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ABSTRACT

Pretrained vision-language models, e.g., CLIP, show promising zero-shot transfer
capability across various unseen classification datasets. However, there is an in-
herent limitation: CLIP image encoders are typically designed to extract generic
image-level features that summarize superfluous or confounding information for
the target tasks. This results in degradation of classification performance, espe-
cially when objects of interest cover small areas of input images. In this work, we
propose CLIP with Guided Cropping (GC-CLIP), where we use an off-the-shelf
zero-shot object detection model in a preprocessing step to increase the focus of
zero-shot classifiers on the object of interest and minimize the influence of extra-
neous image regions. We empirically show that our approach improves zero-shot
performance across architectures and datasets, most favorably for small objects.

1 INTRODUCTION

Conventional supervised learning for classification tasks involves training deep neural networks on
labelled datasets (He, 2020). The resulting models are inherently limited by the class definitions of
a specific task. In contrast, recent research focuses on open-vocabulary classification models (Jia
et al., 2021; Radford et al., 2021). Pretrained with large-scale image-text datasets, these models
define target classes generically through natural language, and generally have zero-shot transfer
capability, being able to perform on any unseen classification datasets without further training.

CLIP (Radford et al., 2021) is one of the most popular open-vocabulary classifiers. Its architecture
comprises image and text encoders which encode input images and texts into a shared latent space.
These encoders are trained with a contrastive loss such that the dot product similarity between image
and text encodings indicate how likely input images and texts correspond to one another.

A CLIP’s limitation lies in the fact that its encoders are designed to be generic in the sense that its
image encodings encompass entire information of a given image regardless of the target task. While
this behavior is desirable for some problems, it simultaneously poses a limitation when performing
classification on unseen datasets where only certain labels and image contents are of interest. In these
cases, encoding entire image contents can lead to suboptimal performance, particularly for small
objects. E.g., in Figure 1a, the large water region in the image dominates similarity scores between
image and text encodings of water-related classes, leading to an incorrect zero-shot prediction.

Our central question is: How can we reduce non-discriminative and extraneous information from
the image encodings? We observe that reducing areas of context regions by cropping input images
around objects of interest can be beneficial. Figure 1b illustrates that the cropped image with re-
duced water regions decreases similarity scores of incorrect water-related classes and results in the
dominant similarity score of the correct class (i.e., canoe).

One approach to reduce influence from non-discriminative information is to explicitly crop extra-
neous regions. One possibility is to employ open-vocabulary object detection models directly for
classification. These models produce object bounding boxes and locally categorize them based on
any given text prompts (Minderer et al., 2022; Kuo et al., 2022). We show, however, that these
approaches are in themselves not optimal for image classification tasks. We conduct an experiment
to extend one of the most recent open-vocabulary object detection models OWL-ViT (Minderer
et al., 2022) for classification, where each sample belongs to only one class. We observe that, while
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(b) Inference using CLIP with Guided Cropping

Figure 1: Logits from CLIP (ViT-B/32) before and after cropping around objects of interest

OWL-ViT provides reasonable bounding box estimation, its zero-shot classification performance is
inferior to CLIP baselines (more details in section 5.5).

In this work, we aim to improve the zero-shot object classification performance of CLIP by guiding
its focus to objects of interest and reducing influence of unrelated visual information. Instead of
using OWL-ViT for classification directly, we propose to employ it as a pre-processing bounding box
extraction module, such that cropped input images are processed by CLIP (Figure 1b). We refer to
this approach as CLIP with Guided Cropping (GC-CLIP). We show that classification performance
greatly depends on the choice of cropping scales, particularly for images with small objects.

Our contributions are as follows: We provide evidence that generic CLIP encoders can lead to
suboptimal zero-shot transfer performance, particularly on the images with small objects. We pro-
pose a method to improve zero-shot CLIP using bounding boxes estimated from a state-of-the-art
open-vocabulary object detector. We conduct experiments to show that our approach outperforms
a classifier built directly from this detector, as well as other baselines across different scenarios.
Lastly, we conduct ablation studies analyzing the conditions under which our approach works well.

2 RELATED WORK

Zero-Shot Learning and Zero-Shot Transfer In conventional zero-shot learning, models recog-
nize images of unseen classes based on their known semantics (Akata et al., 2015; Li et al., 2021;
Naeem et al., 2021; Mancini et al., 2021). In this work, we focus on zero-shot transfer and aim to
evaluate model performance on unseen datasets - classes in those datasets may not be completely
unseen to the model, however images of target datasets are unseen.

Open-Vocabulary Classification Open-vocabulary classification models enable zero-shot trans-
fer by using natural language to define class semantics, affording greater flexibility in the task def-
inition without requiring expensive annotations. Images and text prompts can be projected by im-
age/text encoders into a joint embedding space so that their similarities can be computed. CLIP
(Radford et al., 2021) and ALIGN (Jia et al., 2021) encourage similarity between image-text pairs
based on contrastive losses. Menon & Vondrick (2022) improves zero-shot performance by using
multiple text prompts per category based on queries from large language models. Florence (Yuan
et al., 2021) considers more modalities in addition to images and texts.

While these models perform well in open-world scenarios, their performance can be limited for
certain inputs as their encoders may encode extraneous information. CALIP (Guo et al., 2023) looks
for discriminative information by incorporating attention information in feature-level. This relies on
the quality of CLIP attention maps which can be poor in many cases (Chen et al., 2022). On contrary,
we seek discriminative information directly at an image-level, which is more interpretable.

Open-Vocabulary Object Detection Open-vocabulary object detectors produce bounding boxes
given input text prompts (Gu et al., 2021; Zhong et al., 2022; Li et al., 2022; Kuo et al., 2022;
Zhang et al., 2022). ViLD (Gu et al., 2021) trains an object detector based on knowledge distillation
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Figure 2: Guided Cropping pipeline to obtain a guided cropped image with margin ratio α

from pretrained open-vocabulary classification models. In OWL-ViT (Minderer et al., 2022), simple
modifications of standard vision transformers are fine-tuned with large-scale image-text datasets for
object detection. GLIPv2 (Zhang et al., 2022) extends models to handle various localization tasks.

Object detection models have innate ability to not only localize, but classify localized objects based
on local information. A question may be raised, whether they are in general sufficient to solve the
zero-shot classification task alone. In section 5.5, we conduct experiments based on OWL-ViT, a
recent off-the-shelf model, and demonstrate its poor performance on classification tasks. In this
work, we use the open-vocabulary object detection models only for bounding box extraction.

3 BACKGROUND

Problem Formulation Given a test dataset {(xi, yi)}Ns
i=1, where xi ∈ X = Rw×w and yi ∈ Y =

{1, 2, . . . , Nc} is an image and its corresponding label, our task is to construct a prediction function
F : X → Y based on pretrained open-vocabulary models to maximize P (ŷ|x) = P (F (x)|x) with-
out accessing any test samples. The remainder of this section describes such a prediction function
based on CLIP, and our approach will be presented in section 4.

Conventional CLIP CLIP (Radford et al., 2021) is a multi-modal model with zero-shot transfer
capability. It consists of an image encoder G and a text encoder H . To perform classification on an
unseen target dataset, a text prompt pclsj needs to be defined for each target class j ∈ Y . Then, an
embedding of each prompt can be obtained by: etextj = H(pclsj ). During inference, an input image
xi will be projected into its image embedding eimage

i = G(xi) so that its classification logit lCLIP
i

can be computed as:

lCLIP
i = (Etext)T eimage

i =
[
etext1 etext2 . . . etextNc

]T
eimage
i . (1)

Each entry lCLIP
ij of the logit indicates the similarity score between the (embedded) input image and

the j-th prompt. The final class prediction can then be obtained as ŷi = argmaxj∈Y lCLIP
ij . Here,

we assume that one prompt is available per class. However, (Menon & Vondrick, 2022) has recently
shown that multiple prompts per class can improve performance. In this case, etextj from equation 1
can be replaced with the average embedding computed from all available text prompts of class j.

4 METHODOLOGY

4.1 CLIP WITH GUIDED CROPPING

Conventionally, an image embedding eimage
i is computed directly from the full image xi without

any task-specific constraints. This implies that potentially unrelated information is also encoded
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(a) Without augmentation (b) With Multi-Margin augmentation

Figure 3: Each green square corresponds to a final bounding box bα (or bαk ) which will be used
to crop the original image xi to produce logit for the final prediction. ∆w is the width difference
between the original image and the primary box b0i . α and αk are margin ratios.

into eimage
i , especially in cases of a small object image, which may lead to suboptimal performance

(see section 5.3). Minimizing the amount of unrelated concept information in image embeddings is
desirable in this case. Our approach GC-CLIP achieves this by using bounding box estimates from
a Guided Cropping component.

For our Guided Cropping, in theory, any detectors which can localize target objects without further
supervision can be employed. Our goal in this paper is to show that, there is at least one detector
which, under our framework, can improve overall performance of CLIP. In our work, we choose
OWL-ViT (Minderer et al., 2022), the state-of-the art open-vocabulary object detector as a candidate.

OWL-ViT takes an image and text prompts of target classes as inputs and produces outputs as a set
of bounding boxes together with their scores and classes. In this work, we only use OWL-ViT as a
bounding box extraction module as its class predictions are not accurate enough (see section 5.5).
The overall GC-CLIP pipeline is shown in Figure 2. We only consider top-k classes (we use k=5) to
refine the preliminary CLIP predictions. This is reasonable since it has high probabilities that these
top-k classes contain the correct class (see appendix A.4).

Candidate box extraction We detect bounding boxes of each top-k class with OWL-ViT indepen-
dently. We found that this is more robust to misdetection resulting in better performance compared
to detecting bounding boxes of all classes at once (see appendix A.6). Formally, a set of bounding
box candidates Bi for an image xi can be obtained based on OWL-ViT as follows:

Bi =
⋃

j∈Jk
i

bij =
⋃

j∈Jk
i

OWL(xi, p
det
j ) (2)

where Jk ⊆ Y is a set of top-k classes with respect to lCLIP
i , pdetj is a text prompt for detection of

class j and OWL is OWL-ViT detection function returning a max-score bounding box with respect
to an input image and a prompt. All bounding boxes are adjusted to squares to avoid skewing images
when they are, afterward, transformed into a CLIP-compatible image size. (e.g., 224× 224).

Box selection Next, we need to pick one bounding box from Bi. We start from a primary box
b0i ∈ Bi which has the highest estimated score from OWL-ViT. In our experiments, we found that
using the primary box directly is generally suboptimal as its crop may be too tight. It is therefore
beneficial to slightly enlarge the box (see section 5.2). Given b0i has the width of wb0i

and xi has
the width of w, the box is enlarged to an α-margin box bαi uniformly in all direction to the size of
wb0i

+ α(w−wb0i
), where α ∈ [0, 1] is called the margin ratio (see Figure 3a). For the enlargement,

if a box edge exceeds image boundary in one direction, the enlargement will be compensated in the
opposite direction. In cases with box augmentation, multiple α can be employed (see section 4.2).

Logit computation This selected box bαi is used to crop xi and resize it to a CLIP-compatible im-
age size w×w resulting in a preprocessed image xα

i . The new top-k logit lGC CLIP (k)
i is computed
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Figure 4: Results when forwarding multiple random crops of the same images (from ImageNetS919
dataset) to CLIP (ViT-B/32) demonstrating CLIP sensitivity to non-semantic changes.

based on xα
i as follows:

l
GC CLIP (k)
i =

[
etextj1 etextj2 . . . etextjk

]T
G(xα

i ), (3)

where j1, j2, . . . , jk ∈ Jk
i . The final class prediction is the class within Jk

i corresponding to the
maximum entry of lGC CLIP (k)

i .

4.2 TEST-TIME BOX AUGMENTATION

Working with raw/preprocessed input images directly can lead to noisy prediction from CLIP. Small
non-semantic changes in images can cause changes in predictions making CLIP outputs difficult to
analyze. We show this behavior by processing 10 random crops (90%-100% of the original widths)
of the same image with CLIP. One would expect standard deviations of its predicted true-label
probabilities to be low and its final class predictions not to change across different crops. However,
we notice from Figure 4a that the standard deviations can be relatively high (around 0.2), while the
average true-label probability is 0.55. In addition, only around 60% of test samples have no changes
in final class predictions across crops (see Figure 4b). It is also observable that samples with smaller
object sizes have less reliable predictions. These results indicate that CLIP is quite sensitive to
non-semantic changes. Therefore, instead of computing logits from raw/preprocessed images only,
we can perform a simple test-time augmentation to help mitigate this issue. In the following, we
investigate two augmentation strategies.

Random Crop Box Augmentation (RAug) With RAug, we augment a single input (raw or pre-
processed) image into Naug total images by cropping the input image with Naug boxes of random
widths within [βw,w], while β ∈ (0, 1). The augmented images are used to compute multiple
predicted logits as per equation 3, which can then be averaged to produce the final logit score.

Multi-Margin Box Augmentation (MAug) In some cases, it is beneficial to consider context
information as long as it does not dominate the object in question (Hoyer et al., 2019). With MAug,
we need to firstly obtain the primary box b0i . Then, instead of using a margin ratio α as in section 4.1,
we perform an object-centric augmentation by using Naug bounding boxes obtained from multiple
margin ratios, distributed uniformly from 0 to 1 (see Figure 3b). In other words, the set of all
final boxes used in this augmentation is

{
bαk
i |αk = k

Naug−1 , k ∈ {0, 1, . . . , Naug − 1}
}

. Similarly,
logits computed from images cropped by these final boxes are then averaged to get the final logit
score.

It must be noted that, with MAug, regions close to the target object are covered by more boxes
compared to regions far from the object. Therefore, this augmentation strategy allows some context
information to be considered but with lower importance compared to the object’s immediate context.
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5 EXPERIMENTS

In this section, we conduct experiments to demonstrate that utilizing CLIP with Guided Cropping
can improve zero-shot transfer performance of CLIP. In addition, several ablation studies are con-
ducted to understand the failure modes and the conditions under which our approach works well.

Datasets: We aim to show that generic CLIP encoders can lead to suboptimal zero-shot perfor-
mance, particularly on the images with small objects. We showcase the effectiveness of our GC-
CLIP in such cases. Therefore, we study datasets in which object sizes in images are controllable.
We find two datasets - ImageNetS919 (Gao et al., 2022) and CUB (Welinder et al., 2010) fit this
criteria. These datasets provide segmentation/bounding box annotations from which object sizes of
image samples can be obtained and enable us to quantify the performance on objects covering small
areas. Details of these two datasets are as follows - (1) ImageNetS is an extension of ImageNet and
originally designed for unsupervised semantic segmentation. We use validation split of the dataset in
which pixel-wise segmentation annotations are available. It contains 12,419 samples of 919 classes
in total. We construct a subset with target objects of small sizes, referred as ImageNetS919-SM,
containing 2,334 samples whose object sizes are no more than 20% of the full image size. (2) CUB
is a benchmark for fine-grained classification consisting of 200 bird types. We evaluate our models
on its test split of 5,794 samples. Based on bounding box annotations, we construct a subset whose
target object sizes are less than 20% of the full image size resulting in CUB-SM containing 1,390
samples. Details of our dataset splitting methodology can be found in appendix A.1.

Baselines: We employ CLIP (Radford et al., 2021) variations as well as CALIP (Guo et al., 2023)
as our baselines. DataComp represents a recent variation of CLIP from (Gadre et al., 2023). Two
classification prompt types are investigated (1) Category: Each class has a single prompt of its
category name (2) Descriptions: Each class has multiple prompts queried automatically from GPT-3
according to Menon & Vondrick (2022). In the latter case, the final logit value for a given class is
computed by averaging the logit values obtained from all prompts for that class.

Implementation: We apply our Guided Cropping and box augmentation on top of each baseline.
For Guided Cropping variations, the margin ratio α of 0.2 is used unless otherwise specified. We
perform box augmentation with Naug = 11. For RAug, β = 0.9 is used. The high value of β makes
RAug augmented boxes less likely to crop object contents away. Different CLIP backbones like
ViT-B/32, ViT-B/16 and ViT-L/14 are studied in this work. For OWL-ViT, its backbone is ViT-B/32
for all experiments. Category names are used as prompts to perform detection with OWL-ViT. The
code of our implementation will be publicly available upon paper acceptance.

5.1 ZERO-SHOT TRANSFER RESULTS

We evaluate zero-shot performance of different configurations on various datasets including both
unconstrained object sizes (full dataset) and small-object variants (with -SM suffix). Results for
ViT-B/32 and ViT-B/16 backends are shown in Table 1 (ViT-L/14 and DataComp in appendix A.2).

Considering datasets with unconstrained object sizes, ImageNetS919 and CUB, our Guided Crop-
ping performance is comparable to (or slightly better than) non-Guided Cropping baselines. This is
expected since many samples in these cases could have objects whose sizes already dominate the
scene. On the other hand, both box augmentations consistently improve classification performance
in all cases indicating that raw predictions from CLIP models are indeed noisy. Smoothing their
predictions with box augmentations complement our methods to be more robust to this noise.

GC-CLIP demonstrates consistent improvement over baselines on datasets with small objects
(ImageNetS919-SM, CUB-SM) across different model/prompt configurations. This indicates that
our approach, as expected, is more beneficial for images with small objects. This is reasonable since
images with small objects leave more space in the images for context information which should
be excised before performing image encoding. Another interesting observation is that employing
MAug generally achieves better performance. This infers that hinting context cues with lower im-
portance can indeed complement the focus on target objects to make definite and correct decisions.

In Table 2, we conduct an experiment with CALIP. Some observations can be seen from the results.
Firstly, compared to Table 1, CLIP with Guided Cropping performance on ImageNetS919-SM and
CUB-SM (55.18, 51.44) is better than CALIP performance (53.81, 50.36) even without box augmen-
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Table 1: Zero-shot classification accuracies from different datasets and model configurations.

Model Prompt
Guided

Cropping
Box Aug.

Dataset
ImageNetS919 CUB ImageNetS919-SM CUB-SM

C
L

IP
(V

iT
-B

/3
2) Category

- - 63.62 51.83 52.83 49.57

- Random Crop 64.42 52.45 53.47 50.79

✓ - 63.61 52.40 55.18 51.44

✓ Random Crop 64.46 53.12 56.00 52.81

✓ Multi-Margin 64.66 53.12 56.00 53.09

Descriptions

- - 68.54 53.05 55.70 50.14

- Random Crop 69.15 53.62 57.33 50.79

✓ - 68.59 54.07 58.61 53.38
✓ Random Crop 69.07 54.47 59.08 53.09
✓ Multi-Margin 69.62 54.56 60.07 52.95

C
L

IP
(V

iT
-B

/1
6) Category

- - 68.60 56.51 57.75 55.54

- Random Crop 68.81 56.89 58.05 57.41

✓ - 68.06 56.09 58.65 55.97

✓ Random Crop 68.19 56.78 58.35 57.12

✓ Multi-Margin 68.94 57.30 59.81 57.63

Descriptions

- - 72.67 57.78 61.61 56.55

- Random Crop 73.17 58.87 62.13 57.99

✓ - 72.61 58.70 63.28 59.35
✓ Random Crop 72.86 58.99 63.32 58.78

✓ Multi-Margin 73.49 59.34 64.05 59.06

Table 2: Performance of CALIP with/without Guided Cropping using category-based prompts.

Model
Guided

Cropping
Box Aug.

Dataset
ImageNetS919-SM CUB-SM

CALIP
(ViT-B/32)

- - 53.81 50.36
- Random Crop 54.97 52.88
✓ - 55.66 52.59
✓ Random Crop 56.08 54.03

tation. Secondly, CALIP can be integrated with Guided Cropping to further improve performance.
This demonstrates flexibility of our approach for combining with other classifiers.

A question may arise: how does Guided Cropping affect supervised models? We conduct experi-
ments integrating our Guided Cropping with supervised models (see appendix A.3). For few-shot
models, this integration can improve performance. Fully-supervised models benefit less from crop-
ping. This is expected since these models tend to be more vulnerable to dataset biases. E.g., unre-
lated contexts could be used as shortcuts (Geirhos et al., 2020) to gain in-distribution performance.

5.2 IMPORTANCE OF MARGIN RATIO

Margin ratio (α) mentioned in section 4.1 controls how much primary boxes are enlarged before
they are used to crop input images. Varying margin ratios can help us understand how CLIP reacts
to Guided Cropping from α = 0.0 (crop with a raw OWL-ViT box) to α = 1.0 (no Guided Cropping
at all). We conduct an experiment with different α as shown in Figure 5. We mainly discuss results
from GC-CLIP and GC-CLIP+RAug here as these configurations utilize a single α.

According to the results, when Guided Cropping is applied (α < 1), classification accuracies are
generally better than the accuracies without Guided Cropping (α = 1). This confirms the benefit
of GC-CLIP. It must be noted that there are some consistent drops of the performance when the
values of α are too small (e.g., when α ∈ [0.0, 0.1]). Bounding boxes that are too tight can degrade
classification performance. One explanation of this observation is that in order to recognize an
object, models need to know the object shape clearly. Too tight bounding boxes can make the
models have unclear information on the object boundaries leading to performance drops.
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Figure 5: Zero-shot accuracies on ImageNetS919-SM evaluated with different margin ratios.
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Figure 6: Accuracies (ViT-B/32) on subsets of ImageNetS919 with various object size conditions.

5.3 UNDERSTANDING OBJECT SIZE CONDITIONS

Above we conduct experiments on small object images with one size condition (i.e., object size
< 20% of image size). Here, we explore our approach on different object size conditions. We vary
maximum relative object size of ImageNetS919 from 5% to 100% for our evaluation. The results are
in Figure 6 (and appendix A.5). When object sizes are not constrained (i.e., x-axis = 1.0), Guided
Cropping remains comparable to baselines (similar observation in Table 1). However, as maximum
object sizes decrease, the accuracy gaps between conventional CLIP and GC-CLIP become larger.
The gaps are also more significant when MAug is applied for box augmentation instead of RAug.
This experiment highlights that our approach works well for images with small objects.

5.4 QUALITATIVE EVALUATION

We quantitatively evaluate GC-CLIP by visualizing some samples that are predicted differently than
standard CLIP. Corrected samples are in Figure 7a. In the container ship image, “land” and “sea” are
contexts spanning large image regions making standard CLIP falsely predict the input as amphibious
vehicle. However, GC-CLIP categorizes the image by focusing on primary box at the watercraft.

On the other hand, samples whose predictions are incorrectly changed by GC-CLIP are in Figure
7b. These failures are due potentially to the distances between target objects and important contexts.
While MAug allows some contexts to be considered, large distances between target objects reduce
importance of the contexts for GC-CLIP (less boxes cover the contexts). E.g., considering the space
shuttle image, the target object is so small that lacking any additional context, it is quite difficult
to distinguish between a missile and a space shuttle (which is usually launched orthogonal to the
ground). However, large distance between the ground and the object box reduces effects from the
ground in GC-CLIP. Strategies to weight contexts dynamically can be investigated in future works.
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GC-CLIP: Container ship
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(a) Improved cases

CLIP: Space Shu�le
GC-CLIP: Missile

CLIP: Miniskirt
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(b) Failure cases

Figure 7: Predictions of CLIP (with RAug) and GC-CLIP (with MAug) with ViT-B/32 on Ima-
geNetS919 samples. Red boxes represent primary boxes b0 estimated from our GC-CLIP.

GT : Scorpion
OWL  -ViT: Stick insect

GT : Spoonbill
OWL  -ViT: Goose

GT : Tiger shark
OWL  -ViT: Snoek fish

Figure 8: Examples of failure modes of
the OWL-ViT based classifier.

5.5 PERFORMANCE OF OWL-VIT DIRECTLY AS A CLASSIFIER

Here, we show that OWL-ViT, when adopted as a classifier directly, has subpar performance. In
this case, we need to transform its outputs from sets of bounding box locations, scores and class
labels into class-wise logits. Given an input image, the prediction logit of a class can be obtained
as follows. We first iterate whether there are any bounding boxes exist for that class. If any exist,
the class logit value is assigned as the maximum score among its boxes. Otherwise, its logit is zero.
This simple extension encourages classes of bounding boxes with high scores to have high logits.

This classifier obtains 20.34% and 40.78% as top-1 and top-10 ImageNetS919 accuracies respec-
tively which are low relative to baseline performance in Table 1. Figure 8 shows that OWL-ViT gives
reasonable bounding boxes, but its class predictions are inaccurate and often confused with other se-
mantically similar classes (e.g. tiger shark as a snoek fish). These results confirm that OWL-ViT is
not optimal to be used as a classifier on standard classification benchmarks.

We hypothesize that this behavior might be attributed to the multi-task nature of the model. OWL-
ViT utilizes a single image encoder to extract features that are used for both bounding box prediction
and classification. Due to the limited capacity of the encoder or the choice of training strategies, it
may compromise performance of individual tasks so that the average performance across tasks are
reasonable but the performance of individual tasks may not be maximized.

6 CONCLUSION

We identify a clear limitation of CLIP-based models for zero-shot transfer on unseen classifica-
tion datasets: as its image encoder is designed for encoding a generic image-level representation,
it is prone to encode non-discriminative context information into image features leading to per-
formance degradation, particularly for small objects. We propose GC-CLIP to reduce the effects
from potentially non-discriminative information based on object bounding boxes estimated from an
open-vocabulary object detection model. We empirically demonstrate that our approach outperforms
baselines especially in cases of image samples with small objects. We analyze conditions in which
our approach performs well in several additional ablation studies. We hope this work sheds a new
light on the behavior of large-scale open-vocabulary models for classification and motivates future
research to address this limitation in a more systematic manner.
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A APPENDIX

A.1 CONSTRUCTING DATASET VARIATIONS WITH SMALL OBJECTS

1.00.0

Relative Object Size

Figure 9: Example images from ImageNetS919 with different relative object sizes.
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Figure 10: The number of samples in each object size condition of ImageNetS919.

In section 5, we use datasets based on ImageNetS and CUB as well as their small object varia-
tions (e.g., ImageNetS-SM and CUB-SM). In this section, we provide more details how those small
variations are constructed.

For each image sample, its object size is computed based on object bounding box. In case of CUB,
the bounding box is obtained directly from available annotations. However, for ImageNetS, only
its pixel-wise segmentation is provided. In this case, object bounding box can be extracted from
the segmentation in terms of minimum and maximum coordinates along X and Y axes of object-
labelled pixels.

Given an image xi of size w × w with the object bounding box represented in terms of mini-
mum/maximum XY coordinates as (pXmin, p

X
max, p

Y
min, p

Y
max), relative object size of the image sxi

is the ratio between the area of object bounding box and the total image area which can be computed
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as follows:

sxi
=

(pXmax − pXmin)(p
Y
max − pYmin)

w2
. (4)

The value of sxi
will be within the range of [0, 1]. Example images with different values of sxi

are
shown in Figure 9.

We use sxi of individual image samples to control object size characteristic of a dataset. In section 5,
the datasets with small objects (i.e., ImageNetS919-SM and CUB-SM), are obtained by thresholding
sxi of image samples such that that their values are not larger than 0.2. In section 5.3, multiple
thresholds of sxi

are employed on the ImageNetS919 dataset in order to study behavior of our
models on different object size conditions. These thresholds are distributed uniformly from 0.05
to 1.0 with the step size of 0.05. The number of samples in each of these object size conditions is
presented in Figure 10.

A.2 ADDITIONAL ZERO-SHOT TRANSFER RESULTS

From table 1, we presented zero-shot performance of GC-CLIP variations with different model
configurations. In this section, we provide full version of the results including performance of ViT-
L/14 and DataComp in Table 3.

A.3 GUIDED CROPPING WITH SUPERVISED MODELS

In the main paper, we mainly focus on applying our Guided Cropping to zero-shot models, i.e., CLIP
and CALIP. We argue that Guided Cropping can be helpful in this case as image encoders of these
models are designed to be generic so that they potentially encode non-discriminative information of
input images.

Concerning our Guided Cropping component alone, it is, in fact, orthogonal to supervision strate-
gies. Theoretically, our Guided Cropping can be employed with supervised models as well. In this
case, models can be supervisedly trained as normal but, during inference, their input images can
be cropped with our Guided Cropping component before forwarding to the models. In this section,
we study behaviors of Guided Cropping when it is integrated with few-shot and fully-supervised
models.

A.3.1 FEW-SHOT MODELS

In this section, we conduct an experiment based on few-shot models, Tip-Adapter and Tip-Adapter-F
(Zhang et al., 2021), to learn classification on ImageNetS919-SM and CUB-SM datasets in few-shot
(n-shots=16 in our experiment). Its performance without and with Guided Cropping (α = 0.2 with
no box augmentation) is shown in the table below. According to the table, our Guided Cropping
generally improves performance of Tip-Adapter variations. This empirically demonstrates benefits
of our Guided Cropping for few-shot models.

A.3.2 FULLY-SUPERVISED MODELS

In this section, we study behaviors of Guided Cropping when it is integrated with pretrained super-
vised models. In this regard, we utilize ImageNet pretrained models with ViT-B/32, ViT-B/16 and
ViT-L/16 backbones from timm (Wightman, 2019), a deep learning library. These models are eval-
uated on ImageNetS919 and ImageNetS919-SM datsets with/without Guided Cropping. The results
are shown in Table 5.

According to the results, optimal performance generally achieves with models without Guided Crop-
ping or with Guided Cropping using large margin ratio, i.e., 0.8, whose crops already cover large
context regions. We can observe this behavior even in the case of small objects (ImageNetS919-
SM). These results indicate that, for these fully-supervised models, unrelated contexts generally do
not degrade classification performance. In contrast, these contexts even improve their performance.
This observation is actually not new and has been discussed in shortcut learning literature (Geirhos
et al., 2020) that supervisedly trained networks can take unintended visual cues (e.g., background,
texture) as shortcuts to gain classification performance on in-distribution samples.

13
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Table 3: Zero-shot classification accuracies from different datasets and model configurations.

Model Prompt
Guided

Cropping
Box Aug.

Dataset
ImageNetS919 CUB ImageNetS919-SM CUB-SM

C
L

IP
(V

iT
-B

/3
2) Category

- - 63.62 51.83 52.83 49.57

- Random Crop 64.42 52.45 53.47 50.79

✓ - 63.61 52.40 55.18 51.44

✓ Random Crop 64.46 53.12 56.00 52.81

✓ Multi-Margin 64.66 53.12 56.00 53.09

Descriptions

- - 68.54 53.05 55.70 50.14

- Random Crop 69.15 53.62 57.33 50.79

✓ - 68.59 54.07 58.61 53.38
✓ Random Crop 69.07 54.47 59.08 53.09
✓ Multi-Margin 69.62 54.56 60.07 52.95

C
L

IP
(V

iT
-B

/1
6) Category

- - 68.60 56.51 57.75 55.54

- Random Crop 68.81 56.89 58.05 57.41

✓ - 68.06 56.09 58.65 55.97

✓ Random Crop 68.19 56.78 58.35 57.12

✓ Multi-Margin 68.94 57.30 59.81 57.63

Descriptions

- - 72.67 57.78 61.61 56.55

- Random Crop 73.17 58.87 62.13 57.99

✓ - 72.61 58.70 63.28 59.35
✓ Random Crop 72.86 58.99 63.32 58.78

✓ Multi-Margin 73.49 59.34 64.05 59.06

C
L

IP
(V

iT
-L

/1
4)

Category

- - 75.15 63.08 64.78 62.16

- Random Crop 75.30 63.32 64.70 62.59

✓ - 75.00 62.96 66.02 62.16

✓ Random Crop 75.04 63.24 66.54 62.73

✓ Multi-Margin 75.71 63.63 66.92 63.17

Descriptions

- - 78.48 64.65 67.78 63.17

- Random Crop 78.65 64.60 67.65 63.96
✓ - 78.32 64.67 69.07 63.31

✓ Random Crop 78.28 64.88 69.41 63.96
✓ Multi-Margin 79.06 64.76 69.88 62.95

D
at

aC
om

p
(V

iT
-L

/1
4) Category

- - 82.05 85.57 69.88 85.18

- Random Crop 82.10 86.07 69.84 86.04

✓ - 81.87 85.85 71.04 86.26

✓ Random Crop 81.75 85.99 71.04 86.04

✓ Multi-Margin 82.36 86.19 71.51 86.62

Descriptions

- - 82.66 86.04 70.01 86.12

- Random Crop 82.82 86.45 70.48 86.98

✓ - 82.33 86.57 71.25 87.19

✓ Random Crop 82.23 86.62 71.25 87.19

✓ Multi-Margin 82.93 86.83 71.68 87.41

Comparing to cases of other supervision strategies, zero-shot and few-shot models are less likely to
be affected by shortcut learning since exposing to none (or few) of samples on target datasets make
them less likely to learn unintended visual clues from dataset biases.

A.4 LOGIT REFINEMENT ON TOP-K PREDICTIONS

As per our method mentioned in section 4.1, after computing preliminary logits from conventional
CLIP, only top-k predictions are considered and refined with Guided Cropping. We choose k = 5 in
this work. In this section, we will provide reasons why we adopt this top-k refinement strategy. Two
main reasons are given below.
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Table 4: Few-shot performance with Tip-Adapter variations. Accuracies gain from Guided Cropping
integration are given in parentheses.

Model Approach Guided Cropping Dataset
ImageNetS919-SM CUB-SM

V
iT

-B
/3

2 Tip-Adapter - 56.34 53.45
Tip-Adapter ✓ 58.27 (+1.93) 54.53 (+1.08)
Tip-Adapter-F - 62.43 60.22
Tip-Adapter-F ✓ 63.15 (+0.72) 60.07 (-0.15)

V
iT

-B
/1

6 Tip-Adapter - 62.34 61.44
Tip-Adapter ✓ 64.05 (+1.71) 62.30 (+0.86)
Tip-Adapter-F - 68.04 67.12
Tip-Adapter-F ✓ 68.42 (+0.38) 67.05 (-0.07)

V
iT

-L
/1

4 Tip-Adapter - 68.77 70.72
Tip-Adapter ✓ 70.44 (+1.67) 71.94 (+1.22)
Tip-Adapter-F - 72.24 73.88
Tip-Adapter-F ✓ 72.15 (-0.09) 74.32 (+0.44)

Table 5: Classification accuracies of ImageNet pretrained models with/without Guided Cropping on
ImageNet919.

Architecture Guided
Cropping

Margin
Ratio

Box
Aug.

Dataset
ImageNetS919 ImageNetS919-SM

ViT-B/32 - - - 76.82 61.53
ViT-B/32 - - Random Crop 77.71 62.21
ViT-B/32 ✓ 0.2 - 77.11 64.05
ViT-B/32 ✓ 0.2 Random Crop 77.99 65.04
ViT-B/32 ✓ 0.8 - 76.91 62.81
ViT-B/32 ✓ 0.8 Random Crop 78.14 63.84
ViT-B/16 - - - 81.72 68.89
ViT-B/16 - - Random Crop 82.11 69.37
ViT-B/16 ✓ 0.2 - 81.08 68.42
ViT-B/16 ✓ 0.2 Random Crop 81.16 68.85
ViT-B/16 ✓ 0.8 - 81.63 68.51
ViT-B/16 ✓ 0.8 Random Crop 81.94 69.37
ViT-L/16 - - - 86.09 75.62
ViT-L/16 - - Random Crop 86.35 76.35
ViT-L/16 ✓ 0.2 - 85.67 75.92
ViT-L/16 ✓ 0.2 Random Crop 85.69 75.54
ViT-L/16 ✓ 0.8 - 86.21 76.26
ViT-L/16 ✓ 0.8 Random Crop 86.37 76.35

• Potential Accuracy: We found that there is already high chances that the correct classes
are among predicted top-5 classes. To demonstrate this, we analyze top-1, top-5 and top-
10 accuracies of conventional CLIP in Table 6. According to the results, large accuracy
gaps can be noticed between top-1 and top-5 accuracies (24.53% for ImageNetS919 and
31.79% for CUB). In other words, by considering only 5 classes for refinement with Guided
Cropping, upper bounds of final accuracies are already high. It must be noted that, while
this upper bound accuracies can be raised further by considering top-10 classes, the gains
compared to top-5 classes are relatively small. This may not worth introducing additional
computation to the pipeline. Therefore, we decide to perform Guided Cropping based on
predicted top-5 classes in this work.

• Common Bounding Boxes: We notice that visual appearances of top-5 classes are relatively
similar in most cases. OWL-ViT is also likely to produce similar boxes for these classes.
This makes the use of common bounding boxes (e.g., the primary box b0i or the α-margin
box bαi ) among these classes reasonable. To illustrate this, considering each sample in
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Table 6: Top-k accuracies from conventional CLIP (ViT-B/32) with category prompts.

Dataset Accuracy
Top-1 Top-5 Top-10

ImageNetS919 63.62 88.15 92.98
CUB 51.83 83.62 90.63

Figure 13 and 14, its primary box generally contains visual features which are (partially)
similar to each top class making the box become a decent box candidate for all top classes.

A.5 ACCURACIES WITH DIFFERENT OBJECT SIZE CONDITIONS
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Figure 11: Accuracies (ViT-B/16) on subsets of ImageNetS919 with various object size conditions.
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Figure 12: Accuracies (ViT-L/14) on subsets of ImageNetS919 with various object size conditions.

In section 5.3, we study GC-CLIP performance on various object size conditions and show that
GC-CLIP variations outperform baselines especially when target object sizes are small. The plots in
Figure 6 are provided for models with ViT-B/32 backbone. In this section, additional evidences with
other backbones are provided to support our claim. Figure 11 and 12 show similar plots for models
with ViT-B/16 and ViT-L/14 backbones respectively. According to the figures, similar behavior can
be observed. There are accuracy gaps between conventional CLIP and GC-CLIP and the gaps are
larger on datasets with small objects. This demonstrates that our claim is consistent across different
CLIP backbones.

A.6 INFERENCE WITH OWL-VIT

OWL-ViT performs object detection taking images and text prompts as inputs and producing bound-
ing boxes as well as their scores and class labels as outputs. In this work, for each image sample
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Table 7: Accuracies from GC-CLIP (ViT-B/32) with different OWL-ViT inference strategies.

Dataset Prompt Type Box
Aug.

OWL-ViT Inference
Single-Pass Multi-Pass

ImageNetS919-SM Category RAug 54.71 56.00
ImageNetS919-SM Category MAug 55.61 56.00
ImageNetS919-SM Descriptions RAug 57.84 59.08
ImageNetS919-SM Descriptions MAug 59.47 60.07

CUB-SM Category RAug 50.22 52.81
CUB-SM Category MAug 53.09 53.09
CUB-SM Descriptions RAug 51.51 53.09
CUB-SM Descriptions MAug 53.45 52.95

Table 8: Average similarity scores between images and their corresponding prompts (i.e., maximum
logit values) of correctly classified samples of CLIP (with RAug) and GC-CLIP (with MAug) using
ViT-B/32 backbone.

Dataset Prompt Type Accuracy with
CLIP GC-CLIP

ImageNetS919-SM Category 29.39 29.71
ImageNetS919-SM Descriptions 30.17 30.51

CUB-SM Category 33.71 33.89
CUB-SM Descriptions 34.30 34.55

xi, we use OWL-ViT to extract bounding box candidates Bi based on a set of detection prompts
of the top-k classes

{
pdetj |j ∈ Jk

i

}
. Theoretically, there are two possible options to obtain Bi from

OWL-ViT.

• Single Forward Pass (Single-Pass): with this option, an input image and all detection
prompts are forwarded to OWL-ViT at once. With a single forward pass, OWL-ViT will
produce a set of bounding boxes which will be used directly as Bi.

• Multiple Forward Passes (Multi-Pass): with this option, OWL-ViT will perform forward
pass with one detection prompt at a time. In other words, there will be k forward passes
in total. Each forward pass will produce a set of bounding boxes bij based on a detection
prompt pdetj . Bounding boxes estimated from all forward passes will be merged to get Bi

according to equation 2.

As mentioned in section 4.1, we decide to adopt Multi-Pass in our Guided Cropping pipeline as
Multi-Pass is more robust to misdetection (if one pass fails, other passes can act as backup passes).
In this section, we demonstrate empirically that Multi-Pass can lead to better performance.

In this regard, we conduct an experiment to compare GC-CLIP accuracies when Single-Pass and
Multi-Pass are employed. The results are shown in Table 7. According to the results, GC-CLIP with
Multi-Pass is consistently better across datasets and model configurations. This confirms our design
choice to use Multi-Pass in our Guided Cropping pipeline.

A.7 SIMILARITY BETWEEN CROPPED IMAGES AND THEIR PROMPTS

One motivation of our Guided Cropping is that, by minimizing unrelated information, CLIP image
encoder can focus more on target objects leading to better image representations. In section 5.1
better image representations can be indirectly inferred via the improvement of the classification
performance. In this section, we would like to analyze image representations in another perspective.

We argue that, if image representations are better, the representations should be not only less similar
to prompts of other classes but also more similar to prompts of their own classes. In this regard,
we investigate similarities of image embeddings (of the correctly classified samples) to their own
prompts. Here, similarity scores are obtained in terms of maximum predicted logit values. Similar-
ity score results of CLIP and GC-CLIP are shown in Table 8. We can notice that similarity scores
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Table 9: Performance of GC-CLIP (ViT-B/32) on additional datasets using category-based prompts.

Guided
Cropping

Box Aug.
Dataset

ImageNet ImageNetV2 Stanford Dogs ImageNet-A ImageNet-R
- - 58.79 51.88 52.46 29.37 65.26
- Random Crop 59.31 52.21 53.43 29.28 66.24
✓ - 58.95 52.84 53.92 31.41 65.47
✓ Random Crop 59.46 52.94 54.73 31.81 65.99
✓ Multi-Margin 59.84 53.30 54.12 31.97 66.67

between images and their corresponding prompts in case of GC-CLIP are consistently higher. This
indicates that image representations after Guided Cropping are more similar to their prompts ac-
cording to our assumption.

A.8 VISUALIZING EXAMPLE RESULTS

In this section, we present top-5 logits estimated from CLIP and GC-CLIP on example samples
from ImageNetS919 to demonstrate qualitatively that GC-CLIP can refine logits to make correct
predictions. The results are illustrated in Figure 13 and 14.

A.9 RESULTS ON ADDITIONAL DATASETS

In section 5, we aim to study the cases when objects of interest cover small areas of input images.
Therefore, image classification datasets with segmentation/bounding box annotations are chosen for
evaluation that enable us to quantify the performance on objects covering small areas. Hence, we
choose ImageNetS919 and CUB for our evaluation as these datasets provide segmentation/bounding
box annotations from which object sizes of image samples can be obtained. These annotations
enable more insight studies with different object sizes. These datasets are also commonly used in
weakly supervised object localization task (Zhu et al., 2022) as it needs similar annotations during
evaluation.

For completeness, we perform evaluation on additional classification datasets without object size
annotations as well. However, it must be noted that we may not be able to decouple effects of object
size and extraneous image regions in this case. In this section, we present performance of GC-CLIP
on ImageNet (Russakovsky et al., 2015), ImageNetV2 (Recht et al., 2019), Stanford Dogs (Khosla
et al., 2011), ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R (Hendrycks et al., 2021a)
datasets.

The results are shown in Table 9. According to the results, even object sizes of these datasets
are not controlled, our GC-CLIP is generally still better than the baselines. The magnitudes of
improvement are generally similar to results in Table 1 in the main paper (refering unconstrained
variants of ImageNetS919 and CUB).

One interesting observation which must be noted here is GC-CLIP performance on out-of-
distribution datasets (i.e., ImageNet-A and ImageNet-R). We can observe that amounts of accuracy
gains from GC-CLIP are different depending on out-of-distribution conditions. GC-CLIP benefits
better on natural adversarial condition (ImageNet-A) than on rendition condition (ImageNet-R). We
attribute this behavior to our dependency of OWL-ViT. In the rendition condition, objects are in
unusual contexts such that OWL-ViT performance is not always consistent.

A.10 COMPARISON WITH CENTRAL CROP

In our work, we demonstrate that image cropping guided by object locations can improve classifica-
tion performance. To further support this argument, we perform experiments comparing our guided
cropping with a deterministic cropping strategy, Central Crop, commonly used for classification (Jia
et al., 2021; Zhai et al., 2022; Touvron et al., 2019).

Central Crop benefits under the assumption that target objects likely to locate at the center of input
images. During inference, an input image will be cropped around its center according to a predefined
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Figure 13: Top-5 logits on example samples improved by Guided Cropping (set 1). Model config-
urations are CLIP (with RAug) and GC-CLIP (with MAug) using ViT-B/32 backbone and prompt
type of descriptions. Red boxes represent primary boxes used in our GC-CLIP pipeline.

cropping ratio from 0.0 to 1.0. The crop ratio of 1.0 refers to the usage of the full images without
cropping. Then, the processed image will be resized to a compatible size for employed models be-
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Figure 14: Top-5 logits on example samples improved by Guided Cropping (set 2). Model config-
urations are CLIP (with RAug) and GC-CLIP (with MAug) using ViT-B/32 backbone and prompt
type of descriptions. Red boxes represent primary boxes used in our GC-CLIP pipeline.

fore performing the inference. We conduct experiments with Central Crop using different cropping
ratios on ImageNetS919-SM. Its performance can be visualized as in Figure 15.

20



Under review as a conference paper at ICLR 2024

0.2 0.4 0.6 0.8 1.0
Crop Ratio

0

10

20

30

40

50

Ac
cu

ra
cy

Central crop performance with different ratios for
Dataset=ImageNetS919-SM, Arch=ViT-B_32, Prompt=Cat

CenterCrop
GC-CLIP (No.Aug)

(a) Prompt: Category (ViT-B/32)

0.2 0.4 0.6 0.8 1.0
Crop Ratio

10

20

30

40

50

60

Ac
cu

ra
cy

Central crop performance with different ratios for
Dataset=ImageNetS919-SM, Arch=ViT-B_32, Prompt=Desc.

CenterCrop
GC-CLIP (No.Aug)

(b) Prompt: Descriptions (ViT-B/32)

0.2 0.4 0.6 0.8 1.0
Crop Ratio

0

10

20

30

40

50

60

Ac
cu

ra
cy

Central crop performance with different ratios for
Dataset=ImageNetS919-SM, Arch=ViT-B_16, Prompt=Cat

CenterCrop
GC-CLIP (No.Aug)

(c) Prompt: Category (ViT-B/16)

0.2 0.4 0.6 0.8 1.0
Crop Ratio

10

20

30

40

50

60

Ac
cu

ra
cy

Central crop performance with different ratios for
Dataset=ImageNetS919-SM, Arch=ViT-B_16, Prompt=Desc.

CenterCrop
GC-CLIP (No.Aug)

(d) Prompt: Descriptions (ViT-B/16)
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Figure 15: Central crop performance with different cropping ratios compared to GC-CLIP (without
box augmentation) on ImageNetS919-SM.

According to the results, we can see that, models with Central Crop can slightly improve perfor-
mance compared to vanilla models. For example, according to Figure 15b, the model without Cen-
tral Crop (ratio=1.0) achieves the accuracy of 55.61 while the model with Central Crop (ratio=0.9)
achieves the higher accuracy of 56.30. However, on Figure 15, models with Guided Cropping (with-
out box augmentation) consistently outperform Central Crop. This supports the argument that our
cropping approach guided by object locations is preferable over simple cropping at a predefined
location.
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