OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization

Yiyou Sun¹, Shawn Hu⁴, Georgia Zhou¹, Ken Zheng¹, Hannaneh Hajishirzi^{2,3}, Nouha Dziri², Dawn Song^{1*}

¹University of California, Berkeley, ²Ai2, ³University of Washington, ⁴dmodel.ai

Abstract

Recent large language models (LLMs) with long Chain-of-Thought reasoning—such as DeepSeek-R1—have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking [15]. To systematically investigate these limitations, we introduce OMEGA—Out-of-distribution Math Problems Evaluation with 3 Generalization Axes—a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity [4]: (1) **Exploratory**—applying known problem-solving skills to more complex instances within the same problem domain; (2) **Compositional**—combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) **Transformative**—adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Owen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.

1 Introduction

LLMs with long CoT reasoning—DeepSeek-R1 [8], OpenAI-o4 [13], Claude-Sonnet [17]—show strong results on Olympiad-level benchmarks, yet often lean on a narrow repertoire of strategies, whether trained by SFT [15] or RL [19]. Consequently, they falter on problems demanding novel insights [15]. Bridging the gap between pattern-following and genuine mathematical creativity remains open.

Existing datasets hinder causal analysis of reasoning. Large corpora (*Numina-Math* [10], *Omni-Math* [7], *DeepMath* [9]) mix topics and difficulty, obscuring which skills drive success; controlled sets (*GSM-Symbolic* [12], *GSM-PLUS* [11], *GSM-Infinite* [20]) are narrow; earlier suites [2] target elementary tasks. We provide a detailed comparison in Table 6.

^{*}indicates the equal advising role.

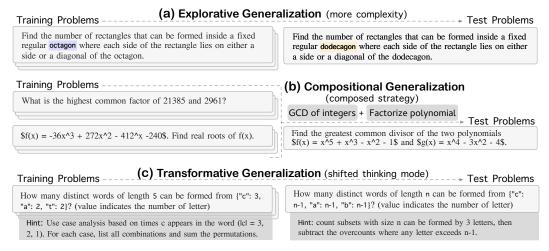


Figure 1: Training–test pairs probing distinct generalization axes: (a) **Exploratory**—scale complexity within the same paradigm (e.g., octagon \rightarrow dodecagon in geometric counting); (b) **Compositional**—integrate skills learned separately (e.g., polynomial GCD + root-finding); (c) **Transformative**—shift strategy (e.g., from case enumeration to subtractive counting).

We introduce OMEGA, a controlled yet diverse benchmark probing three axes of OOD generalization, inspired by Boden's creativity typology [4]: *Exploratory*, *Compositional*, and *Transformative* (Figure 1). Matched train–test pairs isolate specific capabilities: scaling within a domain, integrating previously isolated skills, and adopting unconventional strategies.

OMEGA comprises 40 templated generators across six domains—arithmetic, algebra, combinatorics, number theory, geometry, logic & puzzles—with Olympiad-level complexity. Problems and answers are programmatically produced (symbolic, numeric, or graphical). Templates encode target strategies and support composition for compound tasks.

Empirically, we find: (a) **Accuracy collapses with complexity.** Models often locate a viable path early but waste tokens on verification, enter error spirals via overcorrection, or avoid tedious computation despite being capable. (b) **RL gains plateau.** RL improves generalization from easy to medium regimes, mainly in-domain, but struggles at higher complexity and varies by domain. (c) **Skill integration and creativity lag.** Models trained on isolated skills underperform on compositional tasks and degrade when success requires strategy shifts.

These results argue for *smarter* scaling—methods that strengthen core reasoning and strategy selection—over brute-force data or inference-time compute.

2 OMEGA: Probing the Generalization Limits of LLMs in Math Reasoning

We introduce OMEGA (more details in Appendix A), a controlled framework for testing out-of-distribution (OOD) mathematical reasoning in LLMs along three axes—exploratory, compositional, and transformative—inspired by Boden's creativity typology [4]. To precisely attribute generalization, we train and evaluate on problems drawn from 40 single-scope templated generators spanning arithmetic, algebra, combinatorics, number theory, geometry, and logic/puzzles, calibrated around AIME difficulty [3] and often used as building blocks for Olympiad-level tasks (e.g., function_intersection). Templates admit meaningful parametric variation while preserving a well-scoped solution strategy; all instances are programmatically generated with automatic solution checks (e.g., grid search for function_intersection, exhaustive enumeration for combinatorics, and cv2.approxPolyDP for polygon counting in rotation tasks). Formally, each template τ induces instances $x_{\tau,\theta}$ parameterized by $\theta \in \Theta_{\tau}$ and ranked by a complexity measure $\delta(\theta)$; for each axis and domain, we specify training, in-distribution (ID), and OOD test sets by selecting templates and regions in Θ_{τ} .

Exploratory generalization tests whether a model extends a learned algorithm to harder instances from the same template by training on $\delta \leq \delta_0$ and evaluating on $\delta > \delta_0$ (with δ_0 chosen so the base model scores < 50% on train), ensuring that increases in δ reflect genuinely harder reasoning.

Compositional generalization probes the integration of distinct sub-skills rather than their superficial concatenation; we enforce (i) cohesive skill synthesis, (ii) complete coverage of each constituent skill in training, and (iii) nontrivial training difficulty, organizing seven categories in which test items require synergistic application of two skills (illustrated in Fig. 5; examples in Tables 7–8). Finally, transformative generalization is the most demanding: training and test share scope (e.g., polynomial roots or function intersections), but test items are constructed so the familiar tactic becomes ineffective, forcing a qualitatively different strategy (e.g., symmetry-exploiting substitutions or global geometric arguments); we curate seven such categories pairing challenging training tasks with tests that require a strategic "reframing," exemplified in Table 2.

3 Experiments

Setup. We study whether RL (GRPO) improves generalization of Qwen2.5-7B-Instruct and Qwen2.5-Math-7B² across **exploratory**, **compositional**, and **transformational** settings. For each setting, we train on 1k problems and evaluate on matched ID/OOD sets.

Exploratory. Train on complexity levels $\delta \le 2$; test on (i) ID within the same family ($\delta \le 2$) and (ii) OOD higher complexity ($\delta > 2$).

Compositional. For each pair $\mathcal{C}=(S_A,S_B)$, train only on single-skill problems (P_{S_A},P_{S_B}) ; test on (i) those single-skill ID sets and (ii) OOD compositions $P_{S_A \oplus S_B}$ requiring *integrated* use, not mere sequential application.

Transformational. Train on problems solvable by conventional strategies; test on (i) ID problems with the same strategies and (ii) OOD look-alikes requiring a qualitatively different approach.

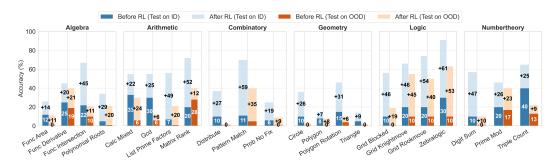


Figure 2: *Qwen2.5-7B-Instruct* on OMEGA (exploratory). Concatenated bars show ID (blue) and OOD (orange). RL strongly improves ID; OOD gains are smaller and more variable.

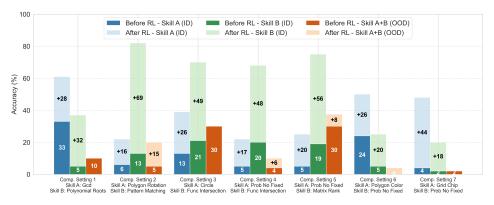


Figure 3: OMEGA compositional results. RL boosts single-skill accuracy (Skill A/B) but rarely transfers to the composed tasks.

²Qwen2.5-Math-7B shows the same trends; see Fig. 8.

Can RL Learn to Compose Math Skills? Strong on Isolated Skills, Weak on Integration (Figure 2 & Figure 3) Across five pairs, RL substantially lifts single-skill accuracy (often > 69% after training in the best cases) but yields little improvement on compositions $P_{S_A \oplus S_B}$. Example: large gains on polygon rotation (from 13% base to near +70 pp), yet no corresponding boost when combined with polynomial GCD/root reasoning. Ablations swapping skill components show the best improvements occur when skills are conceptually aligned; replacing one/both skills reduces or negates gains (Tables 11, 12). Conclusion: RL solidifies *specific* procedures but does not reliably induce *integrated* reasoning.

Figure 4: OMEGA transformational results. RL improves ID but OOD remains near zero; in one case (matrix rank), RL harms a strong base OOD.

Can RL Discover New Strategies? Helps on Familiar Patterns, Struggles on Transformations (Figure 4) Transformational OOD requires abandoning training-observed heuristics. RL consistently raises ID accuracy (e.g., large gains on matrix-rank ID) but OOD accuracy stays near zero, with only small pockets of improvement (and often on easier variants where conventional methods still apply). Notably, where the base model had strong OOD (e.g., 70% on matrix rank), RL reduced performance by 30 pp, suggesting optimization can entrench brittle patterns rather than promote exploration. Overall, RL enhances execution of *known* strategies but rarely induces *new* ones without explicit exposure.

4 Discussion & Conclusion

We have presented OMEGA, a controlled benchmark designed to isolate and evaluate three axes of out-of-distribution generalization in mathematical reasoning: explorative, compositional, and transformative. By generating matched train—test pairs from template-driven problem families, our framework enables precise analysis of reasoning behaviors and supports infinite-scale, reproducible synthesis. Our empirical study yields three key insights. First, RL fine-tuning delivers substantial gains on both in-distribution and explorative generalization, boosting accuracy on harder instances within known problem domains. Second, despite these improvements, RL's impact on compositional tasks remains modest: models still struggle to integrate multiple learned strategies coherently. Third, RL struggles to induce genuinely new reasoning patterns, showing negligible progress on transformative generalization that requires shifting to novel solution paradigms. These findings underscore a fundamental limitation: while RL can amplify the breadth and depth of problems that LLMs solve, they do not by themselves foster the creative leaps needed for true transformational reasoning. To bridge this gap, future work might explore:

- Curriculum scaffolding: dynamically ordering tasks to gradually introduce compositional and transformative challenges alongside explorative ones;
- Meta-reasoning controllers: mechanisms that detect when a default strategy stalls and actively search for alternative solution families;

By diagnosing where and why current LLMs fail to generalize creatively, OMEGA lays the ground-work for next-generation reasoners that can not only interpolate but also innovate—moving us closer to human-level mathematical problem-solving.

References

- [1] Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-scale, high-quality math dataset for reinforcement learning in language models, 2025.
- [2] Noguer I Alonso et al. The mathematics of deepmind models. *The Mathematics of DeepMind Models* (*November 01*, 2024), 2024.
- [3] Art of Problem Solving. 2024 aime ii problems/problem 1, 2024. Accessed: 2025-03-27.
- [4] Margaret A Boden. Creativity and artificial intelligence. Artificial intelligence, 103(1-2):347–356, 1998.
- [5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.
- [6] Hugging Face. Metamathqa, 2023.
- [7] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for large language models. *arXiv preprint arXiv:2410.07985*, 2024.
- [8] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.
- [9] Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint arXiv:2504.11456, 2025.
- [10] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.co/AI-MO/NuminaMath-1.5] (https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.
- [11] Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive benchmark for evaluating the robustness of llms as mathematical problem solvers. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 2961–2984, 2024.
- [12] Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models. *arXiv* preprint arXiv:2410.05229, 2024.
- [13] OpenAI. Learning to reason with llms, September 2024.
- [14] OpenAI. Math 500, November 2024.
- [15] Yiyou Sun, Georgia Zhou, Hao Wang, Dacheng Li, Nouha Dziri, and Dawn Song. Climbing the ladder of reasoning: What Ilms can-and still can't-solve after sft? *arXiv preprint arXiv:2504.11741*, 2025.
- [16] Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction tuning for mathematical reasoning, 2024.
- [17] Anthropic Team. The claude 3 model family: Opus, sonnet, haiku.
- [18] Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman. Openmathinstruct-1: A 1.8 million math instruction tuning dataset, 2024.
- [19] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv preprint arXiv:2504.13837, 2025.
- [20] Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How do your llms behave over infinitely increasing context length and reasoning complexity? arXiv preprint arXiv:2502.05252, 2025.

A Dataset Details

Table 1: Example problem templates across six mathematical domains. For illustration purposes, template content has been shortened. Shaded text indicates programmatically generated variants. Each problem template is associated with a complexity measure $\delta(\theta)$, reflecting task-specific complexity metrics.

Category	Problem Name	Template Example (τ) with parameter (θ)	Complexity $(\delta(\theta))$
	GCD	What is the greatest common factor of 3450 and 24380?	$\log_{10}(\text{answer})$
Arithmetic	Prime Factorization Mixed Operations	What is the second-largest prime factor of 519439? What is the value of (-7920)/1320 - 2/44*4614?	$log_{10}(answer)$ number of operations
	Matrix Rank	Find the rank of the matrix [[5, -14, 6, -1], [-2, -1, 5, -4], [10, -10, -6, 10], [-19, 1, 3, -1]	size of the matrix
	Linear Equation	Solve $5m = -8k - 345$, $-3m + 26 + 119 = -898k + 894k$ for m .	number of sym bols
	Polynomial Roots	Suppose $4160a^3 + 4480a^4 - 585a - \frac{12090}{7}a^2 + \frac{1080}{7} = 0$) max power
Algebra	Func Intersection	what is a (rational number)? How many times do the graphs of $f(x) = 2 (-2\sin(\pi x + 2) + 1) - 2 + 3$ and	number of compo- sitions
	Func Area	g(x) = 3 x+2 - 3 intersect on $[-10, 10]$? Find the area bounded by $f(x) = 2(-3x+4)^2 + (-3x+4) + 3$, $g(x) = 3x - 1$, $x = 1.3$, and $x = 1.7$.	number of compo- sitions
	Letter Distribution	Distribute {s:3, g:2, j:2} into 3 identical containers	number of letters
Combinatorics	Pattern Match	holding [3, 2, 2] letters. Randomly select 3 letters from {0:2, x:3}; expected	number of letters
	Prob. (No Fixed)	matches of pattern 'xo+'? Choose 3 letters from {u:1, f:3, t:2} and shuffle. Probability of no fixed letter positions?	number of letters
	Digit Sum	Let N be the 10th smallest 3-digit integer with digit sum divisible by 6 . Find N .	$\log_{10}(\text{answer})$
Number Theory	Triple Count	How many ordered triples (a,b,c) with $a,b,c \le 3^2$ satisfy $-2a^3-2b^3+2c^3\equiv 0 \pmod{3^2}$?	$\log_{10}(\text{answer})$
	Prime Mod	Let p be the smallest prime for which $n^6+2\equiv 0\pmod{p^5}$ has a solution; find the minimal n for this p .	$\log_{10}(\text{answer})$
Geometry	Circle	Circle X has center I and radius 8. M has center K and radius 6 and is internally tangent to circle X. Let U be the rotation of point K by angle $7\pi/12$ around point I. Circle D passes through points I, K, and U. What is the radius of circle D?	number of con- structions
	Rotation	In a regular octagon labeled $1-8$, draw diagonals from 5 to 3 and from 2 to 7. Rotate the figure 7 steps counterclockwise and overlap it with the original. How many smallest triangular regions are formed?	number of vertices of polygon
Logic & Puzzles	Grid Blocked	In a 4x4 grid, how many different paths are there from the bottom left (0, 0) to the top right (3, 3), if you can only move right or up at each step, subject to the constraint that you cannot move through the following cells: (3, 1), (2, 3), (0, 1), (2, 1)?	grid size

A central goal of mathematical reasoning is not merely to apply memorized procedures but to flexibly adapt, combine, and extend learned strategies. To assess the extent to which LLMs exhibit this capacity, we propose a typology of generalization inspired by *Margaret Boden*'s framework for creativity in cognitive science [4]. Specifically, we define three axes of reasoning generalization—exploratory, compositional, and transformative— to probe the limits of these models on

controlled out-of-distribution (OOD) cases that range from easier extensions of seen patterns to harder, more unconventional reasoning problems. Assessing performance along these axes requires fine-grained control over the in-distribution training data.

A.1 Problem Construction

Training on a heterogeneous mix of unrelated problems obscures the source of generalization. In contrast, restricting training data to instances drawn from a single template ensures that the model learns a well-scoped strategy.

In our work, all training and test problems problems are generated from carefully designed templates to enable precise control over problem structure, diveristy and required reasoning strategies. To do so, we use 40 templated problem generators spanning six mathematical domains: arithmetic, algebra, combinatorics, number theory, geometry, and logic & puzzles. Example problem templates are illustrated in Table 1. These problems are calibrated at the knowledge level comparable to the American Invitational Mathematics Examination (AIME) [3], with many serving as crucial sub-components in solving Olympiad-level problems. For instance, the function_intersection problem type represents an essential building block for questions requiring advanced function analysis.

The selection of problem templates involved several critical considerations:

- **Single-scope** with meaningful variations. Each problem template is designed to focus on a *single-scope* mathematical strategy while allowing for substantial variations. By *single-scope*, we mean that the required solution approach is confined within a well-defined framework, enabling controlled studies of specific reasoning patterns. For instance, instead of combining multiple geometric shapes in a single problem generation template, we isolate problem families on different shapes independently. At the same time, we ensure meaningful variation by designing parameters that fundamentally alter solution trajectories when modified. This contrasts with datasets (numerical perturbation) like *GSM-PLUS* [11], where varying numerical values often preserve the underlying solution path without introducing new reasoning challenges.
- Programmatic generation and solution validation. To ensure scalability, both problem instances and their solutions are programmatically generated. This requirement significantly influenced template selection, especially for geometry problems that demand sophisticated procedural generation. We employed diverse computational methods for solution validation: grid search algorithms for function_intersection problems, exhaustive enumeration for combinatorial tasks, and computer vision techniques—such as cv2.approxPolyDP from OpenCV—to accurately count polygons in rotation problems.

A.2 Training and Evaluation Setup for Generalization

Let $\mathcal{T}=\{\tau\}$ denote a collection of problem templates, where each template τ defines a family of problem instances $\mathcal{P}_{\tau}=\{x_{\tau,\theta}\mid\theta\in\Theta_{\tau}\}$, parameterized by a complexity vector θ within a parameter space Θ_{τ} . We define a scalar tomplate measure totale scale sca

A.3 Exploratory Generalization

Exploratory generalization assesses whether a model can *faithfully extend* a single reasoning strategy beyond the range of complexities seen during training. Concretely, the model is exposed to problems drawn from one template τ , all lying within a "low-complexity" regime, and is then evaluated on *harder* instances from the same family. This axis probes robustness: does the model generalizes the same algorithm to higher complexity problems? or does it merely memorize solutions at a fixed complexity level?

Training and testing data construction. we define a cutoff threshold δ_0 based on a task-specific complexity measure δ , which determines the maximum complexity level included in training. All

problem instances with $\delta \leq \delta_0$ are used for training, while those with $\delta > \delta_0$ are reserved for testing. To ensure the setting remains sufficiently challenging, we select δ_0 such that the base model achieves under 50% accuracy on the training data—reflecting the inherent complexity of these reasoning tasks and leaving room for improvement through fine-tuning. All problem templates introduced in Section A are suitable for exploratory generalization experiments, as they encompass scalable reasoning tasks. For each template, we ensure that the complexity scaling aligns with the mathematical intuition of the task, such that increasing δ genuinely demands more sophisticated reasoning steps.

A.4 Compositional Generalization

Compositional generalization probes a model's ability to integrate multiple, distinct reasoning strategies. Unlike explorative generalization, which scales a known method to larger instances, compositional generalization requires a fusion of sub-skills synergistically. Figure 5 illustrates two such cases, where solving the target problem hinges on combining finite-case enumeration with piecewise reasoning or geometric layout analysis with nested-pattern counting. Overall, compositional generalization offers a controlled framework for assessing whether a model can go beyond mastering individual reasoning patterns to dynamically combine them—thereby distinguishing shallow, rote learning from genuine skill integration and true task understanding.

To curate meaningful compositional settings, we enforce the following principles: First, **cohesive skill integration** where the compositional train problems should require true synthesis of multiple reasoning skills rather than superficial concatenation. This ensures that solving the problem depends on the synergistic application of sub-skills, not merely applying them in sequence. Second, **complete skill coverage** where each reasoning skill involved in the composed test task should be independently represented in the training set. This ensures that success on the test reflects the model's ability to compose familiar strategies, rather than rely on exposure to novel ones. And lastly, **nontrivial complexity of train problems** where train problem should be sufficiently challenging so that the model actually learns each sub-skill, making any compositional gains observable. The training problems from our templated inventory remain challenging to the base model, even at low complexity levels (1–2).

Training and testing data construction. Our compositional dataset is structured around seven categories (details in Appendix §A.7), each designed to probe specific combinations of reasoning skills. Within each problem family, we identify a core skill and construct corresponding training examples that isolate and reinforce this skill. To evaluate compositional generalization, we then design test problems that require the synergistic application of two distinct skills—such that the solution cannot be obtained by applying each skill naively, but instead demands their true integration. For instance, as illustrated in Figure 5, one problem family focuses on interpreting polygonal geometry, while another targets counting nested patterns; their composition results in a task that requires counting nested structures within polygons. Each setting includes multiple training instances for individual skills and corresponding test instances that assess the model's ability to combine them

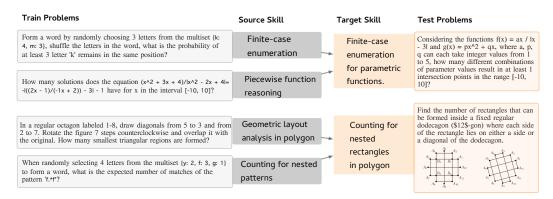


Figure 5: Two examples of compositional generalization in our training/test setup. Each case presents training problems from two separate templates that exercise particular reasoning skills that the model must master, and a test problem that composes the skills.

effectively. Representative examples are provided in Table 7 and Table 8, with additional information in Appendix A.7.

Table 2: Illustrative training versus test tasks that probe *Transformative generalization*. Training problems reinforce familiar tactics, but can be over-complicated for test problems where qualitatively different reasoning is required.

Problem family	Training regime (familiar tactic)	Transformative test (new tactic required)
POLYNOMIAL ROOTS	 Problem. Solve f(x) = -36x³ + 272x² - 412x - 240. Tactic learned. Apply the Rational Root Theorem (enumerate p/q with p 240, q 36), test candidates via synthetic division, then factor the cubic. 	 Problem. Solve f(x) = x⁵ + 10x³ + 20x - 4. Needed insight. Substitute x = t + a/t to exploit symmetry, reduce to a quadratic in t², then recover x.
FUNCTION INTERSEC- TION	 Problem. Count intersections of f(x) = 2 -2 exp(πx + 2) + 1 - 2 + 3 and g(x) = 3 x + 2 - 3 on [-10, 10]. Tactic learned. Simplify by sign-case analysis, resolve absolute values, and use periodicity to count intersections. 	 Problem. With f(x) = x - ½ and g(x) = x - ¼ , find intersections of y = 4g(f(sin 2πx)), x = 4g(f(cos 3πy)). Needed insight. Avoid exhaustive casework; instead, analyze how "up" and "down" graph segments multiply and intersect, using visual symmetry for efficient counting.

A.5 Transformative Generalization

Transformative generalization poses the greatest challenge: it asks whether a model can abandon a familiar but ultimately ineffective strategy in favor of a qualitatively different and more efficient one. These tasks lie outside the scope of mere extension or composition; they require a "jump out of the box"—a creative reframing that circumvents the limitations of standard tactics. To curate meaningful transformative settings, we enforce the following principles: a) **Same problem scope**, **new insight.** Training and test problems share the same template family (e.g., polynomial-root finding or function-intersection), but test instances are specifically designed so that the familiar tactic either fails or becomes intractably cumbersome; b) **Necessity of reframing.** Solving the test problem must require a novel strategy—such as a symmetry-exploiting substitution or a global geometric argument—rather than exhaustive casework or brute-force enumeration; c) **Nontrivial training tasks.** The training problems themselves remain sufficiently challenging to ensure the model genuinely learns the familiar tactic before being forced to abandon it.

Training and testing data construction. Our transformative dataset comprises seven categories (detailed in Appendix §A.8), each specifically designed to evaluate a model's capacity to adopt novel problem-solving approaches. Within each category, training problems are generated from the templates described in Section A. These training tasks can typically be solved using conventional reasoning strategies of moderate complexity, ensuring that the model thoroughly acquires foundational skills. Conversely, the corresponding test problems are intentionally constructed to render these familiar methods ineffective, compelling the model to devise and employ qualitatively distinct solutions. For instance, as illustrated in Table 2, polynomial-root finding tasks in training might be addressed through straightforward factorization, whereas the test scenarios require employing specialized algebraic substitutions to efficiently determine solutions. Similarly, training instances for function-intersection problems might typically involve direct derivative analysis, whereas the test cases demand recognition of underlying geometric properties to bypass computationally intensive algebra. Each transformative category thus pairs multiple training problems that reinforce established techniques with test problems explicitly designed to challenge the model to surpass these traditional approaches and engage in genuine strategic innovation. Additional examples and detailed explanations are available in Appendix §A.8.

A.6 Details of Problem Families

To provide full transparency on our templated generators, we include three comprehensive tables in the appendix. Table 3 lists all arithmetic and algebra templates (e.g., linear equations, polynomial roots, function operations), alongside their complexity measures across five calibration levels. Table 4 details the combinatorics and number-theory generators with corresponding size or range metrics at each level. Finally, Table 5 presents our logic & puzzles and geometry templates, again annotated with statement counts or grid sizes for the five levels. Together, these tables document the full set of 41 problem families used in MathOOD, illustrating how each template is systematically calibrated to enforce controlled, domain-specific reasoning strategies.

Table 3: Problem families (arithmetic and algebra) with sample problems and complexity measures across five levels.

Problem Family Alias	Sample Problem Statement	Complexity Measure	Lv1	Lv2	Lv3	Lv4	Lv5
algebra/linear_equation	Solve $3n - 4t + 1012801 = 1012843, -3n + 66 = 4t$	Symbol num- ber	2	3	4	5	6
algebra/polynomial_roots		Degree	3	4	5	6	7
algebra/func_integration	as n/m where $gcd(n,m) = 1$. Compute the indefinite integral for $f(x) = 2(x-5)^2 - 4(x-5) + 3$.	Composed function number	2	3	4	5	6
algebra/func_area	Determine the area enclosed by $f(x)=\frac{3(-e^{-x}-2)-1}{-3(-e^{-x}-2)-3}, g(x)=-3 x+1 +3$	Composed function number	2	3	4	5	6
algebra/func_derivative	Number of maximal connected intervals in $[-10, 10]$ where $f(x) = -4(-2\sin(\pi x - 2) + 2) + 5$ is increasing.	Composed function number	2	3	4	5	6
algebra/func_ext_coords	Average of all x -coordinates of local minima of $f(x) = \frac{-3(-2\sin(\pi x - 2) + 2) + 2}{2(-2\sin(\pi x - 2) + 2) + 1}$.	Composed function number	2	3	4	5	6
algebra/func_extrema	Number of local maxima of $f(x) = 2\cos(3\pi(x+1 +3)+3) - 1$ in $[-10,10]$.	Composed function number	2	3	4	5	6
algebra/func_intsct_coord	is Integer value (rounded) at which $f(x) = x - 5$, $g(x) = -2 x - 1$ intersect in $[-10, 10]$.	Composed function number	2	3	4	5	6
algebra/func_intersection	Number of intersections of $f(x) = -3\cos(2\pi(2 x+2 +2)+3)+1$, $g(x) =$	Composed function number	2	3	4	5	6
algebra/func_zeros	4x - 3 in $[-5, 5]$. Number of <i>x</i> -intercepts of $f(x) = 3\cos(\pi(-3 x-2 +1)-3) + 3$.	Composed function number	2	3	4	5	6
arithmetic/gcd	What is the greatest common divisor of 1290 and 64715?	Digit length	[4,7]	[10,12	2][15,20	0][20,2	5][25,30
arithmetic/calc_mixed	Evaluate $-2 - ((-9)/7 + ((-1632)/119 - 0))$.	Operation length	[4,9]	[10,14	4][14,10	6][16,20	0][20,25
arithmetic/list_prime	Find the second-largest prime factor of 62033.	Max answer	25	100	200	400	800
arithmetic/determinant	Determine $det(A)$.	Row	3	4	6	7	9
arithmetic/eigenvalues	Find eigenvalues of A and report the largest (by absolute value).	Row	3	4	6	7	9
arithmetic/inverse	Invert $\frac{1}{60}A$ and sum all entries of the inverse.	Row	3	4	6	7	9
arithmetic/multiplication	Entry $(2, 1)$ of the product of given matrices A and B .	Row	3	4	6	7	9
arithmetic/power	Sum of all entries of A^2 .	Row	3	4	6	7	9
arithmetic/rank arithmetic/svd	Rank of the matrix A. Rounded largest singular value of A in its SVD.	Row Row	3	4 4	6 6	7 7	9 9

Table 4: Problem families (combinatory and number theory) with sample problems and complexity measures across five levels.

Problem Family Alias	Sample Problem Statement (simplified)	Complexity Measure	Lv1	Lv2	Lv3	Lv4	Lv5
combinatory/distribute	Divide the letters from {'m' : 2, 'p' : 2, 't' : 2} into 3 distinctively labeled boxes with sizes [2, 1, 3]. How many ways?	Total letters	[4,6]	[6,8]	[9,10]	[11,1]	1][12,12]
combinatory/pattern_mate	hForm a word by randomly choosing 4 letters from the multiset {'h': 6, 'u': 3}. What is the expected number of occurrences of h.*h?	Total letters	[4,6]	[6,8]	[9,10]	[11,12	2][13,14]
combinatory/prob_gt_n_fi	wWhat is the probability that, when forming a 4-letter word from {'h': 2, 'r': 3, 'q': 3} and shuffling it, at least one 'r' remains in its original position?	Total letters	[4,6]	[6,8]	[8,9]	[10,1]	1][11,12]
combinatory/prob_eq_n_fi	xWhat is the probability that, when forming a 2-letter word from {'m': 2, 'r': 1, 'o': 1} and shuffling it, exactly one 'r' remains in its original position?	Total letters	[4,6]	[6,8]	[8,9]	[10,1]	1][11,12]
combinatory/prob_no_fix	What is the probability that, when forming a 4-letter word from {'b': 4, 'i': 2, 'u': 2} and shuffling it, no letter remains in its original position?	Total letters	[4,6]	[6,8]	[8,9]	[10,1]	1][11,12]
combinatory/prob_no_lette	erWhat is the probability that, when forming a 4-letter word from {'r': 3, 'x': 3, 'n': 2} and shuffling it, no 'x' occupies any of its original positions?	Total letters	[4,6]	[6,8]	[8,9]	[10,1]	1][11,12]
numbertheory/digit_sum	Let N be the greatest 4-digit integer such that both N and its digit-reverse are divisible by 9. What is the digit sum of N ?	Digit count	2	3	4	5	6
numbertheory/triple_count	Let N be the number of ordered pairs (a,b) with $a,b \le 2^4$ such that a^2+b^2 is a multiple of 2^2 . What is N ?	Max answer	10	50	100	200	500
numbertheory/prime_mod	Let p be the least prime number for which there exists a positive integer n such that $n^3+(2)$ is divisible by p^4 . Find the least positive integer m such that $m^3+(2)$ is divisible by p^4 .	Digit count	2	3	4	5	6

Table 5: Problem families (logic and geometry) with sample problems and complexity measures across five levels.

Problem Family Alias	Sample Problem Statement (simplified)	Complexity Measure	Lv1	Lv2	Lv3	Lv4	Lv5
logic/blocked_grid	In a 3×6 grid, how many paths from $(0,0)$ to $(2,5)$, moving only right or up, if cells $(0,4),(1,3),(2,0)$ are forbidden?	Grid size	[5,10]	[10,20)][20,30)][30,50	0][50,70
logic/grid_rook	In a 3×6 grid, minimal rook-like moves (any number right or up) from $(0,0)$ to $(2,5)$, avoiding $(1,1),(1,0),(1,3),(2,0)$?	Grid size	[5,10]	[10,20)][20,30)][30,50	0][50,70
logic/grid_knight	On an 8×9 grid, minimal knight-like moves (5 by 1 leaps) from $(0,0)$ to $(7,5)$?	Grid size	[5,10]	[10,20)][20,30)][30,50	0][50,70
logic/zebralogic	Two houses numbered 1–2 each with unique person (Arnold, Eric), birthday (april, sept), mother (Aniya, Holly). Clues: Eric is left of Holly's child; April birthday in house 1. Which choice index?	max(# of at- tributes, # of people)	2	3	4	5	6
logic/grid_chip	In a 5×5 grid, chips black/white satisfy row/column uniformity and maximality; given colours at $(3,4),(2,0),(4,3),(1,1),(2,2),(0,3)$. How many chips placed?	Grid size	4	5	6	7	8
geometry/basic	$DS = 10$. P is midpoint of DS . Rotate S by $7\pi/12$ about P to X . Reflect X over D to Z ; reflect D over Z to L . B is midpoint of PZ ; F is bisector of $\angle SPL$; reflect S over F to T . Find $ BT $.	Statement number	10	15	20	25	30
geometry/polygon_chords	For a 6-gon with specified diagonals drawn (2-6,1-4,3-6,5-2,6-4,4-2,3-1), how many pairs of diagonals are perpendicular?	# of diagonals	[6,7]	[8,9]	[10,1]	1][12,13	3][14,15
geometry/circle	Circle center C , radius 7. G on circle; L midpoint of GC ; X midpoint of LC ; I midpoint of LX ; F is reflection of G across C . Find $ IF $.	Statement number	10	15	20	25	30
geometry/polygon_general	Square $\stackrel{.}{A}BCD$ center T , circumradius 7. Reflect T across B to G . O midpoint of DG ; Z midpoint of TA . Find $ OZ $.	Statement number	10	15	20	25	30
geometry/triangle	$XT = 6$. Rotate T by $5\pi/6$ about X to O . Reflect O across XT to V . D is incenter of $\triangle TOX$; E midpoint of XV . Find $ DE $.	Statement number	10	15	20	25	30
geometry/rotation	In a 10-gon, draw diagonals 5–9 and 8–6, then rotate setup 5 vertices CCW and superimpose. Count smallest polygons formed.	Diagonal number	2	3	4	5	6
geometry/polygon_color	A 6-gon vertices colored B,B,R,B,B,B in order. By rotating, what is the maximum blue vertices landing on originally red positions?	n of n-gon	[6,7]	[8,9]	[10,1]	1][12,13	3][14,15

МЕТНОО	PROBLEM GENERATION	PROBLEM VERIFICATION	OVERALL COMPLEXITY	CONTROL W. CIFFICULTY	CONTROL W. DISTRIBUTION	Notes
AIME [3]	Human	Human	High	Х	×	30 Questions per year.
GSM8K [5]	Human	Human	Low	X	✓	Primitive math-word problems.
GSM-Symbolic [12]	Program	Program	Low	✓	✓	Perturbed math-word problems.
GSM- Infinite [20]	Program	Program	Arbitrary	✓	✓	Infinitely generable math-word problems.
MATH500 [14]	Human	Human	Low	✓	×	
МЕТАМАТН [6]	Human/LLM	Human/LLM	Low	X	×	Based on GSM8K/MATH.
BIGMATH [1]	Human	Human/Filters	High	X	×	A mix of many datasets.
MATHSCALEQA [16]	LLM	LLM	Low	X	✓	2M generated datapoints.
OPENMATH- INSTRUCT [18]	Human/LLM	Human/Code/LLM	Low	X	×	1.8M solutions to 14K problems from MATH / GSM8K.
DEEPMATH [9]	Human	Human	High	✓	×	103K mathematical problems.
OMEGA (Ours)	Program	N/A; Correct by Construction	Arbitrarily High	✓	✓	A controlled dataset for systematic math generalization analysis.

Table 6: A comparison of various evaluation datasets and the methods used to generate them.

A.7 Details of Compositional Generalization Problems

Compositional generalization evaluates a model's ability to integrate multiple, distinct reasoning strategies. In contrast to exploratory generalization—which focuses on scaling a single known method to larger instances—compositional generalization requires the synergistic fusion of sub-strategies to solve more complex problems. By the submission deadline, we provide 7 distinct settings to assess compositional performance. Setting 1, illustrated in Figure 1, combines GCD and polynomial root problems. Detailed examples and explanations for the remaining six settings are provided in Table 7 and Table 8.

Problem family	Training regime (familiar tactic)	Compositional test (combined tactic required)
COMP. SETTING 2: GEOMETRY/ROTA- TION + COMBINATORY/PAT- TERN_MATCH	• Example Problem from Domain A. Suppose you have a 9-gon, with vertices numbered 1 through 9 in counterclockwise order. Draw the diagonal from vertex 6 to vertex 4, from vertex 1 to vertex 6, and from vertex 3 to vertex 5. Then, rotate the entire setup, including the constructed diagonals, 8 vertices counterclockwise (so that vertex 1 ends up where vertex 9 was), and superimpose it on the original (so that the resulting diagram contains both the original diagonals and the rotated versions of the diagonals). The original 9-gon will be partitioned into a collection of smaller polygons. How many such polygons will there be? • Example Problem from Domain B. Form a word by randomly choosing 3 letters from the multiset {y: 2, v: 1, p: 4, z: 4}. What is the expected number of occurrences of the pattern 'p.*p' in each word?	 Composed Problem. Find the number of rect angles that can be formed inside a fixed regula 12-gon where each side of the rectangle lies or either a side or a diagonal of the 12-gon. Note that it is possible for a rectangle to be contained within another rectangle, and that the rectangle may not extend beyond the boundaries of the 12-gon. Decomposition. After observing the rotationa symmetries of the 12-gon and "visualizing" the problem, define the conditions necessary folines parallel/perpendicular to a specific orientation to form a rectangle. Since a rectangle divided along an line parallel to its sides form more rectangles, finding the number of total rectangles in such a structure is a combinatorial problem isomorphic to the string problem.
COMP. SETTING 3: GEOMETRY/CIRCLE + ALGEBRA/- FUNC_INTERSECTION	 Example Problem from Domain A. Circle center C, radius 7. G on circle; L midpoint of GC; X midpoint of LC; I midpoint of LX; F is reflection of G across C. Find IF . Example Problem from Domain B. Find the number of intersections of f(x) = -3 cos(2π(2 x+2 +2)+3)+1, g(x) = 4x-3 in [-5,5]. 	 Composed Problem. A circle with radius a is moving on the coordinate plane such that its center moves along the curve P(t) = \langle t, t^2 starting at t=0. Find the first value of t for which the circle lies tangent to the x-axis. Decomposition. Observe that it is sufficient to find a value of t for which the circle's cente has a y-coordinate of 4, which reduces to a pure "equation solving" problem. 3
COMP. SETTING 4: COMBINATO- RY/PROB_NO_FIX + ALGEBRA/- FUNC_INTERSECTION	 Example Problem from Domain A. What is the probability that, when forming a 4-letter word from { 'b' : 4, 'i' : 2, 'u' : 2} and shuffling it, no letter remains in its original position? Example Problem from Domain B. Find the number of intersections of f(x) = -3 cos(2π(2 x+2 +2)+3)+1, g(x) = 4x-3 in [-5,5]. 	 Composed Problem. Considering the functions f(x) = a sin(bπx) and g(x) = p sin(πqx) where a, b, p, q can each take integer values from 1 to 5, how many different combinations of parameter values result in at least 7 intersection points in the range [-10, 10]? Decomposition. The composed problem requires integrating symbolic reasoning over parameterized trigonometric functions (from Domain B) with combinatorial generalization over multiple configurations (related to Domain A).

Table 8: Examples (part 2) of training and test tasks that probe *Compositional generalization* ability of LLM.

Problem family	Training regime (familiar tactic)	Compositional test (combined tactic required)
COMP. SETTING 5: ARITHMETIC/MA- TRIX_RANK + COMBINATO- RY/PROB_NO_FIX	 Example Problem from Domain A.Compute the rank of the given 4x4 matrix: Example Problem from Domain B. What is the probability of such event happening: Form a word by randomly choosing 4 letters from the multiset {j: 4, d: 2, p: 2}, shuffle the letters in the word, what is the probability of exact 1 letter 'p' remains in the same position? 	 Composed Problem. Consider the matrix M =
COMP. SETTING 6: GEOMETRY/POLY- GON_COLOR + COMBINATO- RY/PROB_NO_FIX	 Example Problem from Domain A. A 6-gon is colored so that in clockwise order, the vertices are colored as follows: vertex 0 is blue, vertex 1 is blue, vertex 2 is red, vertex 3 is blue, vertex 4 is blue, vertex 5 is blue. What is the maximum number of blue vertices that can be made to occupy a position where there were originally red vertices by rotating the 6-gon? Example Problem from Domain B. What is the probability of such event happening: Form a word by randomly choosing 4 letters from the multiset {j: 4, d: 2, p: 2}, shuffle the letters in the word, what is the probability of exact 1 letter 'p' remains in the same position? 	 Composed Problem. Each vertex of a regular octagon is independently colored either red of blue with equal probability. The probability that the octagon can then be rotated so that all of the blue vertices end up at positions where ther were originally red vertices is m/n, where m and n are relatively prime positive integers. What if m + n? Decomposition. The problem is fundamentall about finding the number of cases satisfying constraint. The first subproblem tests understanding of the constraint (and the required spatial reasoning). The second subproblem tests the ability to enumerate cases.
Comp. Setting 7: logic/grid_chip + combinato- ry/prob_no_fix	 Example Problem from Domain A. Chips, colored either black or white, are placed in the 25 unit cells of a 5x5 grid such that: a) each cell contains at most one chip, b) all chips in the same row and all chips in the same column have the same colour, c) any additional chip placed on the grid would violate one or more of the previous two conditions. Furthermore, we have the following constraints (with the cells 0-indexed): cell (3, 4) is black, cell (2, 0) is white, cell (4, 3) is black, cell (1, 1) is white, cell (2, 2) is white, cell (0, 3) is black. How many chips are placed on the grid? Example Problem from Domain B. What is the probability of such event happening: Form a word by randomly choosing 4 letters from the multiset {j: 4, d: 2, p: 2}, shuffle the letters in the word, what is the probability of exact 1 letter 'p' remains in the same position? 	 Composed Problem. There is a collection of 25 indistinguishable white chips and 25 indistinguishable black chips. Find the number of way to place some of these chips in the 25 unit cell of a 5 × 5 grid such that: each cell contains at most one chip all chips in the same row and all chips in the same column have the same colour any additional chip placed on the griwould violate one or more of the previous two conditions. Decomposition. The problem asks to find the number of possible arrangements subject to the named constraints. The first subproblem test understanding of constraints in a very similar setting. The second subproblem tests the ability to compute the number of cases fitting a particular constraint.

A.8 Details of Transformative Generalization Problems.

Transformative generalization presents the greatest challenge: it tests whether a model can discard a familiar yet ineffective strategy in favor of a qualitatively different and more efficient one. These tasks go beyond simple extension or composition, requiring a "jump out of the box"—a creative reframing or redescription that bypasses the limitations of standard reasoning tactics. By the submission deadline, we include 7 distinct settings to evaluate transformative generalization. Setting 2 (algebra/function_intersection) and Setting 3 (algebra/polynomial_root) are illustrated in Table 2, while Setting 4 (combinatory/prob_no_fix) is visualized in Figure 1. Detailed examples and explanations for the remaining settings are provided in Table 9 and Table 10.

Table 9: Examples of training and test tasks that probe *Transformative generalization* (part 1)

Problem family	Training regime (familiar tactic)	Transformative test (new tactic required)
Transformative Setting 1: MATRIX_RANK	• Problem. What is the rank of the matrix: $\begin{bmatrix} -4 & -16 & -8 & 7 \\ 9 & 17 & 6 & -14 \\ 4 & 10 & 0 & -10 \\ 7 & 6 & -2 & -12 \end{bmatrix}$ item Tactic the matrix to row-echelon form and count the number of nonzero pivot rows.	• Problem. Let E_n be $n \times n$, $e_{ij} = \begin{cases} 1 & \text{if } i+j \text{ is even} \\ 0 & \text{if } i+j \text{ is odd} \end{cases}$. Find $\operatorname{rank}(E_n)$. • Needed insight. Observe that $E_n = \frac{1}{2} \left(1 1^T + [(-1)^i]_i [(-1)^j]_j^T \right),$ i.e. a sum of two outer products (each rank 1) so $\operatorname{rank}(E_n) = 2$ for $n \geq 2$ (and 1 if $n = 1$).
Transformative Setting 5: FUNC_INTEGRATION	 Problem. What is the symbolic integration of the function f(x) = 4(-1(5x² + 5x - 2) + 4) - 3? Tactic learned. First expand and simplify the algebraic expression to a polynomial, then apply the power-rule integration term by term. 	 Problem. Evaluate the indefinite integral \$\int (1+x+x^2+x^3+x^4) (1-x+x^2-x^3+x^4) dx\$ Needed insight. Observe that multiplying the two quintic sums collapses all odd-power terms yielding the even-power polynomial \$x^8 + x^6 + x^4+x^2+1\$, which can then be integrated directly by the power rule.

Problem family	Training regime (familiar tactic)	Transformative test (new tactic required)
Transformative Setting 6: Log- IC/BLOCKED_GRID	 Problem. In a 6x6 grid, how many different paths are there from the bottom left (0, 0) to the top right (5, 5), if you can only move right or up at each step, subject to the constraint that you cannot move through the following cells: (3, 3), (2, 1), (3, 4), (3, 1), (0, 5), (5, 0), (2, 0), (0, 4), (2, 5) Tactic learned. Among possible strategies, plot the cells on the grid, and categorize paths according to whether they pass above or below a fixed cell. Use combinatorial formulas to easily find the number of paths in each category. For smaller problems, use brute-force search. 	 Problem. In a 10x10 grid, how many different paths are there from the bottom left (0, 0) to the top right (9, 9), if you can only move right or up at each step, subject to the constraint that you cannot move through the following cells: (2, 0) (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7) (2, 8)? Needed insight. There is a wall, which vastly simplifies the analysis. The only variation among viable paths is at which "vertical" index we first choose to move right, so there are 16 options.
Transformative Setting 7: GEOMETRY/CIRCLE	 Problem. Let C be the circle with center V and radius 6. Point K is on circle C. Let I be the midpoint of segment KV. Point M is the midpoint of segment IM. What is the distance between points L and I? Tactic learned. Construct circles, lines, and perpendicular bisectors; find distances between relevant points in the plane using coordinate geometry. 	 Problem. Let circle C₁ be positioned in the coordinate plane with a radius of 1. Draw it horizontal diameter and call its endpoints A and B₁. Draw its vertical diameter and call the higher endpoint D₁. Then, let circle C₂ be the circle centered at D₁ that passes through A and B₁. Likewise, draw its horizontal diameter and call its endpoints A₁ and B₁, and draw it vertical diameter and call its higher endpoin D₂. Then, repeat this process, constructing circle C₃ centered at D₂ that passes through A₂ and B₂, drawing its horizontal and vertical diameters and constructing points A₃, B₃, and D₃ analogously, and so on until you construct D₅. What is the distance between D₅ and the center of C₁? Needed insight. There is a pattern to the construction, so that the distance between C₁ and D_n is geometric in n, which allows you to avoid actually constructing most of the circles.

B Experiment Details

B.1 Experimental Setup

Models. All experiments are conducted using the base model *Qwen2.5-7B-Instruct*, a strong instruction-tuned large language model. This model serves as the initialization for reinforcement learning (RL) fine-tuning.

Datasets. The training and evaluation problems for explorative, compositional, and transformational generalization are drawn from the curated problem families described in Appendix A. Unless otherwise specified, each training set consists of 1,000 problems. For compositional settings where training involves two problem families, we allocate 500 samples per family. To align with the proficiency level of *Qwen2.5-7B-Instruct*⁴, the training problems are restricted to complexity levels 1–2. Evaluation is performed on:

- **In-distribution (ID)** problems: 100 test samples drawn from the same complexity range (1–2) as training, depending on the setup—whether explorative, compositional, or transformational.
- **Explorative** problems: 100 test samples from the same problem family within the explorative problems but with higher complexity (level 3).
- **Compositional and Transformational** problems: 20–50 test samples per setting. Although these problems do not have explicit complexity annotations, we adjust key parameters (like from small to large) to ensure the test set spans a range of complexity.

Training Details. We fine-tune models using the GRPO algorithm implemented in the Open-Instruct framework⁵. The key training parameters are as follows:

```
--beta 0.0
--num_unique_prompts_rollout 128
--num_samples_per_prompt_rollout 64
--kl_estimator kl3
--learning_rate 5e-7
--max_token_length 8192
--max_prompt_token_length 2048
--response_length 6336
--pack_length 8384
--apply_r1_style_format_reward True
--apply_verifiable_reward True
--non_stop_penalty True
--non_stop_penalty_value 0.0
--chat_template_name r1_simple_chat_postpend_think
--temperature 1.0
--masked_mean_axis 1
--total_episodes 20000000
--deepspeed_stage 2
--per_device_train_batch_size 1
--num_mini_batches 1
--num_learners_per_node 8 8
--num_epochs 1
--vllm_tensor_parallel_size 1
--vllm_num_engines 16
--lr_scheduler_type linear
--seed 3
--num_evals 200
```

Evaluation Protocol. Evaluation uses the same sampling strategy as training. Models are evaluated 200 times throughout training. To account for convergence fluctuations, we report the average performance over the last 5 evaluation checkpoints.

⁴Successful RL training requires the base model to achieve nonzero accuracy on the training problems.

⁵https://github.com/allenai/open-instruct

Compute Resources. Each RL training run uses 32 NVIDIA H100 GPUs (distributed across 4 nodes) and completes in approximately 12 hours.

B.2 Prompt for Reasoning Trace Step Classification

To systematically analyze the types of reasoning exhibited in model-generated mathematical traces, we employed a structured prompt to guide the annotation of each sentence within the reasoning chain. This prompt instructs the LLM to classify each sentence into one of three categories—*conjecture*, *computation*, or *other*—with further verification for the correctness of computational steps.

The full prompt is as follows:

You are analyzing a sentence from a mathematical reasoning trace. Please classify the following sentence into one of these categories:

```
1. "conjecture" - The sentence makes a hypothesis or conjecture about the final
answer. Typical examples include "Alternatively, maybe the matrix is singular.",
"Wait, let's check if the determinant is zero or not.", "Alternatively, maybe
the problem is from a source where the answer is 14."
2. "computation" - The sentence performs a mathematical computation or calculation.
3. "other" - The sentence is explanation, setup, conclusion, or another type of reasoning.
Original math problem: {original_question}
Correct answer: {correct_answer}
Sentence to classify: {sentence}
If you classify it as "computation", also verify if the computation is correct
by doing the calculation yourself.
Please respond in the following JSON format:
{
    "classification": "conjecture|computation|other",
    "reasoning": "Brief explanation of why you classified it this way. ",
    "computation_correct": true/false/null (only fill if classification is "computation")
}
```

This prompt enables fine-grained, reproducible labeling of reasoning steps for downstream analysis. In our experiments, we applied it to every step separated with ".\n" of the chain-of-thought traces.

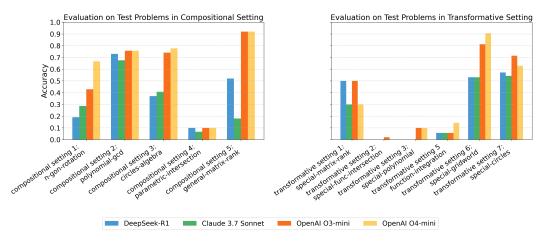


Figure 6: Performance comparison of state-of-the-art LLMs on mathematical reasoning tasks in compositional (left) and transformative (right) settings.

C Additional Experiments

Frontier Models' Performance on the Test Problems in Compositional/Transformative Setting. We provide results in Figure 6. In the compositional setting, OpenAI models (particularly o4-mini and o3-mini) demonstrate superior performance on structured problems like matrix rank and polynomial operations, suggesting strong capabilities in combining fundamental mathematical concepts. Claude 3.7 Sonnet and DeepSeek-R1 show more moderate performance in this setting. In the transformative setting, all models struggle with special function intersections and certain polynomial problems. These results highlight both the progress made in LLMs' mathematical reasoning and the remaining challenges in developing models capable enough in different mathematical contexts.

Ablation Study on Disentangling the Role of In-distribution Problem Family in Compositional RL Gain. To better understand under which in-distribution problem family RL improves performance on compositional test problems, we conduct an ablation study (see Table 11 and Table 12) on the two compositional settings (Settings 2 and 5) that showed notable gains after RL fine-tuning according to Figure 4. In these settings, the model was originally trained jointly on two distinct problem families (skill A and skill B), and tested on composite tasks that require integrating both skills. Since not all settings benefited from RL, we hypothesize that the specific choice and compatibility of skill A and skill B may influence whether RL can effectively promote compositional generalization.

To test this hypothesis, we retrain the model in each setting while systematically altering the composition: replacing either skill A or skill B with a nearby alternative, or replacing both. Results show that the original skill A + skill B pairing consistently yields the highest post-RL improvement (+7.5 pp and +15 pp), indicating a strong synergy between the selected task pairs. Replacing just one component reduces gains to a modest +2–5 pp, while replacing both typically eliminates or reverses improvement (-18 pp and -3 pp). These findings suggest that RL is most effective when it can build upon complementary skills already aligned in the joint training distribution—supporting the idea that compositional success depends not just on RL, but on the semantic coherence of the underlying task pair.

Supplementary Analysis on Qwen2.5-Math-7B. As shown in Figure 8, RL fine-tuning consistently improves performance on both in-distribution and explorative generalization tasks, with Qwen2.5-Math-7B achieving average gains of +51 percentage points on ID problems and +24 percentage points on OOD problems. Notably, the Math-7B model demonstrates particularly strong performance on Logic Zebralogic, reaching 85% ID accuracy and 82% OOD accuracy after RL training—indicating that the specialized mathematical training of the base model synergizes effectively with our RL approach. While Qwen2.5-7B-Instruct generally achieves slightly higher absolute performance (e.g., 95% vs 85% on Logic Zebralogic ID), both models exhibit similar improvement patterns, with consistently larger gains on ID tasks compared to OOD tasks. Interestingly, both

Table 11: Ablation study for **Compositional Setting 2** corresponding to Figure 4. All numbers are accuracies (0-1). $\Delta = \text{After RL} - \text{Before RL}$.

Training Composition (ID1 + ID2)	Before RL	After RL	Δ
Original: combinatory/prob_no_fixed + arithmetic/rank	0.30	0.38	+0.08
Replace skill A: combinatory/pattern_matching + arithmetic/rank	0.30	0.35	+0.05
Replace skill B: combinatory/prob_no_fixed + arithmetic/GCD	0.30	0.29	-0.01
Replace both: algebra/linear_equation + arithmetic/GCD	0.30	0.12	-0.18

Table 12: Ablation study for **Compositional Setting 5** corresponding to Figure 4.

Training Composition (ID1 + ID2)	Before RL	After RL	Δ
Original: geometry/polygon_rotation + combinatory/pattern_matching	0.05	0.20	+0.15
Replace ID1: geometry/polygon_rotation + combinatory/distribution	0.05	0.10	+0.05
Replace ID2: geometry/basic + combinatory/pattern_matching	0.05	0.07	+0.02
Replace both: arithmetic/GCD + algebra/linear_equation	0.05	0.02	-0.03

models struggle with OOD generalization on the Combinatory Distribution task (0% OOD accuracy for both), suggesting this represents a particularly challenging generalization scenario that warrants further investigation. These results demonstrate that our RL fine-tuning methodology generalizes effectively across different Qwen2.5 variants, supporting the broader applicability of the approach for enhancing mathematical reasoning capabilities.

D Complexity Analysis

In this section, we present a complexity analysis for the COMBINATORY/DISTRIBUTION task, which is studied often in the main paper. Our goal is to demonstrate that this problem can be solved within the context-length limits of today's frontier large language models and Qwen-series models. Unlike other tasks, such as function intersection or geometry, where the number of tokens required is difficult to estimate, combinatory distribution problems allow for more precise tracking via simulation using a Python program. Our analysis proceeds in three steps: (i) we summarize the context window limits of

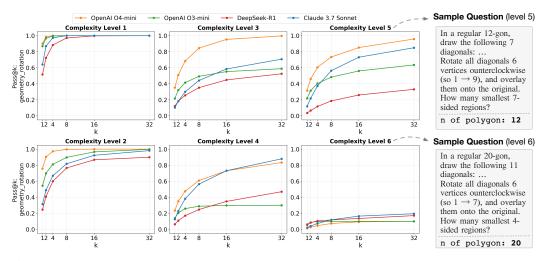


Figure 7: Pass@k performance of the advanced LLMs across complexity levels for geometry rotation problems.

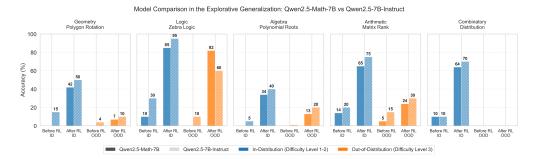


Figure 8: Comparison of RL fine-tuning effectiveness in the explorative generalization setting between *Qwen2.5-Math-7B* and *Qwen2.5-7B-Instruct*. Accuracy on in-distribution (ID) and out-of-distribution (OOD) mathematical reasoning tasks before and after RL fine-tuning. Solid bars: Math-7B; hatched bars: Instruct-7B.

current large-context models; (ii) we provide a representative level-6 problem and a compact dynamic programming (DP) solver; and (iii) we measure the solver's computational footprint and estimate the corresponding token usage.

D.1 Context windows of frontier models

Model	Maximum tokens	Reference
GPT-o3 Mini	200 000	OpenAI Docs
GPT-o4 Mini	128 000	Addepto Blog
Claude 3 Sonnet v3.7	\geq 200 000	Anthropic Support
DeepSeek-R1	164 000	OpenRouter Card

Table 13: Context-length limits of the models considered in this work.

D.2 Representative level-6 problem

Arrange the letters {0:6, 1:1, d:2, y:2, v:3} into five indistinguishable boxes with capacities [2, 2, 2, 5, 3]. How many distinct distributions exist?

This family generalises classical balls-into-bins counting with (i) multisets of item types and (ii) capacity constraints. Difficulty level k controls the total number of items and the size of the search space; level 6 is the hardest setting used in our experiments.

D.3 DP solver and instrumentation

We employ a depth-first DP that memoises states of the form (i, c), where i indexes the current letter type and c is the non-increasing vector of residual capacities. The core Python routine is shown below. Four counters track its execution:

- dp_calls total invocations of the memoised routine;
- distribution_calls number of distinct "distribute t items into c" sub-problems generated;
- backtrack_calls recursive steps inside the enumerator;
- state_transitions edges explored in the DP graph.

```
def gen_distributions(total, rem_caps):
    global distribution_calls
    distribution_calls += 1
    # return all possible distributions of 'total' items into boxes with caps rem_caps
    # Generate recursively or via DP.
```

```
# Use backtracking: assign to box 0 0..min(total,cap), then recuse.
   n = len(rem_caps)
   dist = []
   def backtrack(i, remaining, current):
       global backtrack_calls
       backtrack_calls += 1
       if i==n:
            if remaining==0:
                dist.append(tuple(current))
            return
       cap = rem_caps[i]
       # for each assign 0 to min(remaining,cap)
       for x in range(min(remaining,cap)+1):
            current.append(x)
            backtrack(i+1, remaining-x, current)
            current.pop()
   backtrack(0, total, [])
   return dist
@lru_cache(None)
def dp(i, rem_caps):
   global dp_calls, state_transitions
   dp_calls += 1
   if i == len(letter_counts):
                                                # base case
       return 1
   total = letter_counts[i]
   count = 0
   for dist in gen_distributions(total, rem_caps):
       state_transitions += 1
       new_caps = tuple(sorted(rem_caps[j] - dist[j]
                                for j in range(len(rem_caps))))
        count += dp(i + 1, new_caps)
   return count
```

D.4 Empirical resource usage

Running the solver on the level-6 instance yields the statistics in 14. The backtracking routine dominates runtime with 1059 calls. Conservatively assuming that *each* backtrack call translates to 20 generated/consumed tokens, the total token demand is

```
1059 \times 20 = 21180 tokens,
```

well below even the smallest window in Table 13. Other problems in the same problem family with complexity level 6 exhibit similar footprints (average 1284 backtrack calls).

Counter	Value	Explanation
Unique DP states	36	Distinct (i, c) pairs memoised
dp_calls	36	Matches number of unique states
distribution_calls	35	Sub-problems created by the enumerator
backtrack_calls	1059	Leaf-level enumeration steps
state_transitions	249	Edges traversed in DP graph

Table 14: Execution statistics for the level-6 exemplar.

D.5 Footprint across difficulty levels (1-5)

We measured the average number of backtrack calls on the canonical instance for each lower difficulty. Table 15 summarises these, along with the corresponding token estimates:

Even at level 5—the hardest below level 6—the solver requires only \approx 14 K tokens. All levels thus comfortably fit within every model's context window, confirming the practicality of our experiments.

Level	Avg. backtrack calls	Tokens@20/call	Estimated total tokens
5	701.6	701.6×20	14 032
4	443.7	443.7×20	8 874
3	179.7	179.7×20	3 594
2	65.1	65.1×20	1 302
1	19.2	19.2×20	384

Table 15: Average backtracking calls and estimated token usage for levels 1–5.

D.6 Take-away

Even under pessimistic token-accounting assumptions, level-6 COMBINATORY DISTRIBUTION problems demand fewer than 30 000 tokens of "reasoning budget". All four frontier models listed in Table 13 therefore possess ample context to solve every instance we evaluate, validating the feasibility of our experimental design.