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ABSTRACT
In online chatting, people increasingly prefer using stickers to sup-
plement or replace text for replies, as sticker images can express
more vivid and varied emotions. The Sticker Response Selection
(SRS) task aims to predict the sticker image that is most relevant
to the history dialogue. Previous researches explore the semantic
similarity between context and stickers, while ignoring the role of
both unimodal and cross-modal emotional information. In this paper,
we propose a “Perceive before Respond” (PBR) training paradigm.
PBR perceives sticker emotions through a knowledge distillation
module. Variety sticker representations of each emotion category are
acquired from the large-scale sticker emotion recognition dataset
and distilled into our model to enhance emotion comprehension. To
make a better response, we further distinguish stickers with similar
subject elements under the same topic. We perform contrastive learn-
ing at both inter-topic and intra-topic levels to obtain discriminative
and diverse sticker representations. In addition, we improve the hard
negative sampling method for image-text matching based on cross-
modal sentiment association, conducting hard sample mining from
both semantic similarity and sentiment polarity similarity for sticker-
to-dialogue and dialogue-to-sticker. Extensive experiments verify
the effectiveness of each proposed component. Ablation experiments
on different backbone networks demonstrate the generality of our
approach. The code is provided in the supplement material and
will be released to the public.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Informa-
tion systems→ Sentiment analysis.

KEYWORDS
sticker response selection, multimodal learning

1 INTRODUCTION
With the rapid development of instant messaging applications, stick-
ers are widely used in online chats. Compared to simple emoticons
(e.g., emojis), stickers are more expressive and superior in conveying
strong emotion, positivity, and intimacy [22]. It plays an important
role in assisting people to express emotions and regulating the emo-
tional tendencies of the conversation [5, 45, 57]. As shown in Fig. 1
(a), the Sticker Response Selection (SRS) task uses the historical
context of multi-turn dialogue to recommend the sticker. With the
popularity of sticker usage, SRS receives widespread attention from
researchers [4, 22, 30, 33, 40, 45, 55]. It contributes to users engag-
ing in vivid, expressive online chat and holds promising prospects
for developing anthropomorphic intelligent robots [1, 16].

Compared to general text-image retrieval tasks, the dialogue and
stickers in SRS exhibit stronger emotional relevance [22]. We extract
the sentiment polarity scores of stickers and dialogues separately to
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Figure 1: (a) Visualization example of the SRS task. The senti-
ment of the sticker is closely related to the dialogue history. (b)
Dialogue-sticker sentiment verification. The blue bars indicate
the number of samples, and the black line indicates the aver-
age Euclidean distance between dialogue and sticker sentiment
scores. The horizontal axis represents the emotional scores of the
dialogue, where 0 indicates the lowest positivity and 1 indicates
the highest positivity. (c) Sampling probability with different
hard sample mining strategies.

verify the cross-modal sentiment association. As shown in Fig. 1 (b),
we divide the samples into 15 intervals based on their dialogue senti-
ment and count the number of samples in each interval. The orange
lines indicate the average Euclidean distance between dialogue and
sticker sentiment polarity. The upper limit of the distance is

√
2 and

the average distance of all intervals is below 0.8, which indicates the
sentiments of sticker and dialog are consistent in most samples.

To better model and leverage emotional information, three chal-
lenges need to be addressed in SRS. (1) The varied visual concepts
across different topics present a challenge for understanding emo-
tions. As shown in Fig. 2 (a), stickers with different semantic content
may express the same emotion, while those with similar semantic
content may convey different emotions. This is known as the Affec-
tive Gap for visual emotion analysis [56]. Additionally, existing SRS
datasets lack emotion annotations, which exacerbates the difficulty
of extracting emotional information from stickers. (2) Modeling
discriminative representations for stickers is challenging. Due to the
distinctive organization structure of stickers [32], images under the
same topic are usually composed of the same subject elements and
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Figure 2: (a) The Affective Gap exists in stickers. (b) The sticker
representations obtained by previous methods are aggregated
based on their topic. (c) EKD separates sticker features based
on emotion categories. (d) TSCL further distinguishes features
at the topic level.

the extracted features are similar (e.g., Fig. 2 (b)). This can hinder
the SRS model from selecting appropriate stickers for the history
dialogue, especially if the candidate stickers all belong to the same
topic. (3) Most related works [12, 55] consider the SRS as a text-
image matching problem, where the quality of negative sampling
plays a crucial role in the performance of the multimodal model.
Taking the negative sampling of dialogue-to-sticker as an example,
as shown in Fig. 1 (c), the random selection approach leads to a
uniform distribution of easy negatives and hard negatives. A widely
used improvement approach is to select samples with high semantic
similarity as hard negative samples [3, 24, 25]. However, in the SRS
task, the difficulty of sample discrimination is also closely related
to emotion. To further improve the quality of negative sampling,
emotions are valuable which has been ignored in previous works.

In this work, we propose a “Perceive before Respond” (PBR)
training paradigm. To identify the emotions conveyed by stickers, we
introduce an Emotion Knowledge Distillation (EKD) module, which
utilizes emotion knowledge obtained from the large-scale sticker
emotion recognition dataset SER30K [32]. Inspired by the ClusterFit
algorithm [52], we cluster the image features in SER30K, and call
the centroid vector of each cluster Emotion Anchor. To describe
images with diverse styles and semantic content in each emotion
category, we set 𝑀 Emotion Anchor for each emotion category. For
a sticker image, we compute its similarity to the Emotion Anchors to
obtain emotion pseudo-labels. The image encoder learns emotional
information guided by these pseudo-labels (e.g., Fig 2 (c)). To better
model the discriminative representations of stickers, we design a
Topic-level Semantic Contrastive Learning (TSCL) module consist-
ing of intra-topic and inter-topic two parts. For intra-topic contrastive
learning, negative samples are selected within the same topic, aim-
ing for the model to focus on the different local emotional features
among stickers with similar subject elements. For inter-topic con-
trastive learning, negative samples are chosen from different topics,
intending for the model to learn diverse representations of stickers
across various topics (e.g., Fig 2 (d)). Based on the consistency

between the semantics and emotions of stickers and dialogue, we
designed a Polarity-based Hard Sample Mining (PHSM) module.
For hard sample mining in the text-image matching problem, we
consider cross-modal sentiment polarity similarity in addition to
semantic similarity. Samples with higher similarity in both semantic
and sentiment are considered hard samples for the model to discrim-
inate. Assigning higher weights to such samples enables the SRS to
mine more informative negatives.

The main contributions of this work are three-fold: (1) We pro-
pose the EKD module and TSCL module to exploit the emotional
and semantic content of stickers and improve the quality of sticker
features. (2) To the best of our knowledge, this is the first time that
both dialogue and sticker emotions have been utilized in the SRS
task. We design a PHSM module to mine hard samples by integrat-
ing the semantic and sentiment similarity between modalities. (3)
The experimental results show that our method boosts the perfor-
mance over the previous state-of-the-art methods by a large margin.
Extensive ablations also verify the effectiveness of each designed
module.

2 RELATED WORK
Sticker Response Selection. With the development of online chat,
the SRS task getting increasing attention in recent years [11–13,
23, 48, 55]. Laddha et al. [23] propose a sticker recommendation
method that first predicts the next message, then replaces the pre-
dicted text with a sticker. Gao et al. [12, 13] propose a large-scale
real-world dialogue dataset with stickers. The deep interaction net-
work is used to match stickers and dialogue history, while the fusion
network is used to fuse features and output the match score. As the
extension work of [12], [13] considers the user’s sticker preferences
by additionally recording the user’s historical dialogue information
with a key-value memory network. Fei et al. [11] model sub-tasks
such as text generation and sticker prediction as general sequence
generation. A unified generation network is then applied to retrieval
stickers. Wang et al. [48] design a multimodal encoder for dynamic
GIFs, training in a similar way to CLIP [41].

Multi-turn Dialogue Emotion Analysis. To recognize the senti-
ment of dialogue, some studies model the contextual dependencies
between utterances. Li et al. [28] propose a bidirectional sentiment
recurrent framework for contextual modeling and sentiment clas-
sification via a two-channel classifier. Yang et al. [53] introduce
curriculum learning to train conversations from easy to hard. Ma et
al. [34] detect the sentiment of dialogues from word and utterance
level views. Some other studies focus on modeling interactions
between speakers. Majumder et al. [35] model the speakers indi-
vidually and use a recurrent neural network to track the state of
each individual. Ghosal et al. [14] present the Dialogue Graph Con-
volutional Network to model dialogue context by exploiting both
self-speaker and cross-speaker dependency. Ishiwatari et al. [21]
add position encoding to relational graph attention networks, which
capture both the dependencies between speakers and the sequential
relationships between utterances.

Knowledge Distillation. Knowledge distillation enables the small
student model to learn knowledge from the large teacher model [19].
The offline distillation with the flexibility to choose pre-trained
teacher models is more concerned with knowledge transfer. For
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Figure 3: Overview of our proposed approach. The overall model consists of an image encoder, a text encoder, and a multimodal
encoder. The input sticker and dialogue are first sent to the unimodal encoders for feature extraction. We design Emotion Knowledge
Distillation (EKD) and Topic-level Semantic Contrastive Learning (TSCL) modules, which improve sticker representations in terms
of feature diversity and discriminative aspects, respectively. The unimodal features are then fed to the multimodal encoder after
cross-modal alignment. We model the ranking of candidate stickers as a dialogue-sticker matching task. The Polarity-based Hard
Sample Mining (PHSM) module mines hard samples that are similar in both semantics and sentiment and treats them as negative
samples.

knowledge design, Hinton et al. [19] use soft labels predicted by
teacher models as category probabilities to train student models.
Romero et al. [43] use the middle layer features of the teacher model
as hints to distill a deeper and narrower student model. Zhang et
al. [54] propose wavelet knowledge distillation to extract only the
high-frequency band of images after discrete wavelet transformation.
In terms of loss function design for feature alignment, Li et al. [27]
align the output of 1 × 1 convolutional layers at the end of each
block of the student network and the output of the teacher network to
achieve fast fine-tuning. Mirzadeh et al. [36] add Teacher Assistant
to mitigate the gaps between the teacher model and the student
model.

Hard Sample Mining. Informative hard samples can improve the
model’s performance [6]. Sample selection and sample reweighting
are commonly used methods. Robinson et al. [42] prefer to select
informative negative pairs with similar representations in contrastive
learning. Lin et al. [31] reduce the weight of simple samples to
solve the foreground and background imbalance problem in object
detection. Different tasks have different measurements of sample
difficulty. For example, long sentences are usually considered hard
samples in NLP [39], while images containing more objects are con-
sidered hard samples in semantic segmentation [49]. In image-text
retrieval models [25], hard samples are typically defined as samples
with high contrastive similarity. For the SRS task, we introduce the

sentiment polarity of dialogue and sticker, measuring the sample
difficulty from both sentiment and semantic views.

3 METHODOLOGY
3.1 Framework Overview
As shown in Fig. 3, our method mainly consists of an image encoder,
a text encoder, and a multimodal encoder. We will first explain the
problem definition of SRS and then introduce the details of each
component.

Problem Definition. Given a dialogue history consisting of ut-
terances from multiple users and a set of candidate sticker images,
the Sticker Response Selection task aims to comprehend both the
semantic and sentiment information in the dialogue history and se-
lect the best matching sticker. Formally, for the given dialogue 𝑈 =
{𝑢1, ..., 𝑢𝑁𝑈 } with 𝑁𝑈 utterances and 𝑁𝑆 candidate sticker images 𝑆
= {𝑠1, ..., 𝑠𝑁𝑆 }, our goal is to train a ranking model 𝑓 that assigns the
highest score to the ground truth sticker:

𝑝𝑜𝑠 = argmax
𝑖

𝑓 (𝑠𝑖 | 𝑈 , 𝑠𝑖 ) , 𝑠𝑖 ∈ 𝑆 (1)

Note that each candidate set has only one ground truth sticker, and
assume that its index is 𝑝𝑜𝑠.

Image Encoder. For a fair comparison, we employ three back-
bone networks as image encoders, i.e., Inceptionv3 [44], ResNet [18],
and ViT [10]. For each input 𝑈 and 𝑆 mentioned above, where
𝑠𝑖 ∈ R𝐻×𝑊 ×3 is an RGB image. For Inceptionv3 and ResNet, we
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take the feature map after global pooling as the image representation
and flatten it to a one-dimensional sequence. For ViT, we take the
output of the last transformer encoder layer as the image representa-
tion. We define the sequence feature obtained from the encoder as
V = {𝑣𝑐𝑙𝑠 , 𝑣1, ..., 𝑣𝑁𝑉 }, 𝑣𝑖 ∈ R𝐶𝑉 , where 𝑣𝑐𝑙𝑠 is the extra [CLS] em-
bedding (i.e., the global image feature), 𝑁𝑉 is the length of sequence
features,𝐶𝑉 is the number of dimensions of the feature. Specifically,
for Inceptionv3 and ResNet, we take the global average of the last
feature map as 𝑣𝑐𝑙𝑠 .

Text Encoder. We also use four different backbone networks to
obtain the dialogue representation, i.e., LSTM [20], GRU [7], Trans-
former [47], and BERT [9]. For the dialogue history, we combine
each utterance and use the [SEP] token to indicate their separation.
Then we extract the text representations W = {𝑤𝑐𝑙𝑠 ,𝑤1, ...𝑤𝑁𝑇 },𝑤𝑖 ∈
R𝐶𝑇 , where 𝑁𝑇 is the number of words,𝐶𝑇 is the dimension of word
embedding. Specifically, for LSTM and GRU, we also use the aver-
age of all word features as𝑤𝑐𝑙𝑠 .

To obtain compact multi-modal features, following [25], we em-
ploy contrastive learning to align visual and textual representations
before fusing them. We first map the features of vision and language
modalities to a common embedding space:

V̂ = V𝑊 𝐼 , Ŵ = W𝑊𝑇 , (2)

where𝑊 𝐼 ∈ R𝐶𝑉 ×𝐶 ,𝑊𝑇 ∈ R𝐶𝑇 ×𝐶 .
For image-to-text alignment, suppose a mini-batch has 𝐾 samples,

and for the 𝑠𝑝𝑜𝑠 in the 𝑖-th sample we combine it with 𝑈𝑖 to form a
positive pair. The remaining 𝐾 − 1 dialogues are combined with 𝑠𝑝𝑜𝑠
to form the negative pairs. We use the InfoNCE loss [37] to optimize
our model, which is defined as

L𝐼2𝑇 =
−1
𝐾

𝐾∑︁
𝑖=1

log
exp

(
𝑣𝑖𝑝𝑜𝑠 · �̂�𝑖

)
∑𝐾
𝑗=0 exp

(
𝑣𝑖𝑝𝑜𝑠 · �̂� 𝑗

) . (3)

For text-to-image alignment, the negative samples of text 𝑈𝑖 are
not other stickers from the same batch, but negative sample stickers
from the candidate set 𝑆𝑖 :

L𝑇 2𝐼 =
−1
𝐾

𝐾∑︁
𝑖=1

log
exp

(
�̂�𝑖 · 𝑣𝑖𝑝𝑜𝑠

)
∑𝑁𝑆
𝑗=0 exp

(
�̂�𝑖 · 𝑣 𝑗

) , (4)

where both 𝑣 and �̂� are [CLS] tokens in Equ. (3-4), and we omitted
the subscript 𝑐𝑙𝑠 for simplicity.

Multimodal Encoder. The multimodal encoder uses the last six
layers of the BERT. The difference between it and the text encoder
is the application of the Cross Attention (CA) operation in each
layer. The CA is similar to Multi-head self-attention, but the Key
and Value embeddings are from the image, and Query embedding
is from the text. Finally, we use the [CLS] token output from the
multimodal encoder to predict the matching score between each
sticker and dialogue. We model that as a binary classification task
and optimize it using cross-entropy loss:

L𝑆𝐷𝑀 =
−1
𝐾

𝐾∑︁
𝑖=1

(
log P

(
𝑆𝑝𝑜𝑠 ,𝑈𝑖

)
+ log

(
1 − P

(
𝑆𝑛𝑒𝑔,𝑈𝑖

) ) )
, (5)

where P is the predicted probability, 𝑛𝑒𝑔 denotes the negative sam-
ples, and we will elaborate on the negative sample selection strategy
in the subsequent sections.

3.2 Emotion Knowledge Distillation
Sticker images have potential emotion information. We extract
sticker emotion knowledge from a recently proposed sticker emotion
recognition dataset SER30K [32] and transfer them to our image
encoder. Formally, we chose ResNet [18] as the teacher model and
trained it on SER30K. The final sentiment classification accuracy of
the teacher model on the SER30K test set is 64.56%, and the details
of the teacher model are shown in the supplementary material. Then
we first use the teacher model to extract a 𝐶𝑆 -dimensional feature
representation for each image in SER30K and group them according
to seven emotion categories (i.e., surprise, happiness, disgust, fear,
sadness, anger, neutral). Images with different topics appear in the
same emotion category. These images share the same emotion but
can vary significantly in content and style. Using a single feature
cannot accurately describe one emotion category. To address this
issue, we employ the K-Means [17] to cluster image features of each
emotion class into M clusters. The centroid vectors of each cluster
are aggregated together to obtain a feature matrix 𝐸 ∈ R𝐶𝑆×7𝑀 ,
which we call the Emotion Anchor. Utilizing Emotion Anchor we
can comprehensively characterize the images in each emotion cate-
gory.

In the training phase, we first extract a feature representation V𝑒

for each new sticker image using the teacher model mentioned above.
Then its dot product result with Emotion Anchor is processed by
softmax as the emotion pseudo label. To achieve emotion knowledge
distillation, we minimize the KL divergence between the image
encoder output and the emotion pseudo label:

L𝐸𝐾𝐷 = DKL (V𝑊 𝐸 , Softmax(V𝑒𝐸 ) ), (6)

where𝑊 𝐸 ∈ R𝐶𝑉 ×7𝑀 is a linear transformation.

3.3 Topic-level Semantic Contrastive Learning
Stickers under the same topic have similar subject elements, which
hinders the model from learning discriminative features. To address
the challenge, we propose an intra-topic semantic contrastive learn-
ing to pull apart the image representations under the same topic. On
the other hand, image representations under different topics should
be naturally diverse, thus we also designed the inter-topic semantic
contrastive learning branch to enhance such diversity.

1) Intra-Topic Semantic Contrastive Learning. As mentioned
in Fig. 2, sticker images under the same topic have similar subject
elements, and traditional contrastive learning based on semantic
labels hinders the model from learning discriminative features. How-
ever, stickers in the same topic usually express diverse emotions.
we perform contrastive learning within the topic to pull apart image
representations while improving the ability of the model to capture
local emotional features.

For the sticker images under the same topic, we perform two
parallel data augmentations and get the output of the image en-
coder as V𝑎𝑢𝑔1 and V𝑎𝑢𝑔2. We first project the [CLS] token features
𝑣𝑎𝑢𝑔1, 𝑣𝑎𝑢𝑔2 of each sticker to a semantic representation space us-
ing a nonlinear transformation𝜓 (i.e., MLP with a ReLU function).
Then we utilize the images under the same topic as negative samples
and define the learning objective of intra-topic semantic contrastive
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Algorithm 1: Polarity-based Hard Sample Mining

input :𝑆𝐼𝑀𝐼2𝑇 ∈ R𝐾×𝐾 , 𝑆𝐼𝑀𝑇 2𝐼 ∈ R𝐾×𝐾𝑁𝑆 , 𝑃𝑇 ∈ R𝐾 ,
𝑁𝑇 ∈ R𝐾 , 𝐸𝑀𝑂 ∈ R𝐾×7𝑀 in a mini-batch of size 𝐾

output :negative samples in the same mini-batch

1 𝑆𝑈𝑀𝑇 ← 𝑃𝑇 + 𝑁𝑇 ;
2 𝑃𝑇 ← 𝑃𝑇 /𝑆𝑈𝑀𝑇 ,𝑁𝑇 ← 𝑁𝑇 /𝑆𝑈𝑀𝑇 ;
3 Initialize image polarity score 𝑃 𝐼 ← 0, 𝑁 𝐼 ← 0;
4 𝐸𝑀𝑂 ← 𝑀𝑒𝑎𝑛 (𝐸𝑀𝑂 ) , 𝐸𝑀𝑂 ∈ R𝐾×7;
5 for 𝑖 ← 1 to 7 do
6 if 𝑖 is an index of positive emotion categories then
7 𝑃 𝐼 = 𝑃 𝐼 + 𝐸𝑀𝑂𝑖
8 if 𝑖 is an index of negative emotion categories then
9 𝑁 𝐼 = 𝑁 𝐼 + 𝐸𝑀𝑂𝑖

10 𝑃 𝐼 = 𝑒𝑥𝑝 (𝑃 𝐼 )/(𝑒𝑥𝑝 (𝑃 𝐼 ) + 𝑒𝑥𝑝 (𝑁 𝐼 ) );
11 𝑁 𝐼 = 𝑒𝑥𝑝 (𝑁 𝐼 )/(𝑒𝑥𝑝 (𝑃 𝐼 ) + 𝑒𝑥𝑝 (𝑁 𝐼 ) );
12 for 𝑖 ← 1 to 𝐾 do
13 for 𝑗 ← 1 to 𝐾𝑁𝑆 do
14 𝑆𝐸𝑁

𝑖 𝑗

𝑇 2𝐼 = 2 − 𝑎𝑏𝑠 (𝑃𝑇
𝑖
− 𝑃 𝐼

𝑗
+ 𝑁𝑇

𝑖
− 𝑁 𝐼

𝑗
)

15 for 𝑗 ← 1 to 𝐾 do
16 𝑆𝐸𝑁

𝑖 𝑗

𝐼2𝑇 = 2 − 𝑎𝑏𝑠 (𝑃 𝐼𝑝𝑜𝑠
𝑖
− 𝑃𝑇

𝑗
+ 𝑁 𝐼𝑝𝑜𝑠

𝑖
− 𝑁𝑇

𝑗
)

17 Sampling negative samples based on probability distribution
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝐼𝑀 + 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝐸𝑁 ) )

learning as follows:

L𝐼𝑛𝑡𝑟𝑎 =
−1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

log
exp

(
𝑣𝑖
𝑎𝑢𝑔1 · 𝑣𝑖𝑎𝑢𝑔2

)
∑𝑁𝑆
𝑗=1 exp

(
𝑣𝑖
𝑎𝑢𝑔1 · 𝑣

𝑗

𝑎𝑢𝑔2

) . (7)

In this manner, we pull apart stickers with similar subject elements
in the semantic space, guiding the model to learn discriminative
emotion representations.

2) Inter-Topic Semantic Contrastive Learning. Sampling nega-
tive stickers solely from the same topic is monotonous. We do not
only aim for discriminative sticker representations to be learned
but also strive for diversity. To enhance the diversity of negative
samples, we introduce inter-topic contrastive learning. In contrast to
intra-topic, inter-topic contrastive learning selects candidate stickers
under other topics in the same batch as negative samples.

L𝐼𝑛𝑡𝑒𝑟 =
−1

𝐾 × 𝑁𝑆

𝐾×𝑁𝑆∑︁
𝑖=1

log
exp

(
𝑣𝑖
𝑎𝑢𝑔1 · 𝑣𝑖𝑎𝑢𝑔2

)
𝐾×𝑁𝑆∑
𝑗=1

exp
(
𝑣𝑖
𝑎𝑢𝑔1 · 𝑣

𝑗

𝑎𝑢𝑔2

) . (8)

The intra-topic and inter-topic contrastive learning together compose
the TSCL, which not only guides the model focus on discriminative
regions but also ensures diverse negative samples of contrastive
learning.

3.4 Polarity-based Hard Sample Mining
In this section, we propose a hard sample mining strategy based
on the consistency of sentiment polarity. Stickers perform the role
of emotion regulation in the dialogue. The sentiment polarity of
dialogue and sticker tends to be consistent as verified in Fig. 1. From
the process of image-text alignment (i.e., Equ. (3-4)), we can obtain

the semantic similarity between image and text modalities:
𝑆𝐼𝑀𝐼2𝑇 = V̂𝑝𝑜𝑠Ŵ, 𝑆𝐼𝑀𝑇 2𝐼 = ŴV̂. (9)

For each dialogue, we employ an off-the-shelf Chinese text sen-
timent analysis library, named cnsenti1, to extract the sentiment
polarity score of each utterance. And sum the positive and nega-
tive scores for each utterance as the score of the dialogue, denoted
as 𝑃𝑇 and 𝑁𝑇 . For each sticker, we extract the polarity score us-
ing the image emotion distribution obtained from Section. 3.2 (i.e.,
𝐸𝑀𝑂 = V𝑒𝐸). Then, we select negative samples based on the seman-
tic similarity scores of sticker and dialogue as well as the sentiment
polarity scores. We define a sample to be a hard one if the semantic
similarity between the samples is greater and the difference in senti-
ment polarity is smaller. The above selection strategy is summarized
in Algorithm 1.

3.5 Training & Inference
In the training phase, our overall objective function is the summation
of the above-mentioned formulas:
L𝑡𝑜𝑡𝑎𝑙 = L𝐼2𝑇 + L𝑇 2𝐼 + L𝑆𝐷𝑀 + 𝛼L𝐸𝐾𝐷 + 𝛽L𝐼𝑛𝑡𝑟𝑎 + 𝛾L𝐼𝑛𝑡𝑒𝑟 , (10)

where 𝛼, 𝛽,𝛾 are trade-offs between the individual objective func-
tions. We set 𝛼 = 𝛽 = 𝛾 = 0.5 empirically.

In the inference phase, we discard the Emotion Knowledge Distil-
lation and the Topic-level Semantic Contrastive learning modules,
and the model outputs ranked scores for each 𝑠𝑖 based on the input 𝑆
and𝑈 .

4 EXPERIMENTS
4.1 Dataset and Metrics
StickerChat [12]. The StickerChat dataset collects data from an
online chat application. It has 3, 516 sticker topics containing a total
of 174, 695 stickers. The 20 utterances before each sticker image
are used as the history dialogue to build a dialogue-sticker pair.
StickerChat contains 320, 168 pairs for training, 10, 000 pairs for
validation, and 10, 000 pairs for testing respectively. The negative
samples are constructed by 9 stickers which are randomly sampled
from the ground truth sticker topic.

DSTC10-MOD [11]. The DSTC10-MOD contains 45000 open-
domain conversations with a total of 307 stickers. Following [55],
we only adopt the Chinese version of the DSTC10-MOD. Note that
since the test set is not publicly available, we use the validation set
to evaluate our methods and comparison methods.

Metrics. Following the previous works [12, 58], we use the
𝑅𝑛@𝐾 (𝐾 = 1, 2, 5) and Mean Average Precision (𝑀𝐴𝑃) to evaluate
the proposed method. 𝑅𝑛@𝐾 measures whether the ground truth
sticker is ranked in the top 𝐾 of the 𝑛 candidates. 𝑀𝐴𝑃 measures the
mean of the average precision of the total samples. In the following
tables, all metrics are shown in percentages, and we omit the % for
brevity.

4.2 Implementation Details
During testing, there are 10 stickers in each candidate set, of which 9
negative samples are randomly selected from the set containing the

1https://github.com/hiDaDeng/cnsenti
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Table 1: Comparison of experimental results with previous meth-
ods on the StickerChat [12] dataset. Ours denotes the method
without the EKD and PHSM modules, Ours* denotes our com-
plete method.

Backbone Network Methods 𝑀𝐴𝑃 𝑅10@1 𝑅10@2 𝑅10@5

ResNet+Transformer

PSAC [29] 66.2 53.3 64.1 83.6
Ours 68.2 55.5 67.0 85.3
Ours* 72.1 60.4 71.7 88.3

Inceptionv3+Transformer

DAM [58] 62.0 47.4 60.1 81.3
SRS [12] 70.9 59.0 70.3 87.2
Ours 70.3 58.4 69.1 86.3
Ours* 72.3 60.8 71.9 86.9

Inceptionv3+GRU

SMN [51] 52.4 35.7 48.8 73.7
MRFN [46] 68.4 55.7 67.2 85.3
LSTUR [2] 68.9 55.8 68.0 87.4
Ours 71.0 58.9 70.4 87.4
Ours* 72.4 60.9 72.2 87.9

Inceptionv3+LSTM

Synergistic [15] 59.3 43.8 56.9 79.8
Ours 69.8 57.3 68.8 87.4
Ours* 72.5 61.4 71.6 87.4

ViT+BERT

CLIP [41] 70.9 59.1 70.3 86.8
ALBEF [25] 76.8 67.0 75.6 90.0
Ours 77.6 68.4 76.6 90.3
Ours* 79.2 69.3 79.5 93.5

Table 2: Comparison of experimental results with previous meth-
ods on the DSTC10-MOD [11] dataset.

Method 𝑀𝐴𝑃 𝑅10@1 𝑅10@2 𝑅10@5

SRS [12] 50.3 30.5 54.2 71.3
MOD-GPT [11] 52.3 31.2 54.8 72.1
CLIP [41] 54.9 38.4 56.5 52.3
MMBERT [55] 57.7 37.1 51.3 85.2
MMBERT* [55] 64.3 45.9 67.0 89.5
Ours 65.0 47.2 67.1 90.1

correct sticker. In all of our experiments, we follow the same nega-
tive sample construction manner as [12]. When using LSTM [20],
GRU [7], and Transformer [47] as text encoder, we use pre-trained
word2vec embeddings [26], and the max text length 𝑁𝑇 is set to 256.
The Transformer approach follows the setting of [12]. For BERT [9],
we use the first six layers of pre-trained bert-base-chinese 2, and
the max text length 𝑁𝑇 is set to 512. For image features, we use
the ALBEF [25] pre-trained ViT-B/16 [10] for encoding. For Incep-
tionv3 [44] and ResNet [18], we use the model parameters provided
by timm [50] that is pre-trained on ImageNet [8]. The input image
is randomly cropped and then resized to 128 × 128. The dimension
of the text features 𝐶𝑇 and image features 𝐶𝑉 is set to 768, and
the dimension of common embedding space 𝐶 is 256. We use the
AdamW optimizer with an initial learning rate of 10−4 and decay to
10−5 by the cosine schedule. The batch size is set to 4, for a total of
200, 000 training iterations. And validation is performed every 5, 000
iteration. All the experiments are performed on NVIDIA GTX 3090
using PyTorch [38].

4.3 Quantitative Analysis
Table. 1 shows the comparison results. We follow the selection of
the comparison methods by [12]. For a fair comparison, we divided
2https://huggingface.co/bert-base-chinese

Table 3: Ablation studies on the StickerChat [12] dataset. “Base”
indicates ViT+BERT architecture; We set 𝑀 = 60 in EKD mod-
ule; “Intra” and “Inter” denote the contrastive semantic learn-
ing of Intra-Topic and Inter-Topic, respectively.

Methods EKD Intra Inter PHSM 𝑀𝐴𝑃 𝑅10@1

Base 76.78 67.01
✓ 78.06 69.00

✓ 77.20 67.71
✓ 77.49 67.89

✓ ✓ 77.60 68.42
✓ 78.69 68.62

✓ ✓ 78.96 69.05
Ours ✓ ✓ ✓ ✓ 79.23 69.38

the different methods according to the backbone network of im-
age and text encoders. Meanwhile, in order to analyze the effect
of external knowledge (i.e., SER30K and cnsenti), we additionally
compared the methods after removing the EKD and PHSM modules
(denoted as Ours), and the complete methods are denoted as Our*.
Compared with the methods designed for visual question answering
(i.e., Synergistic [15] and PSAC [29]), Our method is specifically
designed modules for SRS task, and considers emotional association
between dialogue and stickers, thus achieving better performance.
SMN [51], DAM [58], MRFN [46] and LSTUR [2] are the rep-
resentative approaches for recommendation task, which are more
focused on modeling text as well as semantic information contained
in the conversation. However, SRS needs not only to reason about
dialogue semantics but also to perceive cross-modal emotion infor-
mation. That makes them unsatisfactory in terms of sticker selection.
SRS [12] is designed for the SRS task. CLIP [41] and ALBEF [25]
are generalized pretrained multimodal language models commonly
used for retrieval tasks. The previous method achieved best perfor-
mance of 76.8% on 𝑀𝐴𝑃 and 67.0% on 𝑅10@1. However, they also
ignore emotional information. Our approach utilizes a more concise
framework that extracts emotional information from both stickers
and sticker-dialogue, resulting in a great performance, i.e., 2.4% in
𝑀𝐴𝑃 and 2.3% in 𝑅10@1. In addition, our methods achieved superior
performance compared to other methods that used the same back-
bone network, where Ours* improved 𝑀𝐴𝑃 by an average of 2.32%
and 𝑅10@1 by 2.86% over Ours on the five network combinations. It
shows that emotional information is crucial for SRS and our method
has excellent generalization capabilities across different networks.

To the best of our knowledge, no previous SRS methods have
been validated on both StickerChat and DSTC10-MOD. This may
be due to significant differences between the two datasets, such as
the number of stickers and the modality of the history dialogue (the
history dialogue in DSTC10-MOD contains replyed stickers), which
leads to deviations in the basic structure of the model. Therefore,
on DSTC10-MOD, we adopt the SOTA method MMBERT [55] as
the backbone and compose it with our proposed modules. Table. 2
shows the experimental results of our method on the DSTC10-MOD.
Since the stickers in DSTC10-MOD do not have topic annotations,
only EKD and PHSM are used in the comparison. And the PBR
using only two modules surpasses the previous method. It is worth
noting that there are only 307 stickers in the dataset. We suppose
the model can learn more diverse emotional information to perform
better when the sticker scale increases.
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Figure 4: t-SNE visualization of 2, 000 sticker features extracted
by image encoder with different methods. black indicates posi-
tive polarity samples. Green indicates negative polarity samples.

Table 4: Model performance with the different number of clus-
ters 𝑀 . The value of 𝑀 is taken every 10 interval from 10 to 100.

Better

Worse

M 10 20 30 40 50

MAP 77.60 77.64 77.82 77.62 77.82

R 10 @1 68.39 68.34 68.46 68.48 68.52

M 60 70 80 90 100

MAP 78.06 77.64 77.41 77.84 77.82

R 10 @1 69.00 68.30 67.96 68.73 68.54

Table 5: Performance comparison of different distillation meth-
ods. In our method, we take the number of clusters 𝑀 = 60.

Methods 𝑀𝐴𝑃 𝑅10@1 𝑅10@2 𝑅10@5

feature distillation 77.28 67.81 76.49 90.74
logit distillation 77.41 68.25 76.41 90.36

Ours 78.06 69.00 77.36 90.63

4.4 Ablation Studies
In Table. 3, we compare the effect of the proposed modules. The
ViT+BERT architecture is used as our “Base” model. It can be
seen that the EKD, Intra-Topic, Inter-Topic, and PHSM modules all
improve the performance compared to the base model. The TSCL
module improved the performance on 𝑀𝐴𝑃 by 0.82% and on 𝑅10@1
by 1.41%, and the EKD module achieved a performance increase of
1.28% on𝑀𝐴𝑃 and 1.99% on 𝑅10@1. We believe that the performance
improvement of the aforementioned two modules can be attributed
to the utilization of more effective sticker representations in our
learning process. To verify the hypothesis, in Fig. 4 we visualize
the sticker representations using t-Distributed Stochastic Neighbor
Embedding (t-SNE).

We can see that the sticker features extracted by the Base archi-
tecture are densely clustered and lack discriminative properties. The
TSCL strategy allows sticker features to be dispersed in the semantic
space, but images with the same sentiment polarity are still blended
together. The EKD module allows the encoder to learn emotional
knowledge and separate stickers from sentiment polarity. In the first
five rows, we use semantic similarity to select negative samples for
the matching task, while the sixth row employs the PHSM strategy,
which selects hard samples based on the semantic similarity and
differences in sentiment polarity of stickers within a batch. In the
sixth row, we use the emotion pseudo label extracted by ResNet for

Figure 5: Left: The effect of dialogue sentiment intensity on
model performance. Right: The effect of sticker sentiment inten-
sity on model performance. The upper part shows the trend of
SRS [12] and the lower part shows the trend of our approach.

hard sample mining (i.e., V𝑒𝐸), and the last two rows use the emo-
tion labels predicted by the model (i.e., V𝑊 𝐸 ). We finally achieve a
model performance of 79.19% in 𝑀𝐴𝑃 and 69.45% in 𝑅10@1 using
all designed modules, which outperforms the Base model by 2.48%
and 2.44%, respectively.

Table. 4 shows the performance of the model with different cluster
numbers 𝑀 . The difference in 𝑀𝐴𝑃 between the highest point 𝑀 =

60 and the lowest point 𝑀 = 80 is 0.65% and the difference in 𝑅10@1
is 1.04%, which indicates the robustness of the model at different
𝑀 . Furthermore, we found small variations in model performance
at 𝑀 <= 50 and larger fluctuations after 𝑀 > 60. We conclude that
this is due to the small sample size of some emotion categories in
the SER30K dataset (e.g., 211 disgust, 826 fear, etc.). As the number
of clusters rises, the clustering effect of these categories decreases,
which in turn affects the cluster centroids.

Table. 5 shows the performance comparison of different distilla-
tion methods. The table shows that feature distillation has the worst
results, We conclude that since emotion is high-level semantic infor-
mation, it cannot be fully understood using feature distillation. The
logit distillation performed better on 𝑀𝐴𝑃 and 𝑅10@1 metrics. And
our EKD module achieved the best performance, outperforming logit
distillation by 0.65% and 0.75% on 𝑀𝐴𝑃 and 𝑅10@1, respectively.
The number of soft target dimensions generated for each sample
by logit distillation is equal to the number of emotion categories.
Due to the topic structure of stickers, multiple characters will exist
under the same emotional category. Therefore we use the ClusterFit
approach to generate more fine-grained soft targets whose dimen-
sionality is not restricted to emotional categories. It makes the sticker
representations learned by our EKD module more diverse.

4.5 Effect of Sentiment Intensity
Since our model can perceive the emotion of the stickers, the emo-
tion intensity of the sample should influence the performance of the
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Why write webpages

Grumpy Task  (1/1) 

  

……

The people in this group are all novices, 

suggest searching on Google

Tonsillitis can cause fever if not handled properly

mmmmmmmmm

I'm doing streamlining these days. Useless group  

retired, duplicate channels do not follow,  APP push 

as far as possible to close to reduce disturbance

Originally I rarely use qq, but now I have to use it 

for work communication

Pass the exam?

For political exam I read once Xiao eight and Xiao four

Using high school method actually got over 60

(a)

0.52

(b) (c)

然后高中那套文科方法套，居然有60多分

Figure 6: The visualization results on the validation set. For each sample, we show the top-6 stickers predicted by our model. The
background color of the utterances indicates how much attention they receive. The number on the right of stickers represents the
ranking score (ground truth labeled with green background), and the bar represents the sentiment score (blue for negative, red for
positive).

model. To verify this hypothesis, Fig. 5 illustrates the performance
variation of the comparative method SRS [12] and our method as
the sample sentiment intensity changes. We use continuous scores
between 0 and 1 to discript sentiment intensity, where 0 represents
negative and 1 represents positive. The left part shows the impact
of dialogue sentiment intensity on model performance. SRS per-
formance exhibits irregular fluctuations, whereas the accuracy of
ours remains relatively stable. The right part shows the impact of
sticker sentiment intensity on model performance. SRS still lacks a
regular trend, while ours demonstrates a noticeable V-shaped pattern.
When the sentiment intensity is intense, the 𝑀𝐴𝑃 and 𝑅10@1 of the
model reach a maximum of 80.58% and 72.05%, respectively. But
when the sentiment intensity is dim (i.e., in the middle interval),
the 𝑀𝐴𝑃 and 𝑅10@1 of the model reach a minimum of 74.15% and
61.15%. This indicates that our model pays more attention to the
emotion of stickers, and it is more likely to make the right selection
when the sentiment intensity of stickers is strong. Furthermore, the
lack of a clear relationship between the performance variation of
SRS and sentiment intensity suggests that the previous methods do
not effectively capture emotional information. Emotions need to be
explicitly modeled to achieve optimal utilization.

4.6 Qualitative Results
Fig. 6 shows the results of the visualization on the validation set. In
the dialogue, sentences that contain sentiment tend to receive higher
attention scores from the model. In stickers, regions that are given
more attention by our model are typically critical for expressing emo-
tions. For example, in the ground truth stickers, our model focuses on

the gesture and surrounding symbols in (a), while in both (b) and (c),
facial expressions are the main focus. In addition, there is a strong
consistency between dialogue sentiment and sticker sentiment. The
stickers with higher scores mostly have the same sentiment as the
dialogue. It indicates that our model not only pays close attention to
the sentiment conveyed in dialogues and stickers but also considers
the cross-modal sentiment association. It was observed that some
image sentiments are predicted incorrectly, which we attribute to
the insufficient quality of the pseudo-labels generated by the teacher
model. A better teacher model may be able to improve the model’s
performance.

5 CONCLUSION
In this paper, we explore the utilization of emotional information
on the SRS task. Intuitively, we need to perceive the emotion of
the dialogue and sticker before sending the appropriate sticker. It
is challenging to perceive and utilize unimodal and cross-modal
emotional information. We consider both emotional and semantic
information and design an Emotion Knowledge Distillation module
as well as a Topic-level Semantic Contrastive Learning module to
obtain discriminative and diverse sticker features. Besides, we im-
prove the hard negative sampling method through the Polarity-based
Hard Sample Mining module, which constructs hard negatives based
on semantic similarity and sentiment polarity differences during the
training phase. Extensive experiments prove the validity of each
designed component. Our work provides an emotional perspective
on the SRS task, and we also expect to facilitate future research on
sticker recommendations.
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