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Abstract

Large language models (LLMs) often produce confident yet incorrect responses,
and uncertainty quantification is one potential solution to more robust usage. Recent
works routinely rely on self-consistency to estimate aleatoric uncertainty (AU),
yet this proxy collapses when models are overconfident and produce the same
incorrect answer across samples. We analyze this regime and show that cross-
model semantic disagreement is higher on incorrect answers precisely when AU
is low. Motivated by this, we introduce an epistemic uncertainty (EU) term that
operates in the black-box access setting: EU uses only generated text from a small,
scale-matched ensemble and is computed as the gap between inter-model and intra-
model sequence-semantic similarity. We then define total uncertainty (TU) as the
sum of AU and EU. In a comprehensive study across five 7–9B instruction-tuned
models and ten long-form tasks, TU improves ranking calibration and selective
abstention relative to AU, and EU reliably flags confident failures where AU is low.
We further characterize when EU is most useful via agreement and complementarity
diagnostics.

1 Introduction

Reliable uncertainty estimates are a prerequisite for deploying large language models (LLMs) in high-
stakes domains [5]. Many existing approaches for LLM uncertainty estimation are based on model’s
self -confidence [65, 61, 55], such as by measuring response consistency under sampling [31, 39, 50, 2]
or querying for a verbalized uncertainty score [38]. These metrics capture how internally confident
a model is in its prediction – a notion of predictive aleatoric uncertainty (AU). But this leaves an
important question unanswered: how confident should we be in the model? A model might be
confident but wrong, such as responding with the same incorrect answer with high probability (see
Figure 1). In these cases, methods that rely on self-consistency can fail [30]. To address this, we
focus on estimating epistemic uncertainty (EU) – uncertainty in our choice of model – which better
reflects whether a model’s confidence is trustworthy for a given input.

Estimating EU requires evaluating a distribution of plausible models, which is prohibitively costly
for LLMs, as training even one additional model adds significant overhead [29, 9]. Recent shortcuts
approximate EU in logit space [43], inject Bayesian noise during decoding [41, 16], or rely on
verifier–model disagreement [66], but each imposes strong task or architecture-specific assumptions.
We instead capitalize on the ecosystem of open-weight LLMs: sampling responses from a small,
scale-matched ensemble lets us estimate EU directly from cross-model semantic disagreement,
without additional training. While prior work has shown that LLM ensembles can improve accuracy
[42, 11, 6, 54, 22], their use for uncertainty quantification has not been systematically explored.
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Figure 1: (a) Two models confidently produce distinct, incorrect answers to a factual question, which
results in low intra-model variability (AU) but high semantic disagreement across models (EU). (b)
Total uncertainty (TU = AU + EU) effectively improves uncertainty calibration with correcness in
terms of AUROC on SimpleQA.

By enabling scalable estimation of EU from model outputs alone, we can combine it with AU to obtain
a more robust measure of uncertainty, Total Uncertainty (TU). These two forms of uncertainty are
complementary; AU reflects variability in a model’s own predictions, while EU measures divergence
from other plausible models [53]. Together, they allow TU to account for both internal inconsistency
and external disagreement.

We evaluate EU, AU and TU on two standard axes: ranking-based calibration (via AUROC) and
selective prediction (via abstention under uncertainty thresholds), across a range of models and
generation tasks. We conduct comprehensive experiments across five 7–9B parameter Instruction-
tuned models [67, 23, 18, 17], on ten long-form generation tasks spanning QA, summarization,
translation, and math reasoning [26, 68, 47]. We also repeat these experiments for API models such
as GPT-4o [21] and Claude 3.7 Sonnet [7] on SimpleQA [64]. Our contributions are as follows:

• We diagnose the failure mode of self-consistency as an aleatoric proxy: it often collapses on
confident errors, or prompts where the model produces the same wrong answer repeatedly.

• We introduce an epistemic term based on cross-model semantic disagreement within a small,
scale-matched ensemble, and show that it reliably identifies confident but incorrect responses.

• We conduct an extensive empirical study across ten long-form generation tasks and five reference
models, and show that TU consistently outperforms AU in both AUROC and selective abstention.

• We show that the proposed EU is most informative in tasks with a unique correct answer, such as
factual QA and translation.

2 Related Works

Aleatoric Uncertainty in LLMs. Existing approaches mainly focus on AU, which captures
response inconsistency or input ambiguity. Recent surveys provide extensive reviews of these
methods [65, 55, 61]. Typical strategies involve sampling multiple responses per prompt and analyzing
their semantic consistency, often through clustering or entropy-based metrics [39]. In line with prior
evaluations, we adopt degree-based semantic dispersion [39] as the AU baseline used throughout this
paper.

Bayesian-inspired EU Estimation. A line of research employs Bayesian-inspired methods, such
as adding noise to embeddings during generation to approximate uncertainty in model weights [41],
sampling from a model with different temperatures [16], or leverage entropy from decoding from
different hidden states as proxy for uncertainty, which provides a computationally efficient alternative
to exhaustive sampling [15]. Training ensembles explicitly, such as LoRA-based methods [62],
demonstrate improved uncertainty calibration but incur significant computational costs. Another
work [43] calculates AU and EU on token level by considering the LLM logits as parameters of
a Dirichlet distribution and by applying other UQ methods subsequently. Unlike approaches that
require logits or hidden states, whereas our estimator operates only on generated text (Eq. 3), which
enables application to black-box models.

Prompt-Based and Verifier-Based EU Estimation. Prior works in iterative prompting [1, 25]
estimate epistemic uncertainty by iteratively querying the same model, adding previous responses
to the later queries’ prompts, and measuring probabilistic inconsistencies. However, these methods
have limitations: gains over AU are mainly reported on multi-label data, with limited benefits on
standard single-label QA [1], and some are evaluated only on synthetic data [25]. Xue et al. [66]
utilizes one verifier LLM and shows that inter-model disagreement as a proxy for EU complements
AU in cases where we reach the performance bounds of self-consistency. Their practical rule triggers
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cross-consistency only at intermediate AU, whereas our evaluation, and [56], indicates that low AU
is especially prone to hallucination and is best complemented by EU (Sec. 5.1). Prior works are
mostly limited to special kinds of question-answering data, do not account for the impact of the vast
LLM model space on EU, and do not fully explore interactions between AU and EU, gaps our work
addresses explicitly.

LLM Ensembles. Our work builds upon classical uncertainty estimation, such as deep and dropout
ensembles [35, 14] and is closely related to LLM ensemble applications [42]. In particular, various
recent works focus on LLM collaborations [11], verifier LLMs [36], and sampling from multiple
LLMs [6]. We study LLM ensembles from the viewpoint of uncertainty estimation.

3 Quantifying Predictive Uncertainty Using Response Similarity

Let ω be the particular parameterization of an LLM, and let x be a prompt. Our goal is to quantify the
predictive uncertainty of ω given x as input. As is standard, we categorize predictive uncertainty into
two components: AU and EU [20]. The aleatoric component captures the inherent unpredictability
of the response to x under the model ω, while the epistemic component captures our uncertainty in
ω being the correct parametrization to use when responding to input x. We define total predictive
uncertainty additively as the sum of the aleatoric and epistemic uncertainties.

3.1 Aleatoric Uncertainty via Intra-Model Response Similarity

Many recent works have proposed techniques to measure the randomness in LLM responses [32,
39, 40]. These techniques typically focus on measures of semantic uncertainty, where uncertainty is
defined as a function of how often an LLM produces semantically distinct outputs given the same
input [32, 39]. In particular, [39] propose a measure equivalent to2 the following:

Ualeatoric(x;ω) = Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
1− s(rω1 , r

ω
2 )
]
, (1)

where s(·, ·) is a similarity metric for responses such as the cosine similarity in an embedding space.

In essence, Equation 1 corresponds to the expected similarity between two responses independently
sampled from p(·|x, ω), the response distribution of ω conditioned on x. If responses typically have
the same semantic meaning as each other, meaning that the meaning of the response does not vary
when resampled, then Ualeatoric(x;ω) will be close to 0, which means that there is little uncertainty
in how ω will respond to x. If the model is likely to produce semantically distinct responses for the
same input, then Ualeatoric(x;ω) will be high, which means ω has high uncertainty for x.

Equation 1 captures the inherent uncertainty in the response to x given model ω. However, ω may
not be the optimal model to use for x, and Equation 1 fails to capture the inherent uncertainty that
comes from choosing ω as our parameterization. There is thus a need to also capture the epistemic
uncertainty that comes from our model choice.

3.2 Epistemic Uncertainty as Inter-Model Response Similarity

Let ω∗ represent a hypothetical “ideal” model, such that p(·|x;ω∗) = p(·|x); the distribution
of responses from ω∗ equals the true response distribution. We can thus quantify the epistemic
uncertainty of ω as a divergence between ω and ω∗; e.g., Uepistemic(x, ω) = D(ω || ω∗) [53]. We
define D as follows:

D(ω || ω∗) = −
[
Eqω1 ∼p(·|x,ω)Eqω

∗
2 ∼p(·|x,ω∗)

[
s(qω1 , q

ω∗

2 )
]︸ ︷︷ ︸

cross-model similarity

−Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
s(rω1 , r

ω
2 )
]︸ ︷︷ ︸

self-similarity (1 - AU)

]
.

(2)

In effect, D(ω || ω∗) measures the difference between 1) the similarity of responses
from ω and ω∗ (

Eqω1 ∼p(·|x,ω)Eqω
∗

2 ∼p(·|x,ω∗)

[
s(qω1 , q

ω∗

2 )
])

and 2) the self-similarity of ω(
Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
s(rω1 , r

ω
2 )
])

. In the case where ω is optimal and equivalent to ω∗, then
D(ω || ω∗) will be 0. When ω produces responses that are semantically diverse from the ideal model’s
responses even after accounting for the diversity due to ω’s aleatoric uncertainty, then D(ω || ω∗) will

2This is equivalent to UDeg in [39].
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be high. In practice, we do not have access to the optimal model ω∗. Instead, we can leverage a recent
information-theoretic technique [53] and marginalize out ω∗. Let PΩ be a distribution over models
such that Eω̃∼PΩ

[
p(· | x; ω̃)

]
= p(· | x). We can thus replace ω∗ in Equation 2 with an expectation

over PΩ, and define Uepistemic(x, ω) as:

Uepistemic(x, ω) =− Eω̃∼PΩ

[
Eqω1 ∼p(·|x,ω)Eqω̃2 ∼p(·|x,ω̃)

[
s(qω1 , q

ω̃
2 )
]]

+ Erω1 ∼p(·|x,ω)Erω2 ∼p(·|x,ω)

[
s(rω1 , r

ω
2 )
]
.

(3)

When the average similarity in responses between ω and other sampled models matches the self-
similarity of ω’s responses, then the semantic distribution of ω matches the target distribution and
the epistemic uncertainty is low. When there is a mismatch between the average similarity of ω’s
responses to the responses from the sampled models ω̃ compared to ω’s self-similarity, then there
is a disagreement in how models respond and the epistemic uncertainty is high. In Appendix A.1,
we provide a detailed interpretation of D(ω ∥ω∗) as a one-sided kernel discrepancy, establish its
connections to variational inference, and show that it is upper bounded by total variation distance
under mild conditions.

Desired Properties for Ω. Because the divergence D(ω || ω∗) is evaluated against samples drawn
from a surrogate distribution of models Ω, its fidelity hinges on how well that ensemble of models
approximates the (inaccessible) optimal distribution p(· | x;ω∗). Three criteria follow from the
definition in Eq. 3:

(i) Support richness. Ω covers distinct yet plausible interpretations of models, rather than a
narrow subset; otherwise the cross–similarity term in D may be artificially high, and D
underestimates EU when predictions of models in Ω are different from ω’s predictions.

(ii) Non-collapsing diversity. If all members of Ω are nearly identical (e.g. noise-perturbed
versions of the same model), the ensemble average would be too close to ω, hence the cross-
model similarity term will be close to self-similarity and D may be small, even when the
candidate predictor Pω is mis-specified.

(iii) Calibrated weighting. Let PΩ denote the mixing measure over models. For Eq. 3 to approach
the ideal p(y | x), each model should be weighted in proportion to its posterior credibility (e.g.
uniform weights are appropriate only when validation risks are comparable).

Achieving Properties via Cross-Family Models. A practical way to satisfy these criteria is to
construct the surrogate ensemble Ω from models of similar architecture and scale, likely trained on
overlapping or similar pre-training datasets. Specifically, we populate Ω with 7–9B Transformer-based
models that share the same architecture class but are trained by different vendors. This setup ensures
(i) support richness, as models differ in data pipelines, initializations, and alignment protocols, which
results in diverse but plausible responses for the same input, that cover the ground-truth response set.
These independently trained models also exhibit (ii) non-collapsing diversity, as their differences
arise from different design choices, rather than noise-perturbed versions of a single model. Finally,
because these models achieve similar validation performance, we adopt uniform weights in PΩ, which
satisfies the calibrated weighting (iii) requirement. Section 4 specifies the exact models used.

Total Predictive Uncertainty. We make the standard assumption that total predictive uncertainty
can be obtained by adding aleatoric and epistemic predictive uncertainties [20]. Thus, we define
Utotal(x;ω) as:

Utotal(x;ω) = Ualeatoric(x;ω) + Uepistemic(x;ω)

= Eω̃∼PΩErω1 ∼p(·|x,ω)Eqω2 ∼p(·|x,ω̃)

[
1− s(rω1 , q

ω̃
2 )
]
.

(4)

3.3 Empirical Estimates of Uncertainty Metrics

For a given input prompt x, we call the model whose uncertainty is being estimated the reference
model ω, and denote the set of models used to compute epistemic uncertainty with respect to the
reference as the auxiliary model set Ω. Throughout the paper, we mainly focus on Cross-family
auxiliary models: We estimate epistemic uncertainty by computing response divergence across an
auxiliary set of models. To estimate uncertainty in practice, we proceed as follows:

1. Sample n responses from each model ωi ∈ Ω, and denote the set of responses from ω as
R′ = {r′1, r′2, . . . , r′n} and from ωi as Ri = {r(i)1 , r

(i)
2 , . . . , r

(i)
n } where |Ω| = m.
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2. Approximate Aleatoric, Total, and Epistemic Uncertainty using these sampled responses.

Empirical Uncertainty Metrics

AU = Ualeatoric = 1−
[ n∑
k=1

n∑
j=1

s(r′k, r
′
j)
]
/n2

TU = Utotal = 1− 1

m

m∑
i=1

[ n∑
k=1

n∑
j=1

s(r′k, r
(i)
j )
]
/n2

EU = Uepistemic = Utotal − Ualeatoric

Note that we assign uniform weights to different models in the auxiliary set, as we choose to use
models of similar capabilities, and our estimate of AU is similar to the one from [39]. Also, observe
that our evaluation shows that we can keep the overall number of sampled responses at the magnitude
used by self-consistency based methods while improving over those. More concretely, we choose
n = n′

m , when comparing to AU as a standalone metric, where n′ is the number of samples used for
the latter.

4 Experimental Setup

Models. In the main experiments, we primarily focus on five instruction-tuned language models
with approximately 7–9B parameters: Gemma-2-9B-It [59], Granite-3.0-8B-Instruct [17],
Llama-3.1-8B-Instruct [18], Mistral-7B-Instruct-v0.3 [23], Qwen2.5-7B-Instruct
[67]. We compute the uncertainty measures from Section 3.3 and consider the models mentioned
above as the set of auxiliary models. In Appendix A.5, we also consider larger reference models.
Unless otherwise noted, we compute TU by sampling 2 responses from each of the 5 models and
similarly compute AU using 10 samples to keep the sampling budget the same across the two metrics.

Datasets. Our experiments cover a broad range of long-form generation tasks spanning question
answering (QA), math reasoning, translation, and summarization. For QA, we include AmbigQA [45]
(open-domain QA with both ambiguous and unambiguous questions), NQ-open [33] (closed-book
QA derived from real user queries), HotpotQA [68] (multi-hop QA requiring reasoning over multiple
supporting documents), CoQA [51] (conversational QA with multiple turns), QASPER [10] (fact-
based QA over long scientific papers), TriviaQA [26] (QA based on trivia-style questions), and
TruthfulQA [37] (QA to evaluate common misconceptions in models). For math reasoning, we use
GSM8K [8] with chain-of-thought prompting. For language generation, we evaluate on the German-
to-English translation dataset WMT16-de-en [4] and the summarization benchmark XSum [47]. We
additionally include SimpleQA [64], a factuality QA benchmark, with model responses generated by
GPT-4o [21] and Claude 3.7 Sonnet [7]. Finally, we adapt tasks from the BBH multiple-choice
benchmark [58] to long-form format and add those evaluations to Appendix A.7.

Evaluation. Correctness is defined per input-response pair using Meta-Llama-3-70B-Instruct as
judge (Appendix A.10). Note that, in the context of uncertainty estimation, LM-as-a-judge correctness
evaluation has recently been shown to be the most reliable among the existing methods [52]. Following
prior work [39, 31, 3], we evaluate the quality of uncertainty by quantifying how well uncertainty
scores separate correct from incorrect generations, using Area Under the ROC Curve (AUROC).
Formally, AUROC corresponds to the probability that a randomly chosen incorrect response receives
a higher uncertainty score than a randomly chosen correct one.

We also evaluate effectiveness in terms of selective prediction using Risk–Coverage Curves [46],
which measures how the error rate changes as uncertain responses are rejected. We further report
standard summary metrics such as accuracy at 90% and 80% coverage (C@90 and C@80), and the
Area Under Risk-Coverage Curve (AURC), where lower is better.

Baselines. As our primary aleatoric baseline, we use Lin et al. [39]’s implementation of Aleatoric
Uncertainty, which is in practice similar to Semantic Entropy [31], and has been shown to perform
well in recent benchmarks and surveys [12, 61]. In our evaluation, we denote this baseline as Aleatoric
or AU. We also experiment with noise-perturbed models (i.e., instead of models from different model
families), similar to the approach of Liu et al. [41], see details in Appendix A.5.
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Figure 2: Based on the distribution of EU across samples with different AU values, we find that EU
separates incorrect from correct most strongly when AU is low.

5 Results

5.1 Epistemic Uncertainty Flags Confident Failures of Aleatoric Uncertainty

Language models are often applied to heterogeneous tasks, where model confidence does not
always align with correctness [69]. To simulate such a setting, we construct an aggregated dataset
by combining all datasets mentioned in Section 4, and analyze uncertainty trends on this pooled
distribution. We are particularly interested in identifying failure modes of AU.

In Figure 2a, we stratify examples by AU (low, mid, high) and compare EU across correct and
incorrect responses. In the low-AU regime, incorrect responses exhibit higher EU than correct ones,
which shows that EU is discriminative when aleatoric scores are overconfident. This separation
diminishes in higher AU buckets, where both response groups become more uncertain.

To more directly target this failure mode, we isolate the lowest 5% of AU scores and analyze EU by
correctness. (Figure 2b). EU remains significantly higher for incorrect generations, which confirms
that epistemic uncertainty flags confidently wrong outputs that aleatoric scores alone miss, which
supports our hypothesis of the complementary nature of scores in this particular AU region.

This result contrasts with prior work, which treats low-AU predictions as reliable and only incorporates
cross-model comparisons when AU exceeds a threshold [66, 6]. Our findings reveal that this
assumption overlooks a critical failure mode: confidently wrong predictions with low AU. On the
other hand, our observations validate findings about models being overconfident on HotpotQA [49]
in that incorporating EU yields large improvements on this dataset (see Figure 4 in Section 5.3).
Per-dataset results are provided in Figure 18 in Appendix A.8.

5.2 Epistemic Uncertainty, Agreement, and Diversity

We ask when similarity-based EU is most informative. To this end, we focus on the correctness
of responses of different models and consider two metrics: Jaccard Agreement (or Redundancy)
(J), which measures the overlap between predicted correct responses of the auxiliary models, used
to quantify how redundant or similar different predictions are; and Oracle Coverage Gain (also
Complementarity) (G), the additional coverage (i.e., improvement in accuracy) obtained by an oracle
that always chooses the correct model per example, over the best performing model. Exact definitions
can be found in Appendix A.2.

Epistemic uncertainty does not always coincide with inter-model disagreement. Figure 3
plots EU AUROC against the dataset-level statistics J and G. We observe a positive correlation
with redundancy (r = +0.72, p = 0.03) and a negative correlation with complementarity (r =
−0.72, p = 0.03), which is the opposite of the naive intuition that “more disagreement ⇒ higher
epistemic utility.”

The explanation lies in how EU is constructed: it grows with the divergence of generated answers,
which arises in two distinct cases: (i) true EU on intrinsically hard questions where models do
not know the answer, and (ii) the existence of many semantically different but correct responses
(response noise). In complementary datasets (large G), each model specializes on different niches
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Figure 3: Epistemic–uncertainty AUROC versus dataset–level redundancy (J) and complementarity
(G). Higher AUROC indicates better discrimination between correct and incorrect answers by EU.

and consequently, EU is large even on questions that an individual model answers correctly, because
models in the auxiliary set return alternative (wrong) responses. In such cases, the misalignment
with correctness drives AUROC down. Conversely, in redundant datasets (high J , low G), models
converge to similar responses when correct (EU low) and, what we expect to be the usual case, still
diverge when collectively wrong (EU high), which gives a well-separated score and high AUROC.
These observations characterize the cases in which our current EU estimator is effective: tasks with
a single (or near-unique) correct answer, where models phrase that answer similarly yet generate
diverse alternatives on the harder, unanswered inputs.

For example, WMT16-de-en and CoQA occupy the high-J , low-G corner of Figure 3; all models
score above > 90% accuracy, so predictions are largely redundant and EU achieves its strongest
discrimination. At the opposite extreme, XSum combines low accuracy with the largest G: models
succeed on different inputs and can express many valid summaries, which inflates EU without
improving ranking and thus lowering AUROC. Datasets such as HotpotQA and TriviaQA sit mid-
range on both axes and have enough redundancy to suppress noise, but have sufficient diversity to
expose disagreement and consequently produce the large TU gains in Figure 4.

5.3 Total Uncertainty Improves Correctness Calibration

Figure 4 reports the AUROC between negative uncertainty and correctness across datasets, and
averaged over five 7–9B instruction-tuned models mentioned in Section 4. TU consistently improves
over AU on all benchmarks on average. The largest gains occur on HotpotQA (+0.15), CoQA
(+0.14), and WMT16-de-en (+0.13), where models either disagree on complex multi-hop reasoning
(HotpotQA) or achieve high overall accuracy (CoQA, WMT16-de-en), which allows EU to capture
remaining errors.

Moderate improvements are observed on TriviaQA, and NQ-open, which exhibit a balance of
response redundancy and complementarity. In contrast, gains are more limited on TruthfulQA,
GSM8K (with chain-of-thought), and QASPER, where the presence of multiple valid or stylistically
diverse answers weakens the alignment between TU and correctness. These results align with the
patterns described in Section 5.2: TU and EU are most effective when correct answers are uniquely
phrased and shared across models, while incorrect predictions remain diverse.
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Figure 4: Under matched sample budgets, TU (AU+EU) consistently shows higher AUROC than
AU across datasets, with the largest gains on HotpotQA, CoQA, and WMT16-de-en (∆ >0.10). Bars
show means over five 7–9B reference models with per-dataset dots.
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AUROC (0.72), and outperforms the strongest baseline (closeness centrality, 0.64) across almost all
datasets. Per-task results appear in Table 3 in Appendix A.4.

We also find that TU estimates consistently improve AUROC as compared to AU in GPT-4o (0.70 vs.
0.59), and Claude 3.7 Sonnet (0.58 vs. 0.53) on SimpleQA as shown in Figure 1. Figure 11 in
Appendix A.4 shows the ROC curves on the combination of all datasets, where the relative ranking
of data points across the whole dataset determines performance, and Table 2 reports AUROC per
model-dataset pair. We show that the improvement over AU is maintained in individual datasets, and
in the combination of all datasets.

Comparison to Baselines. We compare TU against a number of baselines: Mean Token En-
tropy [13], Maximum Token Probability [12], Maximum Sequence Probability [12], Perplexity [13],
PTrue [27], Self-Certainty [28], Semantic Entropy [31], SC (Self-Consistency) Score [63, 44], Close-
ness Centrality, SC + VC (Verbalized confidence), and SC based CV [24]. Figure 5 shows results for
Mistral-7B-Instruct-v0.3 as the reference model across benchmarks and baselines. Table 3 in
Appendix A.4 shows that TU outperforms the strongest baseline across almost all benchmarks.

Ablations. We further ablate the size of the reference model in Appendix A.5, and show that even in
scenarios where the reference model is larger (and has higher accuracy) than models in the auxiliary
set, TU still achieves higher AUROC than AU. Furthermore, we show that AUROC improves with a
larger number of sampled responses in Appendix A.6.

5.4 Total Uncertainty Improves Selective Abstention

To evaluate whether uncertainty effectively distinguishes reliable responses from potential errors, we
consider selective prediction, where models are allowed to abstain from answering when uncertain.

Risk-Coverage Tradeoff. Figure 7(a) shows the Risk-coverage curve for aleatoric and total
uncertainty, aggregated across all models mentioned in Section 4. Across all coverage levels and
datasets, total uncertainty achieves the lowest risk, with a single exception. This suggests that total
uncertainty more effectively identifies unreliable predictions in comparison to AU.

Selective Accuracy and AURC. To quantify this effect more precisely, Table 1 reports selective
accuracy at fixed coverage levels (C@90, C@80) and AURC (area under the risk–coverage curve)
across benchmarks and averaged over different models. In nearly all cases, total uncertainty achieves
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Figure 6: We keep the reference model fixed as mistral-7B, and vary the size of the single auxiliary
model. TU achieves higher AUROC in comparison to AU, even in cases where the size of the auxiliary
model is lower than (×0.43) or roughly the same (×1) as the reference model. The improvements
are more significant with larger and more capable the auxiliary models on TriviaQA.
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Figure 7: Risk–coverage analysis shows that TU consistently improves selective prediction across
datasets and in aggregate.

higher selective accuracy and in all cases lower AURC compared to aleatoric and EU alone. For
example, on HotpotQA and XSum, total uncertainty improves C@90 by over 1.5 points and reduces
area under the risk–coverage curve (AURC ↓) by over 20%. These results confirm that TU yields
better abstention behavior than AU or EU alone.

Table 1: Selective question answering performance of different uncertainty estimates.
C@90 (%) C@80 (%) AURC ↓

Dataset Aleatoric Epistemic Total Aleatoric Epistemic Total Aleatoric Epistemic Total

AmbigQA 56.0 52.4 56.2 59.5 53.2 60.2 0.325 0.456 0.278
CoQA 96.0 96.9 96.0 96.5 97.5 97.8 0.026 0.016 0.011
GSM8K 54.0 54.7 53.3 54.8 54.0 54.2 0.391 0.441 0.335
HotpotQA 64.9 66.2 66.9 66.2 67.2 69.2 0.304 0.257 0.206
NQ-open 53.8 51.3 53.1 57.2 52.8 57.5 0.388 0.484 0.323
QASPER 38.0 36.9 39.1 39.5 37.5 40.8 0.533 0.602 0.503
TriviaQA 64.0 60.4 64.0 69.0 61.8 70.2 0.254 0.343 0.208
TruthfulQA 74.4 73.8 74.2 75.0 75.0 73.0 0.220 0.251 0.195
WMT16-de-en 96.2 96.4 96.0 97.2 96.2 98.5 0.028 0.027 0.010
XSum 24.4 24.9 25.6 26.5 22.0 27.3 0.681 0.759 0.609

6 Conclusions
We propose that aleatoric and epistemic uncertainty capture complementary failure modes of language
models: self-consistency methods reveal data ambiguity, while semantic disagreement across models
uncovers uncertainty arising from model limitations. We operationalize this view by estimating TU as
the combination of intra-model entropy and inter-model semantic divergence, using only black-box
access to model outputs. We show that this combination effectively outperforms self-consistency-
based methods across a wide range of models and datasets in terms of different metrics. While
this approach requires access to multiple comparable models, it reveals the limits of single-model
uncertainty scores and offers a practical path toward more comprehensive uncertainty estimation.

Limitations. Our method relies on response-level semantic similarity, which may underperform in
tasks with many semantically distinct but correct answers, e.g., open-ended generation or QA tasks
where there are multiple distinct correct answers. In such cases, disagreement does not necessarily
reflect uncertainty. Additionally, we focus on a specific form of AU; how to best combine our EU
estimator with other AU and EU estimators (e.g., token-level or logit-based methods) is left for future
work. Moreover, the performance of TU depends on the model ensemble: If all surrogate models
share similar pre-training data or architectural biases, cross-model disagreement can underestimate
true epistemic uncertainty. We examine this homogeneous-failure scenario in detail in Section 5.2.
Finally, our evaluation hinges on a correctness judge; improvements in judge reliability will propagate
to more precise AUROC and selective-risk estimates.
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A Appendix

A.1 Theoretical Interpretations of Epistemic Uncertainty

Kernel and variational interpretation of D(ω || ω∗). Assume the similarity function s(·, ·) is a
symmetric positive definite kernel k. Denote the predictive distributions by PΩ := p(· | x;ω) and
Pω∗ . Their kernel mean embeddings in the reproducing kernel Hilbert space (RKHS) Hk are

µω = Er∼PΩ

[
k(r, ·)

]
, µω∗ = Eq∼Pω∗

[
k(q, ·)

]
.

Using the reproducing property ⟨k(r, ·), k(r′, ·)⟩Hk
= k(r, r′), the divergence in Eq. 2 can be

rewritten exactly as:

D(ω || ω∗) = ⟨µω, µω⟩Hk
− ⟨µω, µω∗⟩Hk

. (5)

Eq. 5 is the first two terms of the squared maximum mean discrepancy (MMD):

MMD2(PΩ, Pω∗) = ∥µω − µω∗∥2Hk
= ∥µω∥2Hk

− ⟨µω, µω∗⟩Hk︸ ︷︷ ︸
D(ω || ω∗)

+∥µω∗∥2Hk
− ⟨µω, µω∗⟩Hk

.

Thus D(ω || ω∗) is a one-sided kernel discrepancy: it measures how much the model’s self-agreement
exceeds its agreement with the ideal predictor, and it vanishes if and only if µω = µω∗ (and, for
characteristic kernels, iff PΩ = Pω∗ ).

Variational-gap Interpretation. Write classical KL as KL(PΩ ||Pω∗) = CE − Ent, where Ent =
Er∼PΩ [− log p(r | x;ω)] and CE = Er∼PΩ [− log p(r | x)]. Replacing − log with −k yields

D(ω || ω∗) = Er,r′∼PΩ
[k(r, r′)]︸ ︷︷ ︸

“negative kernel-entropy”

− Er∼PΩ, q∼Pω∗ [k(r, q)]︸ ︷︷ ︸
“kernel cross-entropy”

,

so D is the semantic variational gap between the model and the ideal distribution under the geometry
induced by k. Minimizing D therefore projects PΩ toward Pω∗ in RKHS while simultaneously
penalizing model variability in PΩ.

Lemma 1 (Bound on Kernel-Based Divergence). Let Pω = p(· | x, ω) and Pω∗ = p(· | x, ω∗) be the
predictive distributions of two language models. Let k(·, ·) be a symmetric, bounded, positive-definite
kernel such that 0 ≤ k(r, r′) ≤ 1 for all r, r′. Define the kernel-based divergence

D(ω ∥ω∗) := Er,r′∼Pω [k(r, r
′)]− Er∼Pω,q∼Pω∗ [k(r, q)].

Then D is bounded above in absolute value by the total variation distance between Pω and Pω∗ :

|D(ω ∥ω∗)| ≤ TVD(Pω, Pω∗),

where

TVD(Pω, Pω∗) :=
1

2

∫
|pω(z)− pω∗(z)|dz.

Furthermore, if the RKHS norm of the embeddings are equal, i.e., ∥µω∥ = ∥µω∗∥, then D(ω ∥ω∗) =
0 implies µω = µω∗ . If k is characteristic, this further implies Pω = Pω∗ .

Proof. Define the kernel-smoothed function f(z) := Er∼Pω [k(r, z)]. Then we can write

D(ω ∥ω∗) = Ez∼Pω
[f(z)]− Ez∼Pω∗ [f(z)].

By the definition of total variation distance and the fact that 0 ≤ f(z) ≤ 1 for all z,

|D(ω ∥ω∗)| ≤ sup
∥f∥∞≤1

|EPω
[f ]− EPω∗ [f ]| = TVD(Pω, Pω∗).

For the second part, note that D(ω ∥ω∗) = ∥µω∥2 − ⟨µω, µω∗⟩. If ∥µω∥ = ∥µω∗∥ and D = 0, then
by Cauchy–Schwarz equality, we must have µω = µω∗ . If the kernel is characteristic, then µω = µω∗

implies Pω = Pω∗ .
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This result implies that D(ω ∥ω∗) provides a lower bound on distributional mismatch, and thus serves
as a tractable proxy for epistemic uncertainty: it is provably small only when the model’s predictive
distribution aligns with that of the ensemble under the kernel geometry.

Under desired conditions mentioned in 3.2, and with a bounded characteristic kernel, D(ω || ω∗) = 0
if, and only if, the predictive distribution Pω is close to the model set consensus as shown above.
Consequently D (i) flags cases where the model’s intra-model similarity is high (AU is low) while its
agreement with the ensemble is low, (ii) rewards calibrated agreement by attaining its minimum only
within the support of the ensemble, and (iii) remains sample-efficient, as it only requires O(n2) kernel
evaluations on n generated responses per model, which is cheaper than KL divergence evaluations or
other approximations of EU.

A.2 Agreement and Coverage Metrics.

For every dataset we form the binary correctness matrix Cij which is the correctness of response r(j)i
sampled from model j to input i, and compute two coarse descriptors of cross-model behaviour:

• Jaccard redundancy J – The mean pairwise Jaccard index of the sets of correctly answered
examples:

J =
2

M(M − 1)

∑
1≤m<k≤M

|Sm ∩ Sk|
|Sm ∪ Sk|

, Sm = {i : Cim = 1}

High J means models succeed on the same inputs.
• Oracle-gain diversity G – the additional coverage obtained by an oracle that chooses the

correct model per example:

G = Aoracle −max
m

Am =
1

N

N∑
i=1

⊮

 M∑
j=1

Cij > 0

−max
m

(
1

N

N∑
i=1

Cim

)

High G indicates that different models get different examples right.

A.3 Additional Experimental Setup

All experiments were conducted on two NVIDIA A100 80GB GPUs. We use the
lm-evaluation-harness [57] codebase to generate responses from each model, and evaluate
correctness using a local vLLM [34] server hosting Meta-Llama-3-70B-Instruct [18] as the
judge model. Following prior work [39], we compute correctness using only the first sampled
response from each model. All evaluation is conducted in inference-only mode; no training or
fine-tuning is performed.

For each dataset, we sample 10 responses per model for the first 100 prompts. AU is computed using
all 10 responses. To match the sample budget with TU, the experiments in Section 5.3 and Section 5.4
report results using only 2 responses per model for computing both TU and epistemic uncertainty.
We use a temperature of 0.7 and top-p of 0.9 across all generations. For SimpleQA, model outputs
are obtained from the OpenAI and Anthropic APIs.

Semantic similarity between responses is measured using cosine distance over sentence-T5-xl [19,
48] embeddings. For datasets not originally supported by lm-eval-harness, we follow its prompt
formatting conventions and include code for these additions in the supplementary material.

A.4 Additional Results on Total Uncertainty

Figure 8 reports the AUROC of aleatoric and total uncertainty across all model–dataset pairs, and Fig-
ure 9 shows the corresponding improvements from using TU over AU. Total uncertainty consistently
improves correctness discrimination in nearly all cases, with the largest per-instance gains observed
on HotpotQA, a benchmark known for complex multi-hop reasoning.

AUROC Results Per Model and Dataset. Figure 8 and Table 2 show AUROC of TU and AU in
all model-dataset combinations, and Figure 9 shows the improvement of total uncertainty over AU
in AUROC. TU improves AUROC in nearly all model–dataset combinations, with the largest gains
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observed in HotpotQA. Model performance substantially affects the magnitude of improvement. On
datasets such as XSum, where overall model accuracy is low, TU yields large improvements for weaker
models but occasionally underperforms for the strongest ones (e.g., Llama and Qwen), potentially
due to disagreement with less reliable auxiliary models. A similar pattern holds on GSM8K, where
gains are concentrated among lower-performing models, while others benefit less.

In contrast, WMT16-de-en and CoQA show limited gains, likely due to the high baseline accuracy
(> 90%) of all reference models (see Fig. 10), where AU is already well-calibrated. Notably, TU
corrects miscalibrated AU for specific models, such as Mistral on CoQA, where the base AU is
anomalously low. On TruthfulQA, which features open-ended questions with diverse valid answers,
semantic disagreement does not reliably indicate epistemic uncertainty, which results in weaker
improvements.
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Figure 8: We show AUROC for each model separately to compare aleatoric and total uncertainty. TU
consistently yields higher AUROC across models. We subsample 80% of the questions per dataset,
1000 times, to compute AUROC with 5% confidence intervals around the median AUROC value.
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Figure 9: AUROC improvement obtained by adding EU to AU across all samples per dataset,
measured as (Total − Aleatoric).
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Figure 10: Accuracy per model-dataset pair.
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Table 2: Uncertainty AUROC scores across models and benchmarks when different 7B/8B/9B
parameter models are used as auxiliary models. Total Uncertainty is better calibrated with correctness
than Aleatoric Uncertainty.

Benchmark Model Accuracy Aleatoric AUROC Epistemic AUROC Total AUROC

AmbigQA

Llama-3.1-8B-Instruct 0.62 0.764 0.52 0.753
Mistral-7B-Instruct-v0.3 0.58 0.716 0.506 0.768

Qwen2.5-7B-Instruct 0.42 0.645 0.639 0.75
gemma-2-9b-it 0.52 0.81 0.447 0.833

granite-3.0-8b-instruct 0.48 0.644 0.488 0.661

CoQA

Llama-3.1-8B-Instruct 0.93 0.788 0.797 0.845
Mistral-7B-Instruct-v0.3 0.95 0.458 0.80 0.819

Qwen2.5-7B-Instruct 0.97 0.466 0.567 0.595
gemma-2-9b-it 0.95 0.876 0.80 0.918

granite-3.0-8b-instruct 0.97 0.708 0.907 0.821

GSM8K

Llama-3.1-8B-Instruct 0.69 0.727 0.346 0.626
Mistral-7B-Instruct-v0.3 0.35 0.577 0.606 0.61

Qwen2.5-7B-Instruct 0.61 0.524 0.623 0.656
gemma-2-9b-it 0.39 0.531 0.601 0.634

granite-3.0-8b-instruct 0.60 0.726 0.472 0.727

HotpotQA

Llama-3.1-8B-Instruct 0.65 0.546 0.662 0.7
Mistral-7B-Instruct-v0.3 0.65 0.548 0.682 0.736

Qwen2.5-7B-Instruct 0.71 0.483 0.681 0.679
gemma-2-9b-it 0.58 0.719 0.608 0.814

granite-3.0-8b-instruct 0.58 0.615 0.634 0.736

NQ-open

Llama-3.1-8B-Instruct 0.49 0.808 0.389 0.713
Mistral-7B-Instruct-v0.3 0.60 0.69 0.501 0.698

Qwen2.5-7B-Instruct 0.37 0.462 0.696 0.703
gemma-2-9b-it 0.47 0.743 0.538 0.768

granite-3.0-8b-instruct 0.56 0.678 0.541 0.754

QASPER

Llama-3.1-8B-Instruct 0.30 0.694 0.487 0.714
Mistral-7B-Instruct-v0.3 0.32 0.623 0.657 0.722

Qwen2.5-7B-Instruct 0.45 0.587 0.492 0.583
gemma-2-9b-it 0.37 0.588 0.509 0.596

granite-3.0-8b-instruct 0.41 0.56 0.512 0.596

TriviaQA

Llama-3.1-8B-Instruct 0.65 0.744 0.562 0.776
Mistral-7B-Instruct-v0.3 0.54 0.796 0.552 0.815

Qwen2.5-7B-Instruct 0.5 0.811 0.668 0.9
gemma-2-9b-it 0.59 0.787 0.645 0.812

granite-3.0-8b-instruct 0.64 0.733 0.575 0.784

TruthfulQA

Llama-3.1-8B-Instruct 0.65 0.47 0.423 0.456
Mistral-7B-Instruct-v0.3 0.80 0.528 0.601 0.579

Qwen2.5-7B-Instruct 0.75 0.494 0.584 0.578
gemma-2-9b-it 0.76 0.641 0.541 0.625

granite-3.0-8b-instruct 0.75 0.532 0.556 0.548

WMT16-de-en

Llama-3.1-8B-Instruct 0.95 0.691 0.695 0.859
Mistral-7B-Instruct-v0.3 0.91 0.808 0.835 0.897

Qwen2.5-7B-Instruct 0.94 0.809 0.832 0.883
gemma-2-9b-it 0.97 0.649 0.663 0.811

granite-3.0-8b-instruct 0.95 0.755 0.493 0.884

XSum

Llama-3.1-8B-Instruct 0.19 0.708 0.37 0.693
Mistral-7B-Instruct-v0.3 0.20 0.482 0.651 0.725

Qwen2.5-7B-Instruct 0.48 0.819 0.31 0.811
gemma-2-9b-it 0.16 0.598 0.565 0.631

granite-3.0-8b-instruct 0.12 0.529 0.582 0.717

ROC Curves. Figure 11 shows the ROC curve computed over the pooled set of all model–dataset
pairs. TU achieves a higher AUROC (0.746 vs. 0.707), which shows improved seperation between
correct and incorrect generations compared to AU alone. Figure 12 presents ROC curves for individual
datasets. TU yields consistently better or comparable performance across all tasks, with the largest
gains observed on HotpotQA, WMT16-de-en, and CoQA. These improvements align with our earlier
findings that TU is most effective on tasks where models are accurate but occasionally confidently
wrong.
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Figure 11: ROC curves between aleatoric and total uncertainty aggregated across all models and
datasets. Total uncertainty achieves higher AUROC, indicating better discrimination between correct
and incorrect generations.
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Figure 12: ROC curves comparing aleatoric and total uncertainty across individual datasets. TU
achieves higher AUROC across most tasks, particularly on HotpotQA, WMT16-de-en, and CoQA,
where models exhibit confident failures.

Comparison with Baselines. We compare TU against a number of baselines: Mean Token En-
tropy [13], Maximum Token Probability [12], Maximum Sequence Probability [12], Perplexity [13],
PTrue [27], Self-Certainty [28], Semantic Entropy [31], SC (Self-Consistency) Score [63, 44], Close-
ness Centrality, SC + VC (Verbalized confidence), and SC based CV [24]. We use implementations
from Fadeeva et al. [12], Jiang et al. [24]. AU baselines is the same as [39], but instead of using
entailment with Deberta to compute response sequence similarity, we use a sentence-T5-xl model.
Results are provided in Table 3.

A.5 The Effect of the Auxiliary Model Set on Total Uncertainty

Ablating the Reference Model Size. We test how the quality of total uncertainty estimates depends
on the capability of the reference model, whose uncertainty we aim to estimate. We fix the auxiliary
model set to a pool of four 7-9B models mentioned in 4 that are not from the same family as the
reference model, and vary the reference model’s architecture and size. Figure 13 reports results
on TriviaQA, using two model families (Gemma3 [60] and Qwen2.5 [67]) of various sizes. As the
size of the reference model increases, both aleatoric and total uncertainty AUROC scores tend to
decrease, but total uncertainty has consistently higher AUROC across different model sizes. This
holds even when the reference model is substantially stronger than any model in the auxiliary set
(e.g., Qwen2.5-32B vs. 7-9B peers).
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Table 3: Uncertainty AUROC scores across benchmarks for Mistral-7B when different 7B/8B/9B
parameter models are used as auxiliary models. Total Uncertainty is better calibrated with correctness
than Aleatoric Uncertainty and other baselines.

AmbigQA CoQA GSM8K HotpotQA NQ-open QASPER TriviaQA TruthfulQA Average

Total 0.768 0.819 0.61 0.736 0.698 0.722 0.815 0.579 0.718
Aleatoric 0.716 0.458 0.577 0.548 0.69 0.623 0.796 0.528 0.617

Closeness Centrality 0.683 0.612 0.56 0.739 0.597 0.579 0.702 0.639 0.639
SC Score 0.649 0.553 0.551 0.711 0.616 0.567 0.673 0.603 0.615

SC Based VC 0.658 0.483 0.555 0.677 0.63 0.568 0.706 0.602 0.61
SemanticEntropy 0.678 0.561 0.584 0.526 0.656 0.514 0.637 0.514 0.584

SC + VC 0.671 0.411 0.544 0.51 0.641 0.581 0.731 0.581 0.584
Max Sequence Prob. 0.651 0.561 0.496 0.556 0.64 0.48 0.66 0.534 0.572
Mean Token Entropy 0.654 0.498 0.461 0.559 0.674 0.481 0.696 0.544 0.571

Token Entropy 0.654 0.502 0.465 0.558 0.672 0.481 0.69 0.542 0.57
Perplexity 0.661 0.513 0.462 0.548 0.652 0.464 0.672 0.527 0.562

Max Token Prob. 0.658 0.51 0.464 0.546 0.652 0.468 0.674 0.528 0.562
Self Certainty 0.569 0.51 0.459 0.553 0.598 0.484 0.63 0.586 0.549

PTrue 0.604 0.555 0.371 0.417 0.55 0.423 0.519 0.451 0.486
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Figure 13: We vary the size of the reference model while holding the auxiliary models fixed. TU
achieves higher AUROC in comparison to AU acorss different model sizes on TriviaQA.

Noise-perturbed Auxiliary Model Set. We consider noise-perturbed variants of the reference
model itself as auxiliary model set, similar to Liu et al. [41]. Specifically, we apply a perturbation
strategy in which we preserve the top-k singular vectors of each linear weight matrix and inject
Gaussian noise into the remaining lower-rank subspace. This preserves dominant components of
the model while allowing for controlled noise in its response distribution. Figure 14 in the appendix
shows that the we sometimes obtain improvement in TU-AU, but it is overall lower than for the more
diverse auxiliary model set from Figure 4.
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Figure 14: Uncertainty calibration for experiments where auxiliary model set for each model is
consisted of multiple noise-perturbed models

A.6 AUROC Ablations

Number of Auxiliary Models. We study how the size of the auxiliary model set affects the
quality of total uncertainty estimates. For each reference model, we compute total uncertainty using
n ∈ {2, 3, 4, 5} models, where one model is fixed (the reference model) and the remaining n− 1 are
sampled from other model families. All methods use a fixed number of samples per model.
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Figure 15 shows that total uncertainty improves monotonically as the number of auxiliary models
increases. This holds across almost all tasks, with the largest gains typically occurring between n = 2
and n = 3. In addition, we observe that variance across runs decreases as more models are added,
which suggests a more calibrated uncertainty score can be achieved from increasing the number
of model in the auxiliary set. However, in all datasets, our multi-sample total uncertainty measure
outperforms aleatoric uncertainty in AUROC, even when only one auxiliary model is used.
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Figure 15: We plot AUROC as a function of the number of auxiliary models used to compute total
uncertainty for Mistral-7B-Instruct-v0.3. Total uncertainty improves with more models, and
variance decreases.

Number of Samples for Uncertainty Estimation. We next investigate how the number of response
samples per model affects the performance of uncertainty estimates. For each model in the auxiliary
set, we vary the number of generations used in total uncertainty computation from 5 to 50, and
compare against two baselines for aleatoric uncertainty: one computed using 5 samples and another
using 10 samples, matching the regimes used in our main experiments.

As shown in Figure 16, AUROC for total uncertainty usually slightly increases with more samples,
with diminishing returns beyond 30 samples in most tasks. Notably, TU consistently outperforms
AU baselines across all datasets. These findings also reinforce the practicality of TU even under
constrained budgets, as improvements are apparent with as few as 10 samples (n = 5 on the x-axis).
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Figure 16: AUROC of total uncertainty as a function of the number of samples per model. Even with
a small number of samples, TU outperforms aleatoric baselines (5-sample and 10-sample variants).
Gains saturate around 30–40 samples.

A.7 Additional Results on Multiple-choice QA tasks

To evaluate whether our findings extend beyond open-ended generation, we adapt a subset of tasks
from the Big-Bench Hard (BBH) [58] benchmark into a long-form QA format with chain-of-thought
answering. Specifically, we consider Boolean Expressions, Disambiguation QA, and Word
Sorting, and prompt models to justify their answers rather than selecting from multiple choices
directly. We then evaluate uncertainty scores over the full responses using the same semantic similarity
pipeline as in our main experiments.

Table 4 reports AUROC scores for both AU and TU across models on these tasks. We observe that
TU improves over AU in most cases, with the largest gains appearing when base model performance
is low (e.g., Qwen2.5-7B on Disambiguation QA and Boolean Expressions). These results
demonstrate that TU remains effective in identifying incorrect generations even when the task is
originally framed as multiple-choice, provided responses are elicited in free-form.
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Table 4: Uncertainty AUROC scores across models and benchmarks when different 7B/8B/9B
parameter models are used as auxiliary models. Total Uncertainty is better calibrated with correctness
than Aleatoric Uncertainty.

Benchmark Model Accuracy Aleatoric AUROC Total AUROC

BBH Fewshot Boolean Expressions

Llama-3.1-8B-Instruct 0.88 0.662 0.658
Mistral-7B-Instruct-v0.3 0.84 0.746 0.735

Qwen2.5-7B-Instruct 0.53 0.744 0.909
gemma-2-9b-it 0.86 0.593 0.725

granite-3.0-8b-instruct 0.9 0.659 0.658

BBH Fewshot Disambiguation QA

Llama-3.1-8B-Instruct 0.59 0.544 0.594
Mistral-7B-Instruct-v0.3 0.64 0.525 0.656

Qwen2.5-7B-Instruct 0.44 0.561 0.81
gemma-2-9b-it 0.69 0.61 0.65

granite-3.0-8b-instruct 0.62 0.486 0.562

BBH Fewshot Word Sorting

Llama-3.1-8B-Instruct 0.69 0.476 0.512
Mistral-7B-Instruct-v0.3 0.77 0.529 0.429

Qwen2.5-7B-Instruct 0.44 0.587 0.645
gemma-2-9b-it 0.96 0.475 0.576

granite-3.0-8b-instruct 0.58 0.578 0.485

A.8 Epistemic Uncertainty Analysis

Figure 17 disaggregates the trend shown in Figure 2a by model. For all five reference models,
incorrect generations in the low-AU regime show consistently higher EU than correct ones, which
reaffirms that EU captures confident failures missed by self-consistency. This separation weakens in
mid- and high-AU buckets, where both correct and incorrect outputs tend to be more uncertain. The
consistency of this pattern across different models highlights the effectiveness of EU in identifying
unreliable predictions when AU alone is low. Similarly, Figure 18 shows a similar trend when results
are disaggregated by dataset.
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Figure 17: Distribution of EU across different levels of AU and correctness. Across all models, we
find that incorrect responses in the low-aleatoric regime are assigned higher EU than correct ones on
average.

A.9 Computational cost

We report full wall-clock measurements to contextualize the overhead introduced by our TU ensemble
relative to a self-consistency baseline with the same total sample budget. All runs use TriviaQA on a
single Nvidia L40S (48 GB) unless noted. Decoding settings and similarity-oracle calls are identical
across settings; the observed gap comes from loading additional checkpoints.

Regime Setting Models × samples Per-model mean (s) Total wall-clock (s)

Single-GPU (sequential) Single model, 10 samples 1× 7–9B × 10 244.1± 58.7 244.1
Single-GPU (sequential) TU ensemble, 5 models × 2 samples 5× 7–9B × 2 78.3± 12.9 391.7
Multi-GPU (parallel, 5×) TU ensemble, 5 models × 2 samples 5× 7–9B × 2 78.3± 12.9 ≈ 78

Table 5: Wall-clock on TriviaQA. Sequential TU is slower due to streaming four extra checkpoints; peak
GPU memory is unchanged. With 5-way parallelism (one GPU per model), wall-clock returns to ∼78 s while
preserving TU’s calibration and abstention gains.

Takeaways. 1) Token-generation and similarity costs are matched between the self-consistency
baseline (1× 10 samples) and TU (5× 2). 2) Sequential overhead is dominated by checkpoint loads;
peak VRAM does not increase. 3) Parallel execution amortizes loading: with 5× parallelism, TU
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Figure 18: Distribution of EU across different levels of AU and correctness. Across all benchmarks,
we find that incorrect responses in the low-aleatoric regime are assigned higher EU than correct ones
on average.

matches single-model wall-clock while retaining its AUROC and selective-abstention improvements.
In practice, a small ensemble (2–5 auxiliaries, 1–2 samples each) provides most of the TU benefit
under common deployment envelopes.

A.10 Computing Correctness Using an LLM Judge

We compute correctness scores using Meta-Llama-3-70B-Instruct deployed via a local vLLM
server. Each model prediction is evaluated independently against the gold answers using a structured
prompt that includes five few-shot examples, held fixed across all evaluations. The prompt instructs
the judge to assign a correctness score from the discrete set {0.0, 0.1, ..., 1.0} based on
the alignment between the predicted and gold answers, while explicitly ignoring the model’s own
knowledge.

The judge receives as input: (1) the user-defined task or question, (2) a list of gold answers, and
(3) the model-generated answer. It is instructed to output a JSON object containing a numerical
score and a justification. The request is submitted using deterministic decoding (temperature= 0,
max_tokens = 20), and we employ up to three retries with truncated context in case of failures due
to prompt length.

Correctness is evaluated using the first response generated by each model. The gold answers are
passed verbatim, and no normalization is applied to either predictions or references. By default,
a prediction is considered correct if its score exceeds 0.5. For tasks where differences should be
penalized (e.g., summarization or translation), we increase the threshold to 0.9 (specifically, for
XSum and WMT16-de-en). These thresholds are applied during AUROC and selective prediction
evaluations.

Judge Evaluation. We assess the reliability of the LLM judge used to score correctness against
gold references. First, we perform a cross-judge check (Llama-3-70B-Instruct vs. GPT-4o) and
find high agreement on both probabilities and binary labels. In 93/100 cases the judges produced
identical correctness probabilities. In 5/100, probabilities differed but mapped to the same binary
label under the 0.5 threshold, so AUROC is unchanged. Only 2/100 items were hard conflicts, and
manual inspection favored GPT-4o in both.

Second, We manually audited 100 Mistral-generated samples across TriviaQA and TruthfulQA
and observed <6% human–judge disagreement. We also compare to rule-based matchers from
lm-evaluation-harness and find them brittle for free-form outputs, which motivagtes an LLM
judge.
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Prompt Format. We provide the prompt format used for the LLM Judge here.

I want you to act as a judge for how well a model did answering a user-defined
task.
You will be provided with a user-defined task that was given to the model, its
golden answer(s), and the model’s answer. The context of the task may not be
given here. Your task is to judge how correct the model’s answer is based on
the golden answer(s), without seeing the context of the task, and then give a
correctness score. The correctness score should be one of the below numbers:
0.0 (totally wrong), 0.1, 0.2, ..., 1.0 (totally right). You should also add a
brief justification regarding how the model’s answer conforms to or contradicts
the golden answer(s). Your response must follow the format:
{
"correctness_score": your_score,
"justification": your_justification
}
Note that each one of the golden answers is considered correct. Thus if the
model’s answer matches any one of the golden answers, it should be considered
correct.
–-
Example 1:
User-defined task –- Sandy bought 1 million Safe Moon tokens. She has 4
siblings. She wants to keep half of them to herself and divide the remaining
tokens among her siblings. After splitting it up, how many more tokens will she
have than any of her siblings?
Golden Answer(s) –- <answer 1> 375000
Model’s Answer –- Sandy will have more tokens than any sibling by 3/8 million.
Model Output:
{
"correctness_score": 1.0,
"justification": "The model’s answer of 3/8 million equals 375,000, which
matches the gold answer exactly."
}
–-
... (3 more examples)
–-
Target Example:
User-defined task –- [QUESTION]
Golden Answer(s) –- <answer 1> [...]; <answer 2> [...]
Model’s Answer –- [MODEL RESPONSE]
Model Output:
{
"correctness_score": ?,
"justification": ?
}
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