last inequality is by bounded variance
assumption.

Then we further expand

Eξk∥gradf̃k(Ir; ξk)∥2 = Eξk∥gradF̃k(Ir)∥2 + Eξk∥gradf̃k(Ir; ξk)− gradF̃k(Ir)∥2

≤ ∥gradF̃k(Ir)∥2 + σ2,
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where we use the unbiasedness in the first equality. This gives

Eξk [F (Xk+1)] ≤ Eξk [F (Xk)]−
(
η − η2L

2

)
∥gradF̃k(Ir)∥2 +

η2Lσ2

2
.

Now taking expectation with respect to the randomness in Pk, we can show from Proposition 5.5 that

Ek[F (Xk+1)] ≤ F (Xk)−
(
η − η2L

2

) r(r − 1)

n(n− 1)
∥gradFk(In)∥2 +

η2Lσ2

2

≤ F (Xk)−
(
η − η2L

2

) r(r − 1)

2n(n− 1)
∥gradF (Xk)∥2 +

η2Lσ2

2
,

where we denote Ek to represent the expectation over randomness in iteration k and the second inequality is by Lemma 5.3.
Taking full expectation, we obtain

E[F (Xk+1)− F (Xk)] ≤ −
(
η − η2L

2

) r(r − 1)

2n(n− 1)
E∥gradF (Xk)∥2 +

η2Lσ2

2
(13)

Rearranging the terms and summing over k ∈ [K] gives

(
η − η2L

2

) r(r − 1)

2n(n− 1)

K−1∑
k=0

E∥gradF (Xk)∥2 ≤ F (X0)− F ∗ +
Kη2Lσ2

2
.

Choosing η = min{L−1, cσ−1K−1/2} for some constant C > 0. Then η − η2L/2 ≥ η/2 and thus we can show

1

K

K−1∑
k=0

E∥gradF (Xk)∥2 ≤ 1

K

4n(n− 1)

r(r − 1)
max{L, σ

√
K/c}∆0 +

4n(n− 1)

r(r − 1)
ηLσ2

≤ 4n(n− 1)

r(r − 1)

(L∆0

K
+

σ∆0

c
√
K

+
Lσc√
K

)
=

4n(n− 1)

r(r − 1)

(L∆0

K
+

2σ
√
∆0L√
K

)
where we let ∆0 = F (X0) − F ∗ and we choose c =

√
∆0/L to minimize the upper bound. Finally, noticing

mini=0,...K−1 E∥gradF (Xk)∥2 ≤ 1
K

∑K−1
k=0 E∥gradF (Xk)∥2 completes the proof under nonconvex loss.

To show the second result on convergence under PL condition, suppose Xk ∈ U . For such k, we have by (13)

E[F (Xk+1)− F (X∗)] = E[F (Xk+1)− F (Xk)] + E[F (Xk)− F (X∗)]

≤ −
(
η − η2L

2

) r(r − 1)

2n(n− 1)
E∥gradF (Xk)∥2 +

η2Lσ2

2
+ E[F (Xk)− F (X∗)]

≤ −
(
η − η2L

2

) r(r − 1)

n(n− 1)
µE[F (Xk)− F (X∗)] +

η2Lσ2

2
+ E[F (Xk)− F (X∗)]

=

(
1− µ(η − η2L/2)

r(r − 1)

n(n− 1)

)
E[F (Xk)− F (X∗)] +

η2Lσ2

2

Given η ≤ L−1, we obtain E[F (Xk+1)− F (X∗)] ≤
(
1− µ

2L
r(r−1)
n(n−1)

)
E[F (Xk)− F (X∗)] + σ2

2L . Then for k0, ..., k1 such
that Xk0 , ..., Xk1 ∈ U , we have

E[F (Xk1
)− F (X∗)]

≤
(
1− µ

2L

r(r − 1)

n(n− 1)

)k1−k0

E[F (Xk0
)− F (X∗)] +

σ2

2L

k1−k0−1∑
i=0

(
1− µ

2L

r(r − 1)

n(n− 1)

)i

≤
(
1− µ

2L

r(r − 1)

n(n− 1)

)k1−k0

E[F (Xk0
)− F (X∗)] +

σ2

µ

n(n− 1)

r(r − 1)

≤ exp

(
− µ

2L

r(r − 1)

n(n− 1)
(k1 − k0)

)
E[F (Xk0

)− F (X∗)] +
σ2

µ

n(n− 1)

r(r − 1)
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where the second inequality is by
∑k−1

i=0 (1− α)i ≤ 1
α .

E. Extension to finite-sum settings
In this section, we generalize the analysis of Section 5.3 to mini-batch settings, namely

min
X∈St(n,p)

{
F (X) =

1

N

N∑
i=1

fi(X)
}
, (14)

where fi, i ∈ [N ] represents N component functions.

We accordingly modify Algorithm 1 by sampling Bk ⊂ [N ] uniformly from [N ] with replacement. Without loss of
generality, we set |Bk| = B for all k. Then we replace the Riemannian mini-batch gradient as

gradf̃Bk
(Ir) :=

1

B

∑
i∈Bk

gradf̃k
i (Ir),

where we use f̃k
i (Y ) = fi(Uk(Y )Xk) similarly as before. Then we update the iterate with the mini-batch gradient

gradf̃Bk
(Ir). Notice that by the definition, we have F̃k(Y ) = 1

N

∑N
i=1 f̃

k
i (Y ). Because Bk is sampled uniformly with

replacement, we can easily see that EBk
[gradf̃Bk

(Ir)] = gradF̃k(Ir).

Before we analyze the convergence, we require the following assumption on bounded variance.
Assumption E.1. The gradient of each component function has bounded variance, i.e., E∥∇fi(X)−∇F (X)∥2 ≤ σ2 for
any i ∈ [N ] and X ∈ St(n, p).
Theorem E.2. Consider mini-batch setting as in (14) and solve with mini-batch gradient descent with batch size B. Under
Assumption 5.1 and E.1, suppose we choose η = min{L−1,

√
B∆0/Lσ

−1K−1/2}, where we denote ∆0 = F (X0)− F ∗.
Then we can show

min
i=0,...K−1

E∥gradF (Xk)∥2 ≤ 4n(n− 1)

r(r − 1)

(L∆0

K
+

2σ
√
∆0L√
KB

)
.

Suppose there exist Xk0
, ..., Xk1

∈ U for some k1 > k0, where U is defined in Theorem 5.7. Then we have E[F (Xk1
)−

F (X∗)] ≤ exp
(
− µ

2L
r(r−1)
n(n−1) (k1 − k0)

)
E[F (Xk0

)− F (X∗)] + σ2

Bµ
n(n−1)
r(r−1) .

Proof of Theorem E.2. From Lemma 5.2, we know that F is L-smooth, where L = C0 + C1. Then

F (Xk+1) = F̃k(RetrIr (−ηgradf̃Bk
(Ir)))

≤ F̃k(Ir)− η⟨gradF̃k(Ir), gradf̃Bk
(Ir)⟩+

η2L

2
∥gradf̃Bk

(Ir)∥2.

Taking expectation with respect to Bk, we obtain

EBk
[F (Xk+1)] ≤ EBk

[F (Xk)]− η∥gradF̃k(Ir)∥2 +
η2L

2
EBk

∥gradf̃Bk
(Ir)∥2,

where we notice F̃k(Ir) = F (Xk) and by the unbiasedness. In addition, we can bound

EBk
∥gradf̃Bk

(Ir)− gradF̃k(Ir)∥2

= EBk
∥Pk(r)

(
gradfBk

(In)− gradFk(In)
)
Pk(r)

⊤∥2

≤ 1

4
EBk

∥
(
∇fBk

(Xk)X
⊤
k −∇F (Xk)X

⊤
k

)
+
(
Xk∇F (Xk)

⊤ −Xk∇fBk
(Xk)

)
∥2

≤ EBk
∥∇fBk

(Xk)−∇F (Xk)∥2

=
1

B2

∑
i∈Bk

E∥∇fi(Xk)−∇F (Xk)∥2 ≤ σ2

B
,

where the second last inequality is by independence of samples in Bk and the last inequality is by bounded variance
assumption (Assumption E.1).

The subsequence analysis follows exactly the same as in Theorem 5.13, where we replace σ2 with σ2/B.
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F. On the exact convergence of RSDM
In this section, we examine the exact convergence of RSDM. We require the projection matrices for the inner iterations
satisfy the condition (4), which we recall below:

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 ≥ Cp∥gradFk(In)∥2

for some constant Cp > 0. This is a non-degenerate condition over the selection of random matrix P s
k over certain iterations

such that projected gradient does not vanish.

Let us define by Sr
n the set of all truncated permutation matrix P (r) ∈ Rr×n. To each element P of Sr

n, we can associate a
unique truncated permutation π defined by

∀i ≤ r : π(i) is such that P⊤ei = eπ(i).

Notice that π is defined only for the first r integers as the matrix P ∈ Sr
n has only r rows.

Proposition F.1. Let S = n!
(n−r)! , and assume that the matrices {P s

k}
S−1
s=0 are randomly sampled, without replacement, from

Sr
n (at each iteration s, we pick randomly a matrix from Sr

n that has not already been chosen) then condition (4) holds with
Cp = (n−2)!r(r−1)

(n−r)! .

Proof of Proposition F.1. The proof follows the same idea with the proof of Proposition 5.5 in the permutation case. Indeed
let us fix a matrix P s

k (r) in Sr
n, with associated permutation π. Using the fact that gradFk(In) is skew symmetric, we have

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 = 2
∑

1≤i<j≤r

(gradFk(In))
2
(π(i),π(j)) =

∑
1≤i,j≤r

(gradFk(In))
2
(π(i),π(j)).

Hence, we can write that

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 =
∑
π∈Sr

n

∑
1≤i,j≤r

(gradFk(In))
2
(π(i),π(j)).

Notice that we obtain the same expression as in the proof of Proposition 5.5 but without the factor n!
(n−r)! . Indeed, the

summation on s term in the above equation corresponds to what we denoted by E∥gradF̃k(Ir)∥2 in the proof of the
proposition. Hence following the same argument, we have that

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 =
n!

(n− r)!

r(r − 1)

n(n− 1)
∥gradFk(In)∥2,

that is
S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 =
(n− 2)!r(r − 1)

(n− r)!
∥gradFk(In)∥2.

Next, we analyze the exact convergence if we sample according to condition (4).

Before we derive the results, we recall the notation that F̃ s
k (Y ) := F (Us

k(Y )Xs
k) and F s

k (U) := F (UXs
k). We also require

the following lemma from (Chen et al., 2020) that bounds the retraction on Stiefel manifold with the Euclidean retraction,
i.e., addition.

Lemma F.2 (Chen et al. (2020)). For all X ∈ St(n, p) and U ∈ TXSt(n, p), there exists a constant M > 0 such that
∥RetrX(U)−X∥ ≤ M∥U∥.
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Proof of Theorem 5.11. Following the analysis of Theorem 5.7, we have for any k,

F (Xs+1
k ) ≤ F (Xs

k)−
1

2L
∥gradF̃ s

k (Ir)∥2. (15)

Next, recall that gradF s
k (In) = (∇F (Xs

k)−∇F (Xs
k)

⊤)/2. Then we show for any s = 0, ..., S − 1 and any k,

∥gradF s
k (In)− gradFk(In)∥ ≤ ∥∇F (Xs

k)−∇F (Xk)∥ ≤ C1∥Xs
k −Xk∥

≤ C1

s−1∑
i=0

∥Xi+1
k −Xi

k∥

= C1

s−1∑
i=0

∥P i
k(r)(Y

i
k − Ir)P

i
k(r)X

i
k∥

≤ C1

s−1∑
i=0

∥Y i
k − Ir∥

≤ C1ηM

s−1∑
i=0

∥gradF̃ i
k(Ir)∥ (16)

where the first and third inequalities are by triangle inequality and the second inequality is by Assumption 5.1 that (Euclidean)
Hessian is upper bounded. The fourth inequality is by the orthogonality of P i

k(r) and Xi
k. The last inequality is by Lemma

F.2.

Then we can bound for any k, s

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2

≤ 2∥P s
k (r)gradF

s
k (In)P

s
k (r)

⊤∥2 + 2∥P s
k (r)(gradF

s
k (In)− gradFk(In))P

s
k (r)

⊤∥2

≤ 2∥P s
k (r)gradF

s
k (In)P

s
k (r)

⊤∥2 + 2C2
1η

2M2S

s−1∑
i=0

∥gradF̃ i
k(Ir)∥2.

where the second inequality is by (16). Summing over the above inequality yields

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 ≤ (2 + 2C2
1η

2M2S2)

S−1∑
s=0

∥P s
k (r)gradF

s
k (In)P

s
k (r)

⊤∥2

= (2 + 2C2
1η

2M2S2)

S−1∑
s=0

∥gradF̃ s
k (Ir)∥2. (17)

Finally, we sum over the inequality (15) for s = 0, ..., S − 1, which obtains

F (XS
k ) = F (X0

k)−
1

2L

S−1∑
s=0

∥gradF̃ s
k (Ir)∥2

≤ F (X0
k)− (L−1 + C2

1L
−3M2S2)

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2

≤ F (X0
k)− Cp(L

−1 + C2
1L

−3M2S2)∥gradFk(In)∥2

≤ F (X0
k)− Cp(L

−1 + C2
1L

−3M2S2)/2∥gradF (Xk)∥2

where the second inequality is by (17) and η = 1/L. The second inequality is by (4). The last inequality is by Lemma 5.3.

Noticing tht XS
k = Xk+1 and X0

k = Xk and telescoping the result, we have

1

k

k−1∑
i=0

∥gradF (Xi)∥2 ≤ 1

k

2L

Cp(1 + C2
1L

−2M2S2)
(F (X0)− F ∗),

which shows the desired result.
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(a) PCA (2000, 100)
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(b) PCA (2000, 300)
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(c) PCA (2000, 500)
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(d) PCA (2000, 800)
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(e) PCA (2000, 1000)
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(f) PCA (2000, 1200)
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(g) PCA (2000, 1500)
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Figure 8: Experiments on PCA problem with various settings of p. The numbers in brackets correspond to n, p respectively.

G. Additional numerical experiments on different p
In this section, we investigate the performance of proposed RSDM across various settings of p on the PCA problem.
Following Section 6.2, we employ the same procedures in generating the data and fix dimension n = 2000. We sweep
across a range of values of p, i.e., p = 100, 300, 500, 800, 1000, 1200, 1500, 1800. For each problem instance, we also run
RSDM with different submanifold size r.

The convergence of RSDM in comparison to RGD is given in Figure 8. We observe that indeed when p becomes small,
the performance gap between RSDM and RGD is decreasing, which is in accordance with derived total complexities.
Nevertheless, we still observe that RSDM is able to outperform RGD across all the settings, except for the case when
p = 100. This validates the benefits of RSDM even when p becomes smaller. Nonetheless, we admit that when p becomes
significantly small relative to n (as in the case when p = 100), RGD may perform better because the cost of retraction is
much less pronounced. However, this motivates a hybrid design of RSDM such that when p is relatively small, it effectively
behaves similarly to RGD. This is left for future exploration.

An interesting observation is that when p = 300 and p = 500, selecting r = p can still yield significantly improved
convergence especially near optimality. We conjecture this is due to the randomized submanifold descent leads to better-
conditioned loss landscape around optimality, and thus performs well particularly for ill-conditioned problems. The
theoretical analysis of such claim is left for future works.

H. Comparison to RSSM
In this section, we compare our method with RSSM (Cheung et al., 2024), which can be viewed as projected Euclidean
coordinate descent on the Stiefel manifold. In particular, Algorithm 1 of (Cheung et al., 2024) translates into the following
update steps for smooth optimization. For each iteration k,

1. Pick index set C ⊂ [p] with no repetition in C.

2. Compute partial Euclidean gradient and project to tangent space:

gradCF (Xk) = XCskew(X
⊤
C∇CF (Xk)) + (I −XX⊤)∇CF (Xk),

where XC ∈ Rn×|C| is the columns of X corresponding to the index in C and skew(A) = (A−A⊤)/2 denotes the
skew-symmetric operation. ∇CF (X) is the partial Euclidean gradient with respect to the columns of X in C.
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Figure 9: Comparison of proposed RSDM with RSSM (Cheung et al., 2024) on the PCA problem. We observe RSDM
converges significantly faster than RSSM.

3. Update the columns of Xk in C by projected gradient descent while keeping other columns the same:

Xk+1
C = ProjSt(n,|C|)(X

k
C − ηgradCF (Xk)),

where ProjSt(n,p)(·) denotes the projection from Euclidean space to Stiefel manifold via SVD.

Comparison to proposed RSDM. RSSM can be viewed as Euclidean coordinate descent projected to Stiefel manifold.
Let r = |C| < p be the number of columns sampled. The gradient computation requires O(npr) complexity and iterate
update requires O(nr2) for non-standard linear algebra operation. Thus the per-iteration complexity is costly than our
proposed RSDM (with permutation sampling), which requires O(nr2) for gradient complexity and O(r3) for non-standard
linear algebra operation. Thus, we see RSDM-P requires much per-iteration complexity compared to RSSM. In addition,
apart from the advantages in per-iteration complexity, RSDM also allows easy generalization to quotient manifolds, such as
Grassmann manifold, while this appears challenging for RSSM due to its operations along the columns.

Numerical comparisons. To further validate the benefits of RSDM to RSSM (Cheung et al., 2024), we have implemented
RSSM with a fixed stepsize and choose C from [p] uniformly without repetition.1 We have tuned both r = |C| and stepsize
η for RSSM to the best performance. We compare the performance on the PCA problem where we tune r = 700 and
η = 0.1 for RSSM.

The results are included in Figure 9. We notice that RSDM (either with orthogonal or permutation sampling) achieves
significantly faster convergence compared to RSSM. This verifies the numerical benefits of RSDM over RSSM.

I. Comparison to OBCD
This section compares proposed RSDM to OBCD (Yuan, 2023). We first remark that (Yuan, 2023) is primarily designed for
nonsmooth optimization and thus optimality conditions and convergence analysis are largely different. Here we adapt the
algorithm of OBCD to the smooth case.

In this case, because they parameterize Xk+1 = Xk + UB(V − Ir)U
⊤
BXk where UB ∈ Rn×r is a random truncated

permutation matrix, and V ∈ Rr×r, they minimize a quadratic upper bound for F (Xk + UB(V − Ir)U
⊤
BXk). Suppose F

is LF smooth, then the subproblem translates into

min
V ∈St(r,r)

⟨V − Ir, U
⊤
B∇F (Xk)X

⊤
k UB⟩+

LF

2
∥V − Ir∥2 (18)

for some constant LF that depends on the smoothness of F . And thus there exists a global solution to (18), i.e., V ∗ is the
top r eigenvectors of Ir − 1

LF
U⊤
B∇F (Xk)X

⊤
k UB .

This is related but different to our update of Y (according to our notation) when we use permutation sampling strategy. In
particular, we update Y by

Y = RetrIr (−ηgradF̃k(Ir)) = RetrIr
(
− η

2
Pk(r)(∇F (Xk)X

⊤
k −Xk∇F (Xk)

⊤)Pk(r)
⊤).

1It is worth mentioning that (Cheung et al., 2024) did not include any numerical experiments nor provide the code.
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Figure 10: Comparison of proposed RSDM with OBCD (Yuan, 2023) on the PCA problem. We observe RSDM converges
significantly faster than OBCD.

The key difference is that we have a skew-symmetric operation for ∇F (Xk)X
⊤
k , which renders the update direction properly

defined as Riemannian gradient on O(r). In contrast, OBCD leverages the Euclidean gradient for the update.

This difference leads to a large deviation in the proof strategy, making the analysis of (Yuan, 2023) less aligned with common
analysis on Riemannian manifolds. This makes their developments more difficult to generalize to other manifolds of interest
and incorporate additional optimization techniques on manifolds, such as adaptive gradients, acceleration, Newton based
methods, etc.

Apart from this main difference, we also summarize other differences of their developments compared to this work:

• They show convergence to block-k stationary points, which seems to be weaker than our established convergence to
stationary points (as shown in Theorem 5.5 of (Yuan, 2023).

• Their convergence rate in Theorem 6.3 depends on a large binomial coefficient Cr
n while our convergence has a

coefficient n2r−2.

• They only consider UB to be (truncated) permutation while we consider both permutation and general orthogonal
matrix.

• We have shown convergence in stochastic settings and shown extension to other quotient manifolds, which is not the
case for (Yuan, 2023).

• They only show convergence in expectation while we show convergence both in expectation and with high probability
and almost surely.

Finally, we compare the proposed RSDM to OBCD numerically on the PCA problem. We have solved V from (18)
analytically with SVD. We choose r = 700, which is the same as RSDM for comparability and tune stepsize accordingly.
The convergence plots are given in Figure 10 where we observe that OBCD (Yuan, 2023) converges significantly slower
compared to RSDM. This suggests the critical difference in the update directions (Riemannian gradient for proposed RSDM
and Euclidean gradient for OBCD) has led to significant convergence disparities, thus verifying superiority of the framework
of Riemannian optimization employed by RSDM in this paper.

J. RSDM with momentum
In this section, we explore the potential of RSDM when coupled with momentum. We adopt the strategy of fixing Pk for
several iterations, where we apply momentum. This is equivalent to taking multiple gradient descent (with momentum for
minimizing F̃k(Y ) initialized from Ir. The procedures are included in Algorithm 3.
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Algorithm 3 RSDM-momentum

1: Initialize X0 ∈ St(n, p).
2: for k = 0, ...,K − 1 do
3: Sample Pk ∈ O(n) and let F̃k(Y ) = F (Uk(Y )Xk) where Uk(Y ) is defined in (2).
4: Set Y 0

k = Ir.
5: for s = 0, ...., S − 1 do
6: Compute Riemannian gradient gradF̃k(Y

s
k ).

7: Update Y s+1
k = RetrY s

k
(−η gradF̃k(Y

s
k ) + βPY s

k
(Y s

k − Y s−1
k )).

8: end for
9: Set Xk+1 = Uk(Y

S
k )Xk.

10: end for

It is worth mentioning that we now require to compute the gradient gradF̃k(Y ) for any Y ∈ O(r), while previously we
only need to compute gradF̃k(Ir). Specifically, we compute

gradF̃k(Y ) =
1

2

(
∇F̃k(Y )− Y∇F̃k(Y )⊤Y

)
=

1

2

(
Pk(r)∇F (Zk)X

⊤
k Pk(r)

⊤ − Y Pk(r)Xk∇F (Zk)
⊤Pk(r)

⊤Y
)
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Figure 11: Comparison of RSDM
with momentum with RGD with mo-
mentum on the PCA problem.

where Zk = Uk(Y )Xk = Xk + Pk(r)
⊤(Y − Ir)Pk(r)Xk.

To test the feasibility of the proposed algorithm, we evaluate RSDM with mo-
mentum (RSDM-M) with permutation sampling and compare against RGD
(RGD-M) with momentum on the PCA problem. We consider the setting of
n = 2000, p = 1500 and r = 700. We set the momentum parameter to be 0.5 for
both RSDM and RGD. We tune and set the learning rate of 0.1 for RGD-M and
1.0 for RSDM-M.

From Figure 11, we see that the RSDM with momentum improves the convergence
of RSDM, which demonstrate the potential of incorporating momentum into our
framework.
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