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ABSTRACT

We introduce Iterative Dual Reinforcement Learning (IDRL), a new method that
takes an optimal discriminator-weighted imitation view of solving RL. Our method
is motivated by a simple experiment in which we find training a discriminator
using the offline dataset plus an additional expert dataset and then performing
discriminator-weighted behavior cloning gives strong results on various types of
datasets. That optimal discriminator weight is quite similar to the learned visitation
distribution ratio in Dual-RL, however, we find that current Dual-RL methods do
not correctly estimate that ratio. In IDRL, we propose a correction method to
iteratively approach the optimal visitation distribution ratio in the offline dataset
given no addtional expert dataset. During each iteration, IDRL removes zero-
weight suboptimal transitions using the learned ratio from the previous iteration
and runs Dual-RL on the remaining subdataset. This can be seen as replacing the
behavior visitation distribution with the optimized visitation distribution from the
previous iteration, which theoretically gives a curriculum of improved visitation
distribution ratios that are closer to the optimal discriminator weight. We verify the
effectiveness of IDRL on various kinds of offline datasets, including D4RL datasets
and more realistic corrupted demonstrations. IDRL beats strong Primal-RL and
Dual-RL baselines in terms of both performance and stability, on all datasets.

1 INTRODUCTION

Offline reinforcement learning (RL) has attracted attention as it enables learning policies by utilizing
only pre-collected data. It is a promising area for bringing RL into real-world domains, such as
industrial control (Zhan et al., 2022) and robotics (Kalashnikov et al., 2021). In such scenarios,
arbitrary exploration with untrained policies is costly or dangerous, but sufficient prior data is
available. The major challenge of offline RL is the distributional shift issue (Levine et al., 2020), i.e.,
the optimized policy’s distribution is different from the offline data distribution, which means the
value function may have extrapolation errors to unseen actions produced by the optimized policy
(Fujimoto et al., 2018). To deal with this challenge, most offline RL algorithms build on the primal
form of RL (i.e., maximizing a value function respect to the policy, which needs to alternate between
policy evaluation and policy improvement), and impose an additional behavior constraint either by
policy constraint, which constrains the policy to be close to the behavior policy using some distance
function (Wu et al., 2019; Fujimoto & Gu, 2021); by value regularization, which directly modifies
the value function to be pessimistic (Kumar et al., 2020; Kostrikov et al., 2021a); or by uncentainty
estimation, which guides policy optimization to low-uncertainty regions (An et al., 2021; Yu et al.,
2020). However, in Primal-RL based methods, the policy may still output out-of-distribution (OOD)
actions if the policy constraint weight is not set properly, which will cause either inaccurate or
over-constrained value estimation that results in suboptimal behavior.

Notably, recently there’s also another line of in-sample based offline RL algorithms (Xu et al., 2023;
Mao et al., 2024a;b), which can be derived from the dual formulation of RL (i.e., maximizing the
reward respect to the policy’s visitation distribution) (Sikchi et al., 2023b). Different from the primal
counterpart, Dual-RL based methods isolate the learning of value function and policy; the value
function can be learned using only dataset actions, which brings minimal estimation errors. To extract
the implicit policy contained in the value function, one often uses the visitation distribution ratio
between the optimized and behavior policy to do weighted behavior cloning (BC) (Peng et al., 2019).
Although Dual-RL methods suffer minimal OOD errors by using in-sample learning, they often
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(a) Framework of Iterative Dual-RL (b) Results of Optimal-DWBC

Figure 1: (a) Illustration of our proposed IDRL framework. IDRL breaks the regularization barrier by performing
imitation learning on a iteratively-refined dataset, it can solve hard tasks where previous behavior-regularized
offline RL can not do. For example, previous methods will fail at finding the shortest path from blue point to red
point while crossing yellow point, due to non-uniform data coverage at different state. (b) Mean scores of optimal
discriminator-weighted behavior cloning (Optimal-DWBC) on D4RL Mujoco-{m,m-r,m-e}, Antmaze-{all} and
Kitchen-{all} datasets. We train a discriminator d on offline dataset D and an additional expert dataset DE , we
then use wd(s, a) =

dE(s,a)

dD(s,a)
= d(s,a)

1−d(s,a) to do weighted-BC on D if wd(s, a) > δ. We compare it with SOTA
Primal-RL method ReBRAC (Tarasov et al., 2024) and SOTA Dual-RL method ODICE (Mao et al., 2024a).

lag behind in performance of primal-RL methods. One conventional opinion is using weighted-BC
style policy extraction causes poor generalization combined with its mode-covering nature (Park
et al., 2024). In this paper, we aim to investigate pitfalls and push the limit of Dual-RL methods.
We start from a surprising finding: learning the optimal visitation distribution ratio using a
"gold" discriminator on the offline dataset and an additional expert dataset, and using this ratio
as a filtering weight in weighted-BC outperforms all classical offline RL methods on various
datasets, shown in Figure 1. Although this discriminator-weighted BC is an oracle baseline as the
expert datasets are unavailable, it points to the fact that Dual-RL methods, as a virtue of learning
visitation distribution ratios, could faciliate this kind of dataset filtering and weighting.

Given this potential, what is missing in current Dual-RL methods? 1) We show that current Dual-RL
methods are unable to accurately estimate the state-action visitation ratio as a result of gradient update
strategies they use for minimizing the Bellman residual. We find using a semi-gradient update in
Dual-RL changes the fixed-point of optimization, learning an action distribution ratio rather than
a visitation distribution ratio. Using the action distribution ratio to learn policies forces learning
potentially suboptimal actions at states never visited by an expert, leading to poor generalization
during weighted-BC policy extraction. 2) Irrespective of the gradient update strategy used, Dual-RL
methods learn a regularized optimal visitation distribution w.r.t offline data distribution (i.e., visitation
that maximizes performance while staying close to offline data), as opposed to learning the optimal
visitation distribution ratio. Our key contribution in this paper is to address both the limitations above
and present a new offline RL algorithm that is able to break the regularization barrier. First, we
propose a new objective for accurately learning the visitation distribution ratio using a two-stage
procedure. After getting the action distribution ratio using semi-gradient Dual-RL, we adopt an
off-policy evaluation approach that recovers the correct state-action visitation distribution ratio using
the action distribution ratio. This allows decomposing the original tasks of obtaining visitation
distribution ratio into two distinct, complementary, and easy to solve tasks. Second, we show that the
regularized optimal visitation ratio has a sparse form (some weights are zero) (Xu et al., 2023). This
property can be used to refine the offline dataset iteratively and gradually learn an optimal visitation
ratio that moves closer to the optimal discriminator weight and can be used for learning a better
policy by weighted behavior cloning. Our theoretical results justify our method by deriving a smaller
optimality lower bound due to this curriculum-refined dataset filtering.

We term our method iterative Dual-RL (IDRL), IDRL iteratively filters out suboptimal transitions
and then performs imitation learning on the remaining subdataset that is within or close to the
optimal visitation distribution. An overview of our method can be found in Figure 1. This learning
paradigm also has connections to some recent success in using deep generative models (DGMs)
in offline RL algorithms (Mao et al., 2024b; Hansen-Estruch et al., 2023). These methods first fit
the complex, multi-modal behavior distribution using the strong expressivity of DGMs, and then
use conditioned or guided generation to unearth optimal actions. Compared to these generative
methods, our method bypasses the costly two-step procedure and uses lightweight behavior cloning
to directly fit the "optimal" distribution. Empirically, we verify the effectiveness of IDRL on different
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kinds of offline datasets, including D4RL benchmark datasets and corrupted demonstrations that is
heteroskedastic and occur more often in real-world scenarios. On D4RL datasets, IDRL matches or
surpasses both Primal-RL and Dual-RL baselines. On corrupted demonstrations, IDRL outperforms
strong support-based and reweighting-based approaches. Under all settings, IDRL achieves better
stability and robustness during inference time compared to all other baselines.

2 PRELIMINARIES

We consider the RL problem presented as a Markov Decision Process (Sutton et al., 1998), which
is specified by a tupleM = ⟨S,A,P, d0, r, γ⟩. Here S and A are state and action space, P(s′|s, a)
and d0 denote transition dynamics and initial state distribution, r(s, a) and γ represent reward
function and discount factor, respectively. The goal of RL is to find a policy π(a|s) which maximizes
expected return J(π) = E[

∑∞
t=0 γ

t · r(st, at)]. Offline RL considers the setting where interaction
with the environment is prohibited, and one needs to learn the optimal π from a static dataset
D = {si, ai, ri, s′i}Ni=1. We denote the empirical behavior policy of D as µ, which represents the
conditional distribution p(a|s) observed in the dataset.

Value functions and visitation distributions Let V π : S → R and Qπ : S ×A → R be the state
and state-action value function of π, where V π(s) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s] and Qπ(s, a) =
Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. The visitation distribution dπ is defined as dπ(s, a) = (1−
γ)

∑∞
t=0 γ

t Pr (st = s, at = a | s0 ∼ d0,∀t, at ∼ π (st) , st+1 ∼ P (st, at)), which measures how
likely π is to encounter s, a when interacting with M, averaging over time via γ-discounting.
Let V ∗, Q∗ and d∗ denote the value functions and visitation distribution corresponding to the
regularized optimal policy π∗. We denote dE as the visitation distribution of the true optimal policy
πE . We denote the empirical visitation distribution of µ as dD. Let T π

r be the Bellman operator
with policy π and reward r such that T π

r Q(s, a) = r(s, a) + γEs′∼P(·|s,a),a′∼π(·|s′) [Q(s′, a′)].
We also define two Bellman operators Tr and T for the state value function, where TrV (s, a) =
r(s, a) + γEs′∼P(·|s,a) [V (s′)] and T V (s, a) = γEs′∼P(·|s,a) [V (s′)].

2.1 PRIMAL AND DUAL RL

Interestingly, the value of a policy, J(π), may be expressed in two ways, where the primal form uses
the value function while the dual form uses the visitation distribution:

Primal-RL (1− γ) · Es0∼µ0,a0∼π[Q
π(s0, a0)] = J(π) = E(s,a)∼dπ [r(s, a)]. Dual-RL

In Primal-RL, there are typically two steps, policy evaluation and policy improvement. In policy
evaluation, the Q-values are estimated by finding the fixed point of the Bellman recurrence (Watkins
& Dayan, 1992; Sutton et al., 2008; Mnih et al., 2015), i.e., minimizing the squared single-step
Bellman difference using off-policy data D as minQ J(Q) = 1

2E(s,a)∼D
[
(T π

r Q−Q)(s, a)2
]
. In

policy improvement, the policy π can be optimized by maxπ Es∼D,a∼π(s) [Q(s, a)] using policy
gradient (Sutton et al., 1999). In practice, the policy evaluation and improvement step are alternated
till convergence to the optimal solution Q∗ and π∗. In the offline setting, to prevent overestimation
arising due to the distribution shift issue, one often imposes a policy constraint (action-level) to the
policy improvement step (Kumar et al., 2019; Fujimoto & Gu, 2021); to the policy evaluation step
(Kumar et al., 2020; An et al., 2021); or to both steps (Fakoor et al., 2021; Tarasov et al., 2024).

Dual-RL, also known as Distribution Correction Estimation (DICE) (Nachum & Dai, 2020; Sikchi
et al., 2023b), was first used to ensure unbiased estimation of the on-policy policy gradient using
off-policy data. Dual-RL incorporates J (π) with a visitation constraint term (state-action level)
Df (d

π||dD) = E(s,a)∼dD [f( dπ(s,a)
dD(s,a)

)] where f(x) is a convex function, i.e., finding π∗ satisfying

π∗ = argmax
π

E(s,a)∼dπ [r(s, a)]− αDf (d
π||dD). (1)

This regularized learning objective is generally intractable due to the dependency on dπ(s, a),
especially under the offline setting. However, by imposing the Bellman-flow constraint (Manne,
1960),

∑
a∈A d(s, a) = (1− γ)d0(s) + γ

∑
s̃,ã d(s̃, ã)P(s|s̃, ã) on states and applying Lagrangian

duality and convex conjugate, its dual problem has the following tractable unconstrained form:

min
V

(1− γ)Es∼d0
[V (s)] + αE(s,a)∼dD

[
f∗
p

(
[TrV (s, a)− V (s)] /α

)]
, (2)
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where f∗
p = max

(
0, f ′−1(x)

)
(x)−f

(
max

(
0, f ′−1(x)

))
. Note that objective (2) can be calculated

solely with (s, a, s′) sample fromD, which enables in-sample learning and mitigating the distribution
shift issue in offline RL by not querying function-approximators on out-of-distribution actions.
In principle, Dual-RL serves as a better off-policy (by getting unbiased on-policy policy gradient
estimation) and offline algorithm (no OOD actions in training value functions) than Primal-RL,
however, in the next sections we show limitations of prior Dual-RL approaches that prevent leveraging
their full potential.

2.2 LIMITATIONS OF CURRENT DUAL-RL METHODS

Incorrect distribution ratio estimation Notice that the nonlinear term in objective (2) contains
the Bellman residual term TrV (s, a) − V (s). In residual-gradient update, both V (s′) and −V (s)
would contribute to the gradient update, which causes slow convergence and a gradient conflict issue
(Baird, 1995; Zhang et al., 2019b), especially in the offline setting where the gradient on −V (s) is
crucial for implicit maximization to find the best action (Mao et al., 2024a). To remedy this, one often
uses a prevalent semi-gradient technique in RL that estimates TrV (s, a) with Q(s, a). The update of
Q(s, a) and V (s) in semi-gradient Dual-RL methods are as follows (see Appendix A.1 for details).

min
V

E(s,a)∼dD

[
V (s) + αf∗

p

(
[Q(s, a)− V (s)] /α

)]
(3)

min
Q

E(s,a,s′)∼dD
[(
r(s, a) + γV (s′)−Q(s, a)

)2]
. (4)

Note that 1 − γ is omitted and the initial state distribution d0 is replaced with dataset distribution
dD to stabilize learning (Kostrikov et al., 2020). This learning objective of V can be viewed as an
implicit maximizer to estimate supa∼µ(a|s) Q(s, a) (Xu et al., 2023; Sikchi et al., 2023b), the first
term pushes down V -values while the second term pushes up V -values if Q− V > 0. In addition,
because f∗

p is non-linear and D usually cannot cover all possible s′, using the semi-gradient update
also helps alleviate biased gradient estimation caused by single-sample estimation of Tr in objective
(2). However, as we show later in Section 3, using semi-gradient update changes the fixed-point of
the learning objective, preventing us from learning the true visitation distribution ratio.

Data-regularized policy extraction One intriguing property of Dual-RL is that, although the
learning objective doesn’t contain the policy, it actually learns an implicit optimal policy through the
visitation distribution ratio between the optimized and behavior policy as π∗(a|s) ∝ d∗(s,a)

dD(s,a)
µ(a|s).

One way to extract an explicit policy is minimizing the KL divergence (Boyd et al., 2004) between π
and π∗, which is equivalent to performing advantage-weighted behavior cloning (Peng et al., 2019)
using the visitation distribution ratio as shown:

w∗(s, a) :=
d∗(s, a)

dD(s, a)
= max

(
0, (f ′)−1

(
(Q∗(s, a)− V ∗(s)) /α

))
(5)

π = argmax
π

E(s,a)∼dD
[
w∗(s, a) · log π(a|s)

]
. (6)

The explicit policy is parametrized as a unimodal Gaussian distribution in order to compute log π(a|s)
(Haarnoja et al., 2018). However, this may cause some mode-covering behavior and deviation from
the optimal mode if some suboptimal transitions are assigned non-zero weight (Ke et al., 2019). One
way to solve this problem is using more expressive generative models like diffusion models (Ho
et al., 2020; Song et al., 2020) to fit the multimodal behavior distribution and select the optimal mode
using guided sampling (Mao et al., 2024b). However, the success depends on both accurate behavior
modeling and correct sampling guidance, and also bring additional training/evaluation burden.

3 ITERATIVE DUAL-RL: TOWARDS OPTIMAL DISCRIMINATOR-WEIGHTED
BEHAVIOR CLONING

In this section, we introduce our proposed approach, Iterative Dual-RL (IDRL). IDRL presents
a principled solution to fix the aforementioned two limitations in Dual-RL. We start by deriving
the result that semi-gradient Dual-RL learns the action distribution ratio between the optimized
and behavior policy; we then propose a correction to recover the true visitation distribution ratio

4
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based on the obtained action distribution ratio. Leveraging the learned visitation distribution ratios,
we present an iterative self-distillation method to approach the optimal visitation distribution ratio.
Theoretical analysis shows how using iterations help Dual-RL get a better imitation result by adopting
curriculum-refined dataset filtering. Finally, we use a motivating toycase to validate the usefulness of
IDRL in successfully extracting the optimal visitation distribution in the dataset.

3.1 TRUE VISITATION DISTRIBUTION ESTIMATION

First, we show that semi-gradient Dual-RL changes the fixed point of optimization and gives a
solution that learns the action distribution ratio between the optimized and behavior policy rather
than the expected visitation distribution ratio.

Proposition 1. Semi-gradient Dual-RL only learns w∗(a|s) = π∗(a|s)
µ(a|s) instead of w∗(s, a) = d∗(s,a)

dD(s,a)
.

The result can be obtained by setting the derivative of objective (3) w.r.t V (s) to zero, where we have
∀s ∼ dD, 1 + Ea∼µ[−max(0, (f ′)−1((Q∗(s, a) − V ∗(s))/α))] = 0, and leveraging the fact that
(f∗

p )
′(x) = max(0, (f ′)−1(x)).

There are two main shortcomings of learning an action-distribution ratio. (1) Action distribution
ratio does not reason whether states are ever visited by the optimal policy (are ‘good’), therefore
it may assign positive weights to actions at bad states. Under the function approximation setting
where states may share similar representations, this is more likely to cause incorrect generalization to
suboptimal patterns generated by ‘bad’ states. This problem is especially severe when the dataset
is dominated by a large portion of suboptimal data. (2) Iteratively filtering the dataset with action
ratios can result in a fragmented dataset as some weights can be zero. For instance, if a transition
is assigned a zero weight, the preceeding transition in trajectory is fragmented and does not have a
backup target. Deep RL algorithms are not well suited to learn from such fragmented trajectories as
they will overestimate the value of missing transitions.

We reframe as an off-policy evaluation (OPE) problem (Uehara et al., 2022) to recover the state-action
visitation distribution ratio given the action distribution ratio. Inspired by techniques from Nachum &
Dai (2020), we construct and solve the following constrained optimization problem

max
d≥0

−h(d) s.t. d(s) = (1− γ)d0(s) + γ
∑
s̃,ã

d(s̃)π∗(ã|s̃)P(s|s̃, ã),∀s ∈ S. (7)

In this optimization problem, the |S| constraints uniquely determine d = d∗ while h serves as a
function that could make the optimization problem more approachable and stable when applying
duality; common choices of h include h(d) := 0 or h(d) := Df (d∥dD).
The above objective (7) requires fitting an explicit policy π∗. We leverage the fact that π∗(a|s) can
be estimated via importance sampling w∗(a|s) · µ(a|s) to propose a way to learn visitation ratios
while only ever sampling from µ in Theorem 1. Theorem 1 presents a tractable OPE objective by
applying Fenchel-Rockafellar duality (Rockafellar, 1970) to Eq.( 7) under h(d) := Df (d∥dD).
Theorem 1. Given an action distribution ratio w∗(a|s), we can recover its corresponding state
visitation distribution ratio w∗(s) as

w∗(s) :=
d∗(s)

dD(s)
= max

(
0, (f ′)−1

(
Ea∼µ

[
w∗(a|s)(T U∗(s, a)− U∗(s))

]))
, (8)

where U∗ is the optimal solution of the dual form of (7) as following,

min
U

E(s,a)∼dD

[
U(s)− T U(s, a)

]
+ Es∼dD

[
f∗
p

(
Ea∼µ

[
w∗(a|s) (T U(s, a)− U(s))

])]
. (9)

Obtaining an unbiased estimator: In objective (B), the first term is easy to estimate, however,
an unbiased estimation of the second term along with w∗(s) is generally non-trivial due to the
expectation inside a non-linear function f∗

p or (f ′)−1. We show that Lemma 1 can be used to obtain
an unbiased estimate for the second term above.
Lemma 1. Given a random variable X and its corresponding distribution P (X), for any convex func-
tion f(x), the following problem is convex and the optimal solution is y∗ = (f ′)−1(Ex∼P (X)[g(x)]).

min
y

Ex∼P (X)[f(y)− g(x) · y].

5
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The proof follows by setting the derivative of the objective w.r.t y to zero. Substituting P (x) as µ and
g(x) as w∗(a|s)(T U(s, a)− U(s)), we can get the following result:

Theorem 2. The unbiased estimate of (f ′)−1
(
Ea∼µ [w

∗(a|s)(T U(s, a)− U(s))]
)

is the optimal
solution W ∗(s) of the following optimization problem:

min
W

E(s,a)∼dD

[
f(W (s))− w∗(a|s)(T U(s, a)− U(s)) ·W (s)

]
.

This learning objective provides an unbiased estimator by only using (s, a, s′) samples from the
dataset, as two expectations that cause biased gradient estimation (Ea∼µ and Es′ in T U ) are all linear.
Note that this objective is convex with respect to W , which indicates a guarantee of convergence to
W ∗ under mild assumptions.

Using the fact that (f∗
p )

′(x) = max(0, (f ′)−1(x)), we are ready to present a surrogate objective for
the second term in Eq.(B) that admits the same gradient w.r.t U , by using the following equation.

Es∼dD

[
(f∗

p )
′
(
Ea∼µ

[
w∗(a|s) (T U(s, a)− U(s))

])
· Ea∼µ

[
w∗(a|s)∇U (T U(s, a)− U(s))

]]
= ∇UE(s,a)∼dD

[
max(0,W ∗(s)) · w∗(a|s) (T U(s, a)− U(s))

]
.

Finally with the reductions shown above, learning Eq.(B) in an unbiased way using sample-based
estimation amounts to solving the following two optimization problems jointly:

min
W

E(s,a)∼dD

[
f(W (s))− w∗(a|s)(T U(s, a)− U(s)) ·W (s)

]
, (10)

min
U

E(s,a)∼dD
[
U(s)−T U(s, a)

]
+E(s,a)∼dD

[
max(0,W (s)) ·w∗(a|s)(T U(s, a)−U(s))

]
. (11)

In (11), the learning objective introduces sparsity in learning the value function (Xu et al., 2023).
The first term pushes down value residuals while the second term pushes up value residuals if
w∗(s, a) > 0. This makes the residuals of (s, a) under the regularized optimal visitation distribuion
to be high. Note that the learning of U and W introduces no extra hyperparameters that are prevalent
in offline RL. After getting the optimal U∗ and W ∗, we can obtain the corrected state-action visitation
distribution ratio as:

d∗(s, a)

dD(s, a)
= w∗(s, a) = w∗(s) ∗ w∗(a|s) = max

(
0,W ∗(s)(f ′)−1

(
Q∗(s, a)− V ∗(s)

))
. (12)

3.2 LEARN THE OPTIMAL DISCRIMINATOR WEIGHT BY ITERATIVE SELF-DISTILLATION

Algorithm 1 Iterative Dual-RL (IDRL)
1: Initialize value functions Qϕ1 , Vϕ2 , Uψ1 , Wψ2 , pol-

icy network πθ , require α and dataset D1 = D
2: for k = 1, 2, · · · ,M do
3: for t = 1, 2, · · · , N1 do
4: Sample transitions (s, a, r, s′) ∼ Dk
5: Update Qϕ1 and Vϕ2 by (4) and (3)
6: end for
7: Get action ratio wk(a|s) by Eq.(5)
8: for t = 1, 2, · · · , N2 do
9: Sample transitions (s, a, s′) ∼ Dk

10: Update Uψ1 and Wψ2 by (11) and (12)
11: end for
12: Get state-action ratio wk(s, a) by Eq.(12) and

Dk+1 = {(s, a, r, s′) ∈ Dk | wk(s, a) > 0}
13: end for
14: Learn πθ by Eq.(6) using DM and wM (s, a)

Although we get the correct visitation distribu-
tion ratio in Dual-RL, that ratio is not the true op-
timal visitation distribution ratio (i.e. d∗ ̸= dE)
as it is regularized by the offline data distribution.
We thus propose an iterative self-distillation way
to break the regularization barrier, our key in-
sight is that we can leverage the learned (regu-
larized) optimal visitation distribution ratio after
one iteration of Dual-RL to refine the offline
dataset to a new one, which will be used for an-
other iteration of Dual-RL. This procedure can
be repeated several times to approach the true
optimal visitation distribution ratio.

More specifically, we extend Dual-RL to M it-
erations (M ≥ 1) and use χ2-divergence as Df .
After the i-th iteration of Dual-RL, we select a
support of datasetDi that has non-zero probabil-
ity mass in optimal regularized visitation (w∗

i (s, a) > 0), and run the i+1-th iteration of Dual-RL. The
visitation distribution ratio at the last iteration w∗

M (s, a) is used for learning the policy by weighted
behavior cloning. We term this iterative method as iterative Dual-RL (IDRL), the pseudo-code is
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(a) Offline dataset dD (b) WBC using w∗
1(a|s) (c) WBC using w∗

1(s, a)︸ ︷︷ ︸
First Iteration

(d) WBC using w∗
2(a|s) (e) WBC using w∗

2(s, a)︸ ︷︷ ︸
Second Iteration

Figure 2: IDRL in a grid-world domain. The initial state (blue) and the goal state (red) define the task, with
the green arrows representing remaining transitions from the dataset. The opacity of the green arrows denotes
magnitude of the weights from the respective distribution ratios. Red arrows depict the trajectories generated
by policies obtained through weighted-BC with the estimated distribution ratios. (a) Original dataset. (b) and
(d) show the results after filtering the dataset based on the learned policy ratio (Uncorrected Dual-RL visitation
ratio) w(a|s) in the first and second iterations, respectively. (c) and (e) demonstrate the subsequent filtering
using the state-action visitation distribution ratio w(s, a), which is computed by combining w(a|s) and w(s)
(IDRL correction). This process reveals that the method progressively focuses on the most relevant transitions,
enabling the recovery of a near-optimal visitation distribution ratio after 2 iterations.

presented in Algorithm 1. IDRL uses multiple iterations of Dual-RL to break the regularization
barrier that impedes offline RL to learn performant policies by selecting a support of offline dataset
without suffering overestimation. Note that breaking the regularization barrier is hard with offline
Primal-RL algorithms as they do not reason about visitation distributions, thus making it impossible
to refine the offline dataset used for regularization.

The filtering procedure in IDRL can be approximately viewed as replacing each iteration’s behavior
visitation distribution to a better one (i.e., the regularized optimal visitation distribution at this
iteration): Df (d∥d∗k) ⇒ Df (d∥d∗k+1). Intuitively, this could boost performance improvement,
especially on suboptimal datasets. Formally, we give a theoretical analysis of IDRL based on previous
analysis of behavior cloning, we aim to 1) give the behavior cloning performance bound of IDRL,
and 2) analyze how iterations will influence this bound.
Theorem 3. Given horizon length H and the dataset sample size of D as ND, the behavior cloning
performance bound of IDRL at iteration k is given by

V (π) = V (Dk+1)−O
(

|S|H2

NDk+1
+NDk−Dk+1

/maxs w∗
k+1(s)

)
.

Theorem 4. We have V (Dk+1) ≥ V (Dk) after the k-th iteration of IDRL.

Theorem 3 is derived by framing weighted-BC as selecting expert data Dk+1 from suboptimal data
Dk using discriminator-weighted behavior cloning (Xu et al., 2022b; Li et al., 2024). From Theorem
3 we can see that if Dk+1 is closer to the expert distribution, V (Dk+1) increases, however, NDk+1

decreases, so the second term may also increase. This hints a trade-off by adjustingDk+1 to maximize
the behavior cloning performance bound. Theorem 4 shows that IDRL uses iterations to efficiently
find the optimal choice of Dk by ensuring a monotonic improvement over V (Dk). This result is
important as the above property is missing from classical offline RL; decreasing α may be expected to
produce similar empirical results like Theorem 3; however, decreasing α does not have a monotonic
improvement guarantee like Theorem 4, and suffers from overestimation in practice.

IDRL in a gridworld toycase We demonstrate the effectiveness of IDRL through a simple grid-
world experiment. The environment consists of continuous state and action space. However, we
collect offline data in a discrete manner. We use a discrete behavior policy that takes action randomly
from (↑, ↓, ←, →) to collect 500 transitions. Note that the weighted-BC policy is learned to be
continuous with a unimodal gaussian distribution. We use this toycase to mimic the scenario in
offline continuous control problem under function approximation, where similar states share the same
representation in latent space so one latent state may have multiple behavior actions. In this case
assigning positive weights to suboptimal transitions will deteriorate the weighted-BC result. Figure 2
walks through how applying IDRL subsequently filters the offline dataset towards optimal visitation
thus learning an optimal policy, while using only action ratios lead to suboptimal performance.
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Table 1: Averaged normalized scores of IDRL against other baselines. We report the average normalized scores
at the end of training with standard deviation across 7 random seeds. We highlight the top score (integer-level).
IDRL matches or outperforms previous SOTA Primal-RL and Dual-RL methods on almost all tasks.

D4RL Dataset Primal (Max-Q) Dual (Weighted-BC)

TD3+BC CQL ReBRAC Diffusion-QL X%-BC IQL SQL O-DICE IDRL (ours)
halfcheetah-m 48.3 44.0 64.0 ±1.0 51.1 ±0.5 42.5 47.4 48.3 ±0.2 47.4 ±0.2 58.4 ±0.1
hopper-m 59.3 58.5 102.2 ±1.0 90.5 ±4.6 56.9 66.3 75.7 ±3.4 86.1 ±4.0 99.5 ±0.4
walker2d-m 83.7 72.5 82.5 ±3.6 87.0 ±0.9 75.0 72.5 84.2 ±4.6 84.9 ±2.3 92.8 ±0.3
halfcheetah-m-r 44.6 45.5 51.0 ±0.8 47.8 ±0.3 40.6 44.2 44.8 ±0.7 44.0 ±0.3 58.0 ±0.3
hopper-m-r 60.9 95.0 98.1 ±5.3 101.3 ±0.6 75.9 95.2 99.7 ±3.3 99.9 ±2.7 101.7 ±0.7
walker2d-m-r 81.8 77.2 77.3 ±7.9 95.5 ±1.5 62.5 76.1 81.2±3.8 83.6±4.1 84.4 ±0.4
halfcheetah-m-e 90.7 90.7 101.1 ±5.2 96.8 ±0.3 92.9 86.7 94.0 ±0.4 93.2 ±0.6 98.1 ±0.2
hopper-m-e 98.0 105.4 107.0 ±6.4 111.1 ±1.3 110.9 101.5 110.8 ±2.2 110.8 ±0.6 111.0 ±0.4
walker2d-m-e 110.1 109.6 111.6 ±0.3 110.1 ±0.3 109.0 110.6 110.0 ±0.8 110.0 ±0.2 113.9 ±0.1

antmaze-u 78.6 84.8 97.8 ±1.0 85.5 ±1.9 62.8 85.5 92.2 ±1.4 94.1 ±1.6 99.5 ±0.3
antmaze-u-d 71.4 43.4 88.3 ±13.0 66.7 ±4.0 50.2 66.7 74.0 ±2.3 79.5 ±3.3 88.5 ±1.2
antmaze-m-p 10.6 65.2 84.0 ±4.2 72.2 ±5.3 5.4 72.2 80.2 ±3.7 86.0 ±1.6 93.0 ±1.1
antmaze-m-d 3.0 54.0 76.3 ±13.5 71.0 ±3.2 9.8 71.0 79.1 ±4.2 82.7 ±4.9 86.5 ±3.9
antmaze-l-p 0.2 38.4 60.4 ±26.1 39.6 ±4.5 0.0 39.6 53.2 ±4.8 55.9 ±3.9 60.3 ±3.4
antmaze-l-d 0.0 31.6 54.4 ±25.1 47.5 ±4.4 6.0 47.5 52.3 ±5.2 54.6 ±4.8 54.2 ±3.8

kitchen-c - 43.8 77.2 ±8.3 84.0 ±7.4 33.8 61.4 76.4 ±8.7 75.0 ±6.6 80.5 ±3.8
kitchen-p - 49.8 68.5 ±10.6 60.5 ±6.9 33.9 46.1 72.5 ±7.4 72.8 ±4.3 74.3 ±4.4
kitchen-m - 51.0 55.3 ±9.2 62.6 ±5.1 47.5 52.8 67.4 ±5.4 65.8 ±3.6 67.8 ±2.1

4 EXPERIMENTS

In this section, we present empirical evaluations of IDRL on different kinds of offline datasets.
We first evaluate IDRL on D4RL benchmark offline RL datasets (Fu et al., 2020) and compare
against several SOTA Primal-RL and Dual-RL baseline algorithms. However, D4RL datasets are
collected from policies that enable methods with strong distribution constraints to already have
strong performance. As a consequence, we also find that IDRL only needs one or two iterations to
achieve best performance. To further show the benefits of breaking the regularization barrier in IDRL,
we test IDRL on two more realistic datasets where more iterations are needed to find the optimal
visitation distribution. One is heteroskedastic demonstrations where the variability of demonstrated
behaviors changes non-uniformly across the state space (Singh et al., 2022); another one is corrupted
demonstrations where few expert demonstrations are mixed with a large portion of random data (Xu
et al., 2022b). Experimental details are shown in Appendix C.

4.1 RESULTS ON D4RL BENCHMARK DATASETS (M ≤ 2)

We first evaluate IDRL on the D4RL benchmark (Fu et al., 2020) and compare it with several related
algorithms. For the evaluation tasks, we select Mujoco locomotion tasks, Antmaze navigation tasks
and Kitchen tasks which require both locomotion and navigation. While Mujoco tasks are popular in
offline RL, Antmaze and Kitchen tasks are more challenging due to their stronger need for selecting
optimal parts of different trajectories to perform stitching. For baseline algorithms, we selected
state-of-the-art methods not only from Primal-RL methods (that select best policy modes given by
Max-Q), but Dual-RL methods (weighted-BC). Primal-RL baselines includes TD3+BC (Fujimoto &
Gu, 2021), CQL (Kumar et al., 2020), ReBRAC (Tarasov et al., 2024) and Diffusion-QL (Wang et al.,
2023) which has strong policy expressivity by using diffusion models. Dual-RL baselines include
IQL (Kostrikov et al., 2021b), SQL (Xu et al., 2023) and O-DICE (Mao et al., 2024a). The results
of IQL and SQL reflect the performance of using semi-gradient update as they apply action-level
behavior constraints. Notably, O-DICE is a recently proposed algorithm that stands out among
various Dual-RL methods. Although it claims to achieve the correct state-action visitation distribution
ratio, it introduces another hyperparameter η which is hard to tune in practice. We also include the
results of using X%-BC, which is a filtered version of BC that runs behavior cloning on only the top
X% high-return trajectories in the dataset. This comparision is to show the necessity of behavior
cloning based on transition-wise selection rather than trajectory-wise. We select the best results by
spanning X in {2, 5, 10}.
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The results are shown in Table 1, it can be seen that IDRL matches or outperforms all previous SOTA
algorithms on almost all D4RL tasks. This suggests that IDRL can effectively learn a strong policy
from the dataset, even in challenging Antmaze and Kitchen tasks that require RL to "stitch" good
trajectories. The large performance boost between IDRL and previous Dual-RL methods, especially
on sub-optimal datasets that contain less or few near-optimal trajectories, demonstrates the benefits
of iteratively finding the optimal visitation distribution ratio. The consistently better performance
compared with IDRL and Primal-RL baselines demonstrates the essentiality of in-sample value
learning, which causes fewer overestimation errors. All these results reveal the power of using an
optimal discriminator-weighted imitation view of solving offline RL.

Table 2: Ablation study of IDRL.
Ablation Mujoco Antmaze Kitchen

IDRL 90.8 80.3 74.8
IDRL w/ M = 1 73.2 68.8 70.5
IDRL w/ w∗(a|s) 56.8 51.3 67.8

Ablation study To show both components are necessary
in IDRL, we perform an ablation study where we compare
the performance of IDRL with (IDRL w/ M = 1), and
the ablation that uses w∗(a|s) to filter datasets (IDRL w/
w∗(a|s)). It can be shown in Table 2 that using more
iterations boosts the performance by finding the best support of the dataset to do imitation learning,
as discussed in Theorem 3. This also validates the importance of using the correct state-action
visitation distribution ratio as using action distribution ratio will get significantly worse results due to
overestimation errors caused by fragmented trajectories. This ablation study justifies the benefits of
both improvements to Dual-RL.

4.2 RESULTS ON CORRUPTED DEMONSTRATIONS (M > 2)

Figure 3: Performance of naive BC, Advantage-Weighted (AW),
Density-Weighted initialized with AW (DW+AW) and IDRL on
mixed datasets created by combining varying percentages of expert
transitions with random transitions from D4RL Mujoco datasets.
For IDRL, this table shows the results using three iterations.

In this experiment, we aim to demon-
strate the effectiveness of IDRL in
recovering the true visitation distri-
bution from datasets that contain a
significant amount of noisy or sub-
optimal transitions. The experiment
involves creating a "mixed" dataset
by combining random and expert pol-
icy generated transitions from Mujoco
datasets in D4RL at varying expert ra-
tios, thereby simulating a dataset col-
lected with low-performing behavior
policies. The purpose of this experi-
ment is to tackle a common challenge
in offline RL algorithms: their tendency to anchor the learned policy to the dataset’s behavior policy.
As shown by previous work (Hong et al., 2023a;b), while this anchoring works well when the
behavior policy is high-performing, it becomes problematic in datasets dominated by low-performing
trajectories. In such heteroskedastic and corrupted datasets, where only a few trajectories are high-
performing, most offline RL algorithms struggle to recover the optimal policy because they heavily
rely on the behavior policy present in the data. By applying IDRL iteratively to these mixed datasets,
we aim to remove suboptimal transitions, gradually refining the dataset to better represent the optimal
policy. Compare with the weighted sampling strategy proposed by previous paper (Hong et al.,
2023a;b), iterative application of IDRL can exploit and combine the rare, high-performing transitions
while filtering out suboptimal transitions, effectively learning a near-true visitation distribution ratio
that enables the recovery of an optimal policy, even in challenging, noisy offline settings.

5 RELATED WORK

Primal-RL and Dual-RL approaches: Offline RL requires trading off between unconstrained
policy improvement and staying ‘close’ to the offline data distribution, as choosing actions arbitrarily
can lead to requiring evaluation of policies that go beyond the support of offline dataset and have
incorrect evaluation especially with overestimation bias (Fujimoto et al., 2018) present in Bellman
optimality backups. To tackle this distributional shift problem, most classical/primal offline RL meth-
ods augment existing off-policy RL methods with an action-level behavior regularization term that
prevents the learned policy from deviating too far from the dataset policy. Action-level regularization
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can appear explicitly as divergence penalties (Wu et al., 2019; Kumar et al., 2019; Xu et al., 2021;
Fujimoto & Gu, 2021; Cheng et al., 2023; Li et al., 2023), implicitly through weighted behavior
cloning (Wang et al., 2020; Nair et al., 2020), or more directly through careful parameterization of
the policy (Fujimoto et al., 2019; Zhou et al., 2020). Another way to apply action-level regularization
is by learning pessimistic value functions that encourage staying near the behavioral distribution and
being pessimistic about OOD actions (Kumar et al., 2020; Kostrikov et al., 2021a; Xu et al., 2022c;
2023; Wang et al., 2023; Niu et al., 2022). Several works also incorporate action-level regularization
through the use of uncertainty (An et al., 2021; Bai et al., 2021) or distance function (Li et al., 2022a).
Another line of methods, on the contrary, imposes action-level regularization by performing a form of
imitation learning on the dataset.When the dataset is high-quality (contains high return trajectories),
we can simply clone or filter dataset actions to extract useful transitions (Xu et al., 2022b; Chen et al.,
2020; Zhang et al., 2023; Zheng et al., 2024), or directly filter individual transitions based on how
advantageous they could be under the behavior policy and then clone them (Brandfonbrener et al.,
2021; Xu et al., 2022a). Prior attempts to include state-action level behavior regularization (Li et al.,
2022b; Zhang et al., 2022) have required computationally costly extra steps of model-based OOD
state detection (Li et al., 2022b; Zhang et al., 2022). Most offline RL methods rely on a unimodal
Gaussian policy that suffer from mode-covering behavior during policy optimization potentially
outputting suboptimal policies. The use of expressive generative models allows us to move past this
limitation (Hansen-Estruch et al., 2023; Mao et al., 2024b) by their ability to match value functions
modes accurately, albeit at a high computational cost during training and a slow inference speed
during deployment.

Unlike the above Primal-RL approaches, Dual RL approaches reason in the visitation space for
maximizing returns and directly regularize the state-action visitation divergence with the offline
dataset. As a by-product, these methods also promise to learn the ratio of optimal regularized
visitation distribution with offline data visitation. Numerous works have shown their utility in off-
policy evaluation (Nachum et al., 2019a; Zhang et al., 2019a; 2020), offline policy selection (Yang
et al., 2020), off-policy RL (Nachum et al., 2019b; Lee et al., 2021; Sikchi et al., 2023b), safe RL (Lee
et al., 2022), GCRL Ma et al. (2022b); Sikchi et al. (2023a), and imitation learning (Kostrikov et al.,
2020; Zhu et al., 2020; Garg et al., 2021; Kim et al., 2021; Ma et al., 2022a; Sikchi et al., 2024).

Connection between offline RL and imitation learning: Offline RL and imitation learning share
deep connections. Rashidinejad et al. (2021) studies the connection theoretically from the lens of data
composition to analyze optimality rates; Sikchi et al. (2023b) shows that imitation learning becomes
a special case of RL with reward set to zero in the dual RL framework. Other works (Kumar et al.,
2022) have empirically evaluated when imitation learning in the form of behavior cloning is preferred
over offline RL. Our work, motivated by the simple experiment that having access to expert data is
sufficient to outperform current offline RL methods, proposes a smooth and principled interpolation
that refines offline datasets in offline RL to be closer to expert state-action visitation distribution. This
is opposed to prior works that iteratively relax policy regularization (Li et al., 2023; Hu et al., 2023;
Liu et al., 2024) which only consider actions, potentially learning suboptimal actions at states never
visited by the expert and lacking a principled reduction to expert visitation distribution.

6 CONCLUSION AND LIMITATIONS

In this paper, we provide an optimal discriminator-weighted imitation view of solving offline RL.
Motivated by a simple experiment that finds the effectiveness of optimal discriminator-weighted
behavior cloning, we build on the result of Dual-RL and propose iterative Dual-RL (IDRL) that aims
to fix two pitfalls of current Dual-RL methods. IDRL iteratively filters out suboptimal transitions and
extracts a policy with weighted behavior cloning on that subdataset. We give both theoretical and
empirical justification for our approach. IDRL achieves SOTA results on various kinds of datasets,
including D4RL benchmark datasets and noisy or heteroskedastic demonstrations where all other
offline RL methods fail. One limitation of IDRL is the increase of training time due to running
multiple iterations. Another limitation is that IDRL may suffer from generalization issues when
the initial state distribution during deployment is strikingly different from what is in the offline
dataset. We hope our work could inspire more work to study Dual-RL and design algorithms to better
approach computing the optimal discriminator weighting for offline RL. One future work is to extend
IDRL to the online setting where Dual-RL naturally serves as a principled off-policy method.
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A AN EXTENDED INTRODUCTION OF DUAL-RL METHODS

A.1 DERIVATION OF DUAL-RL

Dual-RL algorithms consider the following regularized RL problem as a convex programming
problems with Bellman-flow constraints and apply Fenchel-Rockfeller duality or Lagrangian duality
to solve it. The regularization term aims at imposing visitation distribution constraints (Nachum &
Dai, 2020; Lee et al., 2021; Mao et al., 2024a).

max
π

E(s,a)∼dπ [r(s, a)]− αDf (d
π(s, a)∥dD(s, a)).

Df (d
π(s, a)∥dD(s, a)) is the f -divergence which is defined with Df (P∥Q) = Eω∈Q

[
f
(

P (ω)
Q(ω)

)]
.

Directly solving π∗ is impossible because it’s intractable to calculate dπ(s, a). However, one can
change the optimization variable from π to dπ because of the bijection existing between them. Then
with the assistance of Bellman-flow constraints, we can obtain an optimization problem with respect
to d:

max
d≥0

E(s,a)∼d[r(s, a)]− αDf (d(s, a)∥dD(s, a))

s.t.
∑
a∈A

d(s, a) = (1− γ)d0(s) + γ
∑

(s′,a′)

d(s′, a′)p(s|s′, a′),∀s ∈ S.

Note that the feasible region has to be {d : ∀s ∈ S, a ∈ A, d(s, a) ≥ 0} because d should be
non-negative to ensure a valid corresponding policy. After applying Lagrangian duality, we can get
the following optimization target following (Lee et al., 2021):

min
V (s)

max
d≥0

E(s,a)∼d[r(s, a)]− αDf (d(s, a)∥dD(s, a))

+
∑
s

V (s)
(
(1− γ)d0(s) + γ

∑
(s′,a′)

d(s′, a′)p(s|s′, a′)−
∑
a

d(s, a)
)

= min
V (s)

max
ω≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼dD

[
ω(s, a)

(
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s)
)]
− αEs,a∼dD

[
f(ω(s, a))

]
.

Here we denote ω(s, a) as d(s,a)
dD(s,a)

for simplicity. By incorporating the non-negative constraint of d
and again solving the constraint problem with Lagrangian duality, we can derive the optimal solution
w∗(s, a) for the inner problem and thus reduce the bilevel optimization problem to the following
optimization problem:

min
V (s)

(1− γ)Ed0(s)[V (s)] + αEs,a∼dD

[
f∗
p

(r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′)− V (s)

α

)]
.

Here f∗
p is a variant of f ’s convex conjugate as f∗

p = max
(
0, f ′−1(x)

)
(x)− f

(
max

(
0, f ′−1(x)

))
.

A.2 DIFFERENT DUAL-RL METHODS

Note that in the offline RL setting, the inner summation
∑

s′ p(s
′|s, a)V (s′) is usually intractable

because of limited data samples. To handle this issue and increase training stability, semi-gradient
Dual-RL methods usually use additional network Q(s, a) to fit r(s, a) + γ

∑
s′ p(s

′|s, a)V (s′), by
optimizing the following MSE objective:

min
Q

E(s,a,s′)∼dD
[(
r(s, a) + γV (s′)−Q(s, a)

)2]
.

In doing so, the optimization objective in A.1 can be replaced with:

min
V

Es∼d0 [(1− γ)V (s)] + E(s,a)∼dD
[
αf∗( [Q(s, a)− V (s)] /α

)]
. (13)

Also note that to increase the diversity of samples, one often extends the distribution of initial state
d0 to dD by treating every state in a trajectory as initial state (Kostrikov et al., 2020).
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Recently, another Dual-RL method O-DICE (Mao et al., 2024a) was proposed to improve semi-
gradient Dual-RL. O-DICE uses orthogonal-gradient update to Dual-RL, which adds a projected
backward gradient to semi-gradient. The projected backward gradient can be written as

∇⊥
θ V (s′) = ∇θV (s′)− ∇θV (s)⊤∇θV (s′)

∥∇θV (s)∥2
∇θV (s).

Intuitively, the projected backward gradient will not interfere with the forward (semi) gradient while
still retaining information from the backward gradient. After getting the projected backward gradient,
O-DICE adds it to the forward gradient term, resulting in a new gradient flow as

∇θf
∗
(
T̂ V (s, a)− V (s))

)
:= (f∗)′(r + γV (s′)− V (s))

(
γ · η∇⊥

θ V (s′)−∇θV (s)
)
,

where O-DICE uses one more hyperparameter η > 0 to control the strength of the projected
backward gradient against the forward gradient. In theory, η needs to be large enough to guarantee a
convergence.

B PROOFS

Lemma 2. (1− γ)Es∼d0
[V (s)] = E(s,a)∼dD [V (s)− T V (s, a)].

Proof. The proof can be simply obtained by using the definition of state visitation distribution dt at
timestep t following the behavior policy µ.

(1− γ)Es∼d0 [V (s)] = (1− γ)

∞∑
t=0

γtEs∼dt [V (s)]− (1− γ)

∞∑
t=0

γt+1Es∼dt+1 [V (s)]

= (1− γ)

∞∑
t=0

γtEs∼dt

[
V (s)− γEs′∼T (s,a) [V (s′)]

]
= E(s,a)∼dD [V (s)− T V (s, a)]

Theorem 1. Given an action distribution ratio w∗(a|s), we can recover its corresponding state
visitation distribution ratio w∗(s) as

w∗(s) :=
d∗(s)

dD(s)
= max

(
0, (f ′)−1

(
Ea∼µ

[
w∗(a|s)(T U∗(s, a)− U∗(s))

]))
,

where U∗ is the optimal solution of the dual form of (7) as following,

min
U

E(s,a)∼dD

[
U(s)− T U(s, a)

]
+ Es∼dD

[
f∗
p

(
Ea∼µ

[
w∗(a|s) (T U(s, a)− U(s))

])]
.

Proof. We first reframe (7) as
max

d
−g(−Ad)− h(d)

where g(−Ad) corresponds to the linear constraints with respect to the adjoint Bellman operator,
g := δ{(1−γ)d0} and A := γ · T∗ − I.

When applying Fenchel-Rockafellar duality, the linear operator A is transformed to its adjoint
A∗ = γ · T − I and is used as an argument to the Fenchel conjugate h∗(·) = EdD [f∗

p (·)] of h. At the
same time, g is replaced by its Fenchel conjugate g∗(·) = (1− γ)Ed0

[·].
The dual problem is therefore given by

min
U

g∗(U) + h∗(A∗U)

=min
U

(1− γ)Es∼d0
[U(s)] + Es∼dD

[
f∗
p (Ea∼µ [w

∗(a|s) (T U(s, a)− U(s))])
]

We can get Theorem 1 by replacing (1 − γ)Es∼d0
[U(s)] with E(s,a)∼dD [U(s)− T U(s, a)] using

Lemma 2.
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Lemma 1. Given a random variable X and its corresponding distribution P (X), for any convex func-
tion f(x), the following problem is convex and the optimal solution is y∗ = (f ′)−1(Ex∼P (X)[g(x)]).

min
y

Ex∼P (X)[f(y)− g(x) · y].

Proof. Taking the derivative of L(y) with respect to y gives:

d

dy
L(y) = Ex∼P (X) [f

′(y)− g(x)]

Setting the derivative to zero for optimality:

f ′(y∗) = Ex∼P (X) [g(x)]

Since f is convex, f ′ is invertible, and the optimal y∗ is:

y∗ = (f ′)−1
(
Ex∼P (X) [g(x)]

)

Theorem 3. Given horizon length H and the dataset sample size of D as ND, the behavior cloning
performance bound of IDRL at iteration k is given by

V (π) = V (Dk+1)−O
(

|S|H2

NDk+1
+NDk−Dk+1

/maxs w∗
k+1(s)

)
.

Proof. The proof is highly built on the Theorem 3 in Li et al. (2024), which gives the performance
bound of doing imitation learning on expert dataset DE plus a supplementary dataset DS . If one uses
the visitation distribution ratio dE(s, a)/dS(s, a) to do weighted behavior cloning, the imitation gap
bound is given by

E
[
V (πE)− V (πISW-BC)

]
= O

(
|S|H2

NE +NS/µ

)
, (14)

where µ = max(s,h)∈S×[H]
dπE

h (s,πE
h (s))

dπS

h (s,πE
h (s))

. In our case, we can view IDRL at iteration k as doing

imitation learning on "expert" dataset Dk+1 plus a supplementary dataset Dk+1 −Dk, and we have
the learned visitation distribution ratio w∗

k+1(s) = d∗k+1(s)/d
∗
k(s). Put these results in we can get

Theorem 3.

Theorem 4. We have V (Dk+1) ≥ V (Dk) after the k-th iteration of IDRL.

Proof. Assuming the reward function is bounded, i.e, r(s, a) ∈ [0, Rmax]. Note that V (D) =
EdD(s,a)[r(s, a)] and because d∗k+1 is the solution to

d∗k+1 = argmax
d

Ed(s,a)[r(s, a)]− αDf [d(s, a)∥d∗k(s, a)],

so we have

Ed∗
k+1(s,a)

[r(s, a)]− αDf [d
∗
k+1(s, a)∥d∗k(s, a)] = max

d
Ed(s,a)[r(s, a)]− αDf [d(s, a)∥d∗k(s, a)]

≥ Ed∗
k(s,a)

[r(s, a)]− αDf [d
∗
k(s, a)∥d∗k(s, a)]

= Ed∗
k(s,a)

[r(s, a)].

Using these inequality and positivity of f -divergence, it follows that:

V (Dk+1) = Ed∗
k+1(s,a)

[r(s, a)] ≥ Ed∗
k(s,a)

[r(s, a)] + αDf [d
∗
k+1(s, a)∥d∗k(s, a)]

≥ Ed∗
k(s,a)

[r(s, a)] = V (Dk)
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C EXPERIMENTAL DETAILS

For the Pearson χ2 we choose in practice, the corresponding f , f∗, (f ′)−1 has the following form:

f(x) = (x− 1)2; f∗(y) = y(
y

4
+ 1); (f ′)−1(R) =

R

2
+ 1

We apply one trick from Sikchi et al. (2023b) that rewrites objective (3) from α to λ as

min
V

E
[
(1− λ)V (s) + λf∗

p (Q(s, a)− V (s))
]

where λ ∈ (0, 1) trades off linearly between the first term and the second term. This trick makes
hyperparameter tuning easier as α has a nonlinear dependence through the non-linear function f∗

p .

Toycase experimental details The dataset consists of 500 transitions collected via a discrete
random policy, resulting in discretized state transitions. The weighted-BC policy, learned from filtered
transitions, outputs continuous actions, illustrating the effect of weighted-BC on each transition. Both
the policy and value networks are 3-layer MLPs with 256 hidden units. We used the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 1× 10−4. The λ was set to 0.6 to both 2 iterations, each
running for 106 steps. The first 500k steps of each iteration are dedicated to learning the action ratio,
followed by the remaining steps to optimize for the state-action distribution ratio.

D4RL datasets experimental details For all tasks, we conducted our algorithm for 2 iterations
with 106 steps for each iterations. First 500k steps of each iteration are dedicated to learn the action
ratio, followed by the remaining steps to optimize for the state-action distribution ratio. In Mujoco
locomotion tasks, we computed the average mean returns over 10 evaluations every 5 · 104 training
steps, across 7 different seeds. For Antmaze and Kitchen tasks, we calculated the average over
50 evaluations every 5 · 104 training steps, also across 7 seeds. Following previous research, we
standardized the returns by dividing the difference in returns between the best and worst trajectories
in MuJoCo tasks. In AntMaze tasks, we subtracted 3 from the rewards to better fit with our algorithm.

For the network, we use 3-layer MLP with 256 hidden units and Adam optimizer (Kingma & Ba,
2015) with a learning rate of 1× 10−4 for both policy and value functions in all tasks. We also use a
target network with soft update weight 5× 10−3 for Q-function.

We implemented IDRL using PyTorch and ran it on all datasets. We followed the same reporting
methods as mentioned earlier. Baseline results for other methods were directly sourced from their
respective papers. In IDRL, we have one parameters: λ. Because a larger λ indicates a stronger
ability to search for optimal actions, we select a larger λ if the value of V doesn’t diverge. The values
of λ for all datasets are listed in Table 3.

Table 3: λ used in IDRL

Dataset λ
halfcheetah-medium-v2 0.5
hopper-medium-v2 0.6
walker2d-medium-v2 0.5
halfcheetah-medium-replay-v2 0.6
hopper-medium-replay-v2 0.6
walker2d-medium-replay-v2 0.6
halfcheetah-medium-expert-v2 0.5
hopper-medium-expert-v2 0.5
walker2d-medium-expert-v2 0.5
antmaze-umaze-v2 0.6
antmaze-umaze-diverse-v2 0.4
antmaze-medium-play-v2 0.7
antmaze-medium-diverse-v2 0.7
antmaze-large-play-v2 0.7
antmaze-large-diverse-v2 0.8
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Corrupted demonstrations experimental details In this experiment setting, we introduce the noisy
dataset by mixing the expert and random dataset at varying expert ratios using Mujoco locomotion
datasets, thereby simulating dataset collected with most low-performing behavior policies. The
number of total transitions of the noisy dataset is 1, 000, 000. We provide details in Table 4.

Table 4: Noisy dataset of MuJoCo locomotion tasks with different expert ratios.

Env Expert ratio Total transitions Expert transitions Random transitions

Walker2d
1% 1,000,000 10,000 990,000
5% 1,000,000 50,000 950,000

10% 1,000,000 100,000 900,000

Halfcheetah
1% 1,000,000 10,000 990,000
5% 1,000,000 50,000 950,000

10% 1,000,000 100,000 900,000

Hopper
1% 1,000,000 10,000 990,000
5% 1,000,000 50,000 950,000

10% 1,000,000 100,000 900,000

D ETHICS STATEMENT

While IDRL has positive social impacts by helping to solve various practical data-driven decision
making tasks, such as in robotics, healthcare, and industrial control, it is important to acknowledge
that some potential negative impacts also exist. If crucial transitions in the dataset are filtered out, the
trained model could behave unpredictably or even dangerously in certain situations.

Figure 4: Learning curves of IDRL on D4RL Mujoco locomotion datasets.
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Figure 5: Learning curves of IDRL on D4RL Antmaze datasets.
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