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Abstract

Large language models (LLMs) often produce confident yet incorrect responses,
and uncertainty quantification in LLMs is one potential solution to more robust
usage. Recent works routinely rely on self-consistency to estimate aleatoric uncer-
tainty (AU), yet this proxy collapses precisely when models are overconfident, and
produce the same incorrect answer across samples. We address this failure mode
by introducing an epistemic term that measures semantic disagreement across a
small ensemble of scale-matched LLMs. Specifically, we operationalize epistemic
uncertainty (EU) as the gap between inter-model and intra-model response similar-
ity, and define total uncertainty (TU) as the sum of AU and EU. The estimator is
training-free and uses only black-box outputs: a few responses per model suffice.
Across a range of LLMs, and long-form generation tasks, we compare TU to AU
and measure uncertainty calibration by AUROC with respect to correctness and
selective abstention via uncertainty thresholding. We find that TU consistently
achieves higher AUROC in predicting correctness and improves selective absten-
tion compared to AU alone. EU further exposes confident errors that AU misses,
especially on tasks with near-unique correct answers, and improves the reliability
of LLM uncertainty estimates.

1 Introduction

Reliable uncertainty estimates are a prerequisite for deploying large language models (LLMs) in high-
stakes domains [6]. Many existing approaches for LLM uncertainty estimation are based on model’s
self-confidence [60, 57, 51], such as by measuring response consistency under sampling [27, 35, 45, 3]
or querying for a verbalized uncertainty score [34]. These metrics capture how internally confident
a model is in its prediction — a notion of predictive aleatoric uncertainty (AU). But this leaves an
important question unanswered: how confident should we be in the model? A model might be
confident but wrong, such as responding with the same incorrect answer with high probability (see
Figure 1). In these cases, methods that rely on self-consistency can fail [26]. To address this, we
focus on estimating epistemic uncertainty (EU) — uncertainty in our choice of model — which better
reflects whether a model’s confidence is trustworthy for a given input.

Estimating EU requires evaluating a distribution of plausible models, which is prohibitively costly
for LLMs, as training even one additional model adds significant overhead [25, 9]. Recent shortcuts
approximate EU in logit space [39], inject Bayesian noise during decoding [37, 15], or rely on
verifier—model disagreement [61], but each imposes strong task or architecture-specific assumptions.
We instead capitalize on the ecosystem of open-weight LLMs: sampling responses from a small,
scale-matched ensemble lets us estimate EU directly from cross-model semantic disagreement,
without additional training. While prior work has shown that LLM ensembles can improve accuracy
[38, 11, 7, 50, 21], their use for uncertainty quantification has not been systematically explored.

By enabling scalable estimation of EU from model outputs alone, we can combine it with AU to obtain
a more robust measure of uncertainty: Total Uncertainty (TU). These two forms of uncertainty are

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



39
40
41
42
43
44
45

46
47
48
49
50
51

52

53
54
55
56
57
58

59

60
61
62
63

64
65
66
67
68
69
70
71

72

73
74
75
76
77

Who was awarded
the Oceanography
Society's Jerlov
Award in 2018?

Target:
Sample n Annick Bricaud

Responses:

Avg Accuracy

[ 0.8
GPT-40- 0.589 0.641 _
06 2
Dr. Raymond C. Smith Dr. Kenneth J. Voss EO
Dr. Raymond Smith x Dr. Kenneth J. Voss x Claude 3.7 Sonnet - 0.528 0.581 0.572
Dr. Raymond C. Smith Dr. Kenneth Voss I’O'4
¢ < ¢ 00 05 10
Self-consistency: highR/—J éeo §_O &o Accuracy
ko \ad hd
Inter-model . & & &
: = EU:high N
disagreement v <R

Figure 1: (a) Two models confidently produce distinct, incorrect answers to a factual question, which
results in low intra-model variability (AU) but hlgh semantic disagreement across models (EU). (b)
Total uncertainty (TU = AU + EU) effectively improves uncertainty calibration with correcness in
terms of AUROC on SimpleQA.

complementary; AU reflects variability in a model’s own predictions, while EU measures divergence
from other plausible models [49]. Together, they allow TU to account for both internal inconsistency
and external disagreement. We estimate TU by computing semantic similarity between a reference
model’s responses, and those from an ensemble of LLMs. Specifically, we (1) sample responses
from a set of given models, (2) compute pairwise semantic similarities to quantify both intra-model
(aleatoric) and inter-model (epistemic) disagreement, and (3) define TU as the combination of
aleatoric and epistemic components derived from these response distributions.

We evaluate EU, AU and TU on two standard axes: ranking-based calibration (via AUROC) and
selective prediction (via abstention under uncertainty thresholds), across a range of models and
generation tasks [27, 46]. We conduct experiments across five 7-9B parameter Instruction-tuned
models [62, 22, 17, 16], on ten long-form generation tasks spanning QA, summarization, transla-
tion, and math reasoning [24, 63, 42]. We also repeat these experiments for API models such as
GPT-40 [20] and Claude 3.7 Sonnet [1] on SimpleQA [59].

Our findings are as follows:

* TU consistently outperforms AU in both AUROC and selective abstention. For example, TU
improves uncertainty calibration from 0.59 to 0.70 in AUROC on SimpleQA for GPT-4o.

* EU reliably identifies confident but incorrect generation, i.e., cases where aleatoric uncertainty is
low but the model is wrong.

* Our notion of EU is most informative in tasks with a single correct answer, such as factual QA
(HotpotQA) and translation (WMT16).

2 Related Works

Aleatoric Uncertainty in LLMs Existing approaches predominantly focus on AU, which captures
response inconsistency or input ambiguity. Recent surveys provide extensive reviews of these methods
[60, 51, 57]. Typical strategies involve sampling multiple responses per prompt and analyzing their
semantic consistency, often through clustering or entropy-based metrics [35].

Bayesian-inspired EU Estimation. A line of research employs Bayesian-inspired methods, such
as adding noise to embeddings during generation to approximate uncertainty in model weights [37],
sampling from a model with different temperatures [15], or leverage entropy from decoding from
different hidden states as proxy for uncertainty, which provides a computationally efficient alternative
to exhaustive sampling [14]. Training ensembles explicitly, such as LoRA-based methods [58],
demonstrate improved uncertainty calibration but incur significant computational costs. Another
work [39] calculates AU and EU on token level by considering the LLM logits as parameters of a
Dirichlet distribution and by applying other UQ methods subsequently. Such token-level scores can
complement sequence-level scores as studied by us.

Prompt-Based and Verifier-Based EU Estimation. Prior works in iterative prompting [2, 23]
estimate epistemic uncertainty by iteratively querying the same model, adding previous responses to
the later queries’ prompts, and measuring probabilistic inconsistencies as indicators of hallucination.
However, these methods have limitations: gains over AU are mainly observed on multi-label data with
limited benefits shown in standard single-label QA [2]. Others only experiment on synthetic data [23].
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Another work utilizes one verifier LLM and shows that inter-model disagreement as a proxy for EU
complements AU in cases where we reach the performance bounds of self-consistency [61]. While
they also experiment with weaker verifiers, our study offers deeper insight into the interplay between
different models of different capability. Moreover, in their practical proposal, they suggest to consider
cross-consistency only if AU is of intermediate range, while our evaluation and also [52] suggest
that especially low AU is prone to hallucination and well complemented by EU (see Sec. 5.1). Prior
works are mostly limited to special kinds of question-answering data, do not account for the impact
of the vast LLM model space on EU, and do not fully explore interactions between AU and EU, gaps
our work addresses explicitly.

LLM Ensembles. Our work builds upon classical uncertainty estimation, such as deep and dropout
ensembles [31, 13] and is closely related to LLM ensemble applications [38]. In particular, various
recent works focus on LLM collaborations [11], verifier LLMs [32], and sampling from multiple
LLMs [7]. We study LLM ensembles from the viewpoint of uncertainty estimation.

3 Quantifying Predictive Uncertainty Using Response Similarity

Let w be the particular parameterization of an LLM, and let = be a prompt. Our goal is to quantify the
predictive uncertainty of w given x as input. As is standard, we categorize predictive uncertainty into
two sub-components: AU and EU [19]. The aleatoric component captures the inherent unpredictability
of the response to x under the model w, while the epistemic component captures our uncertainty in
w being the correct parametrization to use when responding to input . We define total predictive
uncertainty additively as the sum of the aleatoric and epistemic uncertainties.

3.1 Aleatoric Uncertainty via Intra-Model Response Similarity

Many recent works have proposed techniques to measure the randomness in LLM responses [28,
35, 36]. These techniques typically focus on measures of semantic uncertainty, where uncertainty is
defined as a function of how often an LLM produces semantically distinct outputs given the same
input [28, 35]. In particular, Lin et al. [35] propose a measure equivalent to' the following:

Ualeatoric(x§ w) = Erf~p(-\z,w)Er2“’~p(~|x,w) [1 - S(TT, 743))}’ (1)
where s(-, -) is a similarity metric for responses such as the cosine similarity in an embedding space.

In essence, Equation 1 corresponds to the expected similarity between two responses independently
sampled from p(-|z,w), the response distribution of w conditioned on x. If responses typically have
the same semantic meaning as each other, meaning that the meaning of the response does not vary
when resampled, then Upjeatoric (; w) Will be close to 0, which means that there is little uncertainty
in how w will respond to z. If the model is likely to produce semantically distinct responses for the
same input, then Upearoric (¢; w) Will be high, which means w has high uncertainty for x.

Equation 1 captures the inherent uncertainty in the response to = given model w. However, w may
not be the optimal model to use for z, and Equation 1 fails to capture the inherent uncertainty that
comes from choosing w as our parameterization. There is thus a need to also capture the epistemic
uncertainty that comes from our model choice.

3.2 Epistemic Uncertainty as Inter-Model Response Similarity

Let w* represent a hypothetical “ideal” model, such that p(:|x;w*) = p(:|z); the distribution
of responses from w* equals the true response distribution. We can thus quantify the epistemic
uncertainty of w as a divergence between w and w*; e.g., Uepisiemic (Z,w) = D(w || w*) [49]. We
define D as follows:

D 10%) = =| Eggmptlea Bas* (o on) (8008165 )] = Erpmptio o) Erg mptio [305,79)] |.

cross-model similarity self-similarity (1 - AU)
@)
In effect, D(w || w*) measures the difference between 1) the similarity of responses
from w and w* (quNp(.‘myw)Eq;*Np(.‘l,’w*)[s(q‘f,qg’*)}) and 2) the self-similarity of w

"This is equivalent to Upeg in [35].
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(Eresmp(-20) B op(jow) [$(r5,75)] ) - In the case where w is optimal and equivalent to w*, then
D(w || w*) will be 0. When w produces responses that are semantically diverse from the ideal model’s

responses even after accounting for the diversity due to w’s aleatoric uncertainty, then D(w || w*)
will be high.

In practice, we do not have access to the optimal model w*. Instead, we can leverage a recent
information-theoretic technique [49] and marginalize out w*. Let Py, be a distribution over models
such that Egp,, [p(- | 2;@)] = p(- | ). We can thus replace w* in Equation 2 with an expectation
over Pq, and define Uepistemic (¢, w) as:

Uepislemic(xa w) = - ELDNPQ [qu‘”~p(-\m,w)quwp(<|m,u}) [S(qtfa qg))]:| 3)

+ Er‘pr(-m,w)Erng(-\w,w) [S(T(f7 T(Zd)jl .

When the average similarity in responses between w and other sampled models matches the self-
similarity of w’s responses, then the semantic distribution of w matches the target distribution and
the epistemic uncertainty is low. When there is a mismatch between the average similarity of w’s
responses to the responses from the sampled models @ compared to w’s self-similarity, then there
is a disagreement in how models respond and the epistemic uncertainty is high. In Appendix A.1,
we provide a detailed interpretation of D(w || w*) as a one-sided kernel discrepancy, establish its
connections to variational inference, and show that it is upper bounded by total variation distance
under mild conditions.

Desired Properties for 2. Because the divergence D(w || w*) is evaluated against samples drawn
from a surrogate distribution of models (2, its fidelity hinges on how well that ensemble of models
approximates the (inaccessible) optimal distribution p(- | 2;w*). Three criteria follow from the
definition in Eq. 3:

(i) Support richness. (2 covers genuinely distinct yet plausible interpretations of an input,
rather than a narrow subset; otherwise the cross—similarity term in D may be artificially
high, and D underestimates epistemic uncertainty when predictions of models in {2 are
different from w’s predictions.

(i) Non-collapsing diversity. If all members of {2 are nearly identical (e.g. noise-perturbed
versions of the same model), the ensemble average would be too close to w, hence the
cross-model similarity term will be close to self-similarity and D may be small, even when
the candidate predictor P,, is mis-specified.

(iii) Calibrated weighting. Let P denote the mixing measure over models. For Eq. (3) to
approach the ideal p(y | x), each model should be weighted in proportion to its posterior
credibility (e.g. uniform weights are appropriate only when validation risks are comparable).

Achieving Properties via Cross-Family Models. A practical way to satisfy these criteria is to
construct the surrogate ensemble (2 from models of similar architecture and scale, likely trained on
overlapping or similar pre-training datasets. Specifically, we populate €2 with 7-9B Transformer-based
models that share the same architecture class but are trained by different vendors. This setup ensures
(1) support richness, as models differ in data pipelines, initializations, and alignment protocols, which
results in diverse but plausible responses for the same input, that cover the ground-truth response set.
These independently trained models also exhibit (ii) non-collapsing diversity, as their differences
arise from different design choices, rather than noise-perturbed versions of a single model. Finally,
because these models achieve similar validation performance, we adopt uniform weights in Pq, which
satisfies the calibrated weighting (iii) requirement. Section 4 specifies the exact models used.

Total Predictive Uncertainty. We make the standard assumption that total predictive uncertainty
can be obtained by adding aleatoric and epistemic predictive uncertainties [19]. Thus, we define
Utotal (73 w) as:

Utotal (1'7 w) = Ualeatoric (x; W) + Uepistemic (1’; w) (4)

= Eon o Erg (o) Bag mp( ) [1 — 8(r1, 65)]-
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3.3 Empirical Estimates of Uncertainty Metrics

For a given input prompt =, we call the model whose uncertainty is being estimated the reference
model w, and denote the set of models used to compute epistemic uncertainty with respect to the
reference as the auxiliary model set ). Throughout the paper, we mainly focus on Cross-family
auxiliary models: We estimate epistemic uncertainty by computing response divergence across an
auxiliary set of models. To estimate uncertainty in practice, we proceed as follows:

1. Sample n responses from each model w; € €2, and denote the set of responses from w as
R = {r|,r},...,r" } and from w; as B; = {r{", v{? .. v} where |Q] = m.

2. Approximate Aleatoric, Total, and Epistemic Uncertainty using these sampled responses.

Empirical Uncertainty Metrics

EU =U. epistemic — Utotal — Ulateatoric

Note that we assign uniform weights to different models in the auxiliary set, as we choose to use
models of similar capabilities, and our estimate of AU is similar to the one from Lin et al. [35]. Also,
observe that our evaluation shows that we can keep the overall number of sampled responses at the
magnitude used by self-consistency based methods while improving over those. More concretely, we
choose n = -, when comparing to AU as a standalone metric, where n' is the number of samples
used for the latter.

4 Experimental Setup

Models. In the main experiments, we primarily focus on five instruction-tuned language models
with approximately 7-9B parameters: Gemma-2-9B-It [55], Granite-3.0-8B-Instruct [16],
Llama-3.1-8B-Instruct [17], Mistral-7B-Instruct-v0.3 [22], Qwen2.5-7B-Instruct
[62]. We compute the uncertainty measures from Section 3.3 and consider the models mentioned
above as the set of auxiliary models. In Appendix A.5, we also consider larger reference models.
Unless otherwise noted, we compute TU by sampling 2 responses from each of the 5 models and
similarly compute AU using 10 samples to keep the sampling budget the same across the two metrics.

Datasets. Our experiments cover a broad range of long-form generation tasks spanning question
answering (QA), math reasoning, translation, and summarization. For QA, we include AmbigQA [40]
(open-domain QA with both ambiguous and unambiguous questions), NQ-open [29] (closed-book
QA derived from real user queries), HotpotQA [63] (multi-hop QA requiring reasoning over multiple
supporting documents), CoQA [47] (conversational QA with multiple turns), QASPER [10] (fact-
based QA over long scientific papers), TriviaQA [24] (QA based on trivia-style questions), and
TruthfulQA [33] (QA to evaluate common misconceptions in models). For math reasoning, we use
GSM8K [8] with chain-of-thought prompting. For language generation, we evaluate on the German-
to-English translation dataset WIT16-de-en [5] and the summarization benchmark XSum [42]. We
additionally include SimpleQA [59], a factuality QA benchmark, with model responses generated by
GPT-40 [20] and Claude 3.7 Sonnet [1]. Finally, we adapt tasks from the BBH multiple-choice
benchmark [54] to long-form format and add those evaluations to Appendix A.7.

Evaluation. Correctness is defined per input-response pair using Meta-Llama-3-70B-Instruct
as judge (Appendix A.9). Note that, in the context of uncertainty estimation, LM-as-a-judge correct-
ness evaluation has recently been shown to be the most reliable among the existing methods [48].
Following prior work [35, 27, 4], we evaluate the quality of uncertainty by quantifying how well
uncertainty scores separate correct from incorrect generations, using Area Under the ROC Curve (AU-
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each) and compare the distribution of EU for correct and 5% AU) and find that incorrect generations have
incorrect generations. Incorrect responses show higher significantly higher EU than correct ones, which
EU in the low-AU regime, but this separation weakens shows that that EU effectively flags confidently
as AU increases. wrong predictions.

Figure 2: The distribution of EU conditioned on aleatoric uncertainty. We observe that EU is
especially discriminative in scenarios where AU is low.

ROC). Formally, AUROC corresponds to the probability that a randomly chosen incorrect response
receives a higher uncertainty score than a randomly chosen correct one.

We also evaluate effectiveness in terms of selective prediction using Risk—Coverage Curves [41],
which measures how the error rate changes as uncertain responses are rejected. We further report
standard summary metrics such as accuracy at 90% and 80% coverage (C@90 and C@80), and the
Area Under Risk-Coverage Curve (AURC), where lower is better.

Baselines.  As our primary aleatoric baseline, we use Lin et al. [35]’s implementation of Semantic
Entropy (SE) [27], which has been shown to perform well in recent benchmarks and surveys [12, 57].
In our evaluation, we denote this baseline as Aleatoric or AU. We also experiment with noise-
perturbed models (i.e., instead of models from different model families), similar to the approach of
Liu et al. [37], see details in Appendix A.5.

5 Results

5.1 Epistemic Uncertainty Flags Confident Failures of Aleatoric Uncertainty

Language models are often applied to heterogeneous tasks, where model confidence does not always
align with correctness [64]. To simulate such setting, we construct an aggregated dataset by combining
all datasets mentioned in Section 4, and analyze uncertainty trends on this pooled distribution. We
are particularly interested in identifying where AU is low but the model is wrong, and ask whether
EU can flag these instances.

In Figure 2a, we stratify examples by AU (low, mid, high) and compare EU across correct and
incorrect responses. In the low-AU regime, incorrect generations consistently exhibit higher EU than
correct ones, which shows that EU is discriminative when aleatoric scores are overconfident. This
separation diminishes in higher AU buckets, where both correct and incorrect responses become more
uncertain.

To more directly target this failure mode, we isolate the lowest 5% of AU scores and analyze EU by
correctness. (Figure 2b). EU remains significantly elevated for incorrect generations, confirming
that epistemic uncertainty flags confidently wrong outputs that aleatoric scores alone miss, which
supports our hypothesis of the complementary nature of scores in this particular AU region.

This result contrasts with prior work, which treats low-AU predictions as reliable and only incorporates
cross-model comparisons when AU exceeds a threshold [61, 7]. Our findings reveal that this
assumption overlooks a critical failure mode: confidently wrong predictions with low AU. On the
other hand, our observations validate findings about models being overconfident on HotpotQA [44]
in that incorporating EU yields large improvements on this dataset (see Figure 4 in Section 5.3).
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5.2 Epistemic Uncertainty, Agreement, and Diversity

We ask when similarity-based EU is most informative. To this end, we focus on the correctness of
responses of different models and consider two metrics: Jaccard Agreement (or Redundancy) (J),
which measures the overlap between predicted correct responses of the auxiliary models, which is
used to quantify how redundant or similar different predictions are; and Oracle Coverage Gain (also
Complementarity) (G), the additional coverage (i.e., improvement in accuracy) obtained by an oracle
that always chooses the correct model per example, over the best performing model. Exact definitions
can be found in Appendix A.2.
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Figure 3: Epistemic—uncertainty AUROC versus dataset—level redundancy (.JJ) and complementarity
(G). Higher AUROC indicates better discrimination between correct and incorrect answers by EU.

Epistemic uncertainty does not always coincide with inter-model disagreement. Figure 3
plots EU AUROC against the dataset-level statistics J and G. We observe a positive correlation
with redundancy (r = 4+0.72, p = 0.03) and a negative correlation with complementarity (r =
—0.72, p = 0.03), which is the opposite of the naive intuition that “more disagreement = higher
epistemic utility.”

The explanation lies in how EU is constructed: it grows with the divergence of generated answers,
which arises in two distinct cases: (i) true EU on intrinsically hard questions where models do
not know the answer, and (ii) the existence of many semantically different but correct responses
(response noise). In complementary datasets (large G), each model specializes on different niches
and consequently, EU is large even on questions that an individual model answers correctly, because
models in the auxiliary set return alternative (wrong) responses. In such cases, the misalignment
with correctness drives AUROC down. Conversely, in redundant datasets (high J, low ), models
converge to similar responses when correct (EU low) and, what we expect to be the usual case, still
diverge when collectively wrong (EU high), which gives a well-separated score and high AUROC.
These observations characterize the cases in which our current EU estimator is effective: tasks with
a single (or near-unique) correct answer, where models phrase that answer similarly yet generate
diverse alternatives on the harder, unanswered inputs.

For example, WMT16-de-en and CoQA occupy the high-J, low-G corner of Figure 3; all models
score above > 90% accuracy, so predictions are largely redundant and EU achieves its strongest
discrimination. At the opposite extreme, XSum combines low accuracy with the largest G: models
succeed on different inputs and can express many valid summaries, which inflates EU without
improving ranking and thus lowering AUROC. Datasets such as HotpotQA and TriviaQA sit mid-
range on both axes and have enough redundancy to suppress noise, but have sufficient diversity to
expose disagreement and consequently produce the large TU gains in Figure 4.

5.3 Total Uncertainty Improves Correctness Calibration

Figure 4 reports the AUROC between negative uncertainty and correctness across datasets, and
averaged over five 7-9B instruction-tuned models mentioned in Section 4. TU consistently improves
over AU on all benchmarks on average. The largest gains occur on HotpotQA (+0.15), CoQA
(+0.14), and WMT16-de-en (+0.13), where models either disagree on complex multi-hop reasoning
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Figure 4: AUROC of aleatoric (red) and total (green) uncertainty across datasets. Bars and the text on
top show the mean AUROC across five models; dots correspond to individual models. TU consistently
improves discrimination between correct and incorrect outputs, with more than 0.1 improvement in
AUROC in HotpotQA, CoQA, WMT16-de-en.

(HotpotQA) or achieve high overall accuracy (CoQA, WMT16-de-en), which allows EU to capture
remaining errors.

Moderate improvements are observed on TriviaQA, and NQ-open, which exhibit a balance of
response redundancy and complementarity. In contrast, gains are more limited on TruthfulQA,
GSM8K (with chain-of-thought), and QASPER, where the presence of multiple valid or stylistically
diverse answers weakens the alignment between TU and correctness. These results align with the
patterns described in Section 5.2: TU and EU are most effective when correct answers are uniquely
phrased and shared across models, while incorrect predictions remain diverse.

We also find that TU estimates consistently improve AUROC as compared to AU in GPT-40 (0.70
vs. 0.59), and Claude 3.7 Sonnet (0.58 vs. 0.53) on SimpleQA as shown in Figure 1. Figure 9 in
Appendix A.4 shows the ROC curves on the combination of all datasets, where the relative ranking
of data points across the whole dataset determines performance, and Table 2 reports AUROC per
model-dataset pair. We show that the improvement over AU is maintained in individual datasets, and
in the combination of all datasets.

Comparison to Other Baselines. Note that the epistemic score proposed by [2], which is repeatedly
querying one model, similarly improves upon AU in such a combined dataset setting, but does not
yield clear improvements over individual datasets. We show results on noise-perturbed auxiliary
model sets, similar to the approach of [37], in Appendix A.5.

Aggregated Risk—Coverage (all datasets) Risk-Coverage (TriviaQA)
0.4 — ;
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(a) Aggregated across all tasks. Total uncertainty yields (b) TriviaQA and HotpotQA. On both datasets, TU
lower error at all coverage levels. consistently outperforms AU.

Figure 5: Risk—coverage analysis for total (TU) versus aleatoric uncertainty (AU). TU consistently
improves selective prediction across datasets and in aggregate.
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Ablations. We further ablate the size of the reference model in Appendix A.5, and show that even
in scenarios where the reference model is larger (and has higher accuracy) than models in the auxiliary
set, TU still achieves higher AUROC than AU. Furthermore, we show that AUROC improves with a
larger number of models in the auxiliary set, and sampled responses in Appendix A.6.

5.4 Total Uncertainty Improves Selective Abstention

To evaluate whether uncertainty effectively distinguishes reliable responses from potential errors, we
consider selective prediction, where models are allowed to abstain from answering when uncertain.

Risk-Coverage Tradeoff. Figure 5a shows the Risk-coverage curve for aleatoric and total uncer-
tainty, aggregated across all models mentioned in Section 4. Across all coverage levels and datasets,
total uncertainty achieves the lowest risk, with a single exception. This suggests that total uncertainty
more effectively identifies unreliable predictions in comparison to AU.

Selective Accuracy and AURC. To quantify this effect more precisely, Table 1 reports selective
accuracy at fixed coverage levels (C@90, C@80) and AURC (area under the risk—coverage curve)
across benchmarks and averaged over different models. In nearly all cases, total uncertainty achieves
higher selective accuracy and in all cases lower AURC compared to aleatoric and EU alone. For
example, on HotpotQA and XSum, total uncertainty improves C@90 by over 1.5 points and reduces
area under the risk—coverage curve (AURC |) by over 20%. These results confirm that TU yields
better abstention behavior than AU or EU alone.

Table 1: Selective question answering performance of different uncertainty types.

C@90 (%) C@80 (%) AURC |
Dataset Aleatoric Epistemic Total | Aleatoric Epistemic Total | Aleatoric Epistemic Total
AmbigQA 56.0 524 56.2 59.5 532 60.2 | 0.325 0.456  0.278
CoQA 96.0 96.9 96.0 96.5 97.5 97.8 | 0.026 0.016  0.011
GSM8K 54.0 54.7 53.3 54.8 54.0 542 | 0.391 0441  0.335
HotpotQA 64.9 66.2 66.9 66.2 67.2 69.2 | 0.304 0.257  0.206
NQ-open 53.8 51.3 53.1 57.2 52.8 57.5 | 0.388 0.484  0.323
QASPER 38.0 36.9 39.1 39.5 375 40.8 | 0.533 0.602  0.503
TriviaQA 64.0 60.4 64.0 69.0 61.8 70.2 | 0.254 0343  0.208
TruthfulQA 74.4 73.8 74.2 75.0 75.0 73.0 | 0.220 0251  0.195
WMT16-de-en | 96.2 96.4 96.0 97.2 96.2 98.5 | 0.028 0.027  0.010
XSum 24.4 24.9 25.6 26.5 22.0 27.3 | 0.681 0.759  0.609

6 Conclusions

We propose that aleatoric and epistemic uncertainty capture complementary failure modes of language
models: self-consistency methods reveal data ambiguity, while semantic disagreement across models
uncovers uncertainty arising from model limitations. We operationalize this view by estimating TU as
the combination of intra-model entropy and inter-model semantic divergence, using only black-box
access to model outputs. We show that this combination effectively outperforms self-consistency-
based methods across a wide range of models and datasets in terms of different metrics. While
this approach requires access to multiple comparable models, it reveals the limits of single-model
uncertainty scores and offers a practical path toward more comprehensive uncertainty estimation.

Limitations. Our method relies on response-level semantic similarity, which may underperform in
tasks with many semantically distinct but correct answers, e.g., open-ended generation or QA tasks
where there are multiple distinct correct answers. In such cases, disagreement does not necessarily
reflect uncertainty. Additionally, we focus on a specific form of aleatoric uncertainty based on
semantic entropy; how to best combine epistemic uncertainty with other AU and EU estimators
(e.g., token-level or logit-based methods) is left for future work. Moreover, the performance of TU
depends on the model ensemble: If all surrogate models share similar pre-training data or architectural
biases, cross-model disagreement can underestimate true epistemic uncertainty. We examine this
homogeneous-failure scenario in detail in Section 5.2. Finally, our evaluation hinges on a correctness
judge; improvements in judge reliability will propagate to more precise AUROC and selective-risk
estimates.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Methods, and Results section include results for each claim.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the limitations paragraph in conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: In Section 3.2 and Appendix A.1.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Details provided in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use public datasets, and will submit our code with the supplementary
material.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

including code, unless this is central to the contribution (e.g., for a new open-source

benchmark).

The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results we include in the main paper are averaged across datasets or models,
but we include error bars in Appendix A.4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Appendix A.3
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed briefly in conclusion.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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13.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not propose new models or datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Cited throughout the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|

Guidelines:
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: Used only for editing and plotting.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Theoretical Interpretations of Epistemic Uncertainty

Kernel and variational interpretation of D(w || w*). Assume the similarity function s(-,-) is a
symmetric positive definite kernel k. Denote the predictive distributions by Py, := p(- | 2;w) and
P,,«. Their kernel mean embeddings in the reproducing kernel Hilbert space (RKHS) H;; are

Ko = ]E’I“NPQ []f(?",')L Hw= = EQNPw* [k(q’)]

Using the reproducing property (k(r,-), k(r’, )3, = k(r,r’), the divergence in Eq. (2) can be
rewritten exactly as:

D("J H W*) = </1'w7,uw>7-£k - <Mwu ,Ufw*>7-[k~ (@)
Equation (5) is the first two terms of the squared maximum mean discrepancy (MMD):

MMD?*(Pa, Po+) = [l = o 31, = e l1Fs, — (s b D20+l 13, — (try b )0, -

D(w || w*)

Thus D(w || w*) is a one-sided kernel discrepancy: it measures how much the model’s self-agreement
exceeds its agreement with the ideal predictor, and it vanishes if and only if p,, = .~ (and, for
characteristic kernels, iff P = P,,+).

Variational-gap Interpretation. Write classical KL as KL(Pq, ||P,+) = CE — Ent, where Ent =
E,py[—logp(r | z;w)] and CE = E,.. p,[— log p(r | z)]. Replacing — log with —k yields

D(w || W*) = ]ET',""/NPSZ [k(T7 TI)} - ETNPSLZINPW* [k(r» Q)L

“negative kernel-entropy” “kernel cross-entropy”

so D is the semantic variational gap between the model and the ideal distribution under the geometry
induced by k. Minimizing D therefore projects P toward F,« in RKHS while simultaneously
penalizing model variability in Pgq.

Lemma 1 (Bound on Kernel-Based Divergence). Let P, = p(- | x,w) and P« = p(- | z,w*) be the
predictive distributions of two language models. Let k(-,-) be a symmetric, bounded, positive-definite
kernel such that 0 < k(r,r") < 1 for all r,r’. Define the kernel-based divergence

D(wllw") :=Eppp, [k(r,r)] = Brnp, qop,- [k(r, q)].
Then D is bounded above in absolute value by the total variation distance between P,, and P, ,«:
|D(w || w*)| < TVD(R,, P,-),
where
TVD(P,, Por) = / Do () — P (2)]dz.

Furthermore, if the RKHS norm of the embeddings are equal, i.e., ||, || = ||ptw= ], then D(w ||w*) =

0 implies p, = po+. If k is characteristic, this further implies P, = P,«.

Proof. Define the kernel-smoothed function f(z) := E,p, [k(r, z)]. Then we can write
D ||w*) =E.up,[f(2)] — Eanp,. [f(2)]-

By the definition of total variation distance and the fact that 0 < f(z) < 1 for all z,

[D(w[lw")] < oy [Ep, [f] = Ep,.[f]| = TVD(Py, Por).

For the second part, note that D(w || w*) = ||ptew]|® = (tw, te=)- If |ptw]| = ||ttw= || and D = 0, then

by Cauchy—Schwarz equality, we must have p,, = p,~. If the kernel is characteristic, then p1,, = fi,
implies P,, = P,,~.
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This result implies that D(w || w*) provides a lower bound on distributional mismatch, and thus serves
as a tractable proxy for epistemic uncertainty: it is provably small only when the model’s predictive
distribution aligns with that of the ensemble under the kernel geometry.

Under desired conditions mentioned in 3.2, and with a bounded characteristic kernel, D(w || w*) =0
if, and only if, the predictive distribution P, is close to the model set consensus as shown above.
Consequently D (i) flags cases where the model’s intra-model similarity is high (AU is low) while its
agreement with the ensemble is low, (ii) rewards calibrated agreement by attaining its minimum only
within the support of the ensemble, and (iii) remains sample-efficient, as it only requires O(n?) kernel
evaluations on n generated responses per model, which is cheaper than KL divergence evaluations or
other approximations of EU.

A.2 Agreement and Coverage Metrics.

)

For every dataset we form the binary correctness matrix C;; which is the correctness of response
sampled from model j to input ¢, and compute two coarse descriptors of cross-model behaviour:

* Jaccard redundancy J — The mean pairwise Jaccard index of the sets of correctly answered
examples:

2 |Sm ﬂSk| .
J=-— - Wom 1ok g = i O = 1
M(M —1) D S, U5, Sm—liC '
1<m<k<M

High J means models succeed on the same inputs.

* Oracle-gain diversity GG — the additional coverage obtained by an oracle that chooses the
correct model per example:

1 N M 1 N
G = Aorace — max Ay, = > ¥ |D Ciy>0| —max (N ;c,,)

i=1 j=1

High G indicates that different models get different examples right.

A.3 Additional Experimental Setup

All experiments were conducted on two NVIDIA A100 80GB GPUs. We use the
1m-evaluation-harness [53] codebase to generate responses from each model, and evaluate
correctness using a local vVLLM [30] server hosting Meta-Llama-3-70B-Instruct [17] as the
judge model. Following prior work [35], we compute correctness using only the first sampled
response from each model. All evaluation is conducted in inference-only mode; no training or
fine-tuning is performed.

For each dataset, we sample 10 responses per model for the first 100 prompts. AU is computed using
all 10 responses. To match the sample budget with TU, the experiments in Section 5.3 and Section 5.4
report results using only 2 responses per model for computing both TU and epistemic uncertainty.
We use a temperature of 0.7 and top-p of 0.9 across all generations. For SimpleQA, model outputs
are obtained from the OpenAl and Anthropic APIs.

Semantic similarity between responses is measured using cosine distance over sentence-T5-x1 [18,
43] embeddings. For datasets not originally supported by 1m-eval-harness, we follow its prompt
formatting conventions and include code for these additions in the supplementary material.

A.4 Additional Results on Total Uncertainty

Figure 6 reports the AUROC of aleatoric and total uncertainty across all model-dataset pairs, and Fig-
ure 7 shows the corresponding improvements from using TU over AU. Total uncertainty consistently
improves correctness discrimination in nearly all cases, with the largest per-instance gains observed
on HotpotQA, a benchmark known for complex multi-hop reasoning.

AUROC Results Per Model and Dataset.  Figure 6 and Table 2 show AUROC of TU and AU in

all model-dataset combinations, and Figure 7 shows the improvement of total uncertainty over AU
in AUROC. TU improves AUROC in nearly all model-dataset combinations, with the largest gains
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observed in HotpotQA. Model performance substantially affects the magnitude of improvement. On
datasets such as XSum, where overall model accuracy is low, TU yields large improvements for weaker
models but occasionally underperforms for the strongest ones (e.g., L1ama and Qwen), potentially
due to disagreement with less reliable auxiliary models. A similar pattern holds on GSM8K, where
gains are concentrated among lower-performing models, while others benefit less.

In contrast, WIT16-de-en and CoQA show limited gains, likely due to the high baseline accuracy
(> 90%) of all reference models (see Fig. 8), where AU is already well-calibrated. Notably, TU
corrects miscalibrated AU for specific models, such as Mistral on CoQA, where the base AU is
anomalously low. On TruthfulQA, which features open-ended questions with diverse valid answers,
semantic disagreement does not reliably indicate epistemic uncertainty, which results in weaker
improvements.
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Figure 6: We show AUROC for each model separately to compare aleatoric and total uncertainty. TU
consistently yields higher AUROC across models.
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Figure 7: AUROC improvement obtained by adding EU to AU, measured as (Total — Aleatoric).
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Figure 8: Accuracy per model-dataset pair.
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Table 2: Uncertainty AUROC scores across models and benchmarks when different 7B/8B/9B
parameter models are used as auxiliary models. Total Uncertainty is better calibrated with correctness
than Aleatoric Uncertainty.

Benchmark | Model | Accuracy | Aleatoric AUROC Epistemic AUROC Total AUROC
Llama-3.1-8B-Instruct 0.62 0.764 0.52 0.753
Mistral-7B-Instruct-v0.3 0.58 0.716 0.506 0.768
AmbigQA Qwen2.5-7B-Instruct 0.42 0.645 0.639 0.75
gemma-2-9b-it 0.52 0.81 0.447 0.833
granite-3.0-8b-instruct 0.48 0.644 0.488 0.661
Llama-3.1-8B-Instruct 0.93 0.788 0.797 0.845
Mistral-7B-Instruct-v0.3 0.95 0.458 0.80 0.819
CoQA Qwen2.5-7B-Instruct 0.97 0.466 0.567 0.595
gemma-2-9b-it 0.95 0.876 0.80 0.918
granite-3.0-8b-instruct 0.97 0.708 0.907 0.821
Llama-3.1-8B-Instruct 0.69 0.727 0.346 0.626
Mistral-7B-Instruct-v0.3 0.35 0.577 0.606 0.61
GSMSK Qwen2.5-7B-Instruct 0.61 0.524 0.623 0.656
gemma-2-9b-it 0.39 0.531 0.601 0.634
granite-3.0-8b-instruct 0.60 0.726 0.472 0.727
Llama-3.1-8B-Instruct 0.65 0.546 0.662 0.7
Mistral-7B-Instruct-v0.3 0.65 0.548 0.682 0.736
HotpotQA Qwen2.5-7B-Instruct 0.71 0.483 0.681 0.679
gemma-2-9b-it 0.58 0.719 0.608 0.814
granite-3.0-8b-instruct 0.58 0.615 0.634 0.736
Llama-3.1-8B-Instruct 0.49 0.808 0.389 0.713
Mistral-7B-Instruct-v0.3 0.60 0.69 0.501 0.698
NQ-open Qwen2.5-7B-Instruct 0.37 0.462 0.696 0.703
gemma-2-9b-it 0.47 0.743 0.538 0.768
granite-3.0-8b-instruct 0.56 0.678 0.541 0.754
Llama-3.1-8B-Instruct 0.30 0.694 0.487 0.714
Mistral-7B-Instruct-v0.3 0.32 0.623 0.657 0.722
QASPER Qwen2.5-7B-Instruct 0.45 0.587 0.492 0.583
gemma-2-9b-it 0.37 0.588 0.509 0.596
granite-3.0-8b-instruct 0.41 0.56 0.512 0.596
Llama-3.1-8B-Instruct 0.65 0.744 0.562 0.776
Mistral-7B-Instruct-v0.3 0.54 0.796 0.552 0.815
TriviaQA Qwen2.5-7B-Instruct 0.5 0.811 0.668 0.9
gemma-2-9b-it 0.59 0.787 0.645 0.812
granite-3.0-8b-instruct 0.64 0.733 0.575 0.784
Llama-3.1-8B-Instruct 0.65 0.47 0.423 0.456
Mistral-7B-Instruct-v0.3 0.80 0.528 0.601 0.579
TruthfulQA Qwen2.5-7B-Instruct 0.75 0.494 0.584 0.578
gemma-2-9b-it 0.76 0.641 0.541 0.625
granite-3.0-8b-instruct 0.75 0.532 0.556 0.548
Llama-3.1-8B-Instruct 0.95 0.691 0.695 0.859
Mistral-7B-Instruct-v0.3 0.91 0.808 0.835 0.897
WMT16-de-en Qwen2.5-7B-Instruct 0.94 0.809 0.832 0.883
gemma-2-9b-it 0.97 0.649 0.663 0.811
granite-3.0-8b-instruct 0.95 0.755 0.493 0.884
Llama-3.1-8B-Instruct 0.19 0.708 0.37 0.693
Mistral-7B-Instruct-v0.3 0.20 0.482 0.651 0.725
XSum Qwen2.5-7B-Instruct 0.48 0.819 0.31 0.811
gemma-2-9b-it 0.16 0.598 0.565 0.631
granite-3.0-8b-instruct 0.12 0.529 0.582 0.717

916 ROC Curves. Figure 9 shows the ROC curve computed over the pooled set of all model-dataset
917 pairs. TU achieves a higher AUROC (0.746 vs. 0.707), which shows improved seperation between
918 correct and incorrect generations compared to AU alone. Figure 10 presents ROC curves for individual
919 datasets. TU yields consistently better or comparable performance across all tasks, with the largest
920 gains observed on HotpotQA, WMT16-de-en, and CoQA. These improvements align with our earlier
921 findings that TU is most effective on tasks where models are accurate but occasionally confidently
922 wrong.
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Figure 9: ROC curves between aleatoric and total uncertainty aggregated across all models and
datasets. Total uncertainty achieves higher AUROC, indicating better discrimination between correct
and incorrect generations.
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Figure 10: ROC curves comparing aleatoric and total uncertainty across individual datasets. TU
achieves higher AUROC across most tasks, particularly on HotpotQA, WMT16-de-en, and CoQA,
where models exhibit confident failures.

Additional Baseline. The results in Table 3 illustrate the variability in token-level AUROC scores
across different uncertainty formulations from Ma et al. [39]. While mean token entropy performs
well on tasks like XSum, where stylistic variation is high, the probability disparity score performs
poorly on structured, factual tasks, which suggests that it may conflate EU with token frequency
effects. This further motivates the need for sequence-level uncertainty measures like ours, which
better align with correctness across diverse generation tasks.

Dataset Mean Token Entropy (AUROC) Probability Disparity (AUROC)
CoQA 0.671 0.723
NQ-open 0.653 0.575
TriviaQA 0.736 0.728
WMT-de-en 0.877 0.518
XSum 0.934 0.524

Table 3: Comparison of token-level uncertainty scores from Ma et al. [39]. Mean token entropy and
probability disparity are derived from token logits without sampling. While both achieve strong
performance on some datasets (e.g., XSum), probability disparity underperforms on factual tasks such
as CoQA.
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A.5 The Effect of the Auxiliary Model Set on Total Uncertainty

Ablating the Reference Model Size. We test how the quality of total uncertainty estimates depends
on the capability of the reference model, whose uncertainty we aim to estimate. We fix the auxiliary
model set to a pool of four 7-9B models mentioned in 4 that are not from the same family as the
reference model, and vary the reference model’s architecture and size. Figure 11 reports results
on TriviaQA, using two model families (Gemma3 [56] and Qwen2.5 [62]) of various sizes. As the
size of the reference model increases, both aleatoric and total uncertainty AUROC scores tend to
decrease, but total uncertainty has consistently higher AUROC across different model sizes. This
holds even when the reference model is substantially stronger than any model in the auxiliary set
(e.g., Qwen2.5-32B vs. 7-9B peers).

Uncertainty Calibration vs. Qwen2.5 Reference Model Size Uncertainty Calibration vs. Gemma3 Reference Model Size
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Figure 11: We vary the size of the reference model while holding the auxiliary models fixed. TU
achieves higher AUROC in comparison to AU acorss different model sizes on TriviaQA.

Ablating Auxiliary Model Size.  We pick a reference model (mistral), and let the auxiliary set be a
single model ranging from 0.5B to 32B Qwen2.3 Model and x to yB parameter Gemma 3 model. We
find that larger model sizes contribute to
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Figure 12: We keep the reference model fixed as mistral, and vary the size of the auxiliary model.
TU achieves higher AUROC in comparison to AU with larger and more capable the auxiliary model
on TriviaQA.

Noise-perturbed Auxiliary Model Set. We consider noise-perturbed variants of the reference
model itself as auxiliary model set, similar to Liu et al. [37]. Specifically, we apply a perturbation
strategy in which we preserve the top-k singular vectors of each linear weight matrix and inject
Gaussian noise into the remaining lower-rank subspace. This preserves dominant components of
the model while allowing for controlled noise in its response distribution. Figure 13 in the appendix
shows that the we sometimes obtain improvement in TU-AU, but it is overall lower than for the more
diverse auxiliary model set from Figure 4.

A.6 AUROC Ablations

Number of Auxiliary Models. = We study how the size of the auxiliary model set affects the
quality of total uncertainty estimates. For each reference model, we compute total uncertainty using
n € {2,3,4, 5} models, where one model is fixed (the reference model) and the remaining n — 1 are
sampled from other model families. All methods use a fixed number of samples per model.

25



955
956
957
958
959

960
961
962
963
964

965
966
967
968

1.0

. o . I Aleatoric
o o [ Total
0 0.8 0 0§2 094 075
Q 0..4 ° ofs 006 e e 063 063
& 062 0ss 080 061 080 o o
2 0.6 053 084
\'sd > N o
- 49 O o\ K < QQ) \o’ b‘?f 030
& C £ & & o“\ & R
v R 4@\&

Figure 13: Uncertainty calibration for experiments where auxiliary model set for each model is
consisted of multiple noise-perturbed models

Figure 14 shows that total uncertainty improves monotonically as the number of auxiliary models
increases. This holds across almost all tasks, with the largest gains typically occurring between n = 2
and n = 3. In addition, we observe that variance across runs decreases as more models are added,
which suggests a more calibrated uncertainty score can be achieved from increasing the number
of model in the auxiliary set. However, in all datasets, our multi-sample total uncertainty measure
outperforms aleatoric uncertainty in AUROC, even when only one auxiliary model is used.
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Figure 14: We plot AUROC as a function of the number of auxiliary models used to compute total
uncertainty for Mistral-7B-Instruct-v0.3. Total uncertainty improves with more models, and
variance decreases.

Number of Samples for Uncertainty Estimation. = We next investigate how the number of
response samples per model affects the performance of uncertainty estimates. For each model in
the auxiliary set, we vary the number of generations used in total uncertainty computation from 5 to
50, and compare against two baselines for aleatoric uncertainty: one computed using 5 samples and
another using 10 samples, matching the regimes used in our main experiments.

As shown in Figure 15, AUROC for total uncertainty usually slightly increases with more samples,
with diminishing returns beyond 30 samples in most tasks. Notably, TU consistently outperforms
AU baselines across all datasets. These findings also reinforce the practicality of TU even under
constrained budgets, as improvements are apparent with as few as 10 samples (n = 5 on the x-axis).
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Figure 15: AUROC of total uncertainty as a function of the number of samples per model. Even with
a small number of samples, TU outperforms aleatoric baselines (5-sample and 10-sample variants).
Gains saturate around 30—40 samples.
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A.7 Additional Results on Multiple-choice QA tasks

To evaluate whether our findings extend beyond open-ended generation, we adapt a subset of tasks
from the Big-Bench Hard (BBH) [54] benchmark into a long-form QA format with chain-of-thought
answering. Specifically, we consider Boolean Expressions, Disambiguation QA, and Word
Sorting, and prompt models to justify their answers rather than selecting from multiple choices
directly. We then evaluate uncertainty scores over the full responses using the same semantic similarity
pipeline as in our main experiments.

Table 4 reports AUROC scores for both AU and TU across models on these tasks. We observe that
TU improves over AU in most cases, with the largest gains appearing when base model performance
is low (e.g., Qwen2.5-7B on Disambiguation QA and Boolean Expressions). These results
demonstrate that TU remains effective in identifying incorrect generations even when the task is
originally framed as multiple-choice, provided responses are elicited in free-form.

Table 4: Uncertainty AUROC scores across models and benchmarks when different 7B/8B/9B
parameter models are used as auxiliary models. Total Uncertainty is better calibrated with correctness
than Aleatoric Uncertainty.

Benchmark \ Model | Accuracy | Aleatoric AUROC Total AUROC

Llama-3.1-8B-Instruct 0.88 0.662 0.658

Mistral-7B-Instruct-v0.3 0.84 0.746 0.735

BBH Fewshot Boolean Expressions Qwen2.5-7B-Instruct 0.53 0.744 0.909

gemma-2-9b-it 0.86 0.593 0.725

granite-3.0-8b-instruct 0.9 0.659 0.658

Llama-3.1-8B-Instruct 0.59 0.544 0.594

Mistral-7B-Instruct-v0.3 0.64 0.525 0.656
BBH Fewshot Disambiguation QA Qwen2.5-7B-Instruct 0.44 0.561 0.81
gemma-2-9b-it 0.69 0.61 0.65

granite-3.0-8b-instruct 0.62 0.486 0.562

Llama-3.1-8B-Instruct 0.69 0.476 0.512

Mistral-7B-Instruct-v0.3 0.77 0.529 0.429

BBH Fewshot Word Sorting Qwen2.5-7B-Instruct 0.44 0.587 0.645

gemma-2-9b-it 0.96 0.475 0.576

granite-3.0-8b-instruct 0.58 0.578 0.485

A.8 Epistemic Uncertainty Analysis

Figure 16 disaggregates the trend shown in Figure 2a by model. For all five reference models,
incorrect generations in the low-AU regime show consistently higher EU than correct ones, which
reaffirms that EU captures confident failures missed by self-consistency. This separation weakens in
mid- and high-AU buckets, where both correct and incorrect outputs tend to be more uncertain. The
consistency of this pattern across different models highlights the effectiveness of EU in identifying
unreliable predictions when AU alone is low.
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Figure 16: Distribution of EU across different levels of AU and correctness. Across all models, we
find that incorrect responses in the low-aleatoric regime are assigned higher EU than correct ones on
average.

A.9 Computing Correctness Using an LLM Judge
We compute correctness scores using Meta-Llama-3-70B-Instruct deployed via a local vLLM
server. Each model prediction is evaluated independently against the gold answers using a structured

prompt that includes five few-shot examples, held fixed across all evaluations. The prompt instructs
the judge to assign a correctness score from the discrete set {0.0, 0.1, ..., 1.0} based on
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the alignment between the predicted and gold answers, while explicitly ignoring the model’s own
knowledge.

The judge receives as input: (1) the user-defined task or question, (2) a list of gold answers, and
(3) the model-generated answer. It is instructed to output a JSON object containing a numerical
score and a justification. The request is submitted using deterministic decoding (temperature= 0,
max_tokens = 20), and we employ up to three retries with truncated context in case of failures due
to prompt length.

Correctness is evaluated using the first response generated by each model. The gold answers are
passed verbatim, and no normalization is applied to either predictions or references. By default,
a prediction is considered correct if its score exceeds 0.5. For tasks where differences should be
penalized (e.g., summarization or translation), we increase the threshold to 0.9 (specifically, for
XSum and WMT16-de-en). These thresholds are applied during AUROC and selective prediction
evaluations.

Prompt Format. The full judge prompt used in all evaluations is shown below (example QA pairs
are fixed across all examples):

I want you to act as a judge for how well a model did answering a user-defined
task.

You will be provided with a user-defined task that was given to the model, its
golden answer(s), and the model’s answer. The context of the task may not be
given here. Your task is to judge how correct the model’s answer is based on
the golden answer(s), without seeing the context of the task, and then give a
correctness score. The correctness score should be one of the below numbers:
0.0 (totally wrong), 0.1, 0.2, ..., 1.0 (totally right). You should also add a
brief justification regarding how the model’s answer conforms to or contradicts
the golden answer(s). Your response must follow the format:

{

"correctness_score": your_score,

"justification": your_justification

Note that each one of the golden answers is considered correct. Thus if the
model’s answer matches any one of the golden answers, it should be considered
correct.

Example 1:

User-defined task -- Sandy bought 1 million Safe Moon tokens. She has 4
siblings. She wants to keep half of them to herself and divide the remaining
tokens among her siblings. After splitting it up, how many more tokens will she
have than any of her siblings?

Golden Answer(s) -- <answer 1> 375000

Model’s Answer -- Sandy will have more tokens than any sibling by 3/8 million.
Model Output:

{

"correctness_score": 1.0,

"justification": "The model’s answer of 3/8 million equals 375,000, which
matches the gold answer exactly."

}

(3 more examples)
Target Example:
User-defined task -- [QUESTION]
Golden Answer(s) -- <answer 1> [...]; <answer 2> [...]
Model’s Answer -- [MODEL RESPONSE]
Model Output:
{
"correctness_score": 7,
"justification": 7

}
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