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Abstract

Large language models (LLMs) often produce confident yet incorrect responses,1

and uncertainty quantification in LLMs is one potential solution to more robust2

usage. Recent works routinely rely on self-consistency to estimate aleatoric uncer-3

tainty (AU), yet this proxy collapses precisely when models are overconfident, and4

produce the same incorrect answer across samples. We address this failure mode5

by introducing an epistemic term that measures semantic disagreement across a6

small ensemble of scale-matched LLMs. Specifically, we operationalize epistemic7

uncertainty (EU) as the gap between inter-model and intra-model response similar-8

ity, and define total uncertainty (TU) as the sum of AU and EU. The estimator is9

training-free and uses only black-box outputs: a few responses per model suffice.10

Across a range of LLMs, and long-form generation tasks, we compare TU to AU11

and measure uncertainty calibration by AUROC with respect to correctness and12

selective abstention via uncertainty thresholding. We find that TU consistently13

achieves higher AUROC in predicting correctness and improves selective absten-14

tion compared to AU alone. EU further exposes confident errors that AU misses,15

especially on tasks with near-unique correct answers, and improves the reliability16

of LLM uncertainty estimates.17

1 Introduction18

Reliable uncertainty estimates are a prerequisite for deploying large language models (LLMs) in high-19

stakes domains [6]. Many existing approaches for LLM uncertainty estimation are based on model’s20

self -confidence [60, 57, 51], such as by measuring response consistency under sampling [27, 35, 45, 3]21

or querying for a verbalized uncertainty score [34]. These metrics capture how internally confident22

a model is in its prediction – a notion of predictive aleatoric uncertainty (AU). But this leaves an23

important question unanswered: how confident should we be in the model? A model might be24

confident but wrong, such as responding with the same incorrect answer with high probability (see25

Figure 1). In these cases, methods that rely on self-consistency can fail [26]. To address this, we26

focus on estimating epistemic uncertainty (EU) – uncertainty in our choice of model – which better27

reflects whether a model’s confidence is trustworthy for a given input.28

Estimating EU requires evaluating a distribution of plausible models, which is prohibitively costly29

for LLMs, as training even one additional model adds significant overhead [25, 9]. Recent shortcuts30

approximate EU in logit space [39], inject Bayesian noise during decoding [37, 15], or rely on31

verifier–model disagreement [61], but each imposes strong task or architecture-specific assumptions.32

We instead capitalize on the ecosystem of open-weight LLMs: sampling responses from a small,33

scale-matched ensemble lets us estimate EU directly from cross-model semantic disagreement,34

without additional training. While prior work has shown that LLM ensembles can improve accuracy35

[38, 11, 7, 50, 21], their use for uncertainty quantification has not been systematically explored.36

By enabling scalable estimation of EU from model outputs alone, we can combine it with AU to obtain37

a more robust measure of uncertainty: Total Uncertainty (TU). These two forms of uncertainty are38
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Figure 1: (a) Two models confidently produce distinct, incorrect answers to a factual question, which
results in low intra-model variability (AU) but high semantic disagreement across models (EU). (b)
Total uncertainty (TU = AU + EU) effectively improves uncertainty calibration with correcness in
terms of AUROC on SimpleQA.

complementary; AU reflects variability in a model’s own predictions, while EU measures divergence39

from other plausible models [49]. Together, they allow TU to account for both internal inconsistency40

and external disagreement. We estimate TU by computing semantic similarity between a reference41

model’s responses, and those from an ensemble of LLMs. Specifically, we (1) sample responses42

from a set of given models, (2) compute pairwise semantic similarities to quantify both intra-model43

(aleatoric) and inter-model (epistemic) disagreement, and (3) define TU as the combination of44

aleatoric and epistemic components derived from these response distributions.45

We evaluate EU, AU and TU on two standard axes: ranking-based calibration (via AUROC) and46

selective prediction (via abstention under uncertainty thresholds), across a range of models and47

generation tasks [27, 46]. We conduct experiments across five 7–9B parameter Instruction-tuned48

models [62, 22, 17, 16], on ten long-form generation tasks spanning QA, summarization, transla-49

tion, and math reasoning [24, 63, 42]. We also repeat these experiments for API models such as50

GPT-4o [20] and Claude 3.7 Sonnet [1] on SimpleQA [59].51

Our findings are as follows:52

• TU consistently outperforms AU in both AUROC and selective abstention. For example, TU53

improves uncertainty calibration from 0.59 to 0.70 in AUROC on SimpleQA for GPT-4o.54

• EU reliably identifies confident but incorrect generation, i.e., cases where aleatoric uncertainty is55

low but the model is wrong.56

• Our notion of EU is most informative in tasks with a single correct answer, such as factual QA57

(HotpotQA) and translation (WMT16).58

2 Related Works59

Aleatoric Uncertainty in LLMs Existing approaches predominantly focus on AU, which captures60

response inconsistency or input ambiguity. Recent surveys provide extensive reviews of these methods61

[60, 51, 57]. Typical strategies involve sampling multiple responses per prompt and analyzing their62

semantic consistency, often through clustering or entropy-based metrics [35].63

Bayesian-inspired EU Estimation. A line of research employs Bayesian-inspired methods, such64

as adding noise to embeddings during generation to approximate uncertainty in model weights [37],65

sampling from a model with different temperatures [15], or leverage entropy from decoding from66

different hidden states as proxy for uncertainty, which provides a computationally efficient alternative67

to exhaustive sampling [14]. Training ensembles explicitly, such as LoRA-based methods [58],68

demonstrate improved uncertainty calibration but incur significant computational costs. Another69

work [39] calculates AU and EU on token level by considering the LLM logits as parameters of a70

Dirichlet distribution and by applying other UQ methods subsequently. Such token-level scores can71

complement sequence-level scores as studied by us.72

Prompt-Based and Verifier-Based EU Estimation. Prior works in iterative prompting [2, 23]73

estimate epistemic uncertainty by iteratively querying the same model, adding previous responses to74

the later queries’ prompts, and measuring probabilistic inconsistencies as indicators of hallucination.75

However, these methods have limitations: gains over AU are mainly observed on multi-label data with76

limited benefits shown in standard single-label QA [2]. Others only experiment on synthetic data [23].77
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Another work utilizes one verifier LLM and shows that inter-model disagreement as a proxy for EU78

complements AU in cases where we reach the performance bounds of self-consistency [61]. While79

they also experiment with weaker verifiers, our study offers deeper insight into the interplay between80

different models of different capability. Moreover, in their practical proposal, they suggest to consider81

cross-consistency only if AU is of intermediate range, while our evaluation and also [52] suggest82

that especially low AU is prone to hallucination and well complemented by EU (see Sec. 5.1). Prior83

works are mostly limited to special kinds of question-answering data, do not account for the impact84

of the vast LLM model space on EU, and do not fully explore interactions between AU and EU, gaps85

our work addresses explicitly.86

LLM Ensembles. Our work builds upon classical uncertainty estimation, such as deep and dropout87

ensembles [31, 13] and is closely related to LLM ensemble applications [38]. In particular, various88

recent works focus on LLM collaborations [11], verifier LLMs [32], and sampling from multiple89

LLMs [7]. We study LLM ensembles from the viewpoint of uncertainty estimation.90

3 Quantifying Predictive Uncertainty Using Response Similarity91

Let ω be the particular parameterization of an LLM, and let x be a prompt. Our goal is to quantify the92

predictive uncertainty of ω given x as input. As is standard, we categorize predictive uncertainty into93

two sub-components: AU and EU [19]. The aleatoric component captures the inherent unpredictability94

of the response to x under the model ω, while the epistemic component captures our uncertainty in95

ω being the correct parametrization to use when responding to input x. We define total predictive96

uncertainty additively as the sum of the aleatoric and epistemic uncertainties.97

3.1 Aleatoric Uncertainty via Intra-Model Response Similarity98

Many recent works have proposed techniques to measure the randomness in LLM responses [28,99

35, 36]. These techniques typically focus on measures of semantic uncertainty, where uncertainty is100

defined as a function of how often an LLM produces semantically distinct outputs given the same101

input [28, 35]. In particular, Lin et al. [35] propose a measure equivalent to1 the following:102

Ualeatoric(x;ω) = Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
1− s(rω1 , r

ω
2 )
]
, (1)

where s(·, ·) is a similarity metric for responses such as the cosine similarity in an embedding space.103

In essence, Equation 1 corresponds to the expected similarity between two responses independently104

sampled from p(·|x, ω), the response distribution of ω conditioned on x. If responses typically have105

the same semantic meaning as each other, meaning that the meaning of the response does not vary106

when resampled, then Ualeatoric(x;ω) will be close to 0, which means that there is little uncertainty107

in how ω will respond to x. If the model is likely to produce semantically distinct responses for the108

same input, then Ualeatoric(x;ω) will be high, which means ω has high uncertainty for x.109

Equation 1 captures the inherent uncertainty in the response to x given model ω. However, ω may110

not be the optimal model to use for x, and Equation 1 fails to capture the inherent uncertainty that111

comes from choosing ω as our parameterization. There is thus a need to also capture the epistemic112

uncertainty that comes from our model choice.113

3.2 Epistemic Uncertainty as Inter-Model Response Similarity114

Let ω∗ represent a hypothetical “ideal” model, such that p(·|x;ω∗) = p(·|x); the distribution115

of responses from ω∗ equals the true response distribution. We can thus quantify the epistemic116

uncertainty of ω as a divergence between ω and ω∗; e.g., Uepistemic(x, ω) = D(ω || ω∗) [49]. We117

define D as follows:118

D(ω || ω∗) = −
[
Eqω1 ∼p(·|x,ω)Eqω

∗
2 ∼p(·|x,ω∗)

[
s(qω1 , q

ω∗

2 )
]︸ ︷︷ ︸

cross-model similarity

−Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
s(rω1 , r

ω
2 )
]︸ ︷︷ ︸

self-similarity (1 - AU)

]
.

(2)

In effect, D(ω || ω∗) measures the difference between 1) the similarity of responses119

from ω and ω∗ (
Eqω1 ∼p(·|x,ω)Eqω

∗
2 ∼p(·|x,ω∗)

[
s(qω1 , q

ω∗

2 )
])

and 2) the self-similarity of ω120

1This is equivalent to UDeg in [35].
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(
Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
s(rω1 , r

ω
2 )
])

. In the case where ω is optimal and equivalent to ω∗, then121

D(ω || ω∗) will be 0. When ω produces responses that are semantically diverse from the ideal model’s122

responses even after accounting for the diversity due to ω’s aleatoric uncertainty, then D(ω || ω∗)123

will be high.124

In practice, we do not have access to the optimal model ω∗. Instead, we can leverage a recent125

information-theoretic technique [49] and marginalize out ω∗. Let PΩ be a distribution over models126

such that Eω̃∼PΩ

[
p(· | x; ω̃)

]
= p(· | x). We can thus replace ω∗ in Equation 2 with an expectation127

over PΩ, and define Uepistemic(x, ω) as:128

Uepistemic(x, ω) =− Eω̃∼PΩ

[
Eqω1 ∼p(·|x,ω)Eqω̃2 ∼p(·|x,ω̃)

[
s(qω1 , q

ω̃
2 )
]]

+ Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
s(rω1 , r

ω
2 )
]
.

(3)

When the average similarity in responses between ω and other sampled models matches the self-129

similarity of ω’s responses, then the semantic distribution of ω matches the target distribution and130

the epistemic uncertainty is low. When there is a mismatch between the average similarity of ω’s131

responses to the responses from the sampled models ω̃ compared to ω’s self-similarity, then there132

is a disagreement in how models respond and the epistemic uncertainty is high. In Appendix A.1,133

we provide a detailed interpretation of D(ω ∥ω∗) as a one-sided kernel discrepancy, establish its134

connections to variational inference, and show that it is upper bounded by total variation distance135

under mild conditions.136

Desired Properties for Ω. Because the divergence D(ω || ω∗) is evaluated against samples drawn137

from a surrogate distribution of models Ω, its fidelity hinges on how well that ensemble of models138

approximates the (inaccessible) optimal distribution p(· | x;ω∗). Three criteria follow from the139

definition in Eq. 3:140

(i) Support richness. Ω covers genuinely distinct yet plausible interpretations of an input,141

rather than a narrow subset; otherwise the cross–similarity term in D may be artificially142

high, and D underestimates epistemic uncertainty when predictions of models in Ω are143

different from ω’s predictions.144

(ii) Non-collapsing diversity. If all members of Ω are nearly identical (e.g. noise-perturbed145

versions of the same model), the ensemble average would be too close to ω, hence the146

cross-model similarity term will be close to self-similarity and D may be small, even when147

the candidate predictor Pω is mis-specified.148

(iii) Calibrated weighting. Let PΩ denote the mixing measure over models. For Eq. (3) to149

approach the ideal p(y | x), each model should be weighted in proportion to its posterior150

credibility (e.g. uniform weights are appropriate only when validation risks are comparable).151

Achieving Properties via Cross-Family Models. A practical way to satisfy these criteria is to152

construct the surrogate ensemble Ω from models of similar architecture and scale, likely trained on153

overlapping or similar pre-training datasets. Specifically, we populate Ω with 7–9B Transformer-based154

models that share the same architecture class but are trained by different vendors. This setup ensures155

(i) support richness, as models differ in data pipelines, initializations, and alignment protocols, which156

results in diverse but plausible responses for the same input, that cover the ground-truth response set.157

These independently trained models also exhibit (ii) non-collapsing diversity, as their differences158

arise from different design choices, rather than noise-perturbed versions of a single model. Finally,159

because these models achieve similar validation performance, we adopt uniform weights in PΩ, which160

satisfies the calibrated weighting (iii) requirement. Section 4 specifies the exact models used.161

Total Predictive Uncertainty. We make the standard assumption that total predictive uncertainty162

can be obtained by adding aleatoric and epistemic predictive uncertainties [19]. Thus, we define163

Utotal(x;ω) as:164

Utotal(x;ω) = Ualeatoric(x;ω) + Uepistemic(x;ω)

= Eω̃∼PΩErω1 ∼p(·|x,ω)Eqω2 ∼p(·|x,ω̃)

[
1− s(rω1 , q

ω̃
2 )
]
.

(4)
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3.3 Empirical Estimates of Uncertainty Metrics165

For a given input prompt x, we call the model whose uncertainty is being estimated the reference166

model ω, and denote the set of models used to compute epistemic uncertainty with respect to the167

reference as the auxiliary model set Ω. Throughout the paper, we mainly focus on Cross-family168

auxiliary models: We estimate epistemic uncertainty by computing response divergence across an169

auxiliary set of models. To estimate uncertainty in practice, we proceed as follows:170

1. Sample n responses from each model ωi ∈ Ω, and denote the set of responses from ω as171

R′ = {r′1, r′2, . . . , r′n} and from ωi as Ri = {r(i)1 , r
(i)
2 , . . . , r

(i)
n } where |Ω| = m.172

2. Approximate Aleatoric, Total, and Epistemic Uncertainty using these sampled responses.173

Empirical Uncertainty Metrics

AU = Ualeatoric = 1−
[ n∑
k=1

n∑
j=1

s(r′k, r
′
j)
]
/n2

TU = Utotal = 1− 1

m

m∑
i=1

[ n∑
k=1

n∑
j=1

s(r′k, r
(i)
j )
]
/n2

EU = Uepistemic = Utotal − Ualeatoric

174

Note that we assign uniform weights to different models in the auxiliary set, as we choose to use175

models of similar capabilities, and our estimate of AU is similar to the one from Lin et al. [35]. Also,176

observe that our evaluation shows that we can keep the overall number of sampled responses at the177

magnitude used by self-consistency based methods while improving over those. More concretely, we178

choose n = n′

m , when comparing to AU as a standalone metric, where n′ is the number of samples179

used for the latter.180

4 Experimental Setup181

Models. In the main experiments, we primarily focus on five instruction-tuned language models182

with approximately 7–9B parameters: Gemma-2-9B-It [55], Granite-3.0-8B-Instruct [16],183

Llama-3.1-8B-Instruct [17], Mistral-7B-Instruct-v0.3 [22], Qwen2.5-7B-Instruct184

[62]. We compute the uncertainty measures from Section 3.3 and consider the models mentioned185

above as the set of auxiliary models. In Appendix A.5, we also consider larger reference models.186

Unless otherwise noted, we compute TU by sampling 2 responses from each of the 5 models and187

similarly compute AU using 10 samples to keep the sampling budget the same across the two metrics.188

Datasets. Our experiments cover a broad range of long-form generation tasks spanning question189

answering (QA), math reasoning, translation, and summarization. For QA, we include AmbigQA [40]190

(open-domain QA with both ambiguous and unambiguous questions), NQ-open [29] (closed-book191

QA derived from real user queries), HotpotQA [63] (multi-hop QA requiring reasoning over multiple192

supporting documents), CoQA [47] (conversational QA with multiple turns), QASPER [10] (fact-193

based QA over long scientific papers), TriviaQA [24] (QA based on trivia-style questions), and194

TruthfulQA [33] (QA to evaluate common misconceptions in models). For math reasoning, we use195

GSM8K [8] with chain-of-thought prompting. For language generation, we evaluate on the German-196

to-English translation dataset WMT16-de-en [5] and the summarization benchmark XSum [42]. We197

additionally include SimpleQA [59], a factuality QA benchmark, with model responses generated by198

GPT-4o [20] and Claude 3.7 Sonnet [1]. Finally, we adapt tasks from the BBH multiple-choice199

benchmark [54] to long-form format and add those evaluations to Appendix A.7.200

Evaluation. Correctness is defined per input-response pair using Meta-Llama-3-70B-Instruct201

as judge (Appendix A.9). Note that, in the context of uncertainty estimation, LM-as-a-judge correct-202

ness evaluation has recently been shown to be the most reliable among the existing methods [48].203

Following prior work [35, 27, 4], we evaluate the quality of uncertainty by quantifying how well204

uncertainty scores separate correct from incorrect generations, using Area Under the ROC Curve (AU-205
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Figure 2: The distribution of EU conditioned on aleatoric uncertainty. We observe that EU is
especially discriminative in scenarios where AU is low.

ROC). Formally, AUROC corresponds to the probability that a randomly chosen incorrect response206

receives a higher uncertainty score than a randomly chosen correct one.207

We also evaluate effectiveness in terms of selective prediction using Risk–Coverage Curves [41],208

which measures how the error rate changes as uncertain responses are rejected. We further report209

standard summary metrics such as accuracy at 90% and 80% coverage (C@90 and C@80), and the210

Area Under Risk-Coverage Curve (AURC), where lower is better.211

Baselines. As our primary aleatoric baseline, we use Lin et al. [35]’s implementation of Semantic212

Entropy (SE) [27], which has been shown to perform well in recent benchmarks and surveys [12, 57].213

In our evaluation, we denote this baseline as Aleatoric or AU. We also experiment with noise-214

perturbed models (i.e., instead of models from different model families), similar to the approach of215

Liu et al. [37], see details in Appendix A.5.216

5 Results217

5.1 Epistemic Uncertainty Flags Confident Failures of Aleatoric Uncertainty218

Language models are often applied to heterogeneous tasks, where model confidence does not always219

align with correctness [64]. To simulate such setting, we construct an aggregated dataset by combining220

all datasets mentioned in Section 4, and analyze uncertainty trends on this pooled distribution. We221

are particularly interested in identifying where AU is low but the model is wrong, and ask whether222

EU can flag these instances.223

In Figure 2a, we stratify examples by AU (low, mid, high) and compare EU across correct and224

incorrect responses. In the low-AU regime, incorrect generations consistently exhibit higher EU than225

correct ones, which shows that EU is discriminative when aleatoric scores are overconfident. This226

separation diminishes in higher AU buckets, where both correct and incorrect responses become more227

uncertain.228

To more directly target this failure mode, we isolate the lowest 5% of AU scores and analyze EU by229

correctness. (Figure 2b). EU remains significantly elevated for incorrect generations, confirming230

that epistemic uncertainty flags confidently wrong outputs that aleatoric scores alone miss, which231

supports our hypothesis of the complementary nature of scores in this particular AU region.232

This result contrasts with prior work, which treats low-AU predictions as reliable and only incorporates233

cross-model comparisons when AU exceeds a threshold [61, 7]. Our findings reveal that this234

assumption overlooks a critical failure mode: confidently wrong predictions with low AU. On the235

other hand, our observations validate findings about models being overconfident on HotpotQA [44]236

in that incorporating EU yields large improvements on this dataset (see Figure 4 in Section 5.3).237
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5.2 Epistemic Uncertainty, Agreement, and Diversity238

We ask when similarity-based EU is most informative. To this end, we focus on the correctness of239

responses of different models and consider two metrics: Jaccard Agreement (or Redundancy) (J),240

which measures the overlap between predicted correct responses of the auxiliary models, which is241

used to quantify how redundant or similar different predictions are; and Oracle Coverage Gain (also242

Complementarity) (G), the additional coverage (i.e., improvement in accuracy) obtained by an oracle243

that always chooses the correct model per example, over the best performing model. Exact definitions244

can be found in Appendix A.2.245
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Figure 3: Epistemic–uncertainty AUROC versus dataset–level redundancy (J) and complementarity
(G). Higher AUROC indicates better discrimination between correct and incorrect answers by EU.

Epistemic uncertainty does not always coincide with inter-model disagreement. Figure 3246

plots EU AUROC against the dataset-level statistics J and G. We observe a positive correlation247

with redundancy (r = +0.72, p = 0.03) and a negative correlation with complementarity (r =248

−0.72, p = 0.03), which is the opposite of the naive intuition that “more disagreement ⇒ higher249

epistemic utility.”250

The explanation lies in how EU is constructed: it grows with the divergence of generated answers,251

which arises in two distinct cases: (i) true EU on intrinsically hard questions where models do252

not know the answer, and (ii) the existence of many semantically different but correct responses253

(response noise). In complementary datasets (large G), each model specializes on different niches254

and consequently, EU is large even on questions that an individual model answers correctly, because255

models in the auxiliary set return alternative (wrong) responses. In such cases, the misalignment256

with correctness drives AUROC down. Conversely, in redundant datasets (high J , low G), models257

converge to similar responses when correct (EU low) and, what we expect to be the usual case, still258

diverge when collectively wrong (EU high), which gives a well-separated score and high AUROC.259

These observations characterize the cases in which our current EU estimator is effective: tasks with260

a single (or near-unique) correct answer, where models phrase that answer similarly yet generate261

diverse alternatives on the harder, unanswered inputs.262

For example, WMT16-de-en and CoQA occupy the high-J , low-G corner of Figure 3; all models263

score above > 90% accuracy, so predictions are largely redundant and EU achieves its strongest264

discrimination. At the opposite extreme, XSum combines low accuracy with the largest G: models265

succeed on different inputs and can express many valid summaries, which inflates EU without266

improving ranking and thus lowering AUROC. Datasets such as HotpotQA and TriviaQA sit mid-267

range on both axes and have enough redundancy to suppress noise, but have sufficient diversity to268

expose disagreement and consequently produce the large TU gains in Figure 4.269

5.3 Total Uncertainty Improves Correctness Calibration270

Figure 4 reports the AUROC between negative uncertainty and correctness across datasets, and271

averaged over five 7–9B instruction-tuned models mentioned in Section 4. TU consistently improves272

over AU on all benchmarks on average. The largest gains occur on HotpotQA (+0.15), CoQA273

(+0.14), and WMT16-de-en (+0.13), where models either disagree on complex multi-hop reasoning274
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Figure 4: AUROC of aleatoric (red) and total (green) uncertainty across datasets. Bars and the text on
top show the mean AUROC across five models; dots correspond to individual models. TU consistently
improves discrimination between correct and incorrect outputs, with more than 0.1 improvement in
AUROC in HotpotQA, CoQA, WMT16-de-en.

(HotpotQA) or achieve high overall accuracy (CoQA, WMT16-de-en), which allows EU to capture275

remaining errors.276

Moderate improvements are observed on TriviaQA, and NQ-open, which exhibit a balance of277

response redundancy and complementarity. In contrast, gains are more limited on TruthfulQA,278

GSM8K (with chain-of-thought), and QASPER, where the presence of multiple valid or stylistically279

diverse answers weakens the alignment between TU and correctness. These results align with the280

patterns described in Section 5.2: TU and EU are most effective when correct answers are uniquely281

phrased and shared across models, while incorrect predictions remain diverse.282

We also find that TU estimates consistently improve AUROC as compared to AU in GPT-4o (0.70283

vs. 0.59), and Claude 3.7 Sonnet (0.58 vs. 0.53) on SimpleQA as shown in Figure 1. Figure 9 in284

Appendix A.4 shows the ROC curves on the combination of all datasets, where the relative ranking285

of data points across the whole dataset determines performance, and Table 2 reports AUROC per286

model-dataset pair. We show that the improvement over AU is maintained in individual datasets, and287

in the combination of all datasets.288

Comparison to Other Baselines. Note that the epistemic score proposed by [2], which is repeatedly289

querying one model, similarly improves upon AU in such a combined dataset setting, but does not290

yield clear improvements over individual datasets. We show results on noise-perturbed auxiliary291

model sets, similar to the approach of [37], in Appendix A.5.292
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(a) Aggregated across all tasks. Total uncertainty yields
lower error at all coverage levels.
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consistently outperforms AU.

Figure 5: Risk–coverage analysis for total (TU) versus aleatoric uncertainty (AU). TU consistently
improves selective prediction across datasets and in aggregate.
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Ablations. We further ablate the size of the reference model in Appendix A.5, and show that even293

in scenarios where the reference model is larger (and has higher accuracy) than models in the auxiliary294

set, TU still achieves higher AUROC than AU. Furthermore, we show that AUROC improves with a295

larger number of models in the auxiliary set, and sampled responses in Appendix A.6.296

5.4 Total Uncertainty Improves Selective Abstention297

To evaluate whether uncertainty effectively distinguishes reliable responses from potential errors, we298

consider selective prediction, where models are allowed to abstain from answering when uncertain.299

Risk-Coverage Tradeoff. Figure 5a shows the Risk-coverage curve for aleatoric and total uncer-300

tainty, aggregated across all models mentioned in Section 4. Across all coverage levels and datasets,301

total uncertainty achieves the lowest risk, with a single exception. This suggests that total uncertainty302

more effectively identifies unreliable predictions in comparison to AU.303

Selective Accuracy and AURC. To quantify this effect more precisely, Table 1 reports selective304

accuracy at fixed coverage levels (C@90, C@80) and AURC (area under the risk–coverage curve)305

across benchmarks and averaged over different models. In nearly all cases, total uncertainty achieves306

higher selective accuracy and in all cases lower AURC compared to aleatoric and EU alone. For307

example, on HotpotQA and XSum, total uncertainty improves C@90 by over 1.5 points and reduces308

area under the risk–coverage curve (AURC ↓) by over 20%. These results confirm that TU yields309

better abstention behavior than AU or EU alone.

Table 1: Selective question answering performance of different uncertainty types.
C@90 (%) C@80 (%) AURC ↓

Dataset Aleatoric Epistemic Total Aleatoric Epistemic Total Aleatoric Epistemic Total

AmbigQA 56.0 52.4 56.2 59.5 53.2 60.2 0.325 0.456 0.278
CoQA 96.0 96.9 96.0 96.5 97.5 97.8 0.026 0.016 0.011
GSM8K 54.0 54.7 53.3 54.8 54.0 54.2 0.391 0.441 0.335
HotpotQA 64.9 66.2 66.9 66.2 67.2 69.2 0.304 0.257 0.206
NQ-open 53.8 51.3 53.1 57.2 52.8 57.5 0.388 0.484 0.323
QASPER 38.0 36.9 39.1 39.5 37.5 40.8 0.533 0.602 0.503
TriviaQA 64.0 60.4 64.0 69.0 61.8 70.2 0.254 0.343 0.208
TruthfulQA 74.4 73.8 74.2 75.0 75.0 73.0 0.220 0.251 0.195
WMT16-de-en 96.2 96.4 96.0 97.2 96.2 98.5 0.028 0.027 0.010
XSum 24.4 24.9 25.6 26.5 22.0 27.3 0.681 0.759 0.609

310

6 Conclusions311

We propose that aleatoric and epistemic uncertainty capture complementary failure modes of language312

models: self-consistency methods reveal data ambiguity, while semantic disagreement across models313

uncovers uncertainty arising from model limitations. We operationalize this view by estimating TU as314

the combination of intra-model entropy and inter-model semantic divergence, using only black-box315

access to model outputs. We show that this combination effectively outperforms self-consistency-316

based methods across a wide range of models and datasets in terms of different metrics. While317

this approach requires access to multiple comparable models, it reveals the limits of single-model318

uncertainty scores and offers a practical path toward more comprehensive uncertainty estimation.319

Limitations. Our method relies on response-level semantic similarity, which may underperform in320

tasks with many semantically distinct but correct answers, e.g., open-ended generation or QA tasks321

where there are multiple distinct correct answers. In such cases, disagreement does not necessarily322

reflect uncertainty. Additionally, we focus on a specific form of aleatoric uncertainty based on323

semantic entropy; how to best combine epistemic uncertainty with other AU and EU estimators324

(e.g., token-level or logit-based methods) is left for future work. Moreover, the performance of TU325

depends on the model ensemble: If all surrogate models share similar pre-training data or architectural326

biases, cross-model disagreement can underestimate true epistemic uncertainty. We examine this327

homogeneous-failure scenario in detail in Section 5.2. Finally, our evaluation hinges on a correctness328

judge; improvements in judge reliability will propagate to more precise AUROC and selective-risk329

estimates.330

9



References331

[1] Claude 3.7 sonnet system card. URL https://api.semanticscholar.org/CorpusID:332

276612236.333

[2] Yasin Abbasi Yadkori, Ilja Kuzborskij, András György, and Csaba Szepesvari. To believe or334

not to believe your llm: Iterative prompting for estimating epistemic uncertainty. Advances in335

Neural Information Processing Systems, 37:58077–58117, 2024.336

[3] Lukas Aichberger, Kajetan Schweighofer, Mykyta Ielanskyi, and Sepp Hochreiter. Semantically337

diverse language generation for uncertainty estimation in language models. arXiv preprint338

arXiv:2406.04306, 2024.339

[4] Neil Band, Tim GJ Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W Dusenberry,340

Ghassen Jerfel, Dustin Tran, and Yarin Gal. Benchmarking bayesian deep learning on diabetic341

retinopathy detection tasks. arXiv preprint arXiv:2211.12717, 2022.342

[5] Ondrej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias343

Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, et al. Findings344

of the 2016 conference on machine translation (wmt16). In First conference on machine345

translation, pages 131–198. Association for Computational Linguistics, 2016.346

[6] Tapabrata Chakraborti, Christopher RS Banerji, Ariane Marandon, Vicky Hellon, Robin Mi-347

tra, Brieuc Lehmann, Leandra Bräuninger, Sarah McGough, Cagatay Turkay, Alejandro F348

Frangi, et al. Personalized uncertainty quantification in artificial intelligence. Nature Machine349

Intelligence, 7(4):522–530, 2025.350

[7] Jianhao Chen, Zishuo Xun, Bocheng Zhou, Han Qi, Qiaosheng Zhang, Yang Chen, Wei Hu,351

Yuzhong Qu, Wanli Ouyang, and Shuyue Hu. Do we truly need so many samples? multi-llm352

repeated sampling efficiently scale test-time compute. arXiv preprint arXiv:2504.00762, 2025.353

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,354

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to355

solve math word problems. arXiv preprint arXiv:2110.14168, 2021.356

[9] Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, Tamay Besiroglu, and David357

Owen. The rising costs of training frontier ai models. arXiv preprint arXiv:2405.21015, 2024.358

[10] Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset359

of information-seeking questions and answers anchored in research papers. arXiv preprint360

arXiv:2105.03011, 2021.361

[11] Prasenjit Dey, Srujana Merugu, and Sivaramakrishnan Kaveri. Uncertainty-aware fusion: An362

ensemble framework for mitigating hallucinations in large language models. arXiv preprint363

arXiv:2503.05757, 2025.364

[12] Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun, Artem Vazhentsev, Sergey Petrakov, Kirill365

Fedyanin, Daniil Vasilev, Elizaveta Goncharova, Alexander Panchenko, Maxim Panov, et al.366

Lm-polygraph: Uncertainty estimation for language models. arXiv preprint arXiv:2311.07383,367

2023.368

[13] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model369

uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.370

PMLR, 2016.371

[14] Shiqi Gao, Tianxiang Gong, Zijie Lin, Runhua Xu, Haoyi Zhou, and Jianxin Li. Flue: Stream-372

lined uncertainty estimation for large language models. In Proceedings of the AAAI Conference373

on Artificial Intelligence, volume 39, pages 16745–16753, 2025.374

[15] Xiang Gao, Jiaxin Zhang, Lalla Mouatadid, and Kamalika Das. Spuq: Perturbation-based375

uncertainty quantification for large language models. arXiv preprint arXiv:2403.02509, 2024.376

[16] IBM Granite Team. Granite 3.0 language models, October 2024. URL https://github.com/377

ibm-granite/granite-3.0-language-models/.378

10

https://api.semanticscholar.org/CorpusID:276612236
https://api.semanticscholar.org/CorpusID:276612236
https://api.semanticscholar.org/CorpusID:276612236
https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/ibm-granite/granite-3.0-language-models/
https://github.com/ibm-granite/granite-3.0-language-models/


[17] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,379

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama380

3 herd of models. arXiv preprint arXiv:2407.21783, 2024.381

[18] HW Chung L Hou, S Longpre, B Zoph, Y Tay, W Fedus, Y Li, X Wang, M Dehghani,382

S Brahma, and A Webson. Scaling instruction-finetuned language models. arXiv preprint383

arXiv:2210.11416, 2022.384

[19] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine385

learning: An introduction to concepts and methods. Machine learning, 110(3):457–506, 2021.386

[20] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,387

AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv388

preprint arXiv:2410.21276, 2024.389

[21] Mykyta Ielanskyi, Kajetan Schweighofer, Lukas Aichberger, and Sepp Hochreiter. Addressing390

pitfalls in the evaluation of uncertainty estimation methods for natural language generation. In391

ICLR Workshop: Quantify Uncertainty and Hallucination in Foundation Models: The Next392

Frontier in Reliable AI.393

[22] Albert Q Jiang, A Sablayrolles, A Mensch, C Bamford, D Singh Chaplot, Ddl Casas, F Bressand,394

G Lengyel, G Lample, L Saulnier, et al. Mistral 7b. arxiv. arXiv preprint arXiv:2310.06825, 10,395

2023.396

[23] Daniel D Johnson, Daniel Tarlow, David Duvenaud, and Chris J Maddison. Experts don’t cheat:397

learning what you don’t know by predicting pairs. arXiv preprint arXiv:2402.08733, 2024.398

[24] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large399

scale distantly supervised challenge dataset for reading comprehension. arXiv preprint400

arXiv:1705.03551, 2017.401

[25] Andreas Kirsch. (implicit) ensembles of ensembles: Epistemic uncertainty collapse in large402

models. arXiv preprint arXiv:2409.02628, 2024.403

[26] Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal.404

Semantic entropy probes: Robust and cheap hallucination detection in llms. arXiv preprint405

arXiv:2406.15927, 2024.406

[27] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances407

for uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664,408

2023.409

[28] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances410

for uncertainty estimation in natural language generation. In ICLR, 2023.411

[29] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris412

Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a413

benchmark for question answering research. Transactions of the Association for Computational414

Linguistics, 7:453–466, 2019.415

[30] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,416

Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-417

guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium418

on Operating Systems Principles, 2023.419

[31] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable420

predictive uncertainty estimation using deep ensembles. Advances in neural information421

processing systems, 30, 2017.422

[32] Shalev Lifshitz, Sheila A McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time423

compute with multiple verifiers. arXiv preprint arXiv:2502.20379, 2025.424

[33] Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic425

human falsehoods. arXiv preprint arXiv:2109.07958, 2021.426

11



[34] Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in427

words. arXiv preprint arXiv:2205.14334, 2022.428

[35] Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty429

quantification for black-box large language models. arXiv preprint arXiv:2305.19187, 2023.430

[36] Linyu Liu, Yu Pan, Xiaocheng Li, and Guanting Chen. Uncertainty estimation and quantification431

for llms: A simple supervised approach. arXiv preprint arXiv:2404.15993, 2024.432

[37] Litian Liu, Reza Pourreza, Sunny Panchal, Apratim Bhattacharyya, Yao Qin, and Roland433

Memisevic. Enhancing hallucination detection through noise injection. arXiv preprint434

arXiv:2502.03799, 2025.435

[38] Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui Xia, and Jiajun Zhang. Merge, ensemble,436

and cooperate! a survey on collaborative strategies in the era of large language models. arXiv437

preprint arXiv:2407.06089, 2024.438

[39] Huan Ma, Jingdong Chen, Guangyu Wang, and Changqing Zhang. Estimating llm uncertainty439

with logits. arXiv preprint arXiv:2502.00290, 2025.440

[40] Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. Ambigqa: Answering441

ambiguous open-domain questions. arXiv preprint arXiv:2004.10645, 2020.442

[41] Malik Sajjad Ahmed Nadeem, Jean-Daniel Zucker, and Blaise Hanczar. Accuracy-rejection443

curves (arcs) for comparing classification methods with a reject option. In Machine Learning in444

Systems Biology, pages 65–81. PMLR, 2009.445

[42] Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the446

summary! topic-aware convolutional neural networks for extreme summarization. arXiv447

preprint arXiv:1808.08745, 2018.448

[43] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and449

Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models.450

arXiv preprint arXiv:2108.08877, 2021.451

[44] Shiyu Ni, Keping Bi, Jiafeng Guo, and Xueqi Cheng. When do llms need retrieval augmentation?452

mitigating llms’ overconfidence helps retrieval augmentation. arXiv preprint arXiv:2402.11457,453

2024.454

[45] Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy:455

Fine-grained uncertainty quantification for llms from semantic similarities. Advances in Neural456

Information Processing Systems, 37:8901–8929, 2024.457

[46] Lorenzo Pacchiardi, Alex J Chan, Sören Mindermann, Ilan Moscovitz, Alexa Y Pan, Yarin Gal,458

Owain Evans, and Jan Brauner. How to catch an ai liar: Lie detection in black-box llms by459

asking unrelated questions. arXiv preprint arXiv:2309.15840, 2023.460

[47] Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question461

answering challenge. Transactions of the Association for Computational Linguistics, 7:249–266,462

2019.463

[48] Andrea Santilli, Adam Golinski, Michael Kirchhof, Federico Danieli, Arno Blaas, Miao Xiong,464

Luca Zappella, and Sinead Williamson. Revisiting uncertainty quantification evaluation in465

language models: Spurious interactions with response length bias results. arXiv preprint466

arXiv:2504.13677, 2025.467

[49] Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, and Sepp Hochreiter. Intro-468

ducing an improved information-theoretic measure of predictive uncertainty. arXiv preprint469

arXiv:2311.08309, 2023.470

[50] Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thomp-471

son, and Mikhail Yurochkin. Large language model routing with benchmark datasets. arXiv472

preprint arXiv:2309.15789, 2023.473

12



[51] Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z Ren, and Anirudha Majumdar. A survey on474

uncertainty quantification of large language models: Taxonomy, open research challenges, and475

future directions. arXiv preprint arXiv:2412.05563, 2024.476

[52] Adi Simhi, Itay Itzhak, Fazl Barez, Gabriel Stanovsky, and Yonatan Belinkov. Trust me, i’m477

wrong: High-certainty hallucinations in llms. arXiv preprint arXiv:2502.12964, 2025.478

[53] Lintang Sutawika, Leo Gao, Hailey Schoelkopf, Stella Biderman, Jonathan Tow, Baber Abbasi,479

ben fattori, Charles Lovering, farzanehnakhaee70, Jason Phang, Anish Thite, Fazz, Aflah, Niklas480

Muennighoff, Thomas Wang, sdtblck, nopperl, gakada, tttyuntian, researcher2, Chris, Julen481
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proof sketch to provide intuition.578

• Inversely, any informal proof provided in the core of the paper should be complemented579

by formal proofs provided in appendix or supplemental material.580

• Theorems and Lemmas that the proof relies upon should be properly referenced.581

4. Experimental result reproducibility582

Question: Does the paper fully disclose all the information needed to reproduce the main ex-583

perimental results of the paper to the extent that it affects the main claims and/or conclusions584

of the paper (regardless of whether the code and data are provided or not)?585

Answer: [Yes]586

Justification: Details provided in Section 4.587

Guidelines:588

• The answer NA means that the paper does not include experiments.589

• If the paper includes experiments, a No answer to this question will not be perceived590

well by the reviewers: Making the paper reproducible is important, regardless of591

whether the code and data are provided or not.592

• If the contribution is a dataset and/or model, the authors should describe the steps taken593

to make their results reproducible or verifiable.594

• Depending on the contribution, reproducibility can be accomplished in various ways.595

For example, if the contribution is a novel architecture, describing the architecture fully596

might suffice, or if the contribution is a specific model and empirical evaluation, it may597

be necessary to either make it possible for others to replicate the model with the same598

dataset, or provide access to the model. In general. releasing code and data is often599

one good way to accomplish this, but reproducibility can also be provided via detailed600

instructions for how to replicate the results, access to a hosted model (e.g., in the case601

of a large language model), releasing of a model checkpoint, or other means that are602

appropriate to the research performed.603

• While NeurIPS does not require releasing code, the conference does require all submis-604

sions to provide some reasonable avenue for reproducibility, which may depend on the605

nature of the contribution. For example606

(a) If the contribution is primarily a new algorithm, the paper should make it clear how607

to reproduce that algorithm.608

(b) If the contribution is primarily a new model architecture, the paper should describe609

the architecture clearly and fully.610

(c) If the contribution is a new model (e.g., a large language model), then there should611

either be a way to access this model for reproducing the results or a way to reproduce612

the model (e.g., with an open-source dataset or instructions for how to construct613

the dataset).614

(d) We recognize that reproducibility may be tricky in some cases, in which case615

authors are welcome to describe the particular way they provide for reproducibility.616

In the case of closed-source models, it may be that access to the model is limited in617

some way (e.g., to registered users), but it should be possible for other researchers618

to have some path to reproducing or verifying the results.619

5. Open access to data and code620

Question: Does the paper provide open access to the data and code, with sufficient instruc-621

tions to faithfully reproduce the main experimental results, as described in supplemental622

material?623

Answer: [Yes]624

Justification: We use public datasets, and will submit our code with the supplementary625

material.626
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Guidelines:627

• The answer NA means that paper does not include experiments requiring code.628

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/629

public/guides/CodeSubmissionPolicy) for more details.630

• While we encourage the release of code and data, we understand that this might not be631

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not632

including code, unless this is central to the contribution (e.g., for a new open-source633

benchmark).634

• The instructions should contain the exact command and environment needed to run to635

reproduce the results. See the NeurIPS code and data submission guidelines (https:636

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.637

• The authors should provide instructions on data access and preparation, including how638

to access the raw data, preprocessed data, intermediate data, and generated data, etc.639

• The authors should provide scripts to reproduce all experimental results for the new640

proposed method and baselines. If only a subset of experiments are reproducible, they641

should state which ones are omitted from the script and why.642

• At submission time, to preserve anonymity, the authors should release anonymized643

versions (if applicable).644

• Providing as much information as possible in supplemental material (appended to the645

paper) is recommended, but including URLs to data and code is permitted.646

6. Experimental setting/details647

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-648

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the649

results?650

Answer: [Yes]651

Justification: In Section 4.652

Guidelines:653

• The answer NA means that the paper does not include experiments.654

• The experimental setting should be presented in the core of the paper to a level of detail655

that is necessary to appreciate the results and make sense of them.656

• The full details can be provided either with the code, in appendix, or as supplemental657

material.658

7. Experiment statistical significance659

Question: Does the paper report error bars suitably and correctly defined or other appropriate660

information about the statistical significance of the experiments?661

Answer: [Yes]662

Justification: Results we include in the main paper are averaged across datasets or models,663

but we include error bars in Appendix A.4.664

Guidelines:665

• The answer NA means that the paper does not include experiments.666

• The authors should answer "Yes" if the results are accompanied by error bars, confi-667

dence intervals, or statistical significance tests, at least for the experiments that support668

the main claims of the paper.669

• The factors of variability that the error bars are capturing should be clearly stated (for670

example, train/test split, initialization, random drawing of some parameter, or overall671

run with given experimental conditions).672

• The method for calculating the error bars should be explained (closed form formula,673

call to a library function, bootstrap, etc.)674

• The assumptions made should be given (e.g., Normally distributed errors).675

• It should be clear whether the error bar is the standard deviation or the standard error676

of the mean.677

• It is OK to report 1-sigma error bars, but one should state it. The authors should678

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis679

of Normality of errors is not verified.680
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• For asymmetric distributions, the authors should be careful not to show in tables or681

figures symmetric error bars that would yield results that are out of range (e.g. negative682

error rates).683

• If error bars are reported in tables or plots, The authors should explain in the text how684

they were calculated and reference the corresponding figures or tables in the text.685

8. Experiments compute resources686

Question: For each experiment, does the paper provide sufficient information on the com-687

puter resources (type of compute workers, memory, time of execution) needed to reproduce688

the experiments?689

Answer: [Yes]690

Justification: In Appendix A.3691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,694

or cloud provider, including relevant memory and storage.695

• The paper should provide the amount of compute required for each of the individual696

experimental runs as well as estimate the total compute.697

• The paper should disclose whether the full research project required more compute698

than the experiments reported in the paper (e.g., preliminary or failed experiments that699

didn’t make it into the paper).700

9. Code of ethics701

Question: Does the research conducted in the paper conform, in every respect, with the702

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?703

Answer: [Yes]704

Justification: Yes705

Guidelines:706

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.707

• If the authors answer No, they should explain the special circumstances that require a708

deviation from the Code of Ethics.709

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-710

eration due to laws or regulations in their jurisdiction).711

10. Broader impacts712

Question: Does the paper discuss both potential positive societal impacts and negative713

societal impacts of the work performed?714

Answer: [Yes]715

Justification: Discussed briefly in conclusion.716

Guidelines:717

• The answer NA means that there is no societal impact of the work performed.718

• If the authors answer NA or No, they should explain why their work has no societal719

impact or why the paper does not address societal impact.720

• Examples of negative societal impacts include potential malicious or unintended uses721

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations722

(e.g., deployment of technologies that could make decisions that unfairly impact specific723

groups), privacy considerations, and security considerations.724

• The conference expects that many papers will be foundational research and not tied725

to particular applications, let alone deployments. However, if there is a direct path to726

any negative applications, the authors should point it out. For example, it is legitimate727

to point out that an improvement in the quality of generative models could be used to728

generate deepfakes for disinformation. On the other hand, it is not needed to point out729

that a generic algorithm for optimizing neural networks could enable people to train730

models that generate Deepfakes faster.731
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• The authors should consider possible harms that could arise when the technology is732

being used as intended and functioning correctly, harms that could arise when the733

technology is being used as intended but gives incorrect results, and harms following734

from (intentional or unintentional) misuse of the technology.735

• If there are negative societal impacts, the authors could also discuss possible mitigation736

strategies (e.g., gated release of models, providing defenses in addition to attacks,737

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from738

feedback over time, improving the efficiency and accessibility of ML).739

11. Safeguards740

Question: Does the paper describe safeguards that have been put in place for responsible741

release of data or models that have a high risk for misuse (e.g., pretrained language models,742

image generators, or scraped datasets)?743

Answer: [NA]744

Justification: The paper does not propose new models or datasets.745

Guidelines:746

• The answer NA means that the paper poses no such risks.747

• Released models that have a high risk for misuse or dual-use should be released with748

necessary safeguards to allow for controlled use of the model, for example by requiring749

that users adhere to usage guidelines or restrictions to access the model or implementing750

safety filters.751

• Datasets that have been scraped from the Internet could pose safety risks. The authors752

should describe how they avoided releasing unsafe images.753

• We recognize that providing effective safeguards is challenging, and many papers do754

not require this, but we encourage authors to take this into account and make a best755

faith effort.756

12. Licenses for existing assets757

Question: Are the creators or original owners of assets (e.g., code, data, models), used in758

the paper, properly credited and are the license and terms of use explicitly mentioned and759

properly respected?760

Answer: [Yes]761

Justification: Cited throughout the paper.762

Guidelines:763

• The answer NA means that the paper does not use existing assets.764

• The authors should cite the original paper that produced the code package or dataset.765

• The authors should state which version of the asset is used and, if possible, include a766

URL.767

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.768

• For scraped data from a particular source (e.g., website), the copyright and terms of769

service of that source should be provided.770

• If assets are released, the license, copyright information, and terms of use in the771

package should be provided. For popular datasets, paperswithcode.com/datasets772

has curated licenses for some datasets. Their licensing guide can help determine the773

license of a dataset.774

• For existing datasets that are re-packaged, both the original license and the license of775

the derived asset (if it has changed) should be provided.776

• If this information is not available online, the authors are encouraged to reach out to777

the asset’s creators.778

13. New assets779

Question: Are new assets introduced in the paper well documented and is the documentation780

provided alongside the assets?781

Answer: [NA]782

Justification: [NA]783

Guidelines:784
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• The answer NA means that the paper does not release new assets.785

• Researchers should communicate the details of the dataset/code/model as part of their786

submissions via structured templates. This includes details about training, license,787

limitations, etc.788

• The paper should discuss whether and how consent was obtained from people whose789

asset is used.790

• At submission time, remember to anonymize your assets (if applicable). You can either791

create an anonymized URL or include an anonymized zip file.792

14. Crowdsourcing and research with human subjects793

Question: For crowdsourcing experiments and research with human subjects, does the paper794

include the full text of instructions given to participants and screenshots, if applicable, as795

well as details about compensation (if any)?796

Answer: [NA]797

Justification: The paper does not involve crowdsourcing nor research with human subjects798

Guidelines:799

• The answer NA means that the paper does not involve crowdsourcing nor research with800

human subjects.801

• Including this information in the supplemental material is fine, but if the main contribu-802

tion of the paper involves human subjects, then as much detail as possible should be803

included in the main paper.804

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,805

or other labor should be paid at least the minimum wage in the country of the data806

collector.807

15. Institutional review board (IRB) approvals or equivalent for research with human808

subjects809

Question: Does the paper describe potential risks incurred by study participants, whether810

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)811

approvals (or an equivalent approval/review based on the requirements of your country or812

institution) were obtained?813

Answer: [NA]814

Justification: The paper does not involve crowdsourcing nor research with human subjects815

Guidelines:816

• The answer NA means that the paper does not involve crowdsourcing nor research with817

human subjects.818

• Depending on the country in which research is conducted, IRB approval (or equivalent)819

may be required for any human subjects research. If you obtained IRB approval, you820

should clearly state this in the paper.821

• We recognize that the procedures for this may vary significantly between institutions822

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the823

guidelines for their institution.824

• For initial submissions, do not include any information that would break anonymity (if825

applicable), such as the institution conducting the review.826

16. Declaration of LLM usage827

Question: Does the paper describe the usage of LLMs if it is an important, original, or828

non-standard component of the core methods in this research? Note that if the LLM is used829

only for writing, editing, or formatting purposes and does not impact the core methodology,830

scientific rigorousness, or originality of the research, declaration is not required.831

Answer: [No]832

Justification: Used only for editing and plotting.833

Guidelines:834

• The answer NA means that the core method development in this research does not835

involve LLMs as any important, original, or non-standard components.836

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)837

for what should or should not be described.838
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A Appendix839

A.1 Theoretical Interpretations of Epistemic Uncertainty840

Kernel and variational interpretation of D(ω || ω∗). Assume the similarity function s(·, ·) is a841

symmetric positive definite kernel k. Denote the predictive distributions by PΩ := p(· | x;ω) and842

Pω∗ . Their kernel mean embeddings in the reproducing kernel Hilbert space (RKHS) Hk are843

µω = Er∼PΩ

[
k(r, ·)

]
, µω∗ = Eq∼Pω∗

[
k(q, ·)

]
.

Using the reproducing property ⟨k(r, ·), k(r′, ·)⟩Hk
= k(r, r′), the divergence in Eq. (2) can be844

rewritten exactly as:845

D(ω || ω∗) = ⟨µω, µω⟩Hk
− ⟨µω, µω∗⟩Hk

. (5)

Equation (5) is the first two terms of the squared maximum mean discrepancy (MMD):846

MMD2(PΩ, Pω∗) = ∥µω − µω∗∥2Hk
= ∥µω∥2Hk

− ⟨µω, µω∗⟩Hk︸ ︷︷ ︸
D(ω || ω∗)

+∥µω∗∥2Hk
− ⟨µω, µω∗⟩Hk

.

Thus D(ω || ω∗) is a one-sided kernel discrepancy: it measures how much the model’s self-agreement847

exceeds its agreement with the ideal predictor, and it vanishes if and only if µω = µω∗ (and, for848

characteristic kernels, iff PΩ = Pω∗ ).849

Variational-gap Interpretation. Write classical KL as KL(PΩ ||Pω∗) = CE − Ent, where Ent =850

Er∼PΩ [− log p(r | x;ω)] and CE = Er∼PΩ [− log p(r | x)]. Replacing − log with −k yields851

D(ω || ω∗) = Er,r′∼PΩ
[k(r, r′)]︸ ︷︷ ︸

“negative kernel-entropy”

− Er∼PΩ, q∼Pω∗ [k(r, q)]︸ ︷︷ ︸
“kernel cross-entropy”

,

so D is the semantic variational gap between the model and the ideal distribution under the geometry852

induced by k. Minimizing D therefore projects PΩ toward Pω∗ in RKHS while simultaneously853

penalizing model variability in PΩ.854

Lemma 1 (Bound on Kernel-Based Divergence). Let Pω = p(· | x, ω) and Pω∗ = p(· | x, ω∗) be the855

predictive distributions of two language models. Let k(·, ·) be a symmetric, bounded, positive-definite856

kernel such that 0 ≤ k(r, r′) ≤ 1 for all r, r′. Define the kernel-based divergence857

D(ω ∥ω∗) := Er,r′∼Pω [k(r, r
′)]− Er∼Pω,q∼Pω∗ [k(r, q)].

Then D is bounded above in absolute value by the total variation distance between Pω and Pω∗ :858

|D(ω ∥ω∗)| ≤ TVD(Pω, Pω∗),

where859

TVD(Pω, Pω∗) :=
1

2

∫
|pω(z)− pω∗(z)|dz.

Furthermore, if the RKHS norm of the embeddings are equal, i.e., ∥µω∥ = ∥µω∗∥, then D(ω ∥ω∗) =860

0 implies µω = µω∗ . If k is characteristic, this further implies Pω = Pω∗ .861

Proof. Define the kernel-smoothed function f(z) := Er∼Pω [k(r, z)]. Then we can write862

D(ω ∥ω∗) = Ez∼Pω
[f(z)]− Ez∼Pω∗ [f(z)].

By the definition of total variation distance and the fact that 0 ≤ f(z) ≤ 1 for all z,863

|D(ω ∥ω∗)| ≤ sup
∥f∥∞≤1

|EPω
[f ]− EPω∗ [f ]| = TVD(Pω, Pω∗).

For the second part, note that D(ω ∥ω∗) = ∥µω∥2 − ⟨µω, µω∗⟩. If ∥µω∥ = ∥µω∗∥ and D = 0, then864

by Cauchy–Schwarz equality, we must have µω = µω∗ . If the kernel is characteristic, then µω = µω∗865

implies Pω = Pω∗ .866
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This result implies that D(ω ∥ω∗) provides a lower bound on distributional mismatch, and thus serves867

as a tractable proxy for epistemic uncertainty: it is provably small only when the model’s predictive868

distribution aligns with that of the ensemble under the kernel geometry.869

Under desired conditions mentioned in 3.2, and with a bounded characteristic kernel, D(ω || ω∗) = 0870

if, and only if, the predictive distribution Pω is close to the model set consensus as shown above.871

Consequently D (i) flags cases where the model’s intra-model similarity is high (AU is low) while its872

agreement with the ensemble is low, (ii) rewards calibrated agreement by attaining its minimum only873

within the support of the ensemble, and (iii) remains sample-efficient, as it only requires O(n2) kernel874

evaluations on n generated responses per model, which is cheaper than KL divergence evaluations or875

other approximations of EU.876

A.2 Agreement and Coverage Metrics.877

For every dataset we form the binary correctness matrix Cij which is the correctness of response r(j)i878

sampled from model j to input i, and compute two coarse descriptors of cross-model behaviour:879

• Jaccard redundancy J – The mean pairwise Jaccard index of the sets of correctly answered
examples:

J =
2

M(M − 1)

∑
1≤m<k≤M

|Sm ∩ Sk|
|Sm ∪ Sk|

, Sm = {i : Cim = 1}

High J means models succeed on the same inputs.880

• Oracle-gain diversity G – the additional coverage obtained by an oracle that chooses the
correct model per example:

G = Aoracle −max
m

Am =
1

N

N∑
i=1

⊮

 M∑
j=1

Cij > 0

−max
m

(
1

N

N∑
i=1

Cim

)

High G indicates that different models get different examples right.881

A.3 Additional Experimental Setup882

All experiments were conducted on two NVIDIA A100 80GB GPUs. We use the883

lm-evaluation-harness [53] codebase to generate responses from each model, and evaluate884

correctness using a local vLLM [30] server hosting Meta-Llama-3-70B-Instruct [17] as the885

judge model. Following prior work [35], we compute correctness using only the first sampled886

response from each model. All evaluation is conducted in inference-only mode; no training or887

fine-tuning is performed.888

For each dataset, we sample 10 responses per model for the first 100 prompts. AU is computed using889

all 10 responses. To match the sample budget with TU, the experiments in Section 5.3 and Section 5.4890

report results using only 2 responses per model for computing both TU and epistemic uncertainty.891

We use a temperature of 0.7 and top-p of 0.9 across all generations. For SimpleQA, model outputs892

are obtained from the OpenAI and Anthropic APIs.893

Semantic similarity between responses is measured using cosine distance over sentence-T5-xl [18,894

43] embeddings. For datasets not originally supported by lm-eval-harness, we follow its prompt895

formatting conventions and include code for these additions in the supplementary material.896

A.4 Additional Results on Total Uncertainty897

Figure 6 reports the AUROC of aleatoric and total uncertainty across all model–dataset pairs, and Fig-898

ure 7 shows the corresponding improvements from using TU over AU. Total uncertainty consistently899

improves correctness discrimination in nearly all cases, with the largest per-instance gains observed900

on HotpotQA, a benchmark known for complex multi-hop reasoning.901

AUROC Results Per Model and Dataset. Figure 6 and Table 2 show AUROC of TU and AU in902

all model-dataset combinations, and Figure 7 shows the improvement of total uncertainty over AU903

in AUROC. TU improves AUROC in nearly all model–dataset combinations, with the largest gains904
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observed in HotpotQA. Model performance substantially affects the magnitude of improvement. On905

datasets such as XSum, where overall model accuracy is low, TU yields large improvements for weaker906

models but occasionally underperforms for the strongest ones (e.g., Llama and Qwen), potentially907

due to disagreement with less reliable auxiliary models. A similar pattern holds on GSM8K, where908

gains are concentrated among lower-performing models, while others benefit less.909

In contrast, WMT16-de-en and CoQA show limited gains, likely due to the high baseline accuracy910

(> 90%) of all reference models (see Fig. 8), where AU is already well-calibrated. Notably, TU911

corrects miscalibrated AU for specific models, such as Mistral on CoQA, where the base AU is912

anomalously low. On TruthfulQA, which features open-ended questions with diverse valid answers,913

semantic disagreement does not reliably indicate epistemic uncertainty, which results in weaker914

improvements.915
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Figure 6: We show AUROC for each model separately to compare aleatoric and total uncertainty. TU
consistently yields higher AUROC across models.

0.00

0.02

0.04

A
U

RO
C

AmbigQA

0.00

0.05

0.10

0.15

A
U

RO
C

CoQA

0.10

0.05

0.00

A
U

RO
C

GSM8K

0.00
0.05
0.10
0.15
0.20

A
U

RO
C

HotpotQA

0.10

0.05

0.00

0.05

A
U

RO
C

NQ-open

Llam
a-3

.1-
8B

-In
str

uct

Mist
ral

-7B
-In

str
uct-

v0.3

Qwen
2.5

-7B
-In

str
uct

gem
ma-2

-9b
-it

gran
ite

-3.
0-8

b-in
str

uct
0.00
0.02
0.04
0.06
0.08

A
U

RO
C

QASPER

Llam
a-3

.1-
8B

-In
str

uct

Mist
ral

-7B
-In

str
uct-

v0.3

Qwen
2.5

-7B
-In

str
uct

gem
ma-2

-9b
-it

gran
ite

-3.
0-8

b-in
str

uct
0.00
0.02
0.04
0.06
0.08

A
U

RO
C

TriviaQA

Llam
a-3

.1-
8B

-In
str

uct

Mist
ral

-7B
-In

str
uct-

v0.3

Qwen
2.5

-7B
-In

str
uct

gem
ma-2

-9b
-it

gran
ite

-3.
0-8

b-in
str

uct

0.02
0.00
0.02
0.04

A
U

RO
C

TruthfulQA

Llam
a-3

.1-
8B

-In
str

uct

Mist
ral

-7B
-In

str
uct-

v0.3

Qwen
2.5

-7B
-In

str
uct

gem
ma-2

-9b
-it

gran
ite

-3.
0-8

b-in
str

uct
0.000

0.025

0.050

0.075

A
U

RO
C

WMT16-de-en

Llam
a-3

.1-
8B

-In
str

uct

Mist
ral

-7B
-In

str
uct-

v0.3

Qwen
2.5

-7B
-In

str
uct

gem
ma-2

-9b
-it

gran
ite

-3.
0-8

b-in
str

uct
0.00

0.05

0.10

A
U

RO
C

XSum

Figure 7: AUROC improvement obtained by adding EU to AU, measured as (Total − Aleatoric).
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Figure 8: Accuracy per model-dataset pair.
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Table 2: Uncertainty AUROC scores across models and benchmarks when different 7B/8B/9B
parameter models are used as auxiliary models. Total Uncertainty is better calibrated with correctness
than Aleatoric Uncertainty.

Benchmark Model Accuracy Aleatoric AUROC Epistemic AUROC Total AUROC

AmbigQA

Llama-3.1-8B-Instruct 0.62 0.764 0.52 0.753
Mistral-7B-Instruct-v0.3 0.58 0.716 0.506 0.768

Qwen2.5-7B-Instruct 0.42 0.645 0.639 0.75
gemma-2-9b-it 0.52 0.81 0.447 0.833

granite-3.0-8b-instruct 0.48 0.644 0.488 0.661

CoQA

Llama-3.1-8B-Instruct 0.93 0.788 0.797 0.845
Mistral-7B-Instruct-v0.3 0.95 0.458 0.80 0.819

Qwen2.5-7B-Instruct 0.97 0.466 0.567 0.595
gemma-2-9b-it 0.95 0.876 0.80 0.918

granite-3.0-8b-instruct 0.97 0.708 0.907 0.821

GSM8K

Llama-3.1-8B-Instruct 0.69 0.727 0.346 0.626
Mistral-7B-Instruct-v0.3 0.35 0.577 0.606 0.61

Qwen2.5-7B-Instruct 0.61 0.524 0.623 0.656
gemma-2-9b-it 0.39 0.531 0.601 0.634

granite-3.0-8b-instruct 0.60 0.726 0.472 0.727

HotpotQA

Llama-3.1-8B-Instruct 0.65 0.546 0.662 0.7
Mistral-7B-Instruct-v0.3 0.65 0.548 0.682 0.736

Qwen2.5-7B-Instruct 0.71 0.483 0.681 0.679
gemma-2-9b-it 0.58 0.719 0.608 0.814

granite-3.0-8b-instruct 0.58 0.615 0.634 0.736

NQ-open

Llama-3.1-8B-Instruct 0.49 0.808 0.389 0.713
Mistral-7B-Instruct-v0.3 0.60 0.69 0.501 0.698

Qwen2.5-7B-Instruct 0.37 0.462 0.696 0.703
gemma-2-9b-it 0.47 0.743 0.538 0.768

granite-3.0-8b-instruct 0.56 0.678 0.541 0.754

QASPER

Llama-3.1-8B-Instruct 0.30 0.694 0.487 0.714
Mistral-7B-Instruct-v0.3 0.32 0.623 0.657 0.722

Qwen2.5-7B-Instruct 0.45 0.587 0.492 0.583
gemma-2-9b-it 0.37 0.588 0.509 0.596

granite-3.0-8b-instruct 0.41 0.56 0.512 0.596

TriviaQA

Llama-3.1-8B-Instruct 0.65 0.744 0.562 0.776
Mistral-7B-Instruct-v0.3 0.54 0.796 0.552 0.815

Qwen2.5-7B-Instruct 0.5 0.811 0.668 0.9
gemma-2-9b-it 0.59 0.787 0.645 0.812

granite-3.0-8b-instruct 0.64 0.733 0.575 0.784

TruthfulQA

Llama-3.1-8B-Instruct 0.65 0.47 0.423 0.456
Mistral-7B-Instruct-v0.3 0.80 0.528 0.601 0.579

Qwen2.5-7B-Instruct 0.75 0.494 0.584 0.578
gemma-2-9b-it 0.76 0.641 0.541 0.625

granite-3.0-8b-instruct 0.75 0.532 0.556 0.548

WMT16-de-en

Llama-3.1-8B-Instruct 0.95 0.691 0.695 0.859
Mistral-7B-Instruct-v0.3 0.91 0.808 0.835 0.897

Qwen2.5-7B-Instruct 0.94 0.809 0.832 0.883
gemma-2-9b-it 0.97 0.649 0.663 0.811

granite-3.0-8b-instruct 0.95 0.755 0.493 0.884

XSum

Llama-3.1-8B-Instruct 0.19 0.708 0.37 0.693
Mistral-7B-Instruct-v0.3 0.20 0.482 0.651 0.725

Qwen2.5-7B-Instruct 0.48 0.819 0.31 0.811
gemma-2-9b-it 0.16 0.598 0.565 0.631

granite-3.0-8b-instruct 0.12 0.529 0.582 0.717

ROC Curves. Figure 9 shows the ROC curve computed over the pooled set of all model–dataset916

pairs. TU achieves a higher AUROC (0.746 vs. 0.707), which shows improved seperation between917

correct and incorrect generations compared to AU alone. Figure 10 presents ROC curves for individual918

datasets. TU yields consistently better or comparable performance across all tasks, with the largest919

gains observed on HotpotQA, WMT16-de-en, and CoQA. These improvements align with our earlier920

findings that TU is most effective on tasks where models are accurate but occasionally confidently921

wrong.922
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Figure 9: ROC curves between aleatoric and total uncertainty aggregated across all models and
datasets. Total uncertainty achieves higher AUROC, indicating better discrimination between correct
and incorrect generations.
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Figure 10: ROC curves comparing aleatoric and total uncertainty across individual datasets. TU
achieves higher AUROC across most tasks, particularly on HotpotQA, WMT16-de-en, and CoQA,
where models exhibit confident failures.

Additional Baseline. The results in Table 3 illustrate the variability in token-level AUROC scores923

across different uncertainty formulations from Ma et al. [39]. While mean token entropy performs924

well on tasks like XSum, where stylistic variation is high, the probability disparity score performs925

poorly on structured, factual tasks, which suggests that it may conflate EU with token frequency926

effects. This further motivates the need for sequence-level uncertainty measures like ours, which927

better align with correctness across diverse generation tasks.928

Dataset Mean Token Entropy (AUROC) Probability Disparity (AUROC)
CoQA 0.671 0.723
NQ-open 0.653 0.575
TriviaQA 0.736 0.728
WMT-de-en 0.877 0.518
XSum 0.934 0.524

Table 3: Comparison of token-level uncertainty scores from Ma et al. [39]. Mean token entropy and
probability disparity are derived from token logits without sampling. While both achieve strong
performance on some datasets (e.g., XSum), probability disparity underperforms on factual tasks such
as CoQA.
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A.5 The Effect of the Auxiliary Model Set on Total Uncertainty929

Ablating the Reference Model Size. We test how the quality of total uncertainty estimates depends930

on the capability of the reference model, whose uncertainty we aim to estimate. We fix the auxiliary931

model set to a pool of four 7-9B models mentioned in 4 that are not from the same family as the932

reference model, and vary the reference model’s architecture and size. Figure 11 reports results933

on TriviaQA, using two model families (Gemma3 [56] and Qwen2.5 [62]) of various sizes. As the934

size of the reference model increases, both aleatoric and total uncertainty AUROC scores tend to935

decrease, but total uncertainty has consistently higher AUROC across different model sizes. This936

holds even when the reference model is substantially stronger than any model in the auxiliary set937

(e.g., Qwen2.5-32B vs. 7-9B peers).938
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Figure 11: We vary the size of the reference model while holding the auxiliary models fixed. TU
achieves higher AUROC in comparison to AU acorss different model sizes on TriviaQA.

Ablating Auxiliary Model Size. We pick a reference model (mistral), and let the auxiliary set be a939

single model ranging from 0.5B to 32B Qwen2.3 Model and x to yB parameter Gemma 3 model. We940

find that larger model sizes contribute to941
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Figure 12: We keep the reference model fixed as mistral, and vary the size of the auxiliary model.
TU achieves higher AUROC in comparison to AU with larger and more capable the auxiliary model
on TriviaQA.

Noise-perturbed Auxiliary Model Set. We consider noise-perturbed variants of the reference942

model itself as auxiliary model set, similar to Liu et al. [37]. Specifically, we apply a perturbation943

strategy in which we preserve the top-k singular vectors of each linear weight matrix and inject944

Gaussian noise into the remaining lower-rank subspace. This preserves dominant components of945

the model while allowing for controlled noise in its response distribution. Figure 13 in the appendix946

shows that the we sometimes obtain improvement in TU-AU, but it is overall lower than for the more947

diverse auxiliary model set from Figure 4.948

A.6 AUROC Ablations949

Number of Auxiliary Models. We study how the size of the auxiliary model set affects the950

quality of total uncertainty estimates. For each reference model, we compute total uncertainty using951

n ∈ {2, 3, 4, 5} models, where one model is fixed (the reference model) and the remaining n− 1 are952

sampled from other model families. All methods use a fixed number of samples per model.953
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Figure 14 shows that total uncertainty improves monotonically as the number of auxiliary models954

increases. This holds across almost all tasks, with the largest gains typically occurring between n = 2955

and n = 3. In addition, we observe that variance across runs decreases as more models are added,956

which suggests a more calibrated uncertainty score can be achieved from increasing the number957

of model in the auxiliary set. However, in all datasets, our multi-sample total uncertainty measure958

outperforms aleatoric uncertainty in AUROC, even when only one auxiliary model is used.959
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Figure 14: We plot AUROC as a function of the number of auxiliary models used to compute total
uncertainty for Mistral-7B-Instruct-v0.3. Total uncertainty improves with more models, and
variance decreases.

Number of Samples for Uncertainty Estimation. We next investigate how the number of960

response samples per model affects the performance of uncertainty estimates. For each model in961

the auxiliary set, we vary the number of generations used in total uncertainty computation from 5 to962

50, and compare against two baselines for aleatoric uncertainty: one computed using 5 samples and963

another using 10 samples, matching the regimes used in our main experiments.964

As shown in Figure 15, AUROC for total uncertainty usually slightly increases with more samples,965

with diminishing returns beyond 30 samples in most tasks. Notably, TU consistently outperforms966

AU baselines across all datasets. These findings also reinforce the practicality of TU even under967

constrained budgets, as improvements are apparent with as few as 10 samples (n = 5 on the x-axis).968
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Figure 15: AUROC of total uncertainty as a function of the number of samples per model. Even with
a small number of samples, TU outperforms aleatoric baselines (5-sample and 10-sample variants).
Gains saturate around 30–40 samples.
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A.7 Additional Results on Multiple-choice QA tasks969

To evaluate whether our findings extend beyond open-ended generation, we adapt a subset of tasks970

from the Big-Bench Hard (BBH) [54] benchmark into a long-form QA format with chain-of-thought971

answering. Specifically, we consider Boolean Expressions, Disambiguation QA, and Word972

Sorting, and prompt models to justify their answers rather than selecting from multiple choices973

directly. We then evaluate uncertainty scores over the full responses using the same semantic similarity974

pipeline as in our main experiments.975

Table 4 reports AUROC scores for both AU and TU across models on these tasks. We observe that976

TU improves over AU in most cases, with the largest gains appearing when base model performance977

is low (e.g., Qwen2.5-7B on Disambiguation QA and Boolean Expressions). These results978

demonstrate that TU remains effective in identifying incorrect generations even when the task is979

originally framed as multiple-choice, provided responses are elicited in free-form.980

Table 4: Uncertainty AUROC scores across models and benchmarks when different 7B/8B/9B
parameter models are used as auxiliary models. Total Uncertainty is better calibrated with correctness
than Aleatoric Uncertainty.

Benchmark Model Accuracy Aleatoric AUROC Total AUROC

BBH Fewshot Boolean Expressions

Llama-3.1-8B-Instruct 0.88 0.662 0.658
Mistral-7B-Instruct-v0.3 0.84 0.746 0.735

Qwen2.5-7B-Instruct 0.53 0.744 0.909
gemma-2-9b-it 0.86 0.593 0.725

granite-3.0-8b-instruct 0.9 0.659 0.658

BBH Fewshot Disambiguation QA

Llama-3.1-8B-Instruct 0.59 0.544 0.594
Mistral-7B-Instruct-v0.3 0.64 0.525 0.656

Qwen2.5-7B-Instruct 0.44 0.561 0.81
gemma-2-9b-it 0.69 0.61 0.65

granite-3.0-8b-instruct 0.62 0.486 0.562

BBH Fewshot Word Sorting

Llama-3.1-8B-Instruct 0.69 0.476 0.512
Mistral-7B-Instruct-v0.3 0.77 0.529 0.429

Qwen2.5-7B-Instruct 0.44 0.587 0.645
gemma-2-9b-it 0.96 0.475 0.576

granite-3.0-8b-instruct 0.58 0.578 0.485

A.8 Epistemic Uncertainty Analysis981

Figure 16 disaggregates the trend shown in Figure 2a by model. For all five reference models,982

incorrect generations in the low-AU regime show consistently higher EU than correct ones, which983

reaffirms that EU captures confident failures missed by self-consistency. This separation weakens in984

mid- and high-AU buckets, where both correct and incorrect outputs tend to be more uncertain. The985

consistency of this pattern across different models highlights the effectiveness of EU in identifying986

unreliable predictions when AU alone is low.987
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Figure 16: Distribution of EU across different levels of AU and correctness. Across all models, we
find that incorrect responses in the low-aleatoric regime are assigned higher EU than correct ones on
average.

A.9 Computing Correctness Using an LLM Judge988

We compute correctness scores using Meta-Llama-3-70B-Instruct deployed via a local vLLM989

server. Each model prediction is evaluated independently against the gold answers using a structured990

prompt that includes five few-shot examples, held fixed across all evaluations. The prompt instructs991

the judge to assign a correctness score from the discrete set {0.0, 0.1, ..., 1.0} based on992
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the alignment between the predicted and gold answers, while explicitly ignoring the model’s own993

knowledge.994

The judge receives as input: (1) the user-defined task or question, (2) a list of gold answers, and995

(3) the model-generated answer. It is instructed to output a JSON object containing a numerical996

score and a justification. The request is submitted using deterministic decoding (temperature= 0,997

max_tokens = 20), and we employ up to three retries with truncated context in case of failures due998

to prompt length.999

Correctness is evaluated using the first response generated by each model. The gold answers are1000

passed verbatim, and no normalization is applied to either predictions or references. By default,1001

a prediction is considered correct if its score exceeds 0.5. For tasks where differences should be1002

penalized (e.g., summarization or translation), we increase the threshold to 0.9 (specifically, for1003

XSum and WMT16-de-en). These thresholds are applied during AUROC and selective prediction1004

evaluations.1005

Prompt Format. The full judge prompt used in all evaluations is shown below (example QA pairs1006

are fixed across all examples):1007

I want you to act as a judge for how well a model did answering a user-defined
task.
You will be provided with a user-defined task that was given to the model, its
golden answer(s), and the model’s answer. The context of the task may not be
given here. Your task is to judge how correct the model’s answer is based on
the golden answer(s), without seeing the context of the task, and then give a
correctness score. The correctness score should be one of the below numbers:
0.0 (totally wrong), 0.1, 0.2, ..., 1.0 (totally right). You should also add a
brief justification regarding how the model’s answer conforms to or contradicts
the golden answer(s). Your response must follow the format:
{
"correctness_score": your_score,
"justification": your_justification
}
Note that each one of the golden answers is considered correct. Thus if the
model’s answer matches any one of the golden answers, it should be considered
correct.
–-
Example 1:
User-defined task –- Sandy bought 1 million Safe Moon tokens. She has 4
siblings. She wants to keep half of them to herself and divide the remaining
tokens among her siblings. After splitting it up, how many more tokens will she
have than any of her siblings?
Golden Answer(s) –- <answer 1> 375000
Model’s Answer –- Sandy will have more tokens than any sibling by 3/8 million.
Model Output:
{
"correctness_score": 1.0,
"justification": "The model’s answer of 3/8 million equals 375,000, which
matches the gold answer exactly."
}
–-
... (3 more examples)
–-
Target Example:
User-defined task –- [QUESTION]
Golden Answer(s) –- <answer 1> [...]; <answer 2> [...]
Model’s Answer –- [MODEL RESPONSE]
Model Output:
{
"correctness_score": ?,
"justification": ?
}

1008
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