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Abstract

Optical Chemical Structure Recognition (OCSR) deals with the translation from
chemical images to molecular structures, this being the main way chemical com-
pounds are depicted in scientific documents. Traditionally, rule-based methods
have followed a framework based on the detection of chemical entities, such as
atoms and bonds, followed by a compound structure reconstruction step. Recently,
neural architectures analog to image captioning have been explored to solve this
task, yet they still show to be data inefficient, using millions of examples just to
show performances comparable with traditional methods. Looking to motivate
and benchmark new approaches based on atomic-level entities detection and graph
reconstruction, we present CEDe, a unique collection of chemical entity bounding
boxes manually curated by experts for scientific literature datasets. These anno-
tations combine to more than 700,000 chemical entity bounding boxes with the
necessary information for structure reconstruction. Also, a large synthetic dataset
containing one million molecular images and annotations is released in order to ex-
plore transfer-learning techniques that could help these architectures perform better
under low-data regimes. Benchmarks show that detection-reconstruction based
models can achieve performances on par with or better than image captioning-like
models, even with 100x fewer training examples.

1 Introduction

The recognition of molecular structures presented as images in scientific literature is an essential
part of material design and drug discovery pipelines [1, 2]. Most chemical structures are typically
shown only as 2D structural depictions in image form instead of digital representations using parsable
data formats. The lack of a widely adopted standard to publish molecular structures slows down the
material discovery process and poses a long-standing problem in effectively searching for seemingly
unexplored parts of chemical space in previous literature. This problem worsens when it comes to
patents containing newly discovered chemicals or drugs. Chemical structure descriptions tend to be
superficial, ignoring certain structural details and common conventions, while in most cases still being
solely presented in image format [3]. Naturally, this leads to the introduction of uncommon symbols
and markers on chemical structure images, making them even harder to be discovered. Therefore,
transforming and storing existing literature and molecular structures as indexable data formats is a
critical challenge to improving current chemical databases.
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Chemical information in scientific literature is commonly presented in various ways, such as text,
tables, charts, and images. In the case of images, 2D projections of chemical structures are the de
facto standard to represent compounds in literature. Currently, the majority of the chemical structure
images in scientific documents are not machine-readable, and the automatic identification of these
structures is still a challenging task. This task, traditionally known as Optical Chemical Structure
Recognition (OCSR), entails the recognition of chemical structures from their image form depictions
and the generation of their corresponding machine-readable representations, such as InChI [4] or
SMILES [5].

In the past, various methods have been proposed for the task of chemical structure recognition.
Rule-based methods based on segment detection and image vectorization have been developed by
several research groups, such as Imago [6], Optical Structure Recognition Application (OSRA)
[7], and MolVec [8]. Most of these work has followed similar pipelines; (1) detection of lines and
their intersections using a series of classical computer vision heuristics and techniques, followed
by (2) the reconstruction of the molecular graph via linking the recognized structural components.
These methods mostly work well for shallow structures that do not deviate far from commonly
seen molecular patterns. However, they tend to fail at recognizing more complex images perfectly,
for example, ones containing stereoisomers. Correctly identifying complex structures entails not
only detecting molecular constituents but also capturing implicit information within the underlying
molecular graph connectivity. These approaches, primarily based on hand-crafted rules, tend to
quickly hit a hard wall in terms of performance, constantly struggling with less common yet critical
structural details.

Recently, many efforts have been put into tackling OCSR from a data-driven perspective, trying
to leverage modern computer vision techniques based on deep learning [3, 9, 10]. Most of these
methods follow pipelines analog to image captioning, directly translating raster images containing
structures into their molecular string representations such as InChI, SMILES, or SELFIES [11]. Due
to the high availability of chemical databases containing millions of these string representations, such
as ChemBL [12] and PubChem [13], previous approaches generate large training datasets of synthetic
images[3, 10] using chemoinformatics toolkits, like RDKit [14] and Indigo [15].

However, even with these large synthetic datasets, existing approaches show performances at most
on par with the traditional rule-based methods. There are two main reasons why these models fall
short of improving over traditional techniques and lack generalization power. First, the recurrent
nature of the string generation process leads to loss functions that are not entirely aligned with the
task of structure recognition as a whole, ignoring important inductive biases present on molecular
graphs. Chemical entity interactions that occur naturally on graph-like structures must be learned
directly from pixel information, rendering these models highly data-inefficient [10]. Second, long
interaction patterns between atoms are common in aromatic compounds and stereoisomers, where
the coordinated interaction between possibly long chains of atoms can induce special behavior within
compounds themselves. Aromaticity involves conjugated bonds with delocalized electrons, which
tend to span across rings of atoms, and to efficiently identify these phenomena, each atom’s graph
neighborhood information is necessary. Stereoisomers have the same constituent chemical entities;
however, they differ in how atoms are spatially arranged. This can have substantial implications
regarding molecular behavior, and reasoning across distant parts of the graph structure might be
necessary to identify them correctly. These long-range interactions are challenging to learn in string
space. On the contrary, these interactions are far easier to propagate and infer on graphs while
also being more stable to train. A data-driven chemical entity recognition step followed by a graph
construction approach, similar to traditional methods, shows itself as a better-suited alternative to
incorporate the chemical structure’s inherent graph properties.

The main advantage of approaching the OCSR task through a detection pipeline is that multiple
instance training examples are available per image, creating a fine-grained learning signal for the
backbone model and overall improving data-efficiency compared with direct image-to-SMILES
methods. However, no open-source dataset containing this sort of annotations is currently available,
either synthetically generated or extracted from real documents. In our opinion, this has been the
main limiting factor for the lack of exploration of this kind of approaches.

We present a collection of chemical entity bounding boxes manually curated by experts for scientific
literature datasets, named "Chemical Entity Detection" (CEDe), that looks to encourage research on
approaches that follow the aforementioned strategy: pipelines that combine data-driven computer
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Figure 1: Main pipeline for Optical Chemical Structure Recognition based on atom-level molecular
entity detection and graph reconstruction. Atoms, bonds, and other instances that compose a
molecular graph are detected and subsequently combined to construct the underlying compound
structure. Information related to the stereochemistry of each instance is necessary to disambiguate
isomers. All this information is provided for all the instances in the CEDe datasets.

vision architectures with molecular compounds’ inherent graph structure. To allow for these kinds
of architectures to be developed, atom-bond level positional information within the image and their
corresponding chemical information must be available. Following the detection of these molecular
entities, complete molecular structure reconstruction is possible in a way that is better aligned with
the task itself. We show that unlike image-captioning based OCSR pipelines, formulating this task as
an entity detection-graph reconstruction problem can produce efficient models that can learn with far
fewer examples (in the order of tens of thousands instead of millions).

CEDe consists of a set of more than 700,000 bounding box annotations with carefully designed
labels for chemical entity identification and molecular graph reconstruction across four real scientific
documents OCSR datasets. These bounding box annotations were manually curated by experts while
considering conflicting edge cases to design an adequate set of labels for each chemical entity type.
In addition, a synthetic dataset is also released to motivate the exploration of pre-training strategies
for chemical entity detection architectures. The synthetic version of CEDe includes the necessary
rendering style-related augmentations to deal with the vast diversity present in scientific documents.
Also, we release the codebase used to generate this dataset, hoping to allow researchers to either
pre-generate new datasets designed for a particular use case or explore adaptive style-augmentation
strategies as a part of the training process.

The contribution of our work and the presented datasets can be summarized as,

• We design a chemical-entity label set (atoms, bonds, charges, pseudoatoms, etc.) that covers
all the necessary information for compound structure identification from its constituents.
These labels allow for the reconstruction and disambiguation of complex cases, such as
stereoisomers, which need information that might not be explicitly present on each molecular
image.

• Following the presented label set, we annotate and release four of the most widely used
OCSR datasets with bounding box annotations for chemical-entities and its corresponding
labels (UOB [16], USPTO [17, 18], CLEF [19], JPO [20, 21]). These datasets were manually
curated by domain experts and contain more than 10,000 images and 700,000 instance-level
annotations.

• We release a synthetic dataset containing one million molecular images with atoms and
bonds positional information within the image and their respective labels. In addition, a
carefully designed set of rendering style augmentations is provided in order to match the
style diversity present in chemical documents and help generalization from synthetic to real
data (fonts, font sizes, line thickness, atom-orientation preserving rotations, etc.)
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• We release a codebase for synthetic data generation that includes all the aforementioned
style augmentations that can also be efficiently parallelized to generate data while training
and exploring adaptive augmentation setups.

• We run baseline benchmarks for the currently most used architectures for OCSR, which are
based on image-to-SMILES translation. In addition, we present and benchmark pipelines that
can leverage the new annotations presented here, named detection-reconstruction approaches.
We run experiments testing synthetic-to-real performances by pretraining on our generated
datasets and also fine-tuned performances by using a small subset of the CEDe annotations
for training.

2 Existing OCSR datasets

Most recent work on deep learning-based approaches for OCSR [3, 10, 22, 23, 24] use pipelines
based on architectures commonly used for image captioning, i.e., extract features from a chemical
structure image, which are then fed into an autoregressive decoder module that generates a string-
representation for each compound. In order to train this kind of models, previous approaches either
use synthetic datasets generated with chemoinformatics libraries, or use datasets containing labeled
images extracted directly from scientific documents and patents.

Labeling images extracted directly from scientific literature is a time-consuming process that has
to be done by domain-expert annotators due to the complex nature of the task. As a result, there
is a restricted amount of real datasets containing chemical structure annotations, such as MOL files
(Chemical Table Files) or SDF files (Spatial Data File). The most well-known and widely used datasets
are listed in Table 1; (1) UOB is a dataset developed by University of Birmingham, United Kingdom,
(2) USPTO dataset is composed of structures appearing on patents from the Unites States Patent and
Trademark Office, (3) CLEF was developed from the Conference and Labs of the Evaluation Forum,
and (4) JPO was collected from the Japanese patent office documents. A detailed analysis on these
datasets and their characteristics can be find in a previous work by Rajan et al. [25].

These openly available datasets combine to around 12,000 annotated images, which is not enough to
successfully train end-to-end models using modern computer vision pipelines based on deep learning.
Due to this, previous work tackling OCSR has resorted to synthetic data generation approaches. In
contrast to the expensive image annotation process, synthetic data generation is fast and flexible.
Image annotations can be generated at any level of complexity, including atom/bond exact positions
within the image, labels regarding stereochemistry information, and string representations of the
compounds. This kind of annotations can be more informative to data-driven models and, allow
for the use of less explored architectures in OCSR, such as the integration of detection models into
the structure recognition pipeline. However, designing the necessary augmentations to allow for
synthetic-to-real generalization shows to be a complex task, which is one of the main limitations when
relying solely on synthetics samples. On the other hand, labeling of atom/bond level annotations for
real images can be even more expensive than overall molecular level labels and, currently there is no
widely used standard for this annotation scheme. As a result, real datasets containing atoms-bonds
positions and labels are non-existent.

Table 1: Datasets containing MOL or SDF file labels for molecular images extracted from patents
and scientific documents.

Datasets Data samples Source
UOB 5740 University of Birmingham [16]

USPTO 5719 Unites States Patent and Trademark Office [17, 18]
CLEF 961 Conference and Labs of the Evaluation Forums [19]
JPO 450 Japanese Patent Office [20, 21]
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