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Abstract

This paper presents DueT, a novel transfer
learning method for vision and language mod-
els built by contrastive learning. In DueT,
adapters are inserted into the image and text
encoders, which have been initialized using
models pre-trained on uni-modal corpora and
then frozen. By training only these adapters,
DueT enables efficient learning with a reduced
number of trainable parameters. Moreover, un-
like traditional adapters, those in DueT are
equipped with a gating mechanism, enabling
effective transfer and connection of knowledge
acquired from pre-trained uni-modal encoders
while preventing catastrophic forgetting. We
report that DueT outperformed simple fine-
tuning, the conventional method fixing only
the image encoder and training only the text
encoder, and the LoRA-based adapter method
in accuracy and parameter efficiency for 0-shot
image and text retrieval in both English and
Japanese domains.

1 Introduction

Pre-training of vision and language for learning the
semantic correspondence between the two modal-
ities has achieved impressive performance gains
in a wide variety of downstream tasks. In partic-
ular, contrastive learning methods for image-text
dual encoder models such as CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) have attracted
much attention. These models learn visual concepts
directly from raw text about images by jointly train-
ing image and text encoders. A crucial aspect of
the high performance of such models is that they
are trained on a massive amount of image-text data.
For example, CLIP was trained from scratch on
a dataset of 400 million pairs collected from the
Web without human annotations, and ALIGN was
trained on a dataset of over one billion pairs. Thus,
to build a model for a new non-English language
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Figure 1: Design choices for transfer learning in image-
text contrastive learning with dual encoders. Left: Learn-
ing all parameters from scratch or with fine-tuning. Cen-
ter: LiT (Zhai et al., 2022) trains only the text encoder
while keeping the pre-trained image encoder frozen.
Right: Our proposal, DueT (dual-adapter tuning), trains
only additional layers (adapters) inserted into each of
the frozen pre-trained dual encoders.

or a domain not covered by the existing model, it
necessitates collecting ample image-text pair data
for the target language or domain prior to train-
ing. Another aspect is that the models are trained
with substantial computational resources because
it is important to form very large mini-batches for
contrastive learning. Therefore, building on top of
powerful pre-trained models with more data- and
compute-efficient strategies is highly demanding.
However, this issue has not yet been thoroughly in-
vestigated; most prior studies (Radford et al., 2021;
Jia et al., 2021; Li et al., 2021; Singh et al., 2022) fo-
cused on training models from scratch using large-
scale corpora. In an effort to address this challenge,
LiT (Zhai et al., 2022), a parameter-efficient ap-
proach for developing vision and language models,
has been proposed. It involves fixing the parame-
ters of pre-trained uni-modal image encoders and
exclusively training the text encoders. However,
a comprehensive evaluation of the model’s perfor-
mance remains to be conducted.

In this study, we propose DueT (Dual-adapter
Tuning), a method to learn the vision and language
models. DueT uses a single-modal pre-trained



model as fixed values for the parameters of each
encoder and adds adapters equipped with a gating
mechanism to both encoders (Figure 1, right). In
experiments in the English and Japanese domains,
DueT outperformed simple transfer learning and
LiT (Zhai et al., 2022). The main contributions of
this study are as follows:

• Transferability. Our method transfers and
connects knowledge acquired by pre-trained
uni-modal encoders without catastrophic for-
getting.

• Parameter-efficiency. It outperforms con-
ventional methods of image-text pre-training
while using fewer training parameters.

2 Related Work

2.1 Image-text Contrastive Learning
CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021) demonstrate that image-text dual encoder
models pre-trained with contrastive objectives on a
huge number of image-text pairs can learn strong
image and text representations. They simply model
the cross-modal interaction via the similarity of
the global features of each modality and train the
two encoders from scratch. In particular, there has
been much research aimed at improving the cross-
modal interaction and/or the pre-training strategy
including objectives and transfer learning.

Model architectures. Dual encoder models
have integrated cross-modal modules to fuse image
and text features via cross-modal attention, with
studies exploring cross-modal encoder (Li et al.,
2021; Singh et al., 2022; Yuan et al., 2021), image-
grounded text encoder-decoder (Li et al., 2022a),
and cross-modal text decoder (Yu et al., 2022).
Sharing layers between the image and text encoders
has also been studied (You et al., 2022). Image-
text contrastive learning has also been applied to
cross encoders (Zhang et al., 2021) and a unified
model was developed that can serve as either a dual
encoder or a fusion encoder (Wang et al., 2021).

Pre-training objectives. Besides contrastive
learning, pre-training objectives within each modal-
ity and across modalities have been also stud-
ied. For each modality, objectives inspired by uni-
modal self-supervised pre-training schemes have
been used for, e.g., masked language modeling (Li
et al., 2021; Singh et al., 2022; Li et al., 2022b)
and causal language modeling (Yu et al., 2022;
Li et al., 2022a) masked image modeling (Singh

et al., 2022), image contrastive learning (Mu et al.,
2021) and Siamese representation learning (Li
et al., 2022b).

Model initialization and freezing. Most of
the previous work on pre-training dual encoders
falls into two parameter initialization categories:
the from-scratch method, as in CLIP and ALIGN,
randomizes all parameters in the image-text dual
encoders (Yao et al., 2022; Yu et al., 2022; Yuan
et al., 2021; Li et al., 2022b), while the fine-tuning
method (Li et al., 2021; Singh et al., 2022; Li et al.,
2022a) initiates the encoders from pre-trained uni-
modal models. Recently, another line of research
has appeared in the form of LiT (Zhai et al., 2022)
and BASIC (Pham et al., 2021), which initialize the
image encoder from a pre-trained model and fix its
parameters during image-text contrastive learning,
aligning closely with our study.

Focus of this study. This study focuses on the
model architecture and transfer learning of a pair of
uni-modal encoders. The key contribution is to in-
corporate trainable adapter layers into each frozen
pre-trained uni-modal encoder. This represents a
new line of research for pre-training image-text
dual encoders. While this study does not focus
on using cross-modal modules other than dual en-
coders and pre-training objectives other than con-
trastive learning, the recent advances described in
this section can be incorporated into our model.

2.2 Adaptation of Pre-trained Models

Parameter-efficient learning in NLP.. Efficient
adaptation methods of pre-trained language mod-
els for downstream tasks, such as adapter tun-
ing (Houlsby et al., 2019; Pfeiffer et al., 2020, 2021;
He et al., 2021; Mahabadi et al., 2021), prefix tun-
ing (Li and Liang, 2021; Lester et al., 2021), ad-
ditive methods (Guo et al., 2021; Hu et al., 2022;
Zhang et al., 2020), and sparse-fine-tuning (Sung
et al., 2021; Zaken et al., 2022), have been well-
studied in the field of NLP. Unified frameworks
combining these approaches have also been inves-
tigated (Mao et al., 2022; He et al., 2022).

Adaptation of CLIP to downstream tasks..
There have been several studies on extending
the NLP approaches for adapting CLIP to vari-
ous downstream vision-and-language tasks. To
adapt CLIP encoders for image recognition tasks,
CoOp (Zhou et al., 2022b) and CoCoOp (Zhou
et al., 2022a) apply prefix tuning to the text en-
coder, while visual prompting (Bahng et al., 2022)



and VPT (Jia et al., 2022) to the image encoder.
CLIP-Adapter (Gao et al., 2021) employs a feature
adapter layer atop the image and the text encoder
of CLIP for few-shot image recognition tasks. Tip-
Adapter (Zhang et al., 2022) provides a training-
free adaption for CLIP in order to conduct few-shot
classification. VL-Adapter (Sung et al., 2022) and
Flamingo (Alayrac et al., 2022) use the frozen im-
age encoder of CLIP for visual features and per-
form adapter tuning on pre-trained language mod-
els. PAINT (Ilharco et al., 2022) uses interpolations
between the model weights before and after fine-
tuning on a task, without degrading accuracy on
tasks where performance is already adequate.

Focus of this study. In contrast to prior stud-
ies adapting pre-trained CLIP encoders for down-
stream tasks, our focus was on enhancing the
image-text contrast learning framework using ro-
bust pre-trained uni-modal encoders, avoiding
catastrophic forgetting. We developed a model with
data outside the language or domain of existing
image-text models. We also examined the trade-off
between performance and efficiency concerning ad-
ditional parameters, and the model’s performance
relative to the number of training data. LilT (Khan
and Fu, 2023), targeting efficient pre-training in pa-
rameter utilization, adopts a method similar to ours
where adapters are inserted into the image and text
encoders, which have been initialized using models
pre-trained on uni-modal corpora and then frozen.
The differences between LilT and our method are
detailed in Section 3.2.

3 Methodology

The goal of this method is to efficiently construct
vision and language models for diverse languages
and domains, through knowledge transfer from uni-
modal encoders such as ViT and BERT. To achieve
this goal, we propose to train only gated adapter
units (GAUs), which are designed for image-text
contrastive learning, that are added to each of the
frozen pre-trained dual encoders. This method can
transfer and extend the excellent representations
possessed by the pre-trained uni-modal encoders
to the more challenging task of cross-modal under-
standing without requiring substantial fine-tuning
of the original models. The GAUs learn to mod-
ulate and adapt the internal features of both the
image and text encoders, effectively bridging the
gap between the two modalities and enabling them
to interact in a more meaningful way.

3.1 Overview
Image-text contrastive learning framework. A
dual-encoder model that consists of an image en-
coder and a text encoder is trained to predict the cor-
rect image and text pairings. At run-time, each en-
coder maps the image and text to dm-dimensional
real-valued vectors, x and y, respectively. The sim-
ilarity between the input and the text is quantified
by taking the dot product of their vectors, s = xTy.

Encoder architecture. DueT assumes that both
the image and text encoders employ the Trans-
former architecture (Vaswani et al., 2017). DueT
extends the Transformer block by inserting addi-
tional modules (Gated Adapter Units: GAUs) be-
tween layers, the details of which are described in
Section 3.2. Here, we recapitulate the essentials of
the Transformer architecture to aid readers in un-
derstanding the GAUs. Transformer encoders are
composed of L stacked blocks, where each block
contains two types of sub-layer: multi-head self-
attention and a fully connected feed-forward net-
work (FFN). Each sub-layer has a residual connec-
tion and uses layer normalization (Ba et al., 2016).
There are two approaches to applying layer normal-
ization: the post-LN type such as BERT (Devlin
et al., 2019), performs it after the sub-layer (outside
the residual connection), while pre-LN type, such
as ViT (Dosovitskiy et al., 2021), performs it be-
fore the sub-layer (inside the residual connection).
Figure 2 shows a pre-LN type Transformer block.

Input-output formulation. Each encoder re-
peatedly transforms the input sequence of image
patches or text tokens in L blocks, resulting in
a sequence of d-dimensional embeddings HL =
[hL

CLS,h
L
1 , ...,h

L
n ,h

L
SEP] ∈ Rn×d. The [CLS] and

[SEP] tokens are special tokens inserted at the be-
ginning and end of the input sequence. To cal-
culate the similarity of the input and the text, we
take the representation hCLS ∈ Rd as the output of
each encoder, and map it into the dm-dimensional
multi-modal embedding space (x, y) with linear
projections followed by L2-normalization.

Training objective. We introduce a variant of
unified contrastive learning (UniCL) (Yang et al.,
2022). Given the i-th image-text pair, we generate
a quadruple (xi,yi, si, ti) via encoders and hash al-
gorithms, where xi ∈ Rdm and si are respectively
the embeddings and the hash value of the image
and yi ∈ Rdm and ti are those of the text. We treat
all image-text-pairs associated with the hash values



of the pair as positives Pi and all other random
image-text pairs that can be formed in a training
batch B as negatives. The loss to be minimized is
defined as the sum of two losses:

Li2t = − 1

|B|
∑
i∈B

1

|Pi|
∑
k∈Pi

log
exp(xT

i yk/τ)∑
j∈B exp(xT

i yj/τ)
, (1)

Lt2i = − 1

|B|
∑
i∈B

1

|Pi|
∑
k∈Pi

log
exp(yT

i xk/τ)∑
j∈B exp(yT

i xj/τ)
, (2)

where k ∈ Pi = {k | k ∈ B, si = sk or ti = tk}.
τ is a trainable parameter of the temperature to
scale the logits. It is different from Florence (Yuan
et al., 2021), which uses UniCL, in that it utilizes
the image hash value in addition to the text hash
value for constructing the positive set. In this study,
the MD5 hash algorithm was used.

3.2 Gated Adapter Units
Unlike previous adapters (Houlsby et al., 2019;
Khan and Fu, 2023) that have only a feed-forward
network (FFN), the GAUs also have a gating mech-
anism to facilitate transfer learning of the two
pre-trained image and text encoders without catas-
trophic forgetting. Gate types can be categorized
into two main classifications: adaptive, where gate
values depend on the input to the adapter, and
static, where they do not; moreover, they can be
characterized as either element-wise, with gate val-
ues determined individually for each element, or
layer-wise, where values are decided per layer. Pre-
liminary experiments found negligible differences
among these categories; consequently, for the sake
of simplicity, we have chosen to adopt the static
and layer-wise approach in this paper. Further de-
tails concerning the adaptive type can be found
in Appendix G. The FFN, which is independently
and identically applied to each position, consists
of two linear transformations with a nonlinear acti-
vation ϕ in between them. The dimensionality of
the input and output is d, and the inner-layer has
dimensionality m.

GAUl(H l) = αlFFNl(LN(H l)) + (1− αl)H l, (3)

FFNl(h) = ϕ(hW l
down + bldown)W

l
up + blup, (4)

where the input H l is the output after the residual
connection of the FFN module of the Transformer.
LN denotes layer normalization (Ba et al., 2016). 1

1When inserting a GAU into a pre-LN type Trans-
former(e.g. ViT (Dosovitskiy et al., 2021);fig2) that uses
an LN within the residual connections of the sub-modules,
insert the LN before the FFN, as shown in Equation (1). For
the post-LN type (e.g. BERT (Devlin et al., 2019)), insert the
LN after the FFN.

Self-Attention ❄  

LayerNorm 🔥 

GAU 🔥 

FFN ❄  

LayerNorm 🔥 

Gated Adapter
Unit (GAU)

Transformer 
Block (Pre-LN)

1 -

G
at

e 
🔥

 

LayerNorm 🔥 

FFN 🔥 

Figure 2: Gated adapter unit (GAU) and its integration
with the Transformer block. Left: a GAU is inserted af-
ter the feed-forward network in each Transformer block.
Right: a GAU is an FFN having a gating mechanism.
If the gating mechanism outputs 0, GAU becomes the
identity function.

W down ∈ Rd×m, bdown ∈ Rm, W up ∈ Rm×d,
bup ∈ Rd and αl ∈ R are independent trainable
parameters for each GAU. Let d and m denote the
dimensions of the input-output and intermediate
layers, respectively. We use the GeLU activation
for ϕ and a sigmoid function for σ, respectively.
With the gated residual connection, the GAU makes
use of the gating mechanism to adaptively trans-
form or bypass (αl = 0) the signals.

Unlike the previous study (Houlsby et al., 2019;
Khan and Fu, 2023) in which adapter layers were
added both after the self-attention and after the
FFN sub-layer within each Transformer block, we
place the GAU after the FFN sub-layer, as shown
in Figure 2.

3.3 Design choices for dual-adapter tuning

Parameter initialization and freezing. The pa-
rameter initialization and freezing strategies for
each encoder involve several design choices. We
define four potential settings as an extension of the
LiT definition (Zhai et al., 2022):

• from-scratch (u). Parameters are randomly
initialized and trainable (unlocked).

• fine-tuning (U). Parameters are initialized
from a pre-trained model and trainable (Un-
locked).

• locked-tuning (L). Parameters are initialized
from a pre-trained model and frozen (Locked).



• GAU tuning (g). The main parameters are ini-
tialized from a pre-trained model and frozen
(except for layer normalization). The extra
parameters of the gated adapter units (§3.2)
are randomly initialized (except for the gating
value αl) and trainable.

• LoRA tuning (l). The main parameters
are initialized from a pre-trained model and
frozen (except for layer normalization). The
extra parameters of the LoRA unit (Hu et al.,
2022) are randomly initialized and trainable.

The settings can be changed for each encoder.
For example, Lu denotes locked-image tuning
(LiT) (Zhai et al., 2022), which trains the text en-
coder from scratch while keeping the pre-trained
image encoder (LiT-FS); LU denotes an exten-
sion of locked-image tuning, which keeps the pre-
trained image encoder frozen and fine-tunes the
text encoder (LiT-FT); gg denotes the setting of
our dual-adapter tuning (DueT); uu denotes the
from-scratch setting used in (Radford et al., 2021;
Jia et al., 2022) (FS); UU denotes the standard fine-
tuning setting used in (Li et al., 2021; Singh et al.,
2022) (FT); and ll denotes the setting of the LoRA
tuning (LoRA). Note that DueT updates all param-
eters in the layer normalization of the pre-trained
encoders during training, as it was done in previ-
ous adapter-tuning studies on NLP (Houlsby et al.,
2019; He et al., 2021). DueT initializes the gating
value αl to 0.02. Refer to Appendix H.1 for LoRA
implementation specifics.

Parameter efficiency. Adapter units can reduce
the number of additional parameters with a small
bottleneck dimension m, with total parameters in
a single adapter, inclusive of gating mechanism,
as (2d+ 1)(m+ 1). Given equivalent hidden size
d and layers L for image and text encoders, total
adapter parameters are approximately 8Ldm. m is
a simple trade-off lever between performance and
parameter efficiency. See Appendix A for further
detail on model size and parameter efficiency.

4 Experiments

First, we compared DueT with the standard image-
text contrastive learning frameworks. 2

2While LilT (Khan and Fu, 2023) is a contemporaneous
study and utilizes different training data, a direct comparison
through experiments is not conducted in this paper. However,
we provide a discussion based on the insights gained from our
study in Appendix L.

4.1 Pre-trained Models

We mainly used the architecture and pre-trained
weights of ViT-B/16-AR-IN21k (Dosovitskiy
et al., 2021) and BERT-base (Devlin et al., 2019)
for the image and text encoders, if not stated other-
wise. The details are given in Appendix B.

4.2 Datasets

4.2.1 Pre-Training Datasets
We used the following two pre-training datasets
consisting of image and text pairs with different
visual concepts and languages.

YFCC-CLIP. The YFCC100M (Thomee et al.,
2016) contains the metadata on 99.2M images
and 0.8M videos from Flickr (2004-2014). (Rad-
ford et al., 2021) defines a 15M image sub-
set, termed YFCC-CLIP, filtered for English ti-
tles/descriptions 3. It’s split into 14,760,364,
10,000, and 10,000 pairs for training, development,
and test sets. Note that the visual concepts of
YFCC-CLIP are relatively close to those acquired
by the image encoders pre-trained on ImageNet-
21k, which contains a large number of photos col-
lected from Flickr.

JWeb Dataset. We collected a private dataset
of image and Japanese-text pairs form a variety of
publicly available sources on the Web. We mainly
used 5M, 10K, 10K pairs for the training(JWeb-
5M), development, and test sets. Compared with
YFCC-CLIP, the JWeb dataset has different visual
concepts and contains various images, including
shopping items, slides, PC screens, and Japanese
characters. The details are given in Appendix C.

4.2.2 Evaluation Datasets
Zero-shot image classification. We evaluated
zero-shot transfer of models in visual classifi-
cation tasks on ImageNet ILSVRC-2012 bench-
mark (Deng et al., 2009) (IN). We also used the
Japanese version: ImageNet-JP (IN-JP) (translated
from ImageNet). We used the top-1 accuracy as
the evaluation metric.

Zero-shot image-text retrieval. We also eval-
uated the zero-shot transfer performance of mod-
els in both text and image retrieval on the MS-
COCO (Lin et al., 2014) and Flickr30k (Plummer
et al., 2017) and the test set of the pre-training
corpus (YFCC-CLIP or JWeb5M). We also used
the Japanese versions of these datasets: STAIR

3https://github.com/openai/CLIP/blob/main/
data/yfcc100m.md

https://github.com/openai/CLIP/blob/main/data/yfcc100m.md
https://github.com/openai/CLIP/blob/main/data/yfcc100m.md


Captions (Yoshikawa et al., 2017) (translated from
MS-COCO) and Flickr30k-JP (Nakayama et al.,
2020) (translated from Flickr30k). The details are
shown in Appendix D. As in (Li et al., 2021), the
evaluation metric was the mean value of Recall@k
(R@k; k = 1, 5, 10) defined as the fraction of
queries for which the correct item is contained in
the closest k items to the query.

4.3 Results

Table 1 shows the results of the evaluation of the
English and Japanese models. DueT outperformed
the baseline evaluation in 0-shot image and text
retrieval. In particular, it outperformed fine-tuning
(from-scratch) on the Flickr30k-JP image retrieval
by 4.2 (39.2) points, while reducing the number
of training parameters to about 58%. While fine-
tuning achieved the highest baseline score and ex-
celled on the YFCC-CLIP test set, it underper-
formed in 0-shot retrievals due to over-fitting in
English and Japanese training data. The perfor-
mance deficit was particularly noticeable when the
image encoder’s pre-training and training set do-
mains differed in the Japanese model evaluation.
LiT-FS and LiT-FT underperformed DueT in the
evaluation of both the Japanese and English models
because of their poor adaptability to domains not
covered by the pre-training of the image encoder.
In the case of from-scratch, which does not perform
transfer learning, we found that a training data sizes
of 5-15M are insufficient. While the LoRA tuning
scored lower than that of the proposed method, it
is very parameter-efficient and achieved the same
score as LiT-FS with a small number of training
parameters. A comparison between the proposed
method with a smaller number of training parame-
ters and LoRA is shown in 4.4.

4.4 Ablation studies

We conducted evaluations on GAU, which is the
main contribution of our research. In all of the
following experiments, the JWeb5M dataset was
used as the training data.

Is it possible to achieve parameter-efficient
learning? The proposed method changes the
number of training parameters depending on the
dimension of the intermediate representation of
the FFNs in the inserted GAU. We investigated
how the number of training parameters affects the
performance of the model. Table 2 shows that
accuracy improves the number of training param-

eters increases. On the other hand, a small num-
ber of additional parameters did not cause a sig-
nificant performance loss: compared with fine-
tuning, which updated 210.0M parameters, DueT
updated 15.1M (4.5M) parameters; its performance
on STAIR (Flickr30k-JP) was equivalent to that
of fine-tuning, and parameter-efficient learning
was achieved. DueT with 2.7M parameter up-
dates, which is almost the same number as that
of LoRA (3.2M parameter updates), significantly
outperformed LoRA on all of the evaluation sets.
These results indicate that DueT is a parameter-
efficient method.

How effectively do the GAUs work at each
layer? As shown in Table 3, performance de-
creased when the number of Transformer blocks
into which GAUs were inserted was reduced, es-
pecially when adapter insertion was limited to the
image encoder only. This result shows that insert-
ing adapters in both the image encoder and text en-
coder is important for image-text contrastive learn-
ing. On the other hand, removal of the adapters
from either encoder, with the exception of the re-
gion near the output layer of the image encoder,
resulted in a minimal performance deterioration.
However, there was a notable decrease in perfor-
mance when the adapters were removed from the
vicinity of the image encoder’s output layer and
also when the total number of inserted adapters
was substantially reduced.

How do the gates perform at each layer? As
shown in Figure 3, the gate values of the image en-
coder tended to increase closer to the output layer.
This indicates that the effect of the FFN in the GAU
increases near the output layer, which further sug-
gests that the knowledge of the pre-trained model
used for the initial values is utilized around the
input layer and new knowledge is acquired by the
adapter is utilized around the output layer. On the
other hand, the gate value for the text encoder was
around 0.4 for all layers, which is not as extreme as
the gate value for the image encoder. This result in-
dicates that the text encoder uses the knowledge of
the pre-trained model as the initial values to create
the embedding of the image-text pairs in all layers.
The detailed discussion of gate values is provided
in Appendix I.

Does the initial gate value and gate learning have
an influence? Table 4 contrasts cases with and
without gate values (fixed α = 1.0), demonstrating



EN (trained on YFCC-CLIP) JP (trained on JWeb5M)
#TP YFCC-CLIP MS-COCO† Flickr30k† IN† JWeb test STAIR† Flickr30k-JP† IN-JP†

Method EN JP I→T T→I I→T T→I I→T T→I I→T T→I I→T T→I I→T T→I

FS 195.5 210.0 78.88 78.47 43.26 27.2 64.5 42.9 25.29 50.62 50.83 33.31 23.54 40.77 30.01 14.9
FT 195.5 210.0 88.83 88.28 61.37 40.27 83.93 62.77 47.3 72.12 72.95 60.98 50.29 78.7 65.04 37.23
LiT-FS 109.7 124.2 67.39 66.6 52.92 35.47 75.97 55.71 45.18 50.7 48.78 48.59 32.92 66.5 51.23 35.78
LiT-FT 109.7 124.2 71.35 69.71 57.69 38.0 78.87 57.18 48.46 54.77 53.23 52.62 36.39 72.37 54.92 38.49

LoRA8 1.5 1.5 53.14 53.02 52.16 37.41 75.57 59.1 40.51 52.62 52.02 47.34 39.6 65.97 56.1 32.8

DueT 56.8 57.6 86.22 85.33 61.75 42.05 84.5 64.2 55.43 73.17 73.21 61.89 52.53 81.4 69.27 42.85

Table 1: Performance of models trained on YFCC-CLIP and JWeb5M. Text and Image Retrieval (I→T, T→I)
Performance. We used BERT-base and ViT-B/16 and set m = 1,536 for DueT and r = 8 for LoRA. #TP indicates
the number of trainable parameters in millions. IN(IN-JP) denotes ImageNet. † Zero-shot retrieval task.

STAIR Flickr30k-JP IN-JP
m #TP I→T T→I I→T T→I

LoRA8 1.5 47.34 39.6 65.97 56.1 32.8
LoRA16 3.2 47.71 39.95 65.93 55.7 33.64

48 2.7 55.54 45.88 75.63 62.94 36.25
96 4.5 57.33 48.0 78.1 65.72 39.62

192 8.0 59.28 49.87 80.3 67.53 40.86
384 15.1 60.41 50.48 80.43 69.33 43.1
768 29.2 62.02 52.27 82.33 69.77 43.45

1536 57.6 61.89 52.53 80.4 69.27 42.85
3072 114.2 62.16 52.38 81.47 70.74 44.43

FT 210.0 60.98 50.29 78.7 65.04 37.23

Table 2: Zero-shot transfer performance of models
trained on JWeb5M with DueT and different inner di-
mensions of FFN in adapters. #TP indicates the number
of trainable parameters in millions. We used the same
value of m for all adapters in both encoders. Light blue
cells represent the same level of performance as fine-
tuning (FT). Indices 8 and 16 in LoRA8 and LoRA16

represent r in LoRA.

STAIR Flickr30k-JP Ave.
Image Text I→T T→I I→T T→I

1-12 N/A 52.63 45.23 69.9 63.01 57.69
1-12 8-12 60.78 51.11 79.33 69.66 65.22
1-12 4-12 61.43 52.02 81.8 69.35 66.15
1-12 1-4 59.71 50.98 80.0 68.71 64.85
1-12 1-8 60.79 52.17 81.87 68.79 65.91

N/A 1-12 58.83 47.4 75.73 62.43 61.10
8-12 1-12 60.12 50.46 77.83 65.47 63.47
4-12 1-12 61.89 52.01 79.6 69.09 65.65
1-4 1-12 59.0 48.97 77.57 65.88 62.86
1-8 1-12 61.29 50.71 79.23 67.61 64.71

8-12 8-12 57.95 49.4 76.7 66.83 62.72
4-12 4-12 61.45 51.37 80.6 69.59 65.75
1-4 1-4 56.69 47.13 75.4 63.49 60.68
1-8 1-8 60.03 50.61 79.97 68.78 64.85

1-12 1-12 61.89 52.53 80.4 69.27 66.02

Table 3: Performance of models trained on JWeb15M
with adapters inserted in different ranges of layers. Ave.
represents the average of STAR and Flickr30k-JP.

JWeb test STAIR Flickr30k-JP
αinit fixed I→T T→I I→T T→I I→T T→I

1.0 ✓ 73.18 72.65 60.94 50.86 77.7 68.08
1.0 72.36 72.24 59.79 50.6 77.63 69.23

0.02 ✓ 68.43 67.83 59.43 50.91 78.7 67.53
0.02 73.17 73.21 61.89 52.53 80.4 69.27

Table 4: Performance of models trained on JWeb5M
with different initial gate values. We set m = 1,536.
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Figure 3: Gate values for each layer. Orange: represents
the gate values of the image encoder. Blue: represents
the gate values of the text encoder.

the efficacy of gate values introduction. Further-
more, performance was improved by updating the
gate value α through learning. When the initial gate
value was set large, the impact of unlearned GAUs
was strong in the early stage of learning, making it
difficult for the transfer learning to progress.

How does the number of training data affect
performance? Figure 4 shows the performance
of each method trained on various numbers of train-
ing data in the JWeb Dataset. The details in the
dataset are shown in Appendix C. The proposed
method outperformed fine-tuning or LoRA when
the number of training data was between 0.5M
and 10M. The score of fine-tuning approached that
of DueT as the number of training data increased,
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Figure 4: Performance of each model versus number of
training data. Horizontal: Number of training data in
the JWeb dataset (log). Vertical: average of ’recall(@1,
@5, @10) of STAIR, Flickr30k-jp, and accuracy of
ImageNet.

while LoRA’s score was relatively higher than that
of fine-tuning when the number of training data
was small. This result shows that DueT is effective
even when the amount of training data is small.

4.5 Linear Probing

We investigated the effect of DueT and fine-tuning
on the image encoders used for initialization using
contrastive learning for text and image matching.
On the basis of DueT and FT models trained on
JWeb-5M in 4.3, linear probing was performed for
the downstream task. The details of each task and
experiment are presented in Appendix F.1 and F.2.

Figure 5 depicts the scores of DueT and fine-
tuning relative to those of linear probing with ViT-
B/16-AR-IN21k. The results in the figure show that
the contrastive learning of DueT lead to its higher
scores on many tasks compared with the uni-modal
ViT. The results in the figure show that DueT had
higher scores on almost all tasks (on 13 out of 15
tasks significantly) compared with the uni-modal
ViT. Furthermore, compared with FT, DueT had a
higher percentage increase in scores on seven tasks.
With the exception of GTSRB, DueT performed at
a level equivalent to FT in all other tasks. This sug-
gests that DueT prevent catastrophic forgetting of
knowledge and successfully combines adaptation
to a new domain with knowledge utilization.

5 Conclusion

We propose DueT, which performs transfer learn-
ing by using adapter tuning (Houlsby et al., 2019)
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Figure 5: Linear Probe on uni-modal ViT vs. linear
probe on FT-CLIP and DueT. Bold: Scores within
the 99.5% Clopper-Pearson confidence interval show-
ing significant difference from uni-modal ViT. Red:
Scores where DueT significantly outperformed FT, de-
termined by the 99.5% Clopper-Pearson confidence in-
terval. Blue: Scores where DueT significantly underper-
formed FT, determined by the 99.5% Clopper-Pearson
confidence interval.

in the pre-training of CLIP (Radford et al., 2021),
a visual and language model constructed by con-
trastive learning. A single-modal pre-trained model
is used as fixed values for the parameters of each
encoder, and adapter GAUs equipped with a gat-
ing mechanism extended from the one described in
(Houlsby et al., 2019) are added to both encoders
for training. Transfer learning of uni-modal pre-
trained models is an important topic in regard to
CLIP, which requires a large amount of training
data. The fact that we were able to devise a method
that is superior in performance and parameter effi-
ciency to fine-tuning, LiT (Zhai et al., 2022), and
LoRA (Hu et al., 2022) is a major contribution to re-
search on vision and language models. The results
of the experimental evaluations also gave us insight
into the number of additional parameters, number
of training data, and necessity of gates for transfer
learning in the construction of Japanese CLIP. The
results of this research will contribute to the devel-
opment of services such as dialogue, navigation,
and content generation and retrieval that require
integrated visual and linguistic understanding.



Limitations

This study explored only classification and retrieval
as zero-shot transfer tasks. It leaves as future work
the evaluation of zero-shot transfer for a broader
set of tasks such as detection, segmentation, visual
question answering, and image captioning. In par-
ticular, we have tested the effectiveness of DueT
in the setting of learning image-text matching via
contrastive learning, and it will be important to test
its effectiveness on the above tasks with LM-based
VLMs, such as (Alayrac et al., 2022) and (Yu et al.,
2022).

This study demonstrates that DueT is a
parameter-efficient method, particularly in in-
stances of limited data size and computational re-
sources. On the other hand, the fine-tuned model
could outperform DueT when there was a large
amount of data and sufficient computing resources
available. While the results of this study suggest
that DueT can save computational costs within a
certain budget, it may be useful to consider the
fine-tuned setup as well, given a sufficient budget.

DueT is designed to be adaptable to to non-
English languages and domains outside the training
domain of existing CLIP models. However, this
study is limited to validating DueT in Japanese and
English; it is not yet clear whether it will be ef-
fective in other languages. In addition, we leave
for future work the analysis of the effects of dif-
ferences in encoders that have been pre-trained on
uni-modal data used to initialize learning.
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A Model size and parameter efficiency

As shown in section 3.3, the parameter efficiency of
DueT can be adjusted by setting hyper-parameter
m to a moderate value. For example, when we used
ViT-B/16 and BERTbase (L = 12 and d = 768)
and set m to 96, the number of parameters updated
by DueT was around 7 million, or about 3.64% of
the total number of parameters of the two original
models (110 million plus 96 million).

Note, however, that the addition of GAUs also
increases the total number of parameters in the
model. Table 5 shows the relationship between the
model size and the number of training parameters
for each method.

B Models

Image Encoders. We used ViT-B/16-AR-IN21k,
which is a 12-layer Vision Transformer (Doso-
vitskiy et al., 2021) pre-trained on ImageNet-
21k (Deng et al., 2009) (14 million images, 21,843
classes) with AugReg (Steiner et al., 2021) at res-
olution 224x2244. The number of hidden states d
was 768, and images were presented as a sequence
of 16x16 patches.
Text Encoders. We used BERT-base as the
text encoder, which is a 12-layer Transformer
pre-trained on lower-cased English Wikipedia and
BookCorpus (Devlin et al., 2019)5. We also newly
constructed its a Japanese version pre-trained
with lower-cased Japanese Wikipedia and CC-100-
ja (Conneau et al., 2020). The number of hidden
states d was 768.

C JWeb dataset

The JWeb dataset is the dataset we constructed for
this study. It is based on images and Japanese cap-
tions that we collected from a wide range of web
sites. Images were resized at the time of download-
ing to have a short side size of 256 or larger. A
trained fastText (Joulin et al., 2017) model 6 was
used to determine the language. The distribution
of the number of words in the caption when word

4github.com/google-research/vision_
transformer

5huggingface.co/bert-base-uncased
6https://fasttext.cc/docs/en/

language-identification.html
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Figure 6: Distribution of the number of words for each
caption in JWeb-5M. Horizontal axis: number of words
(bin width 10), Vertical axis: frequency (log)

segmentation was performed by mecab-unidic is
shown in Fig. 6. The mean (median) number of
characters and words was 26.3 (20.0) characters
and 11.9 (9.0) words. Captions consisting of one
or two words were included instead of natural sen-
tences. When 100 images were sampled for the
study, 32 images contained Japanese characters
(Kanji, Hiragana, or Katakana).

JWeb-k From the JWeb dataset, we constructed
multiple training sets with different numbers of
training data. The training sets are denoted as
JWeb-k, where k is the number of image-text pairs
in the training data (e.g., JWeb-500k, JWeb-1m).
Note that the training set with the smaller num-
ber of data was a subset of the larger training set,
and each image-text pair was randomly selected.
Table 6 shows the statistics of the training sets.

JWeb-5M Unless otherwise stated, we utilized
JWeb-5M consisting of 5M image-text pairs for
training the model. The number of unique im-
ages in this dataset is 4,942,737 (confirmed by the
md5 hash value) and the number of captions is
4,369,144. The top-five most frequently used cap-
tions were "landscape", "woman," "food," "cat,"
and "cherry blossom.

D Evaluation dataset

MS-COCO (Lin et al., 2014) contains 123K im-
ages, each accompanied with five manually written
captions. We followed the data split used in (Karpa-
thy and Fei-Fei, 2017) and used the 5K test set.

Flickr30K contains 31K images collected from
the Flickr website, with five textual descriptions per
image. We follow the data split used in (Karpathy
and Fei-Fei, 2017) and use the 1K test set.

github.com/google-research/vision_transformer
github.com/google-research/vision_transformer
huggingface.co/bert-base-uncased
https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html


Method Not. m(r) #Param. #Train Param.

FS uu - 210.0M (100%) 210.0M (100%)
FT UU - 210.0M (100%) 210.0M (100%)
LiT-FS Lu - 210.0M (100%) 124.2M (59.1%)
LiT-FT LU - 210.0M (100%) 124.2M (59.1%)

LoRA8 aa 8 210.6M (100.3%) 1.5M (0.71%)
LoRA16 aa 16 211.1M (100.5%) 2.0M (0.95%)
LoRA32 aa 32 212.3M (101.1%) 3.2M (1.52%)
LoRA64 aa 64 214.7M (102.2%) 5.6M (2.67%)
LoRA256 aa 256 228.9M (102.2%) 19.7M (2.67%)
LoRA1024 aa 1024 285.5M (102.2%) 76.4M (2.67%)

DueT aa 48 211.8M (100.9%) 2.7M (1.28%)
DueT aa 96 213.6M (101.7%) 4.5M (2.3%)
DueT aa 192 217.3M (103.5%) 8.0M (4.09%)
DueT aa 384 224.2M (106.8%) 15.1M (7.72%)
DueT aa 768 238.4M (113.5%) 29.2M (14.9%)
DueT aa 1536 266.7M (127.0%) 57.6M (29.5%)
DueT aa 3072 323.4M (154.0%) 114.2M (58.4%)

Table 5: Number of parameters with ViT-B/16 (d = 768) and BERT-base (d = 768). #Param.: Number of
parameters in the model at inference. #Train Param.: Number of trainable parameters.

Training set #Images #Captions

JWeb-50K 49,993 49,073
JWeb-100K 99,973 97,299
JWeb-300K 299,786 286,910
JWeb-500K 499,415 473,266
JWeb-1M 997,637 930,435
JWeb-3M 2,979,041 2,686,802
JWeb-5M 4,942,737 4,369,144
JWeb-10M 9,781,186 8,365,458

Table 6: Statistics of each training set. #Images: Num-
ber of unique images. #Captions: Number of unique
captions.

The images were collected from Flickr, and
natural text captions were created by a crowd-
worker. nltk-punct’s mean (median) word count
was 11.3 (eleven) words. For the Japanese version
of STAIR Captions (Yoshikawa et al., 2017), five
new Japanese captions were created for each im-
age by the crowd-worker for the same images as
COCO. Flickr30K had 31.5 (31) words.

Flickr30K contains 31K images, each with five
captions. The mean (median) number of words
is 31.4 (12). The Japanese version, Flickr30k-
JP (Nakayama et al., 2020), was created by expertly
translating each Flickr30k caption. The mean (me-
dian) word count was 18.4 (17) words. For COCO
and Flickr30k, the images in the test data were se-
lected according to the partitioning of the dataset
in COCO (Karpathy and Fei-Fei, 2017), as in pre-
vious studies.

E Experimental Settings

E.1 Main Experiment

Eight NVIDIA A100 80GB GPUs were used for
training. The batch size was set to 8192, and 16
epochs of training were conducted using mixed
precision training (Micikevicius et al., 2018) and
gradient check pointing (Chen et al., 2016). The
optimizer was AdamW (Loshchilov and Hutter,
2019), with a learning rate of 5e-4. The tempera-
ture parameter τ was fixed at 0.015625 (1/64). The
average is the experimentally reported result.

The training on YFCC-CLIP used Inception-
style random cropping (Szegedy et al., 2015), and
the resolution was set to 224× 224. The training
on JWeb-5M changed only the lower limit of the
scale of the crop range to 0.9 from the above set-
tings. The lower limit of the scale of the crop range
was changed to 0.9 when the model was trained on
JWeb-5M. TrivialAugment Wide (Müller and Hut-
ter, 2021) was used as the common augmentation
method; image normalization CLIP (Radford et al.,
2021) was used as well. The maximum input to the
text encoder was 77 tokens. During testing, only
resizing, cropping from the center, and normaliza-
tion to a resolution of 224× 224 were performed.
The prompt text in the text encoder was not used
for either training or testing. For DueT, the hyper-
parameter m was set to 1536. We committed to
m = 1536 early in our experiments as it consis-
tently outperformed full fine-tuning. Meanwhile,
when conducting multiple ablation tests simultane-
ously, it was revealed that for training on JWeb5M,



Training set Warm-up steps #Epochs Batch size

JWeb-50K 1,000 64 2,048
JWeb-100K 1,000 64 2,048
JWeb-300K 2,000 64 2,048
JWeb-500K 2,000 64 4,096
JWeb-1M 1,000 32 4,096
JWeb-3M 2,000 32 4,096
JWeb-5M 2,000 16 8,192

JWeb-10M 2,000 16 8,192

Table 7: Training setup for each dataset

using m = 768 or even m = 384 proved to be
sufficient, as shown in Table 2. Determining the
optimal setting for m remains a topic for future
investigation.

E.2 Other experimental settings

In an experiment to investigate the effect of dif-
ferent numbers of training data on model perfor-
mance, the batch size, number of training epochs,
and warm-up steps were set separately for each
dataset. Table 7 shows the hyper-parameters set
individually in the JWeb-k training.

F Linear Probe evaluation

Here, we provide additional details about the linear
probe experiments described in this paper, includ-
ing the data sets and experimental setup used in the
evaluation.

F.1 Datasets

We used ten datasets from the well-studied eval-
uation suite described in (Kornblith et al., 2018)
as well as five additional datasets in to assess the
performance of models on a wide variety of distri-
butions and tasks.

These datasets included MNIST, STL-
10 (Coates et al., 2011), the German Traffic Sign
Recognition Benchmark (GTSRB) dataset (Stal-
lkamp et al., 2011), the Country211 (Radford et al.,
2021), the Stanford Sentiment Treebanks(SST)
dataset (Socher et al., 2013) .

The details on each dataset and the correspond-
ing evaluation metrics are provided in Table 8.

F.2 Experimental settings

We use image features taken from the penultimate
layer of each model, ignoring the classification
layer provided for uni-modal ViT. For the image
encoders in DueT and FT, we used the features
before the linear projection to the embedding space.

We trained a logistic regression classifier following
to (Radford et al., 2021).

We train the logistic regression classifier using
scikit-learn’s L-BFGS implementation with up to
1,000 iterations and report the corresponding metric
for each dataset. The strength of the L2 regular-
ization λ was determined using a hyperparameter
sweep on the validation sets over the range between
10−6 and 106 , with 96 logarithmically spaced
steps. To save compute required for the sweeps,
we perform a parametric binary search that starts
with λ = [10−6,10−4, 10−2, 1, 102, 104, 106] and
iteratively halves the interval around the peak until
it reaches a resolution of 8 steps per decade. The
hyperparameter sweeps are performed on a vali-
dation split of each dataset. For the datasets that
contain a validation split in addition to a test split,
we use the provided validation set to perform the
hyperparameter search, and for the datasets that do
not provide a validation split or have not published
labels for the test data, we split the training dataset
to perform the hyperparameter search. For the final
result, we combine the validation split back with
the training split and report the performance on the
unused split.

F.3 Results

The individual linear probe scores are provided in
Table 9. DueT achieved the best performance on
10 of the 15 datasets, i.e., it was included in the
Cropper-Pearson 99.5% confidence interval around
the top score for each dataset.

On many datasets, DueT and fine-tuning out-
performed the uni-modal ViT, demonstrating the
superiority of natural language supervision over
traditional pre-training approaches based on im-
age classification, as reported in (Radford et al.,
2021). Furthermore, DueT performed better than
fine-tuning; this result demonstrates the improved
image recognition capability of. See Section 4.5
for a detailed discussion of the linear probe results.

G Adaptive gating mechanism

To investigate better configurations of the gating
mechanism, we implemented a token-level and
sentence-level input-adaptive gating mechanism
using a single-layer FFN. The gate value αl of the
expression 3 was changed to a one-layer FFN in
order to evaluate the adaptive gate mechanism at
the sentence and token levels.



Dataset Classes Training size Test size Evaluation metric

Food-101 102 75,750 25,250 accuracy
CIFAR-10 10 50,000 10,000 accuracy

CIFAR-100 100 50,000 10,000 accuracy
SUN397 397 19,850 19,850 accuracy

Stanford Cars 196 8,144 8,041 accuracy
FGVC Aircrafts 100 6,667 3,333 mean-per-class

Describable Textures(DTD) 47 3,760 1,880 accuracy
Oxford-IIIT Pets 37 3,680 3,669 mean-per-class

Caltech-101 101 3,030 5,647 mean-per-class
Flowers 102 102 2,040 6,149 mean-per-class

MNIST 10 60,000 10,000 accuracy
STL-10 10 1000 8000 accuracy
GTSRB 43 26,640 12,630 accuracy

Country211 211 43,200 21,100 accuracy
SST2 2 67,349 1,821 accuracy

Table 8: Details on each dataset and the corresponding evaluation metrics

Dataset ViT finetune DueT

Food-101 79.05 86.04 88.64
CIFAR-10 89.98 94.11 97.86
CIFAR-100 73.36 81.36 88.88

SUN397 69.40 70.38 73.72
StanfordCars 43.15 47.26 49.16

DTD 70.11 74.10 75.00
MNIST 96.52 98.2 97.92
STL-10 98.42 97.96 99.47
GTSRB 56.12 80.55 77.21

Country211 12.10 15.52 16.69
SST2 54.48 54.75 55.35

FGVCAircraft 40.94 45.01 49.25
OxfordPet 86.95 86.44 90.0

Flowers102 98.05 98.47 99.15
Caltech101 90.93 91.02 94.78

Table 9: Linear probe performance of various pre-
trained models on 15 datasets. Scores within the 99.5%
Clopper-Pearson confidence interval of each dataset’s
top score are shown in bold.

Let GAUl(H l) be defined as

GAUl(H l) = FFNl
α(H

l)FFNl(LN(H l))+

(1− FFNl
α(H

l))H l.
(5)

Correspondingly, FFNl
α,sent(H

l) and
FFNl

α,token(H
l) are defined as follows:

FFNl
α,sent(H

l) = σ(hl
CLS

T
wl

gate + blgate) ∈ R
(6)

FFNl
α,token(H

l) = σ(H lwl
gate + blgate) ∈ Rn,

(7)

where σ is a sigmoid function. wl
gate ∈ Rd,

blgate ∈ R is a trainable parameter and n is the
length of the sequences.

JWeb-test STAIR Flickr30k-JP
Gate I→T T→I I→T T→I I→T T→I

N/A 73.18 72.65 60.94 50.86 77.7 68.08
FFNtoken 74.0 73.96 61.76 52.16 80.13 70.05
FFNsent 73.62 73.46 61.38 52.36 80.13 69.27
scalar 73.17 73.21 61.89 52.53 80.4 69.27

Table 10: Performance of models trained with different
gating mechanisms on JWeb-5M. m = 1,536.

Table 10 compares the results from models em-
ploying different gate mechanisms. The table
shows that there is no clear performance improve-
ment between the adaptive gating mechanism with
the FFN and the gate factor.

H LoRA tuning

This section describes the LoRA tuning implemen-
tation used in this paper and presents the unit-size
evaluation.

H.1 Implementation

We use Wq, Wk, Wv, and Wo to denote the
query/key/value/output projection matrices in the
self-attention module of each transformer block.
LoRA adds trainable pairs of rank decomposition
matrices in parallel to existing weight matrices. We
applied LoRA to Wq and Wv for all transformer
blocks for both image and text encoders according
to the (Hu et al., 2022). LoRA modules are added
to all layers of the image and text encoders as in
DueT. It also updates all parameters in the layer
normalization of the pre-trained encoders during
training.



STAIR Flickr30k-JP IN-JP
Method #TP I→T T→I I→T T→I

LoRA8 1.5 47.34 39.6 65.97 56.1 32.8
LoRA16 2.0 47.58 39.66 64.8 56.74 33.64
LoRA32 3.2 47.71 39.95 65.93 55.7 33.64
LoRA64 5.6 47.8 39.89 67.7 55.1 32.66
LoRA256 19.7 47.05 39.7 65.2 55.76 33.52
LoRA1024 76.4 47.01 39.17 66.53 55.88 32.82

Table 11: Performance of LoRA with varying adapter
size on each test set.

H.2 Unit-size evaluation on LoRA

The effect of the hyper-parameter r was investi-
gated for the LoRA used in this study. The results
in Table 11 show that there is no significant dif-
ference in performance for different values of r.
As discussed in section 4.3, while LoRA is effec-
tive when the amounts of training data is small and
in few-shot tasks with very few additional param-
eters, its performance is far below that of DueT
for the range of data used in this experiment. The
results also show that increasing the number of ad-
ditional parameters did not significantly change the
performance, indicating that the method of adapter
insertion and gate insertion, rather than the number
of additional parameters, had a significant impact
on performance.

I Gates performance at each layer

The values of the gates in the case that only some
of the adapters are inserted are plotted as blue and
red lines in Figure 7. The gate values tend to be
larger when adapters were inserted in the text en-
coder, and they were particularly large when the
number of adapters was small. Considering the dis-
cussion in Section 4.4 on knowledge utilization and
acquisition in all layers of the text encoder, it can
be assumed that the total number of adapters em-
bedding new knowledge decreased, and therefore,
by increasing the gate value, the impact of the FFN
is increased and new knowledge is embedded there.
In the image encoder, when adapters were inserted
only near the output layer, the gate values were not
significantly different from those in the case when
adapters are inserted in all layers. On the other
hand, a different trend was observed when adapters
were inserted only near the input layer. Specifically,
when adapters were inserted only from the first to
fourth layers (or from the first to eighth layers), the
values of the gates in the third or fourth layers (or
seventh or eighth layers) were larger compared to
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Figure 7: Gate values for each layer. Green: represents
the gate values of the image encoder. Orange: represents
the gate values of the text encoder. Blue: represents
the gate values at the layer inserted within the image
encoder. Red: represents the gate values at the inserted
layer within the text encoder. Gray: represents the gate
values of the image (or text) encoder with only some of
the adapters are inserted in the text (or image) encoder.

the case when adapters were inserted into all layers.
Given the above discussion, we conclude that this
is also a result of the image encoder’s tendency to
utilize knowledge in the first half of the layer and
to acquire knowledge in the latter half.

Lack of adapters around the output layer and lack
of units to acquire new knowledge also explains
the performance degradation when the adapters in
the output layer of the image encoder are removed
(Table 3).

J Pre-trained models evaluation

We conducted a comparative analysis of different
pre-trained models for model initialization. We
trained the models on JWeb5M and used the same
conditions as Section E for the rest of the experi-
mental setup.

J.1 Pre-trained models for image encoders
We compared five pre-trained models for initial-
ization: AugReg∗ (Steiner et al., 2021) and CLIP
Image Encoder (Radford et al., 2021), in addition to
AugReg used in Section 4.3. AugReg∗ represents
a model that was pre-trained on ImageNet-21k and
then fine-tuned on ImageNet 2012. We trained the
text encoder using BERT-base as initialization in
all cases.

The results in Table 12 show that DueT outper-
formed fine-tuning in all cases, regardless of the
pre-training model employed. These results sug-



Model Data. Method IN I→T T→I

AugReg IN21k DueT 42.85 71.15 60.9
finetune 37.23 69.84 57.67

AugReg∗ IN∗ DueT 41.86 71.2 60.79
finetune 35.65 69.08 57.69

CLIP WIT DueT 38.42 79.02 69.09
finetune 31.93 70.41 59.38

Table 12: Zero-shot transfer performance of models
trained on JWeb5M with DueT and different image
encoders that have the same ViT-B/16 architecture.
I→T (T→I) shows the mean value of Recall@k (R@k;
k = 1, 5, 10) on Flickr30k-JP and STAR.

Model Method IN I→T T→I

BERT (ours) DueT 42.85 71.15 60.9
finetune 37.23 69.84 57.67

BERT∗ DueT 42.57 72.17 61.47
finetune 36.36 67.71 57.94

RoBERTa DueT 38.52 61.77 53.17
finetune 34.82 62.26 52.66

Table 13: Performance of models trained on JWeb5M
with different text encoders that have the same base
architecture. We used AugReg-IN21k ViT-B/16 for the
image encoder. We set m = 1,536. I→T (T→I) shows
the mean value of Recall@k (R@k; k = 1, 5, 10) on
Flickr30k-JP and STAR.

gest that DueT can selectively train new knowledge
in GAU without forgetting existing knowledge, re-
gardless of the knowledge embedded in the pre-
training model.

J.2 Pre-trained models for text encoders

We compared five pre-trained models for initial-
ization: BERT∗7 and RoBERTa (Liu et al., 2019)8

in addition to BERT (ours) used in Section 4.3.
We trained the image encoder using ViT-B/16-AR-
IN21k as initialization in all cases.

The results in Table 13 show that DueT outper-
forms finetune on all employed pre-training models
except for the image to text search with RoBERTa.
The results indicate that DueT is effective regard-
less of the architecture used in the text encoder or
the knowledge embedded in the pre-training model.

7huggingface.co/cl-tohoku/
bert-base-japanese-v3

8huggingface.co/rinna/japanese-roberta-base

K Effect of varying the amount of
training data

Table 14 shows detailed numerical values of the
experimental results presented in Figure 4. These
values show that DueT had the highest scores on
all of the test sets when training was conducted
with more than 1M data. On the other hand, LoRA
outperformed DueT in STAIR, Flickr image-to-
text retrieval, and ImageNet classification when the
number of training data was relatively small, such
as 50k or 100k, confirming that LoRA is effective
when the number of training data is small.

L Discussion on the Comparison with
LilT

As mentioned in Section G, one of the points where
DueT differs from LilT is the adoption of the gate
mechanism, and the GAU validation results shown
in Table 4 indicate that adapters that adopt the gate
mechanism are effective in transition learning for
the vision and language model. Preliminary ex-
periments on the number and location of adapter
insertions showed that the type adopted in this ex-
periment, in which one GAU is inserted behind the
FFN sub-layer, was the most effective.

Although the relationship between the insertion
point and the gating mechanism, the number of
training data and the effect of the training domain
are not fully investigated, these experimental re-
sults suggest that DueT is expected to be a more
effective method than LilT in the experimental set-
ting we used.

huggingface.co/cl-tohoku/bert-base-japanese-v3
huggingface.co/cl-tohoku/bert-base-japanese-v3
huggingface.co/rinna/japanese-roberta-base


JWeb-test STAIR Flickr30k-JP IN-JP
Train Data Method I→T T→I I→T T→I I→T T→I

JWeb-50K
DueT 26.93 26.63 23.74 19.61 42.7 35.66 13.01

LoRA8 23.36 22.53 26.09 18.06 44.17 32.46 13.22
finetune 25.61 25.0 21.63 17.46 40.2 31.65 12.13

JWeb-100K
DueT 33.55 33.59 30.25 24.49 47.6 39.27 16.55

LoRA8 30.22 29.56 30.74 22.23 49.77 38.55 18.31
finetune 31.85 31.36 27.43 21.34 43.57 37.88 17.13

JWeb-300K
DueT 44.98 44.69 39.6 31.41 54.8 47.27 23.16

LoRA8 40.17 39.64 37.06 27.78 56.97 47.31 24.88
finetune 43.74 43.73 34.07 28.37 51.0 43.5 22.85

JWeb-500K
DueT 50.79 50.87 44.85 35.69 62.27 54.12 25.24

LoRA8 44.64 44.26 39.92 30.61 58.87 49.94 27.19
finetune 48.74 48.63 39.76 33.06 56.63 49.03 27.68

JWeb-1M
DueT 57.77 57.77 48.89 41.21 68.37 59.34 30.76

LoRA8 47.85 47.34 42.58 34.74 60.23 52.64 29.4
finetune 54.2 54.36 44.5 34.99 62.8 52.37 22.61

JWeb-3M
DueT 68.58 68.87 58.66 48.88 80.27 67.97 39.09

LoRA8 52.98 52.33 46.73 39.65 66.93 55.74 33.28
finetune 66.17 66.42 56.19 44.72 73.17 60.81 31.49

JWeb-5M
DueT 73.17 73.21 61.89 52.53 80.4 69.27 42.85

LoRA8 52.62 52.02 47.34 39.6 65.97 56.1 32.8
finetune 72.12 72.95 60.98 50.29 78.7 65.04 37.23

JWeb-10M
DueT 78.76 78.51 65.02 55.77 84.53 73.04 46.81

LoRA8 55.15 54.79 49.19 41.27 65.93 57.92 34.51
finetune 78.42 79.11 64.81 54.84 80.87 68.84 40.86

Table 14: Performance of each task for different numbers of training data.


