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Abstract

Recent large language models (LLMs) with long Chain-of-Thought reason-
ing—such as DeepSeek-R1—have achieved impressive results on Olympiad-level
mathematics benchmarks. However, they often rely on a narrow set of strategies
and struggle with problems that require a novel way of thinking [[15]. To systemati-
cally investigate these limitations, we introduce OMEGA—Out-of-distribution
Math Problems Evaluation with 3 Generalization Axes—a controlled yet diverse
benchmark designed to evaluate three axes of out-of-distribution generalization,
inspired by Boden’s typology of creativity [4]: (1) Exploratory—applying known
problem-solving skills to more complex instances within the same problem domain;
(2) Compositional—combining distinct reasoning skills, previously learned in
isolation, to solve novel problems that require integrating these skills in new and
coherent ways; and (3) Transformative—adopting novel, often unconventional
strategies by moving beyond familiar approaches to solve problems more effec-
tively. OMEGA consists of programmatically generated training—test pairs derived
from templated problem generators across geometry, number theory, algebra, com-
binatorics, logic, and puzzles, with solutions verified using symbolic, numerical,
or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp
performance degradation as problem complexity increases. Moreover, we fine-tune
the Qwen-series models across all generalization settings and observe notable
improvements in exploratory generalization, while compositional generalization
remains limited and transformative reasoning shows little to no improvement. By
isolating and quantifying these fine-grained failures, OMEGA lays the groundwork
for advancing LLMs toward genuine mathematical creativity beyond mechanical
proficiency.

1 Introduction

LLMs with long CoT reasoning—DeepSeek-R1 [8], OpenAl-o04 [13], Claude-Sonnet [[17]—show
strong results on Olympiad-level benchmarks, yet often lean on a narrow repertoire of strategies,
whether trained by SFT [[15] or RL [19]. Consequently, they falter on problems demanding novel
insights [15]. Bridging the gap between pattern-following and genuine mathematical creativity
remains open.

Existing datasets hinder causal analysis of reasoning. Large corpora (Numina-Math [10], Omni-
Math 1], DeepMath [9]]) mix topics and difficulty, obscuring which skills drive success; controlled
sets (GSM-Symbolic [12]], GSM-PLUS |[11l], GSM-Infinite [20]) are narrow; earlier suites [2] target
elementary tasks. We provide a detailed comparison in Table 6]
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(a) Explorative Generalization (more complexity)

Training Problems ~ Test Problems

Find the number of rectangles that can be formed inside a fixed Find the number of rectangles that can be formed inside a fixed
regular octagon where each side of the rectangle lies on either a regular dodecagon where each side of the rectangle lies on either
side or a diagonal of the octagon. a side or a diagonal of the dodecagon.

Training Problems (b) Compositional Generalization
What is the highest common factor of 21385 and 29617 (composed strategy)

GCD of integers + Factorize polynomial
-~ Test Problems

$f(x) = -36xA3 + 272x"2 - 4127 -240$. Find real roots of f(x). Fi‘nd the greatest common divisor of the two polynomials
$f(x) = xA5 + x3 - x2 - 1$ and $g(x) = xM - 3x/2 - 48.

(c) Transformative Generalization (shifted thinking mode)

Training Problems ~ Test Problems

How many distinct words of length 5 can be formed from {"c": 3, How many distinct words of length n can be formed from {"c":
"a": 2, "t": 2}? (value indicates the number of letter) n-1, "a" n-1, "b": n-1}? (value indicates the number of letter)
Hint: Use case analysis based on times ¢ appears in the word (lcl = 3, Hint: count subsets with size n can be formed by 3 letters, then
2, 1). For each case, list all combinations and sum the permutations. subtract the overcounts where any letter exceeds n-1.

Figure 1: Training—test pairs probing distinct generalization axes: (a) Exploratory—scale complexity within
the same paradigm (e.g., octagon — dodecagon in geometric counting); (b) Compositional—integrate skills
learned separately (e.g., polynomial GCD + root-finding); (c) Transformative—shift strategy (e.g., from case
enumeration to subtractive counting).

We introduce OMEGA, a controlled yet diverse benchmark probing three axes of OOD generaliza-
tion, inspired by Boden’s creativity typology [4]]: Exploratory, Compositional, and Transformative
(Figure|[I)). Matched train—test pairs isolate specific capabilities: scaling within a domain, integrating
previously isolated skills, and adopting unconventional strategies.

OMEGA comprises 40 templated generators across six domains—arithmetic, algebra, combinatorics,
number theory, geometry, logic & puzzles—with Olympiad-level complexity. Problems and answers
are programmatically produced (symbolic, numeric, or graphical). Templates encode target strategies
and support composition for compound tasks.

Empirically, we find: (a) Accuracy collapses with complexity. Models often locate a viable
path early but waste tokens on verification, enter error spirals via overcorrection, or avoid tedious
computation despite being capable. (b) RL gains plateau. RL improves generalization from easy to
medium regimes, mainly in-domain, but struggles at higher complexity and varies by domain. (c)
Skill integration and creativity lag. Models trained on isolated skills underperform on compositional
tasks and degrade when success requires strategy shifts.

These results argue for smarter scaling—methods that strengthen core reasoning and strategy selec-
tion—over brute-force data or inference-time compute.

2 OMEGA: Probing the Generalization Limits of LLMs in Math Reasoning

We introduce OMEGA (more details in Appendix [A]), a controlled framework for testing out-of-
distribution (OOD) mathematical reasoning in LLMs along three axes—exploratory, compositional,
and transformative—inspired by Boden’s creativity typology [4]. To precisely attribute gener-
alization, we train and evaluate on problems drawn from 40 single-scope templated generators
spanning arithmetic, algebra, combinatorics, number theory, geometry, and logic/puzzles, cali-
brated around AIME difficulty [3] and often used as building blocks for Olympiad-level tasks (e.g.,
function_intersection). Templates admit meaningful parametric variation while preserving a
well-scoped solution strategy; all instances are programmatically generated with automatic solution
checks (e.g., grid search for function_intersection, exhaustive enumeration for combinatorics,
and cv2.approxPolyDP for polygon counting in rotation tasks). Formally, each template 7 induces
instances x, g parameterized by 6 € ©, and ranked by a complexity measure §(6); for each axis
and domain, we specify training, in-distribution (ID), and OOD test sets by selecting templates and
regions in O ;.

Exploratory generalization tests whether a model extends a learned algorithm to harder instances
from the same template by training on § < §p and evaluating on § > Jp (with Jy chosen so the
base model scores < 50% on train), ensuring that increases in J reflect genuinely harder reasoning.



Compositional generalization probes the integration of distinct sub-skills rather than their superficial
concatenation; we enforce (i) cohesive skill synthesis, (ii) complete coverage of each constituent
skill in training, and (iii) nontrivial training difficulty, organizing seven categories in which test
items require synergistic application of two skills (illustrated in Fig. [5} examples in Tables [7Hg).
Finally, transformative generalization is the most demanding: training and test share scope (e.g.,
polynomial roots or function intersections), but test items are constructed so the familiar tactic
becomes ineffective, forcing a qualitatively different strategy (e.g., symmetry-exploiting substitutions
or global geometric arguments); we curate seven such categories pairing challenging training tasks
with tests that require a strategic “reframing,” exemplified in Table 2]

3 Experiments

Setup. We study whether RL (GRPO) improves generalization of Qwen2.5-7B-Instruct and
Qwen2.5-Math-7ﬂ across exploratory, compositional, and transformational settings. For each
setting, we train on 1k problems and evaluate on matched ID/OOD sets.

Exploratory. Train on complexity levels § < 2; test on (i) ID within the same family (6 < 2) and (ii)
OOD higher complexity (6 > 2).

Compositional. For each pair C = (S4, Sp), train only on single-skill problems (Ps ,, Ps,,); test on
(i) those single-skill ID sets and (ii) OOD compositions Ps , g5, requiring integrated use, not mere
sequential application.

Transformational. Train on problems solvable by conventional strategies; test on (i) ID problems
with the same strategies and (ii) OOD look-alikes requiring a qualitatively different approach.

mmm Before RL (Test on ID) After RL (Teston ID) ~ mmm Before RL (Test on OOD) After RL (Test on OOD)
100 Algebra Arithmetic Combinatory Geometry Logic Numbertheory

3
&

Accuracy (%)

+54
40 +59 48
+20 +46 +4! +53 7 +26
+21 +31 5 440 423
20 +14 % a ™ H 7 U %z 5
o E 5 ﬁ H =l
H 110 -_ ] l_ B, B= a? ©, 0p & = W ol ol 1050}
'b & e6 c,° <© e O Gk o o & o & N
N e S o8 W e o SN @ o X o a\ «8° O RO W oo
< e AN A \*4 G 3O \6\ Vs(‘ @° e\ ) ¢
o Qcoe“e e("v ‘(\@\ @ ?‘_\‘(\g @a\“* 0\6 o8 \,a«\ o® *Q W0 S (\%a ‘N\\g‘\\d o® ’L%“ SO «9°
O 90\1 s e [e)
\§

Figure 2: Qwen2.5-7B-Instruct on OMEGA (exploratory). Concatenated bars show ID (blue) and OOD
(orange). RL strongly improves ID; OOD gains are smaller and more variable.
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Figure 3: OMEGA compositional results. RL boosts single-skill accuracy (Skill A/B) but rarely transfers to
the composed tasks.

2Qwen2.5-Math-7B shows the same trends; see Fig.



Can RL Learn to Compose Math Skills? Strong on Isolated Skills, Weak on Integration
(Figure@ & Figure Across five pairs, RL substantially lifts single-skill accuracy (often > 69%
after training in the best cases) but yields little improvement on compositions Pg, ¢ 5,. Example:
large gains on polygon rotation (from 13% base to near +70 pp), yet no corresponding boost when
combined with polynomial GCD/root reasoning. Ablations swapping skill components show the
best improvements occur when skills are conceptually aligned; replacing one/both skills reduces or
negates gains (Tables [TT] [T2). Conclusion: RL solidifies specific procedures but does not reliably
induce integrated reasoning.
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Figure 4: OMEGA transformational results. RL improves ID but OOD remains near zero; in one case (matrix
rank), RL harms a strong base OOD.

Can RL Discover New Strategies? Helps on Familiar Patterns, Struggles on Transformations
(Figure[d) Transformational OOD requires abandoning training-observed heuristics. RL consis-
tently raises ID accuracy (e.g., large gains on matrix-rank ID) but OOD accuracy stays near zero,
with only small pockets of improvement (and often on easier variants where conventional methods
still apply). Notably, where the base model had strong OOD (e.g., 70% on matrix rank), RL reduced
performance by 30 pp, suggesting optimization can entrench brittle patterns rather than promote
exploration. Overall, RL enhances execution of known strategies but rarely induces new ones without
explicit exposure.

4 Discussion & Conclusion

We have presented OMEGA, a controlled benchmark designed to isolate and evaluate three axes
of out-of-distribution generalization in mathematical reasoning: explorative, compositional, and
transformative. By generating matched train—test pairs from template-driven problem families, our
framework enables precise analysis of reasoning behaviors and supports infinite-scale, reproducible
synthesis. Our empirical study yields three key insights. First, RL fine-tuning delivers substantial
gains on both in-distribution and explorative generalization, boosting accuracy on harder instances
within known problem domains. Second, despite these improvements, RL’s impact on compositional
tasks remains modest: models still struggle to integrate multiple learned strategies coherently.
Third, RL struggles to induce genuinely new reasoning patterns, showing negligible progress on
transformative generalization that requires shifting to novel solution paradigms. These findings
underscore a fundamental limitation: while RL can amplify the breadth and depth of problems that
LLMs solve, they do not by themselves foster the creative leaps needed for true transformational
reasoning. To bridge this gap, future work might explore:

* Curriculum scaffolding: dynamically ordering tasks to gradually introduce compositional and
transformative challenges alongside explorative ones;

* Meta-reasoning controllers: mechanisms that detect when a default strategy stalls and actively
search for alternative solution families;

By diagnosing where and why current LLMs fail to generalize creatively, OMEGA lays the ground-
work for next-generation reasoners that can not only interpolate but also innovate—moving us closer
to human-level mathematical problem-solving.
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A Dataset Details

Table 1: Example problem templates across six mathematical domains. For illustration purposes, template
content has been shortened. Shaded text indicates programmatically generated variants. Each problem template
is associated with a complexity measure §(6), reflecting task-specific complexity metrics.

Category Problem Name Template Example (7) with parameter (0) Complexity
(6(0))
GCD What is the greatest common factor of 3450 and log;,(answer)
X X 24380 ?
Arithmetic Prime Factorization ~What is the second-largest prime factor of 519439 ? log,(answer)
Mixed Operations ‘What is the value of (-7920)/1320 - 2/44*4614 ? number of opera-
tions
Matrix Rank Find the rank of the matrix  size of the matrix

[[5,-14,6,-1], [-2, -1, 5, -4], [10, -10, -6, 101, [-19, 1, 3, -31]]

Linear Equation Solve 5m =-8k - 345, -3m + 26 + 119 =-898k + 894k  number of sym-

for m. bols

Polynomial Roots  Suppose 4160a® + 4480a* — 585a — 1299042 4 1080 — (0 max power

Algebra what is @ (rational number)?

Func Intersection How  many  times do the  graphs of number of compo-
f(z) = 2|(=2sin(rz +2) +1) — 2| +3 and sitions
g(x) = 3|z + 2| — 3 intersect on [—10, 10]?

Func Area Find the area bounded by number of compo-
f@) =2(-3z+4)2+ (—3z+4)+3, sitions

g(x)=3x—1, 2=13,and z=1.7.

Letter Distribution ~ Distribute {s:3, g:2,j:2} into 3 identical containers number of letters
holding [3, 2, 2] letters.
Combinatorics  pagtern Match Randomly select 3 letters from {0:2,x:3} ; expected number of letters
matches of pattern ‘xo+’ ?
Prob. (No Fixed) Choose 3 letters from {u:l, f:3, t:2} and shuffle. Prob- number of letters
ability of no fixed letter positions?

Digit Sum Let N be the 10th smallest 3-digit integer with digit sum  log, (answer)
divisible by 6 . Find N.
Number Theory Triple Count How many ordered triples (a, b, c) with a,b,c < 3% sat- log;,(answer)
isfy —2a® — 2b% +2¢3 =0 (mod 3?) ?
Prime Mod Let p be the smallest prime for which log;,(answer)

n®+2=0 (mod p°) has a solution; find the
minimal n for this p.

Circle Circle X has center I and radius 8. M has center K and number of con-
radius 6 and is internally tangent to circle X. Let U be the  structions
Geometry rotation of point K by angle 77 /12 around point I. Circle
D passes through points I, K, and U. What is the radius of
circle D?
Rotation In aregular octagon labeled 1-8 , draw diagonals from number of ver-

5to3 and from 2 to 7 . Rotate the figure 7 steps coun- tices of polygon

terclockwise and overlap it with the original. How many
smallest triangular regions are formed?

Grid Blocked Ina 4x4 grid, how many different paths are there from  grid size
the bottom left (0, 0) to the top right (3, 3), if you can
Logic & Puzzles only move right or up at each step, subject to the con-
straint that you cannot move through the following cells:

(3,1),(2,3),0,1),(2,1)?

A central goal of mathematical reasoning is not merely to apply memorized procedures but to flex-
ibly adapt, combine, and extend learned strategies. To assess the extent to which LLMs exhibit
this capacity, we propose a typology of generalization inspired by Margaret Boden’s framework
for creativity in cognitive science [4]. Specifically, we define three axes of reasoning general-
ization—exploratory, compositional, and transformative— to probe the limits of these models on



controlled out-of-distribution (OOD) cases that range from easier extensions of seen patterns to
harder, more unconventional reasoning problems. Assessing performance along these axes requires
fine-grained control over the in-distribution training data.

A.1 Problem Construction

Training on a heterogeneous mix of unrelated problems obscures the source of generalization. In
contrast, restricting training data to instances drawn from a single template ensures that the model
learns a well-scoped strategy.

In our work, all training and test problems problems are generated from carefully designed templates
to enable precise control over problem structure, diveristy and required reasoning strategies. To
do so, we use 40 templated problem generators spanning six mathematical domains: arithmetic,
algebra, combinatorics, number theory, geometry, and logic & puzzles. Example problem templates
are illustrated in Table [l These problems are calibrated at the knowledge level comparable to
the American Invitational Mathematics Examination (AIME) [3]], with many serving as crucial
sub-components in solving Olympiad-level problems. For instance, the function_intersection
problem type represents an essential building block for questions requiring advanced function analysis.

The selection of problem templates involved several critical considerations:

* Single-scope with meaningful variations. Each problem template is designed to focus on a
single-scope mathematical strategy while allowing for substantial variations. By single-scope, we
mean that the required solution approach is confined within a well-defined framework, enabling
controlled studies of specific reasoning patterns. For instance, instead of combining multiple
geometric shapes in a single problem generation template, we isolate problem families on different
shapes independently. At the same time, we ensure meaningful variation by designing parameters
that fundamentally alter solution trajectories when modified. This contrasts with datasets (numerical
perturbation) like GSM-PLUS [11]], where varying numerical values often preserve the underlying
solution path without introducing new reasoning challenges.

* Programmatic generation and solution validation. To ensure scalability, both problem instances
and their solutions are programmatically generated. This requirement significantly influenced
template selection, especially for geometry problems that demand sophisticated procedural generation.
We employed diverse computational methods for solution validation: grid search algorithms for
function_intersection problems, exhaustive enumeration for combinatorial tasks, and computer
vision techniques—such as cv2.approxPolyDP from OpenCV—to accurately count polygons in
rotation problems.

A.2 Training and Evaluation Setup for Generalization

Let 7 = {7} denote a collection of problem templates, where each template 7 defines a family of
problem instances P, = { z,¢ | 6 € ©,}, parameterized by a complexity vector § within a parameter
space ©.. We define a scalar complexity measure § : ©, — Z7T that ranks problems by increasing
complexity. For each generalization axis—such as exploratory, compositional, or transformative—we
specify a training set by selecting a collection of templates along with particular regions of their
parameter spaces. Similarly, a distinct set of templates and parameter regions is chosen for testing
separately, depending on the different generalization test settings. For each generalization category
and each math domain, we construct: 1) training data, 2) In-distribution (ID) test data, and 3) OOD
test data.

A.3 Exploratory Generalization

Exploratory generalization assesses whether a model can faithfully extend a single reasoning strategy
beyond the range of complexities seen during training. Concretely, the model is exposed to problems
drawn from one template 7, all lying within a “low-complexity” regime, and is then evaluated on
harder instances from the same family. This axis probes robustness: does the model generalizes
the same algorithm to higher complexity problems? or does it merely memorize solutions at a fixed
complexity level?

Training and testing data construction. we define a cutoff threshold Jy based on a task-specific
complexity measure ¢, which determines the maximum complexity level included in training. All



problem instances with & < dg are used for training, while those with 6 > dqy are reserved for
testing. To ensure the setting remains sufficiently challenging, we select dg such that the base
model achieves under 50% accuracy on the training data—reflecting the inherent complexity of
these reasoning tasks and leaving room for improvement through fine-tuning. All problem templates
introduced in Section[A]are suitable for exploratory generalization experiments, as they encompass
scalable reasoning tasks. For each template, we ensure that the complexity scaling aligns with the
mathematical intuition of the task, such that increasing ¢ genuinely demands more sophisticated
reasoning steps.

A4 Compositional Generalization

Compositional generalization probes a model’s ability to integrate multiple, distinct reasoning
strategies. Unlike explorative generalization, which scales a known method to larger instances,
compositional generalization requires a fusion of sub-skills synergistically. Figure [3]illustrates two
such cases, where solving the target problem hinges on combining finite-case enumeration with
piecewise reasoning or geometric layout analysis with nested-pattern counting. Overall, compositional
generalization offers a controlled framework for assessing whether a model can go beyond mastering
individual reasoning patterns to dynamically combine them—thereby distinguishing shallow, rote
learning from genuine skill integration and true task understanding.

To curate meaningful compositional settings, we enforce the following principles: First, cohesive
skill integration where the compositional train problems should require true synthesis of multiple
reasoning skills rather than superficial concatenation. This ensures that solving the problem depends
on the synergistic application of sub-skills, not merely applying them in sequence. Second, complete
skill coverage where each reasoning skill involved in the composed test task should be independently
represented in the training set. This ensures that success on the test reflects the model’s ability
to compose familiar strategies, rather than rely on exposure to novel ones. And lastly, nontrivial
complexity of train problems where train problem should be sufficiently challenging so that the
model actually learns each sub-skill, making any compositional gains observable. The training
problems from our templated inventory remain challenging to the base model, even at low complexity
levels (1-2).

Training and testing data construction. Our compositional dataset is structured around seven
categories (details in Appendix §A.7)), each designed to probe specific combinations of reasoning
skills. Within each problem family, we identify a core skill and construct corresponding training
examples that isolate and reinforce this skill. To evaluate compositional generalization, we then design
test problems that require the synergistic application of two distinct skills—such that the solution
cannot be obtained by applying each skill naively, but instead demands their true integration. For
instance, as illustrated in Figure 5] one problem family focuses on interpreting polygonal geometry,
while another targets counting nested patterns; their composition results in a task that requires
counting nested structures within polygons. Each setting includes multiple training instances for
individual skills and corresponding test instances that assess the model’s ability to combine them

Train Problems Source Skill Target Skill Test Problems
Form a word by randomly choosing 3 letters from the multiset {k} Finite-case Finite-case Considering the functions f(x) = ax / Ix
4, m: 3}, shuffle the letters in the word, what is the probability of . - 3| and g(x) = px"2 + gx, where a, p,
at least 3 letter 'k' remains in the same position? enumeration — enumeration q can each take integer values from 1
) to 5, how many different combinations
for parametric of parameter values result in at least 1
. X i q fq [ q intersection points in the range [-10,

How many solutions does the equation (xA2 + 3x + 4)/IxA2 - 2x + 4l= Piecewise function functions. 11017§ S LS i range [
-I((2x - 1)/(-1x + 2)) - 31 - 1 have for x in the interval [-10, 10]? reasoning

Find the number of rectangles that can
be formed inside a fixed regular

In a regular octagon labeled 1-8, draw diagonals from 5 to 3 and from  Geometric layout Counting for dodecagon ($12$-gon) where each side
2 to 7. Rotate the figure 7 steps counterclockwise and overlap it with .. of the rectangle lies on either a side or
the original. How many smallest triangular regions are formed? analysis in polygon — nested a diagonal of the dodecagon.

. rectangles e A
When randomly selecting 4 letters from the multiset {y: 2, f: 3, g: 1} Counting for nested in polygon JEEL \
to form a word, what is the expected number of matches of the Lelel [ K )
pattern 'f.*f'? patterns 4 g A 8 <

Figure 5: Two examples of compositional generalization in our training/test setup. Each case presents training
problems from two separate templates that exercise particular reasoning skills that the model must master, and a
test problem that composes the skills.



effectively. Representative examples are provided in Table[7]and Table 8] with additional information

in Appendix

Table 2: Illustrative training versus test tasks that probe Transformative generalization. Training
problems reinforce familiar tactics, but can be over-complicated for test problems where qualitatively
different reasoning is required.

Problem fam-

ily Training regime (familiar tactic) Transformative test (new tactic required)
« Problem. Sol = —362% + 2722% —
PR f(@) S « Problem. Solve f(z) = 2° + 10:;:3(;r 20z — 4.
P * Tactic learned. Apply the Rational Root Theo- * Needed insight. Substitute - = ¢+ — to exploit
OLYNOMIAL ith o | 240 36). test t
ROOTS rem genume?ate p/4 with p ‘ .4 | > tes symmetry, reduce to a quadratic in ¢, then re-
candidates via synthetic division, then factor the cover
cubic. '
* Problem. With f(z) = ||z| — 4| and g(z) =
* Problem. Count intersections of f(z) = ||$| — 1|, find intersections of
2|—2exp(mrz +2) + 1| — 2+ 3 and g(z) = .
FUNCTION 3|z + 2| — 3 on [-10, 10]. y =4g9(f(sin2rz)), = 4g(f(cos3my)).
INTERSEC- ¢ Tactic learned. Simplify by sign—cas.e apa}ysis, + Needed insight. Avoid exhaustive casework;
TION resolve absolute values, and use periodicity to

instead, analyze how “up” and “down” graph
segments multiply and intersect, using visual
symmetry for efficient counting.

count intersections.

A.5 Transformative Generalization

Transformative generalization poses the greatest challenge: it asks whether a model can abandon
a familiar but ultimately ineffective strategy in favor of a qualitatively different and more efficient
one. These tasks lie outside the scope of mere extension or composition; they require a “jump out
of the box”—a creative reframing that circumvents the limitations of standard tactics. To curate
meaningful transformative settings, we enforce the following principles: a) Same problem scope,
new insight. Training and test problems share the same template family (e.g., polynomial-root
finding or function-intersection), but test instances are specifically designed so that the familiar tactic
either fails or becomes intractably cumbersome; b) Necessity of reframing. Solving the test problem
must require a novel strategy—such as a symmetry-exploiting substitution or a global geometric
argument—rather than exhaustive casework or brute-force enumeration; c) Nontrivial training tasks.
The training problems themselves remain sufficiently challenging to ensure the model genuinely
learns the familiar tactic before being forced to abandon it.

Training and testing data construction. Our transformative dataset comprises seven categories
(detailed in Appendix §A.8), each specifically designed to evaluate a model’s capacity to adopt
novel problem-solving approaches. Within each category, training problems are generated from the
templates described in Section[A] These training tasks can typically be solved using conventional
reasoning strategies of moderate complexity, ensuring that the model thoroughly acquires foundational
skills. Conversely, the corresponding test problems are intentionally constructed to render these
familiar methods ineffective, compelling the model to devise and employ qualitatively distinct
solutions. For instance, as illustrated in Table 2] polynomial-root finding tasks in training might
be addressed through straightforward factorization, whereas the test scenarios require employing
specialized algebraic substitutions to efficiently determine solutions. Similarly, training instances for
function-intersection problems might typically involve direct derivative analysis, whereas the test
cases demand recognition of underlying geometric properties to bypass computationally intensive
algebra. Each transformative category thus pairs multiple training problems that reinforce established
techniques with test problems explicitly designed to challenge the model to surpass these traditional
approaches and engage in genuine strategic innovation. Additional examples and detailed explanations
are available in Appendix



A.6 Details of Problem Families

To provide full transparency on our templated generators, we include three comprehensive tables in
the appendix. Table 3]lists all arithmetic and algebra templates (e.g., linear equations, polynomial
roots, function operations), alongside their complexity measures across five calibration levels. Table
M] details the combinatorics and number-theory generators with corresponding size or range metrics at
each level. Finally, Table[5|presents our logic & puzzles and geometry templates, again annotated
with statement counts or grid sizes for the five levels. Together, these tables document the full set of
41 problem families used in MathOOD, illustrating how each template is systematically calibrated to
enforce controlled, domain-specific reasoning strategies.

Table 3: Problem families (arithmetic and algebra) with sample problems and complexity measures
across five levels.

Problem Family Sample Problem Statement Complexity Lvl Lv2 Lv3d Lv4 Lvs
Alias Measure
algebra/linear_equation Solve 3n — 4t + 1012801 = Symbol num- 2 3 4 5 6
1012843, —3n + 66 = 4t ber
algebra/polynomial_roots Express the second largest root of Degree 3 4 5 6 7
7Mm3fwm2+%m+% =0
as 71,/8m where ged(n,m) = 1.
algebra/func_integration Compute the indefinite integral for f(z) = Composed 2 3 4 5 6
2(x — 5)2 — 4(x — 5) + 3. function num-
ber
algebra/func_area Determine the area enclosed by f(z) = Composed 2 3 4 5 6
AT g =~ 1] +3 function num-
algebra/func_derivative ~ Number of maximal connected intervals in ~ Composed 2 3 4 5 6
[~10,10] where f(z) = —4(—2sin(rz — function num-
2) +2) + 5 is increasing. ber
algebra/func_ext_coords  Average of all x-coordinates of local min- Composed 2 3 4 5 6
ima of f(z) = % g:rlctlon num-
algebra/func_extrema Number of local maxima of f(x) = Composed 2 3 4 5 6
2cos(3m(|z+1|+3)+3) —1in [-10,10]. function num-
ber
algebra/func_intsct_coords Integer value (rounded) at which f(z) = Composed 2 3 4 5 6
x —5, g(z) = —2|z| — 1 intersect in function num-
[-10,10]. ber
algebra/func_intersection Number of intersections of f(x) = Composed 2 3 4 5 6
—3cos(2m(2|z+2[+2)+3)+1, g(z)= function num-
4o — 3in [-5, 5. ber
algebra/func_zeros Number of z-intercepts of f(x) = Composed 2 3 4 5 6
3cos(7r(—3\x —-2/+1)— 3) + 3. function num-
ber
arithmetic/ged What is the greatest common divisor of Digit length [4,71 [10,12][15,201[20,25][25,30]
1290 and 64715?
arithmetic/cale_mixed ~ Evaluate —2— ((—9)/7+((—1632)/119—  Operation [4,9] [10,14][14,16][16,20][20,25]
())). length
arithmetic/list_prime Find the second-largest prime factor of Max answer 25 100 200 400 800
62033.
arithmetic/determinant ~ Determine det(A). Row 3 4 6 7 9
arithmetic/eigenvalues ~ Find eigenvalues of A and report the largest Row 3 4 6 7 9
(by absolute value).
arithmetic/inverse Invert &A and sum all entries of the in- Row 3 4 6 7 9
verse.
arithmetic/multiplication ~ Entry (2, 1) of the product of given matrices Row 3 4 6 7 9
A and B.
arithmetic/power Sum of all entries of A2. Row 3 4 6 7 9
arithmetic/rank Rank of the matrix A. Row 3 4 6 7 9
arithmetic/svd Rounded largest singular value of A inits Row 3 4 6 7 9
SVD.
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Table 4: Problem families (combinatory and number theory) with sample problems and complexity
measures across five levels.

Problem Family Sample Problem Statement (simplified) = Complexity Lvl Lv2 Lv3d Lv4 Lv5
Alias Measure

combinatory/distribute D1v1de the letters from {‘m’ : 2, ‘p’ : Total letters [4,6] [6,8] [9,10] [11,11][12,12]
2, ‘t’ : 2} into 3 distinctively labeled boxes
w1th sizes [2, 1, 3]. How many ways?

combinatory/pattern_matchForm a word by randomly choosing 4 letters ~ Total letters [4,6] [6,8] [9,10] [11,12][13,14]
from the multiset {h’ : 6, ‘v’ : 3}. What
is the expected number of occurrences of
h.*h?

combinatory/prob_gt_n_fixWhat is the probability that, when forminga  Total letters [4,6] [6,8] [8,9] T[10,11][11,12]
4-letter word from {h’ : 2, ‘r’ : 3, ‘q’ : 3}
and shuffling it, at least one ‘r’ remains in
its original position?

combinatory/prob_eq_n_fixWhat is the probability that, when forming Total letters [4,6] [6,8] [89] [10,11][11,12]
a 2-letter word from {‘m’ : 2, ‘I’ : 1, ‘0" :
1} and shuffling it, exactly one ‘r’ remains
in its original position?

combinatory/prob_no_fix What is the probability that, when forming Total letters [4,6] [6,8] [8,9] T[10,11][11,12]
a 4-letter word from {b’ : 4, i’ : 2, ‘u”:
2} and shuffling it, no letter remains in its
original position?

combinatory/prob_no_lettetWhat is the probability that, when forminga  Total letters [4,6] [6,8] [8,9] [10,11][11,12]
4-letter word from {1’ : 3, X’ : 3, ‘n’ : 2}
and shuffling it, no ‘x” occupies any of its
original positions?

numbertheory/digit_sum Let N be the greatest 4-digit integer such  Digit count 2 3 4 5 6
that both IV and its digit-reverse are divisi-
ble by 9. What is the digit sum of N?

numbertheory/triple_count Let N be the number of ordered pairs (a,b) Max answer 10 50 100 200 500
with a, b < 2% such that a®+b? is a multiple
of 22. What is N?

numbertheory/prime_mod Let p be the least prime number for which ~ Digit count 2 3 4 5 6
there exists a positive integer n such that
n? + (2) is divisible by p*. Find the least
positive integer m such that m? + (2) is
divisible by p?.
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Table 5: Problem families (logic and geometry) with sample problems and complexity measures

across five levels.

Problem Family Sample Problem Statement (simplified) = Complexity Lvl Lv2 Lv3 Lv4 Lvs
Alias Measure
logic/blocked_grid In a3 x 6 grid, how many paths from (0,0) Grid size [5,10] [10,20][20,30][30,50][50,70]
to (2,5), moving only right or up, if cells
(0,4), (1, 3),(2,0) are forbidden?
logic/grid_rook In a 3 x 6 grid, minimal rook-like moves  Grid size [5,10] [10,20][20,30][30,50][50,70]
(any number right or up) from (0,0) to
(2,5). avoiding (1, 1), (1,0), (1,3), (2,0)?
logic/grid_knight On an 8 x9 grid, minimal knight-like moves  Grid size [5,10] [10,20][20,30][30,50][50,70]

(5 by 1 leaps) from (0, 0) to (7,5)?

logic/zebralogic Two houses numbered 1-2 each with max(# of at- 2 3 4 5 6
unique person (Arnold, Eric), birthday tributes, # of
(april, sept), mother (Aniya, Holly). Clues: people)
Eric is left of Holly’s child; April birthday
in house 1. Which choice index?
logic/grid_chip In a 5 x 5 grid, chips black/white Grid size 4 5 6 7 8
satisfy row/column uniformity
and maximality; given colours at
(3,4),(2,0), (4,3), (1,1),(2,2), (0, 3).
How many chips placed?
geometry/basic DS = 10. P is midpoint of DS. Rotate S Statement 10 15 20 25 30
by 7m/12 about P to X. Reflect X over D number
to Z; reflect D over Z to L. B is midpoint
of PZ; I is bisector of ZSPL; reflect S
over F'toT. Find |BT.
geometry/polygon_chords For a 6-gon with specified diagonals drawn  # of diagonals  [6,7] [8,9] [10,11][12,13][14,15]
(2-6,1-4,3-6,5-2,6-4,4-2,3-1), how many
pairs of diagonals are perpendicular?
geometry/circle Circle center C, radius 7. G on circle; L Statement 10 15 20 25 30
midpoint of GC; X midpoint of LC'; I mid- number
point of LX; F is reflection of G across C.
Find | F).
geometry/polygon_general Square ABC' D center T, circumradius 7.  Statement 10 15 20 25 30
Reflect T across B to G. O midpoint of number
DG; Z midpoint of T'A. Find |OZ].
geometry/triangle XT = 6. Rotate T' by 57/6 about X to O. Statement 10 15 20 25 30
Reflect O across X7 to V. D is incenter of number
ATOX; E midpoint of XV Find |DE]|.
geometry/rotation In a 10-gon, draw diagonals 5-9 and 8—6, Diagonal num- 2 3 4 5 6
then rotate setup 5 vertices CCW and super-  ber
impose. Count smallest polygons formed.
geometry/polygon_color A 6-gon vertices colored B,B,R,B,B,B in n of n-gon [6,71 [8,9] [10,11][12,13][14,15]
order. By rotating, what is the maximum
blue vertices landing on originally red posi-
tions?
METHOD PROBLEM PROBLEM OVERALL CONTROL W. CONTROL W.  NOTES
GENERATION ~ VERIFICATION ~ COMPLEXITY  CIFFICULTY  DISTRIBUTION
AIME (3] Human Human High X X 30 Questions per year.
GSMEK [5] Human Human Low X v Primitive math-word problems.
GSM-Symbolic Program Program Low v v Perturbed math-word problems.
112
GSM- Program Program Arbitrary 4 v Infinitely generable math-word prob-
Infinite [20] lems.
MATHS500 [14] Human Human Low v X
METAMATH (6] Human/LLM Human/LLM Low X X Based on GSM8K/MATH.
BIGMATH [1] Human Human/Filters High X X A mix of many datasets.
MATHSCALEQA LLM LLM Low X v 2M generated datapoints.
116
OPENMATH- Human/LLM  Human/Code/LLM Low X X 1.8M solutions to 14K problems
INSTRUCT [18 from MATH / GSM8K.
DEEPMATH [9] Human Human High v X 103K mathematical problems.
OMEGA (Ours) Program N/A; Correct by Arbitrarily 4 4 A controlled dataset for systematic
Construction High math generalization analysis.

Table 6: A comparison of various evaluation datasets and the methods used to generate them.
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A.7 Details of Compositional Generalization Problems

Compositional generalization evaluates a model’s ability to integrate multiple, distinct reasoning
strategies. In contrast to exploratory generalization—which focuses on scaling a single known method
to larger instances—compositional generalization requires the synergistic fusion of sub-strategies to
solve more complex problems. By the submission deadline, we provide 7 distinct settings to assess
compositional performance. Setting 1, illustrated in Figure [I] combines GCD and polynomial root
problems. Detailed examples and explanations for the remaining six settings are provided in Table

and Table[8]

Table 7: Examples (part 1) of training and test tasks that probe Compositional generalization ability

of LLM.

Problem family

Training regime (familiar tactic)

Compositional test (combined tactic required)

COMP. SETTING 2:
GEOMETRY/ROTA-
TION +
COMBINATORY/PAT-
TERN_MATCH

COMP. SETTING 3:
GEOMETRY/CIRCLE +
ALGEBRA/-
FUNC_INTERSECTION

COMP. SETTING 4:
COMBINATO-
RY/PROB_NO_FIX +
ALGEBRA/-
FUNC_INTERSECTION

« Example Problem from Domain A. Suppose
you have a 9-gon, with vertices numbered 1
through 9 in counterclockwise order. Draw the
diagonal from vertex 6 to vertex 4, from vertex 1
to vertex 6, and from vertex 3 to vertex 5. Then,
rotate the entire setup, including the constructed
diagonals, 8 vertices counterclockwise (so that
vertex 1 ends up where vertex 9 was), and super-
impose it on the original (so that the resulting
diagram contains both the original diagonals and
the rotated versions of the diagonals). The orig-
inal 9-gon will be partitioned into a collection
of smaller polygons. How many such polygons
will there be?

Example Problem from Domain B. Form a
word by randomly choosing 3 letters from the
multiset {y: 2, v: 1, p: 4, z: 4}. What is the
expected number of occurrences of the pattern
'p.*p’ in each word?

Example Problem from Domain A. Circle cen-
ter C, radius 7. G on circle; L midpoint of GC';
X midpoint of LC; I midpoint of LX; F'is
reflection of G across C. Find |IF|.

Example Problem from Domain B. Find
the number of intersections of f(z) =
—3cos(2m(2lz +2|+2)+3) +1, g(z)=
4z —31in [-5,5].

Example Problem from Domain A. What is the
probability that, when forming a 4-letter word
from {b’ : 4, i’ : 2, ‘0’ : 2} and shuffling it,
no letter remains in its original position?
Example Problem from Domain B. Find
the number of intersections of f(z) =
—3cos(2m(2lz +2[+2)+3) +1, g(=z)=
4x — 3 1n [-5,5].

* Composed Problem. Find the number of rect-
angles that can be formed inside a fixed regular
12-gon where each side of the rectangle lies on
either a side or a diagonal of the 12-gon. Note
that it is possible for a rectangle to be contained
within another rectangle, and that the rectangles
may not extend beyond the boundaries of the
12-gon.

* Decomposition. After observing the rotational
symmetries of the 12-gon and "visualizing" the
problem, define the conditions necessary for
lines parallel/perpendicular to a specific orien-
tation to form a rectangle. Since a rectangle
divided along an line parallel to its sides forms
more rectangles, finding the number of total rect-
angles in such a structure is a combinatorial prob-
lem isomorphic to the string problem.

* Composed Problem. A circle with radius 4
is moving on the coordinate plane such that its
center moves along the curve P(t) = (t,t?)
starting at t=0. Find the first value of t for which
the circle lies tangent to the x-axis.

* Decomposition. Observe that it is sufficient to
find a value of t for which the circle’s center
has a y-coordinate of 4, which reduces to a pure
"equation solving" problem.

* Composed Problem. Considering the functions
f(z) = asin(brz) and g(z) = psin(mgzx),
where a, b, p, q can each take integer values
from 1 to 5, how many different combinations of
parameter values result in at least 7 intersection
points in the range [-10, 10]?

* Decomposition. The composed problem re-
quires integrating symbolic reasoning over pa-
rameterized trigonometric functions (from Do-
main B) with combinatorial generalization over
multiple configurations (related to Domain A).
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Table 8: Examples (part 2) of training and test tasks that probe Compositional generalization ability

of LLM.

Problem family

Training regime (familiar tactic)

Compositional test (combined tactic required)

COMP. SETTING 5:
ARITHMETIC/MA-
TRIX_RANK +
COMBINATO-
RY/PROB_NO_FIX

COMP. SETTING 6:
GEOMETRY/POLY-
GON_COLOR +
COMBINATO-
RY/PROB_NO_FIX

COMP. SETTING 7:
LOGIC/GRID_CHIP +
COMBINATO-
RY/PROB_NO_FIX

« Example Problem from Domain A.Compute
the rank of the given 4x4 matrix: ...

« Example Problem from Domain B. What is
the probability of such event happening: Form
a word by randomly choosing 4 letters from the
multiset {j: 4, d: 2, p: 2}, shuffle the letters in
the word, what is the probability of exact 1 letter
’p’ remains in the same position?

« Example Problem from Domain A. A 6-gon is
colored so that in clockwise order, the vertices
are colored as follows: vertex O is blue, vertex 1
is blue, vertex 2 is red, vertex 3 is blue, vertex 4
is blue, vertex 5 is blue. What is the maximum
number of blue vertices that can be made to oc-
cupy a position where there were originally red
vertices by rotating the 6-gon?

« Example Problem from Domain B. What is
the probability of such event happening: Form
a word by randomly choosing 4 letters from the
multiset {j: 4, d: 2, p: 2}, shuffle the letters in
the word, what is the probability of exact 1 letter
’p’ remains in the same position?

« Example Problem from Domain A. Chips, col-
ored either black or white, are placed in the 25
unit cells of a 5x5 grid such that: a) each cell
contains at most one chip, b) all chips in the
same row and all chips in the same column have
the same colour, ¢) any additional chip placed
on the grid would violate one or more of the pre-
vious two conditions. Furthermore, we have the
following constraints (with the cells 0-indexed):
cell (3, 4) is black, cell (2, 0) is white, cell (4, 3)
is black, cell (1, 1) is white, cell (2, 2) is white,
cell (0, 3) is black. How many chips are placed
on the grid?

* Example Problem from Domain B. What is
the probability of such event happening: Form
a word by randomly choosing 4 letters from the
multiset {j: 4, d: 2, p: 2}, shuffle the letters in
the word, what is the probability of exact 1 letter
’p’ remains in the same position?

¢ Composed Problem. Consider the matrix M =

a b c
[1 a b:| where a, b, and c are integers be-
2 1 a

tween 3 and 10, inclusive. How many different
combinations of (a, b, ¢) result in a matrix with
rank exactly 3

* Decomposition. The composed problem re-
quires integrating linear algebra reasoning (ma-
trix rank determination) (from Domain B) with
combinatorial generalization over multiple con-
figurations (related to Domain A).

» Composed Problem. Each vertex of a regular
octagon is independently colored either red or
blue with equal probability. The probability that
the octagon can then be rotated so that all of
the blue vertices end up at positions where there
were originally red vertices is 7, where m and
n are relatively prime positive integers. What is
m—+n?

* Decomposition. The problem is fundamentally
about finding the number of cases satisfying a
constraint. The first subproblem tests under-
standing of the constraint (and the required spa-
tial reasoning). The second subproblem tests the
ability to enumerate cases.

* Composed Problem. There is a collection of
25 indistinguishable white chips and 25 indistin-
guishable black chips. Find the number of ways
to place some of these chips in the 25 unit cells
of a5 x 5 grid such that:

— each cell contains at most one chip

— all chips in the same row and all chips in
the same column have the same colour

— any additional chip placed on the grid
would violate one or more of the previous
two conditions.

* Decomposition. The problem asks to find the
number of possible arrangements subject to the
named constraints. The first subproblem tests
understanding of constraints in a very similar set-
ting. The second subproblem tests the ability to
compute the number of cases fitting a particular
constraint.
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A.8 Details of Transformative Generalization Problems.

Transformative generalization presents the greatest challenge: it tests whether a model can discard a
familiar yet ineffective strategy in favor of a qualitatively different and more efficient one. These tasks
go beyond simple extension or composition, requiring a ‘“‘jump out of the box”—a creative refram-
ing or redescription that bypasses the limitations of standard reasoning tactics. By the submission
deadline, we include 7 distinct settings to evaluate transformative generalization. Setting 2 (alge-
bra/function_intersection) and Setting 3 (algebra/polynomial_root) are illustrated in Table[2] while
Setting 4 (combinatory/prob_no_fix) is visualized in Figure[I] Detailed examples and explanations
for the remaining settings are provided in Table[9]and Table [L0]

Table 9: Examples of training and test tasks that probe Transformative generalization (part 1)

Problem family Training regime (familiar tactic) Transformative test (new tactic required)

¢ Problem. LetE,ben X n, e
¢ Problem. What is the rank of the ma- 1 ifi+ji
4 216 -8 7 o giseven b d rank(E,).
. 9 17 6 —14| . . 0 if7+ jisodd
TRANSFORMATIVE rix: |y 19 o —10| item Tactic , Needed insight. Observe that
SETTING 1: 7 6 -2 12 1
MATRIX_RANK learned. Use Gaussian elimination to reduce E, = 5(11T + (=D [(—1)J’]]T)7

the matrix to row-echelon form and count the
number of nonzero pivot rows.

i.e. a sum of two outer products (each rank 1),

sorank(Ey,) =2forn > 2 (and 1if n = 1).

* Problem. Evaluate the indefinite integral
¢ Problem. What is the symbolic integration of
the function

TRANSFORMATIVE
SETTING 5:
FUNC_INTEGRATION

fz) = 4(~1(52° + 5z — 2) + 4) — 37

¢ Tactic learned. First expand and simplify the
algebraic expression to a polynomial, then apply
the power-rule integration term by term.

/(1+x+x2+$3+z4) (1—z+2’—z+2*) da.

* Needed insight. Observe that multiplying the
two quintic sums collapses all odd-power terms,
yielding the even-power polynomial 2® 4- 2°® 4
x*+2%+1, which can then be integrated directly
by the power rule.
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Table 10: Examples of training and test tasks that probe Transformative generalization (part 2).

Problem family

Training regime (familiar tactic)

Transformative test (new tactic required)

TRANSFORMATIVE
SETTING 6: LOG-
IC/BLOCKED_GRID

TRANSFORMATIVE
SETTING 7:
GEOMETRY/CIRCLE

¢ Problem. In a 6x6 grid, how many different
paths are there from the bottom left (0, 0) to the
top right (5, 5), if you can only move right or up
at each step, subject to the constraint that you
cannot move through the following cells: (3, 3),
(2, 1), (3,4), (3, 1),(0,5), (5,0, (2,0, (0, 4),
2,5)

« Tactic learned. Among possible strategies, plot
the cells on the grid, and categorize paths ac-
cording to whether they pass above or below a
fixed cell. Use combinatorial formulas to easily
find the number of paths in each category. For
smaller problems, use brute-force search.

¢ Problem. Let C be the circle with center V
and radius 6. Point K is on circle C. Let I be the
midpoint of segment KV. Point M is the midpoint
of segment IK. Let L be the midpoint of segment
IM. What is the distance between points L and
I?

¢ Tactic learned. Construct circles, lines, and
perpendicular bisectors; find distances between
relevant points in the plane using coordinate ge-
ometry.

* Problem. In a 10x10 grid, how many different
paths are there from the bottom left (0, 0) to the
top right (9, 9), if you can only move right or up
at each step, subject to the constraint that you
cannot move through the following cells: (2, 0),
(2,1,(2,2),(2,3),(2,4),(2,5,(2,6), (2,7,
(2,8)?

* Needed insight. There is a wall, which vastly
simplifies the analysis. The only variation
among viable paths is at which "vertical" index
we first choose to move right, so there are 10
options.

* Problem. Let circle C; be positioned in the
coordinate plane with a radius of 1. Draw its
horizontal diameter and call its endpoints A;
and B;. Draw its vertical diameter and call the
higher endpoint D;. Then, let circle C' be the
circle centered at D; that passes through A;
and B;. Likewise, draw its horizontal diameter
and call its endpoints A; and B, and draw its
vertical diameter and call its higher endpoint
D5. Then, repeat this process, constructing a
circle C3 centered at Do that passes through
As and Bo, drawing its horizontal and vertical
diameters and constructing points As, Bs, and
D3 analogously, and so on until you construct
Ds. What is the distance between D5 and the
center of C1?

* Needed insight. There is a pattern to the con-
struction, so that the distance between C; and
D,, is geometric in n, which allows you to avoid
actually constructing most of the circles.
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B Experiment Details

B.1 Experimental Setup

Models. All experiments are conducted using the base model Qwen2.5-7B-Instruct, a strong
instruction-tuned large language model. This model serves as the initialization for reinforcement
learning (RL) fine-tuning.

Datasets. The training and evaluation problems for explorative, compositional, and transformational
generalization are drawn from the curated problem families described in Appendix [A]l Unless
otherwise specified, each training set consists of 1,000 problems. For compositional settings where
training involves two problem families, we allocate 500 samples per family. To align with the
proficiency level of Qwen2.5 -7B-Instrucﬂ the training problems are restricted to complexity levels
1-2. Evaluation is performed on:

¢ In-distribution (ID) problems: 100 test samples drawn from the same complexity range
(1-2) as training, depending on the setup—whether explorative, compositional, or transfor-
mational.

» Explorative problems: 100 test samples from the same problem family within the explorative
problems but with higher complexity (level 3).

» Compositional and Transformational problems: 20-50 test samples per setting. Although
these problems do not have explicit complexity annotations, we adjust key parameters (like
from small to large) to ensure the test set spans a range of complexity.

Training Details. We fine-tune models using the GRPO algorithm implemented in the Open-Instruct
frameworkﬂ The key training parameters are as follows:

--beta 0.0
--num_unique_prompts_rollout 128
--num_samples_per_prompt_rollout 64
--kl_estimator k13

--learning_rate 5e-7
--max_token_length 8192
--max_prompt_token_length 2048
--response_length 6336
--pack_length 8384
--apply_rl_style_format_reward True
--apply_verifiable_reward True
--non_stop_penalty True
--non_stop_penalty_value 0.0
--chat_template_name rl_simple_chat_postpend_think
--temperature 1.0
--masked_mean_axis 1
--total_episodes 20000000
--deepspeed_stage 2
--per_device_train_batch_size 1
--num_mini_batches 1
--num_learners_per_node 8 8
--num_epochs 1
--vllm_tensor_parallel_size 1
--v1llm_num_engines 16
--1lr_scheduler_type linear

--seed 3

--num_evals 200

Evaluation Protocol. Evaluation uses the same sampling strategy as training. Models are evaluated
200 times throughout training. To account for convergence fluctuations, we report the average
performance over the last 5 evaluation checkpoints.

4Successful RL training requires the base model to achieve nonzero accuracy on the training problems.
https://github.com/allenai/open-instruct
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Compute Resources. Each RL training run uses 32 NVIDIA H100 GPUs (distributed across 4 nodes)
and completes in approximately 12 hours.

B.2 Prompt for Reasoning Trace Step Classification

To systematically analyze the types of reasoning exhibited in model-generated mathematical traces,
we employed a structured prompt to guide the annotation of each sentence within the reasoning chain.
This prompt instructs the LLM to classify each sentence into one of three categories—conjecture,
computation, or other—with further verification for the correctness of computational steps.

The full prompt is as follows:

You are analyzing a sentence from a mathematical reasoning trace.
Please classify the following sentence into one of these categories:

1. "conjecture" - The sentence makes a hypothesis or conjecture about the final

answer. Typical examples include "Alternatively, maybe the matrix is singular.",

"Wait, let’s check if the determinant is zero or not.", "Alternatively, maybe

the problem is from a source where the answer is 14."

2. "computation" - The sentence performs a mathematical computation or calculation.

3. "other" - The sentence is explanation, setup, conclusion, or another type of reasoning.

Original math problem: {original_question}
Correct answer: {correct_answer}

Sentence to classify: {sentence}

If you classify it as "computation", also verify if the computation is correct
by doing the calculation yourself.

Please respond in the following JSON format:

{
"classification": "conjecture|computation|other",
"reasoning": "Brief explanation of why you classified it this way. ",
"computation_correct": true/false/null (only fill if classification is "computation")
}

This prompt enables fine-grained, reproducible labeling of reasoning steps for downstream analysis.
In our experiments, we applied it to every step separated with “.\n” of the chain-of-thought traces.
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Evaluation on Test Problems in Compositional Setting Evaluation on Test Problems in Transformative Setting
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Figure 6: Performance comparison of state-of-the-art LLMs on mathematical reasoning tasks in
compositional (left) and transformative (right) settings.

C Additional Experiments

Frontier Models’ Performance on the Test Problems in Compositional/Transformative Setting.
We provide results in Figure[6] In the compositional setting, OpenAl models (particularly o4-mini and
03-mini) demonstrate superior performance on structured problems like matrix rank and polynomial
operations, suggesting strong capabilities in combining fundamental mathematical concepts. Claude
3.7 Sonnet and DeepSeek-R1 show more moderate performance in this setting. In the transformative
setting, all models struggle with special function intersections and certain polynomial problems.
These results highlight both the progress made in LLMs’ mathematical reasoning and the remaining
challenges in developing models capable enough in different mathematical contexts.

Ablation Study on Disentangling the Role of In-distribution Problem Family in Compositional
RL Gain. To better understand under which in-distribution problem family RL improves perfor-
mance on compositional test problems, we conduct an ablation study (see Table [IT]and Table [12))
on the two compositional settings (Settings 2 and 5) that showed notable gains after RL fine-tuning
according to Figure ] In these settings, the model was originally trained jointly on two distinct
problem families (skill A and skill B), and tested on composite tasks that require integrating
both skills. Since not all settings benefited from RL, we hypothesize that the specific choice and
compatibility of skill A and skill B may influence whether RL can effectively promote compositional
generalization.

To test this hypothesis, we retrain the model in each setting while systematically altering the composi-
tion: replacing either skill A orskill B with a nearby alternative, or replacing both. Results show
that the original skill A + skill B pairing consistently yields the highest post-RL improvement
(+7.5 pp and +15 pp), indicating a strong synergy between the selected task pairs. Replacing just one
component reduces gains to a modest +2-5 pp, while replacing both typically eliminates or reverses
improvement (-18 pp and -3 pp). These findings suggest that RL is most effective when it can build
upon complementary skills already aligned in the joint training distribution—supporting the idea that
compositional success depends not just on RL, but on the semantic coherence of the underlying task
pair.

Supplementary Analysis on Qwen2.5-Math-7B. As shown in Figure [§] RL fine-tuning con-
sistently improves performance on both in-distribution and explorative generalization tasks, with
Qwen?2.5-Math-7B achieving average gains of +51 percentage points on ID problems and +24 per-
centage points on OOD problems. Notably, the Math-7B model demonstrates particularly strong
performance on Logic Zebralogic, reaching 85% ID accuracy and 82% OOD accuracy after RL
training—indicating that the specialized mathematical training of the base model synergizes effec-
tively with our RL approach. While Qwen2.5-7B-Instruct generally achieves slightly higher absolute
performance (e.g., 95% vs 85% on Logic Zebralogic ID), both models exhibit similar improvement
patterns, with consistently larger gains on ID tasks compared to OOD tasks. Interestingly, both
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Table 11: Ablation study for Compositional Setting 2 corresponding to Figure All numbers are
accuracies (0-1). A = After RL — Before RL.

Training Composition (ID1 + ID2) Before R After RL A
Original:

combinatory/prob_no_fixed + arithmetic/rank 0.30 0.38 +0.08
Replace skill A:

combinatory/pattern_matching + arithmetic/rank 0.30 0.35 +0.05
Replace skill B:

combinatory/prob_no_fixed + arithmetic/GCD 0.30 0.29 -0.01
Replace both:

algebra/linear_equation + arithmetic/GCD 0.30 0.12 -0.18

Table 12: Ablation study for Compositional Setting 5 corresponding to Figurem

Training Composition (ID1 + ID2) Before RL  After RL A
Original:

geometry/polygon_rotation + combinatory/pattern_matching 0.05 0.20 +0.15
Replace ID1:

geometry/polygon_rotation + combinatory/distribution 0.05 0.10 +0.05
Replace ID2:

geometry/basic + combinatory/pattern_matching 0.05 0.07 +0.02
Replace both:

arithmetic/GCD + algebra/linear_equation 0.05 0.02 -0.03

models struggle with OOD generalization on the Combinatory Distribution task (0% OOD accuracy
for both), suggesting this represents a particularly challenging generalization scenario that warrants
further investigation. These results demonstrate that our RL fine-tuning methodology generalizes
effectively across different Qwen2.5 variants, supporting the broader applicability of the approach for
enhancing mathematical reasoning capabilities.

D Complexity Analysis

In this section, we present a complexity analysis for the COMBINATORY/DISTRIBUTION task, which
is studied often in the main paper. Our goal is to demonstrate that this problem can be solved within
the context-length limits of today’s frontier large language models and Qwen-series models. Unlike
other tasks, such as function intersection or geometry, where the number of tokens required is difficult
to estimate, combinatory distribution problems allow for more precise tracking via simulation using a
Python program. Our analysis proceeds in three steps: (i) we summarize the context window limits of

OpenAl 0O4-mini  —— OpenAl O3-mini  —s— DeepSeek-R1  —s— Claude 3.7 Sonnet » Sample Question (level 5)
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Figure 7: Pass@k performance of the advanced LLMs across complexity levels for geometry rotation problems.
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Model Comparison in the Explorative Generalization: Qwen2.5-Math-7B vs Qwen2.5-7B-Instruct
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Figure 8: Comparison of RL fine-tuning effectiveness in the explorative generalization setting between
Owen2.5-Math-7B and Qwen2.5-7B-Instruct. Accuracy on in-distribution (ID) and out-of-distribution
(OOD) mathematical reasoning tasks before and after RL fine-tuning. Solid bars: Math-7B; hatched
bars: Instruct-7B.

current large-context models; (ii) we provide a representative level-6 problem and a compact dynamic
programming (DP) solver; and (iii) we measure the solver’s computational footprint and estimate the
corresponding token usage.

D.1 Context windows of frontier models

Model Maximum tokens Reference
GPT-03 Mini 200000 OpenAl Docs
GPT-04 Mini 128 000 Addepto Blog
Claude 3 Sonnet v3.7 >200000 Anthropic Support
DeepSeek-R1 164 000 OpenRouter Card

Table 13: Context-length limits of the models considered in this work.

D.2 Representative level-6 problem

Arrange the letters {0:6,1:1,d:2, y:2,v:3} into five indistinguishable boxes with
capacities [2,2, 2,5, 3]. How many distinct distributions exist?

This family generalises classical balls-into-bins counting with (i) multisets of item types and (ii)
capacity constraints. Difficulty level & controls the total number of items and the size of the search
space; level 6 is the hardest setting used in our experiments.

D.3 DP solver and instrumentation

We employ a depth-first DP that memoises states of the form (¢, ¢), where ¢ indexes the current letter
type and c is the non-increasing vector of residual capacities. The core Python routine is shown
below. Four counters track its execution:

* dp_calls — total invocations of the memoised routine;

* distribution_calls — number of distinct “distribute ¢ items into ¢” sub-problems gener-
ated;

* backtrack_calls — recursive steps inside the enumerator;

* state_transitions — edges explored in the DP graph.

def gen_distributions(total, rem_caps):
global distribution_calls
distribution_calls += 1
# return all possible distributions of ’total’ items into boxes with caps
# Generate recursively or via DP.
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# Use backtracking: assign to box 0 O0..min(total,cap), then recuse.
n = len(rem_caps)
dist = []
def backtrack(i, remaining, current):
global backtrack_calls
backtrack_calls += 1
if i==n:
if remaining==0:
dist.append(tuple(current))
return
cap = rem_caps[i]
# for each assign O to min(remaining,cap)
for x in range(min(remaining,cap)+1):
current.append (x)
backtrack(i+l, remaining-x, current)
current.pop()
backtrack(0, total, [])
return dist

@lru_cache (None)

def dp(i, rem_caps):
global dp_calls, state_transitions
dp_calls += 1

if i == len(letter_counts): # base case
return 1

total = letter_counts[i]

count = 0

for dist in gen_distributions(total, rem_caps):
state_transitions += 1
new_caps = tuple(sorted(rem_caps[j] - dist[j]
for j in range(len(rem_caps))))
count += dp(i + 1, new_caps)
return count

D.4 Empirical resource usage

Running the solver on the level-6 instance yields the statistics in [I4] The backtracking routine
dominates runtime with 1059 calls. Conservatively assuming that each backtrack call translates to 20
generated/consumed tokens, the total token demand is

1059 x 20 = 21180 tokens,

well below even the smallest window in Table[I3] Other problems in the same problem family with
complexity level 6 exhibit similar footprints (average 1284 backtrack calls).

Counter Value Explanation

Unique DP states 36 Distinct (¢, ¢) pairs memoised
dp_calls 36 Matches number of unique states
distribution_calls 35 Sub-problems created by the enumerator
backtrack_calls 1059 Leaf-level enumeration steps
state_transitions 249 Edges traversed in DP graph

Table 14: Execution statistics for the level-6 exemplar.

D.5 Footprint across difficulty levels (1-5)

We measured the average number of backtrack calls on the canonical instance for each lower difficulty.
Table [T5]summarises these, along with the corresponding token estimates:

Even at level 5—the hardest below level 6—the solver requires only ~14 K tokens. All levels thus
comfortably fit within every model’s context window, confirming the practicality of our experiments.
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Level Avg. backtrack calls Tokens@20/call Estimated total tokens

5 701.6 701.6 x 20 14032
4 443.7 443.7 x 20 8874
3 179.7 179.7 x 20 3594
2 65.1 65.1 x 20 1302
1 19.2 19.2 x 20 384

Table 15: Average backtracking calls and estimated token usage for levels 1-5.

D.6 Take-away

Even under pessimistic token-accounting assumptions, level-6 COMBINATORY DISTRIBUTION
problems demand fewer than 30 000 tokens of “reasoning budget”. All four frontier models listed in

Table[I3]therefore possess ample context to solve every instance we evaluate, validating the feasibility
of our experimental design.
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