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Multimodal Emotion Recognition Calibration in Conversations
Anonymous Authors

ABSTRACT
Multimodal Emotion Recognition in Conversations (MERC) aims
to identify the emotions conveyed by each utterance in a conversa-
tional video. Current efforts focus on modeling speaker-sensitive
context dependencies and multimodal fusion. Despite the progress,
the reliability of MERC methods remains largely unexplored. Ex-
tensive empirical studies reveal that current methods suffer from
unreliable predictive confidence. Specifically, in some cases, the
confidence estimated by these models increases when a modality or
specific contextual cues are corrupted, defining these as uncertain
samples. This contradicts the foundational principle in informatics,
namely, the elimination of uncertainty. Based on this, we propose
a novel calibration framework CMERC to calibrate MERC models
without altering the model structure. It integrates curriculum learn-
ing to guide the model in progressively learning more uncertain
samples; hybrid supervised contrastive learning to refine utterance
representations, by pulling uncertain samples and others apart; and
confidence constraint to penalize the model on uncertain samples.
Experimental results on two datasets show that the CMERC signif-
icantly enhances the reliability and generalization capabilities of
various MERC models, surpassing the state-of-the-art methods.

CCS CONCEPTS
• Information systems→Multimedia information systems;
Sentiment analysis; Clustering and classification; • Comput-
ing methodologies→ Discourse, dialogue and pragmatics.

KEYWORDS
Multimodal Conversational Emotion Recognition, Confidence Cali-
bration, Curriculum Learning, Contrastive Learning

1 INTRODUCTION
Emotion Recognition in Conversations (ERC) is a challenging task
due to the dynamic and spontaneous nature of conversations, where
individuals express various emotions [72]. Traditional ERC paradigms
rely solely on text [71], but textual cues are often insufficient for
understanding deep emotions [17]. Multimodal ERC (MERC), in-
corporating audio and visual cues alongside the text, is gaining
increasing research attention [67].

CurrentMERC research focuses on two aspects: Firstly, exploring
speaker-sensitive context dependencies using recurrent-based net-
work [11, 38], transformer-based network [32, 72], and graph-based
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Figure 1: Percentage of uncertain samples in the testing sets
of two datasets stems from removed modalities or contexts.

network [44, 71]. Secondly, there is significant attention on the fu-
sion of multimodal data, including aggregation-based methods like
concatenation [17, 60], tensor product [35, 37], and attention net-
works [53, 67], as well as heterogeneous graph methods [4, 20, 22].

Despite the above progress, the reliability of current MERCmeth-
ods remains largely unexplored. In classification settings, a crucial
aspect of reliability involves developing a robust confidence estima-
tor [6, 36, 41] that accurately quantifies the probability of correct
predictions. Such an estimator proves particularly valuable in high-
stakes situations [15]. In MERC, alongside the precise overall pre-
diction confidence, it is crucial to consider the correlation between
confidence and modalities or contextual cues, both intra-speaker
(within the same speaker) and inter-speaker (between different
speakers) contexts. Intuitively, the confidence of the target cate-
gory should not increase when a modality or specific contextual
cues (intra- or inter-speaker contexts) are removed in a MERC
model, as the observed information becomes less comprehensive.

However, empirical studies on existing methods reveal a coun-
terintuitive trend – in some cases, the removal of certain modalities
or specific contextual cues can lead to an increase in confidence as
illustrated in Fig. 1, defining these as uncertain samples. Especially,
in multi-party conversations like MELD [47], removing context
poses a greater risk of unreliable predictions for MERC models
compared to removing modality. Conversely, in dyadic conversa-
tions such as IEMOCAP [3], removing modality is more likely to
result in unreliable predictions than removing context. This con-
tradicts the fundamental principle in informatics that "the essence
of information is to eliminate uncertainty" [2]. This further ham-
pers the reliability of models, making them susceptible to influence
when a modality or specific contextual cues are corrupted, as they
lack a trustworthy confidence estimator for decision-making. To
delve into the underlying reasons, the advanced model M3Net [4]
is examined as an example. The analysis reveals that its contradic-
tion with the fundamental principle in informatics arises from its

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

excessive focus on the textual modality and its struggle to balance
the impact of different contexts. Notably, this contradiction seldom
results from information removal as noise.

To address the above issue, potential solutions such as temper-
ature scaling [12], Bayesian learning [5, 25], etc., offer global cal-
ibration of predicted confidences. However, these methods can-
not explicitly calibrate MERC models across various modalities
and contexts. Therefore, we propose the CMERC, a framework
for calibrating them without altering the model structure, which
explores three pivotal calibrations. (1) Calibrating the training
strategy: Intuitively, the MERC model struggles to make decisions
based on reliable predictive confidence for these uncertain sam-
ples, which hampers the learning process. Our CMERC employs
Curriculum Learning (CL) [1] to guide the model in progressively
learning more uncertain samples that contradict the foundational
principle in informatics, i.e., the removal of a modality or specific
contextual cues enhances the model’s confidence, thus aiding in
the model’s learning. (2) Calibrating utterance representations:
If the MERC model fails to learn essential features relevant to vio-
lations of fundamental informatics principles, reliable confidence
estimation becomes difficult. Understanding the factors behind
uncertain samples is vital for improving training reliability. We
define uncertain samples as positive and others as negative. Hybrid
Supervised Contrastive Learning (SCL) is utilized to distinguish
uncertain samples from others, facilitating the model in capturing
the correlation and difference between uncertain samples and the
rest. This process allows the model to identify factors contributing
to uncertainty. (3) Calibrating the loss function: Introducing
a Confidence Constraint aims to constrain unexpected surges in
predicted confidences directly. The main contributions of this paper
can be summarized as follows:

• Wehave conducted extensive empirical studies revealing that
existing MERC methods fail to provide reliable confidence
estimation for decision-making.
• We propose the CMERC framework to calibrate MERC mod-
els for the first time, focusing on calibrating the training
strategy, utterance representations, and the loss function.
• Experimental results demonstrate that our CMERC can sig-
nificantly enhance various baselines in generalization and
reliability, surpassing the state-of-the-art MERC methods.

2 RELATEDWORK
Context modeling in ERC: Contextual information in conversa-
tions provides significant clues for emotion analysis [59]. According
to emotion dynamics in conversations [10], the ERC model requires
modeling both context- and speaker-sensitive dependencies [57],
including recurrent-based network [21, 29, 38], transformer-based
network [24, 32, 51], and graph-based network [11, 52, 58]. How-
ever, modeling contextual interactions among different modalities
remains a significant challenge. Recent research efforts [22, 31] have
explored the modeling of intra- and cross-modal interactions within
a graph framework to capture contextual clues. Nevertheless, tex-
tual cues prove insufficient for understanding deep emotions [17].
Multimodal fusion:As multi-modality draws nearer to real-world
application scenarios, MERC has been garnering growing research
attention in recent years [53]. It integrates modalities like audio and

visual cues alongside text to better grasp conveyed emotions [65].
Multimodal fusion in MERC aims to combine information from
different modalities, including aggregation-based methods like con-
catenation [17, 60], tensor product [35, 37], attention networks [49,
62]. However, aggregation-based fusion methods overlook the com-
plex interactions between modalities, resulting in insufficient uti-
lization of contextual information [20]. Recently, researchers have
explored graph-based fusion methods to capture intra- and inter-
modal interactive information [4, 20, 22, 44, 71]. For instance, Hu
et al. [22] investigated intra- and cross-modal interactions in graph
networks for contextual clue capture. Despite the progress, the
reliability of these methods remains largely unexplored.
Uncertainty estimation: Uncertainty estimation is crucial for
reliable predictions [36]. Various models have been proposed to
address uncertainty, including Bayesian neural networks [7, 26],
Dropout [40], and Deep ensembles [16, 28]. In classification tasks,
prediction confidence is essential, but models often exhibit over-
confidence due to the rapid growth of softmax probabilities [19]. To
mitigate this, methods have been developed to calibrate confidence
scores to reflect predictive uncertainty [39]. Some approaches aim
to train well-calibrated models directly [18, 30, 33, 64, 66, 69, 73],
employing techniques like mixup [56], label smoothing [43], and
focal loss [41, 42, 74]. Others rely on post-processing methods for
calibration [14, 27, 46, 48], with temperature scaling [12] being a
prominent example, adjusting probabilities using a single scalar
parameter. However, these methods fail to consider the relationship
between various modalities or contexts, solely adjusting overall
confidence without specific calibration for individual modalities or
contexts. This limits their effectiveness in the MERC task.

3 METHODOLOGY
In this section, we offer a comprehensive introduction to each
component of the CMERC framework as illustrated in Fig. 2.

3.1 Task Definition
Let U = [u1, ..., uN] be a conversation uttered by M ≥ 2 speakers,
consisting of N utterances. Each utterance u𝑘 is represented by a
triplet x𝑘 = {xA

𝑘
, xV

𝑘
, xT

𝑘
}. xA

𝑘
∈ R𝑑𝑎 , xV

𝑘
∈ R𝑑𝑣 , and xT

𝑘
∈ R𝑑𝑡 denote

the acoustic, visual, and textual features of u𝑘 , respectively. MERC
aims to predict the emotion label of each utterance u𝑘 according
to its context c𝑘 = {𝑐X

𝑘
, 𝑐O
𝑘
}. 𝑐X

𝑘
and 𝑐O

𝑘
are the intra-speaker and

inter-speaker contexts of the utterance u𝑘 .

3.2 Feature Representation
Following Ghosal et al. [9], we employ layer normalization and
average operation on the last four hidden layers of the Roberta
model [34] to obtain textual features. For acoustic and visual feature
extraction, followingHu et al. [20],Wen et al. [63], we utilize OpenS-
mile [8] and a pre-trained DenseNet model [23], respectively1.

3.3 Overview
Considering the unreliable emotional inferences in MERC models,
we propose a CMERC framework to calibrate them, as shown in
Fig. 2, which integrates three key calibrations: First, it employs CL

1Please refer to the supplementary materials for detailed feature extraction.
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Training Dataset

…

What’s the matter? (Neutral)# 1

# 2 Nothing. (Neutral)

What is it? Hey! (Sadness)# 3

Really it’s nothing. (Sadness)# 4

Hybrid Difficulty Measurer

Bucket N

Bucket 1

…

Easiest

Hardest

Modality-specific 
Difficulty Measurer

Context-specific 
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1. Acoustic modality
2. Visual modality
3. Text modality

1. Intra-speaker contexts
2. Inter-speaker contexts

Epoch 1

Epoch 2
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Training Scheduler

…
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Sorting

Baby 
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Difficulty
Measure

Classifier

Mini
Batch 

Mini Batch 

Model

CLS Loss HSCL
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Figure 2: The proposed CMERC framework. Mathematical symbols are consistent with the formulas in the paper.

to progressively train the model on uncertain samples, aiding in
the model’s learning. Secondly, Hybrid SCL pulls uncertain sam-
ples and others further apart, reinforcing the model’s focus on fac-
tors contributing to uncertainty. Finally, introducing a Confidence
Constraint to penalize the model on uncertain samples, ensures a
trustworthy confidence estimator for decision-making.

3.4 Curriculum Learning for MERC
To design the curriculum for MERC models, we gauge the difficulty
of each conversation across different modalities and contexts by
measuring confidence levels after the removal operation. Intuitively,
the MERC model faces challenges in making decisions based on
reliable predictive confidence for uncertain samples, thereby hin-
dering the learning process. Greater improvement on uncertain
samples within a conversation, the more difficult it becomes, be-
cause the model’s confidence becomes increasingly unreliable. As
the number of uncertain samples in a conversation increases, the
model’s predictive confidence becomes less reliable, making it more
challenging to grasp the emotion of the utterances. Subsequent ex-
periments have also demonstrated that this difficulty may manifest
in the increased entropy of the model’s predicted distributions.

DF(d𝑖 ) =
dFc (d𝑖 ) + dFm (d𝑖 ) + N𝑠 (d𝑖 )

N𝑢 (d𝑖 ) + N𝑠 (d𝑖 )
(1)

dFm (d𝑖 ) =
∑︁B

𝑘=1

∑︁{A,V,T}
𝜉

CF 𝜉

𝑘
(2)

dFc (d𝑖 ) =
∑︁B

𝑘=1

∑︁{X,O}
𝜉

CF 𝜉

𝑘
(3)

CF 𝜉

𝑘
= max(0, o𝜉

𝑘
[𝜑] − o𝑘 [𝜑]) (4)

where CF 𝜉

𝑘
represents the confidence boost when modalities or

contexts are removed.C = {X,O} denotes intra- and inter-speaker
contexts.M = {A,V,T} denotes the acoustic, visual, and textual

modalities. dFm/c (.) denotes the modality- or context-specific dif-
ficulty measurer. 𝜑 is the index of target categories. o𝜉

𝑘
is the predic-

tive distribution of the MERC modelM with a modality or context
removed. B is the size of mini-batch d𝑖 . N𝑢 (d𝑖 ) represents the total
number of utterances in a mini-batch d𝑖 . N𝑠 (d𝑖 ) is the number of
speakers take part in d𝑖 and it acts as a smoothing factor. We utilize
baby step training scheduler [55] to arrange conversations and or-
ganize the training process, described as 𝐿𝑖𝑛𝑒𝑠 1 - 4 in Algorithm 1.

3.5 Hybrid Supervised Contrastive Learning
Understanding the factors contributing to uncertain samples is piv-
otal for bolstering the reliability of MERC models during training.
Consequently, we advocate for the adoption of a Hybrid SCL frame-
work, which seamlessly integrates modality- and context-specific
SCL components. This approach serves to discern uncertain sam-
ples caused by the removal of modalities or contextual cues from
their counterparts, thereby capturing their nuanced correlations
and distinctions. As a result, the MERC model can adeptly iden-
tify the underlying factors driving uncertainty during the training
process, thereby enhancing its overall effectiveness.

L𝑚 = − 1
B

∑︁{A,V,T}
𝜉

log
(
Γ(z𝜉 )

)
(5)

L𝑐 = − 1
B

∑︁{X,O}
𝜉

log
(
Γ(z𝜉 )

)
(6)

Γ(△) =
∑B

𝑗=1 1 [𝑖≠𝑗 ]1 [△𝑖=△𝑗 ] ℓ (H𝑖 ,H𝑗 )∑B
𝑘=1 1 [𝑖≠𝑘 ] ℓ (H𝑖 ,H𝑘 )

(7)

where H denotes the hidden representation of the modelM. z indi-
cates the set of pseudo labels, generated according to the process
described in 𝐿𝑖𝑛𝑒𝑠 14 - 17 of Algorithm 1. ℓ (★,★) = 𝑒𝑠𝑖𝑚𝑖 (★,★)/𝜏 ,
where 𝜏 is the temperature parameter. 𝑠𝑖𝑚𝑖 (★,★) denotes the co-
sine similarity function. The calculation process of modality- and
context-specific SCL, taking audio and intra-speaker context as an
example, is detailed in 𝐿𝑖𝑛𝑒𝑠 18 - 27 of Algorithm 1.
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Algorithm 1: Training process of CMERC using audio and
intra-speaker context.
Input: Dataset D; the number of buckets N𝑑 ; the difficulty

measurer DF(.) .
Output: L𝑚 , L𝑐 , L𝑠 .

1 ⊲ Curriculum Learning in the CMERC.
2 D̂ = { D̂𝑖 }N𝑑

𝑖=1 ← 𝑠𝑜𝑟𝑡 (D,DF) ; D𝑡𝑟𝑎𝑖𝑛 = ∅
3 for 𝑖 = 1 to N𝑑 do
4 D𝑡𝑟𝑎𝑖𝑛 = D𝑡𝑟𝑎𝑖𝑛 ∪ D̂𝑖

5 ⊲ Traversing D𝑡𝑟𝑎𝑖𝑛 with N𝑏 mini-batches.
6 for d = {d1, ..., dN𝑏

} do
7 {x{A,V,T}

𝑘
, c{X,O}

𝑘
}B
𝑘=1 ← d; Γ𝑠 ← 0

8 ⊲ Hybrid SCL in the CMERC.
9 zA, zX ← {0, 0}B

𝑘=1
10 for 𝑘 = 1 to B do

11 o𝑘 ,H𝑘 ←M
(
x{A,V,T}
𝑘

, c{X,O}
𝑘

)
12 oA

𝑘
←M

(
x{ [𝑚𝑎𝑠𝑘 ],V,T}
𝑘

, c{X,O}
𝑘

)
13 oX

𝑘
←M

(
x{A,V,T}
𝑘

, c{ [𝑚𝑎𝑠𝑘 ],O}
𝑘

)
14 ⊲ Pseudo labeling for the utterance u𝑘 .
15 for 𝜉 = {A,X} do
16 if o𝑘 [𝜑 ] < o𝜉

𝑘
[𝜑 ] then

17 z𝜉
𝑘
← 1; Γ𝑠 += o𝜉

𝑘
[𝜑 ] − o𝑘 [𝜑 ]

18 ΓA, ΓX ← 0, 0; ℓ A
(+) , ℓ

A
(−) , ℓ

X
(+) , ℓ

X
(−) ← [ ], [ ], [ ], [ ]

19 for 𝑛 = 1 to B and 𝑛 ≠𝑚 do
20 for 𝜉 = {A,X} do
21 if z𝜉𝑛 == z𝜉𝑚 then
22 ℓ

𝜉

(+) += ℓ (H𝑛,H𝑚 )

23 ℓ
𝜉

(−) += ℓ (H𝑛,H𝑚 ) ; Γ𝜉 += ℓ
𝜉

(+) / ℓ
𝜉

(−)

24 ⊲ Computing the confidence constraint.
25 L𝑠 ← Γ𝑠/B
26 ⊲ Computing the contrastive losses.
27 L𝑚, L𝑐 ← −ΓA/B, −ΓX/B

3.6 Confidence Constraint
To enhance the reliability of predicted confidences in MERC mod-
els, we utilize the difference in confidence increase after removal
operations as the regularization constraint for mini-batch d𝑖 .

L𝑠 =
∑︁B

𝑘=1

∑︁{M,C}
𝜉

CF 𝜉

𝑘
(8)

3.7 Model Training
We jointly train our proposed framework by minimizing the sum
of the following four losses.

L = L𝑐𝑒 + 𝛾𝑚L𝑚 + 𝛾𝑐L𝑐 + 𝛾𝑠L𝑠 + 𝜆 ∥Θ∥2 (9)

where 𝛾𝑚 , 𝛾𝑐 , and 𝛾𝑠 are tuned hyperparameters. L𝑐𝑒 denotes the
loss function for the MERC task, typically implemented as a cross-
entropy loss.Θ is the set of trainable parameters within the CMERC.
𝜆 is the coefficient of L2-regularization.

4 EXPERIMENTS
4.1 Datasets
We evaluate the CMERC on two datasets: IEMOCAP [3] has dyadic
conversation videos with ten speakers, featuring 7,433 utterances
and 151 dialogues. Each utterance has one of six emotions.MELD [47]
contains multiparty conversations collected from the ‘Friends’ TV
series, having 1,433 conversations, 13,708 utterances, and 304 speak-
ers. Each utterance holds one of seven emotions. Following Ghosal
et al. [9], the data splitting for datasets is detailed in Table 1. As
the IEMOCAP dataset lacks a predefined train/validation split, we
allocate 10% of the training dialogues for validation.

4.2 Experimental Settings
All re-implementation methods have released their source codes,
ensuring identical settings as the original papers. For the CMERC,
𝛾𝑚 , 𝛾𝑐 , 𝛾𝑠 , and 𝜏 are manually tuned for each dataset using hold-out
validation2. We adopt M3Net [4] as the Baseline in this paper. The
reported results are the average score of 5 random runs on the test
set. Our experiments are conducted on a single RTX 4090 GPU.
Evaluation metric: Following Zhang and Li [71], we utilize the
weighted F1 score (w-F1) as evaluation metrics and we also report
F1 scores per class. To evaluate model prediction reliability, aside
from various typically used confidence estimation metrics such
as Expected Calibration Error (ECE), Maximum Calibration Error
(MCE), Root Mean Square Calibration Error (RMSCE) [13], Area
Under the Receiver Operating Characteristic Curve (AUROC), and
Area Under the Precision-Recall Curve (AUPRC) [75], we suggest a
novel metric called Confidence Enhancement Level (CEL) to mea-
sure the degree to which predictive confidence improves for test
samples when certain modalities or contexts are removed. A lower
CEL denotes more reliable predictions. Except for CEL, all metrics
are represented in percentages (%).

CEL(d𝑖 ) = dFc (d𝑖 ) + dFm (d𝑖 ) (10)

4.3 Comparison Models
Aggregation-based fusion: Concatenation: DialogueRNN [38]
andDialogueGCN [10]; Attention networks: CTNet [70] and SCMM [67].
Graph-based fusion: MMDFN [20], MMGCN [22], M3Net [4],
CMCF-SRNet [71], and CORECT [44].

Furthermore, we also consider other model-agnostic confidence
calibrationmethods suitable for multi-modal scenarios: T-Scale [12],
Ensemble [30], CRL [41], FMFP [74], and CML [36]. These can be
seamlessly integrated into the MERC task for a fair comparison.

In our ablation study, we present variations of our proposed
CMERC: “w/o CL” denotes without CL for MERC; “w/o HSCL”
denotes without Hybrid SCL (HSCL); “w/o CC” denotes without
Confidence Constraint (CC).

4.4 Reliability Analysis of MERC Models
In Table 2, a significant proportion of uncertain samples is observed
in various MERC models, exceeding 90% in some cases, especially
when modalities and contexts are removed. Additionally, the impact
of each modality or context cannot be underestimated. Interestingly,
more advanced models like M3Net show an even higher proportion,
2Please refer to the supplementary materials for detailed hyperparameter settings.
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Table 1: Statistics of two conversational datasets.

Dataset Dialogues Utterances Classestrain val test train val test
MELD 1039 114 280 9,989 1,109 2610 7

IEMOCAP 120 31 5,810 1,623 6

Table 2: Percentage (%) of uncertain samples in the test set.
M represents the removal of any single modality (the union
of results from A, V, and T), C denotes the removal of any
single context (the union of results from X and O), andM∪C
signifies the union of results fromM and C.

Methods IEMOCAP
A V T X O M C M ∪C

DialogueRNN 43.30 45.16 56.01 12.20 27.79 83.24 31.05 88.17
DialogueGCN 41.47 41.10 54.16 27.05 27.85 80.22 29.39 85.52
MMGCN 36.66 35.67 53.91 30.81 49.35 79.85 66.36 95.32
MMDFN 39.13 55.27 51.69 25.26 52.06 85.52 64.70 95.44
M3Net 36.78 47.13 33.46 35.06 49.85 77.26 74.55 91.93

Methods MELD
A V T X O M C M ∪C

DialogueRNN 53.56 - 29.96 27.89 64.56 70.19 85.10 93.49
DialogueGCN 57.20 - 35.86 46.01 57.24 79.00 79.08 95.17
MMGCN 33.95 26.05 28.39 51.99 55.86 60.34 79.16 92.61
MMDFN 47.32 60.65 27.43 30.15 55.98 84.10 70.54 93.30
M3Net 30.65 42.11 26.28 60.69 46.09 67.85 90.04 97.43
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Figure 3: Contribution of various modalities or contexts in
uncertain samples in the IEMOCAP testing set.

despite enhancements in performance, highlighting the formidable
difficulty in reliable confidence prediction for MERC models.
Further reliability analysis:We investigate the reasons behind
the generation of uncertain samples, focusing on the Baseline as a
representative case. In Fig. 3, we visualize the contribution of each
modality and context to uncertain samples, as measured by MM-
SHAP [45]. This reveals that on the one hand, a significant portion
of uncertain samples arises from the model overly prioritizing the
textual modality. On the other hand, uncertain samples can also
be attributed to the model struggling to appropriately weigh the
influence of disparate contexts, treating them indiscriminately.

Table 3: W-F1 scores (%) of the Baseline‡ under various miss-
ing information rates across different datasets.

Missing Rate 0 0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.4
IEMOCAP 69.61 69.45 69.26 68.57 66.83 65.79 63.17 60.46 55.09
MELD 65.37 65.09 64.88 64.55 63.82 62.55 60.36 56.64 53.24

4.5 Analysis of Removed Information
Because if the removed information is noise, the increase in predic-
tive confidence is not a bad thing. In fact, the likelihood of increased
predictive confidence resulting from noise removal is extremely
low for the following reasons: (1) The granularity of removed in-
formation is substantial, operating at certain modalities or specific
contextual cues rather than at the feature level. The datasets used
are of high quality, with almost no instances of pure noise in certain
modalities or contexts. (2) The determination of whether removed
information is noise depends on the model. As models improve in
understanding and denoising, such cases are expected to decrease,
particularly as we explore advanced MERC models. (3) Assuming
removed information is noise is probable, thus removing it with
extremely low probability ideally shouldn’t decrease model per-
formance. However, the Baseline in Table 3 shows performance
degradation even with a missing information rate as low as 0.001.
This highlights that this assumption doesn’t hold under such coarse-
grained information removal operations.

4.6 Overall Results
Table 4 compares our method with others3, showing its superior
W-F1 score and establishing a new state-of-the-art benchmark.
Specifically, W-F1 scores rose by 2.37% and 1.48% for IEMOCAP
and MELD, respectively. CEL decreased by 629.04 and 194.53 for
IEMOCAP and MELD. Table 5 further demonstrates our method’s
superiority over other confidence calibration methods across vari-
ous metrics. Importantly, we observed a performance improvement
in the advanced MERC model. However, its unreliable confidence
estimation has led to deteriorating effects, as evident from the in-
creasing CEL and echoed by other metrics in Table 6. Addressing
this issue could further enhance the model’s performance, as sup-
ported by Table 6. This demonstrates that the CMERC enhances
both the reliability and the generalization of various MERC models.

4.7 Ablation Study
In this section, we analyze the impact of various components within
the CMERC. Ablation experiments in Table 4 show significant im-
provements across all components. Statistical analysis further con-
firms this, with a p-value≪ 0.05 for the paired t-test.
Analysis of CL: The effectiveness of CL is evident in guidingmodel
learning [61], potentially enhancing performance on uncertain sam-
ples, as confirmed by ablation results in Table 4. However, the pre-
condition for CL efficacy is an entropy-increasing system [1, 68]. To
validate this, we compute the entropy of predicted distributions for
uncertain samples and others. In Fig. 4, progressively incorporating
uncertain samples contributes to entropy augmentation. Post-CL

3Please refer to the supplementary materials for a comparison of results against various
large language models.
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Table 4: Comparison of results under themultimodal setting.⋆ indicates source code available. ‡ denotes our re-implementation
results. ♯, ♭, and ♮ represent results come from [20], [54], and original papers, respectively.

Methods IEMOCAP MELD
Happy Sad Neutral Angry Excited Frustrated W-F1 CEL Neutral Surprise Fear Sadness Joy Disgust Anger W-F1 CEL

⋆DialogueRNN♭ 33.67 72.91 52.32 61.40 74.24 56.54 59.75 450.94‡ 75.50 48.81 0.00 18.24 52.04 0.00 45.77 57.11 2002.86‡

⋆DialogueGCN ♯ 51.57 80.48 57.69 53.95 72.81 57.33 62.89 939.51‡ 75.97 46.05 - 19.6 51.2 - 40.83 56.36 1730.18‡

CTNet ♮ 51.30 79.90 65.80 67.20 78.70 58.80 67.50 - 77.40 52.70 10.00 32.50 56.00 11.20 44.60 60.50 -
⋆MMGCN ♯ 45.14 77.16 64.36 68.82 74.71 61.40 66.26 555.78‡ 76.33 48.15 - 26.74 53.02 - 46.09 58.31 499.89‡

⋆MMDFN ♯ 42.22 78.98 66.42 69.77 75.56 66.33 68.18 766.17‡ 77.76 50.69 - 22.93 54.78 - 47.82 59.46 1275.21‡

SCMM ♮ 45.37 78.76 63.54 66.05 76.70 66.18 67.53 - - - - - - - - 59.44 -
⋆M3Net♭ 52.74 79.39 67.55 69.30 74.39 66.58 69.24 1772.54‡ 79.31 58.76 20.51 40.46 63.21 26.17 52.53 65.47 799.58‡

CMCF-SRNet ♮ 52.20 80.90 68.80 70.30 76.70 61.60 69.60 - - - - - - - - 62.30 -
CORECT ♮ 59.30 80.53 66.94 69.59 72.69 68.50 70.02 - - - - - - - - - -
Baseline‡ 57.05 76.70 70.55 66.08 77.37 64.37 69.61 1772.54 78.80 55.93 28.89 40.83 64.29 29.57 52.56 65.37 799.58

w/ CMERC (Ours) 60.73 81.89 71.65 69.51 77.45 67.02 71.98 1143.50 80.18 60.42 24.69 40.48 65.30 32.31 54.16 66.85 605.05
w/o CL 54.95 80.79 69.46 65.51 78.99 65.51 70.29 1447.87 79.82 60.04 22.78 35.50 63.46 29.27 55.51 66.01 659.26

w/o HSCL 59.28 80.35 70.11 66.02 77.50 66.05 70.67 1364.62 79.65 59.82 25.00 39.89 63.02 27.91 53.50 65.94 623.82
w/o CC 61.82 81.78 70.88 66.48 76.28 63.22 70.46 1530.88 79.86 60.54 27.59 40.35 62.17 30.89 54.16 66.23 611.77

Table 5: Comparison of results with other model-agnostic confidence calibration methods under the multimodal setting.

Methods IEMOCAP MELD
W-F1 CEL ECE ↓ MCE ↓ RMSCE ↓ AUROC ↑ AUPRC ↑ W-F1 CEL ECE ↓ MCE ↓ RMSCE ↓ AUROC ↑ AUPRC ↑

Baseline‡ 69.61 1772.54 15.21 18.18 16.18 92.30 73.36 65.37 799.58 22.58 27.84 23.15 85.78 67.57
w/ ⋆T-Scale‡ 70.04 1850.75 16.33 19.17 17.16 92.25 73.70 65.64 624.63 23.68 30.54 24.95 86.76 69.11
w/⋆Ensemble‡ 70.31 1579.66 14.06 16.71 14.39 92.93 75.03 65.54 707.75 22.51 31.77 23.87 87.19 69.85

w/⋆CRL‡ 70.78 1670.28 14.55 16.58 14.91 92.53 74.35 65.09 671.79 23.54 33.37 24.85 86.91 69.11
w/ ⋆FMFP‡ 63.32 2673.93 22.53 26.27 23.77 89.15 64.65 60.80 625.76 30.03 35.60 30.40 84.13 64.13
w/ ⋆CML‡ 69.19 1324.93 13.68 16.79 14.46 92.82 75.12 66.11 637.73 22.52 30.99 23.72 87.33 70.01
w/ CMERC 71.98 1143.50 11.27 13.33 11.97 93.02 77.01 66.85 605.05 22.13 26.18 22.74 87.56 70.07

Table 6: Performance of various MERC methods based on the CMERC framework for generalizability analysis.

Methods IEMOCAP MELD
Happy Sad Neutral Angry Excited Frustrated W-F1 CEL Neutral Surprise Fear Sadness Joy Disgust Anger W-F1 CEL

DialogueRNN‡ 30.71 83.71 53.37 62.57 68.06 56.92 60.44 450.94 76.19 47.66 0.00 23.28 51.99 0.00 42.65 57.30 2002.86
w/ CMERC 34.34 78.48 57.62 59.04 76.84 57.80 62.43 352.10 76.42 48.38 0.00 23.90 52.90 0.00 45.92 58.11 1758.44

DialogueGCN‡ 44.88 77.97 59.56 60.62 69.69 57.18 62.46 939.51 76.19 27.50 0.00 12.04 40.32 5.71 36.86 51.82 1730.18
w/ CMERC 35.75 79.53 59.67 60.92 75.84 59.35 63.58 825.94 74.06 45.01 0.00 23.81 52.90 0.00 39.30 55.73 1593.99
MMGCN‡ 41.43 77.75 60.77 70.19 74.29 63.00 65.62 555.78 75.89 43.79 0.00 21.43 54.48 0.00 46.84 57.52 499.89
w/ CMERC 43.08 78.63 62.29 69.44 76.32 61.68 66.24 435.84 76.89 47.20 0.00 27.44 54.34 0.00 45.59 58.67 474.27
MMDFN‡ 43.45 80.00 63.13 71.15 74.04 66.24 67.51 766.17 76.25 48.34 0.00 24.94 52.36 0.00 46.49 58.09 1275.21
w/ CMERC 46.26 81.64 67.50 67.49 75.29 65.98 68.83 717.01 77.34 48.57 0.00 26.20 53.41 0.00 48.02 59.11 963.40
M3Net‡ 57.05 76.70 70.55 66.08 77.37 64.37 69.61 1772.54 78.80 55.93 28.89 40.83 64.29 29.57 52.56 65.37 799.58

w/ CMERC 60.73 81.89 71.65 69.51 77.45 67.02 71.98 1143.50 80.18 60.42 24.69 40.48 65.30 32.31 54.16 66.85 605.05

Methods IEMOCAP MELD
ECE ↓ MCE ↓ RMSCE ↓ AUROC ↑ AUPRC ↑ ECE ↓ MCE ↓ RMSCE ↓ AUROC ↑ AUPRC ↑

DialogueRNN‡ 40.20 77.12 44.48 49.75 18.45 36.92 48.00 38.64 49.78 28.85
w/ CMERC 16.71 61.78 21.45 50.80 19.97 28.32 46.08 31.83 50.27 29.24

DialogueGCN‡ 10.77 15.06 11.04 86.65 59.96 11.88 19.25 13.00 75.97 50.65
w/ CMERC 4.52 14.77 7.08 88.02 63.22 8.77 14.76 10.23 78.71 56.09
MMGCN‡ 7.56 16.27 8.31 90.44 69.34 21.40 31.24 22.54 81.39 59.29
w/ CMERC 4.49 13.08 5.45 91.10 70.36 16.85 20.91 17.17 82.15 60.82
MMDFN‡ 11.54 14.46 12.10 91.89 72.47 12.62 16.04 13.12 81.29 60.19
w/ CMERC 6.28 10.90 6.76 92.10 73.50 6.65 10.48 7.41 81.84 60.97
M3Net‡ 15.21 18.18 16.18 92.30 73.36 22.58 27.84 23.15 85.78 67.57

w/ CMERC 11.27 13.33 11.97 93.02 77.01 22.13 26.18 22.74 87.56 70.07

calibration results in decreased entropy in model predictions for
uncertain samples, signifying enhanced comprehension of data
distribution and improved classification reliability.

Analysis of HSCL: In Table 4, HSCL demonstrates the best overall
performance on CEL. In Fig. 5, we conduct t-SNE visualization on
the intermediate representations of the Baseline and the Baseline
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Figure 4: Entropy of the Baseline’s predicted distributions on
uncertain samples (Hard) and others (Simple).
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Figure 5: Visualization of intermediate embeddings of un-
certain samples from the Baseline (left) and the Baseline w/
HSCL (right) in the IEMOCAP testing set.
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Figure 6: Visualization of intermediate embeddings of un-
certain samples from the Baseline w/ Modality-specific SCL
(left) and w/ Context-specific SCL (right) in the IEMOCAP
testing set.

with HSCL. The latter exhibits significantly clearer distinctions
compared to the former, with silhouette coefficients [50] of 0.048
and 0.098, respectively. This suggests that capturing latent features
contributing to uncertain samples aids in enhancing utterance rep-
resentations. In Fig. 6, we also visualize the intermediate represen-
tations of the Baseline with modality-specific or context-specific
SCL. Their silhouette coefficients of 0.063 and 0.067 surpass those
derived from the Baseline, highlighting the efficacy of HSCL and
the complementary nature of its constituent components.
Analysis of CC: Table 4 shows that CC significantly reduces CEL
in the MELD dataset, but it falls short in lengthy conversations like
IEMOCAP, possibly due to inefficiencies in the later conversation
stages, as supported by Fig. 9. In Fig. 7, considering modalities and
contexts in CC leads to CF value (Formula 4) distributions where
smaller values correspond to higher density. This underscores CC’s
effectiveness on uncertain samples and improving model reliability
across modalities and contexts in the IEMOCAP testing set.
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Figure 7: The distribution of CF values under CC.
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Figure 8: Improved W-F1 score of CMERC across various
hyperparameters in the IEMOCAP validation set.

4.8 Hyperparameter Analysis
In Fig. 8, we demonstrate improved performance on the IEMO-
CAP validation set through the adjustment of hyperparameters,
including 𝛾𝑠 , 𝛾𝑚 , and 𝛾𝑐 . These hyperparameters exhibit an initial
increase, followed by a decrease and eventual stabilization with mi-
nor fluctuations. Importantly, performance consistently surpasses
the case where these parameters are set to zero, showcasing the
CMERC’s effectiveness across different hyperparameter settings.

4.9 Comparison under Different Patterns
Our CMERC framework differs from the global calibration of pre-
dicted confidences, as it explicitly calibrates the MERCmodel across
various modalities and contexts. In Table 7, we demonstrate the
enhanced performance of the CMERC, highlighting substantial ad-
vancements in generalization and reliability through individual
pattern calibration. This enhancement is particularly noteworthy
within the acoustic modality and intra-speaker context. The inte-
gration of various modalities yields complementary effects, with
consistent findings observed across different contexts.

4.10 Complementarity Analysis
In this section, we delve into the complementarity among three
pivotal calibrations to elucidate the rationale of the CMERC frame-
work. In Fig. 9, CC performs well in mid-conversation, particularly
in the ‘Excited’ emotion and utterances with ES types, where two
consecutive utterances exhibit different emotions. CL demonstrates
strength in ‘Happy’ and ‘Angry’ emotions, especially in utterances
without ES types. HSCL exhibits proficiency in handling ‘Neutral’
emotions. Collectively, each module showcases strengths in differ-
ent aspects, underscoring their complementary performance, as
also evidenced by Table 4.

4.11 Error Analysis
Many errors in our method stem from class imbalance, as evidenced
by the low F1 scores of 24.69% and 32.31% for the ‘Fear’ and ‘Disgust’
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Table 7: Analysis of the CMERC across various patterns.

Patterns IEMOCAP
W-F1 CEL

A / V / T 70.41 / 70.39 / 70.32 1216.98 / 1293.30 / 1266.92
A + V 70.91 1182.20
A + T 70.73 1204.88
V + T 70.41 1225.06

A + V + T 71.98 1143.50
X 71.21 1191.55
O 70.68 1229.21

X + O 71.98 1143.50

emotions, respectively, in the MELD dataset. This phenomenon also
constitutes a primary constraint on the performance of the MERC
task, a fact supported by the results in Table 4. Furthermore, we are
also investigating cases where the CMERC-enhanced MERC model
misclassifies samples correctly predicted by Baseline‡, totaling 89
samples in the IEMOCAP dataset. Notably, it struggles particularly
in Short (48 samples) and Medium (34 samples) positions of con-
versations, with relatively better performance observed in Long
positions (7 samples). This could be due to the benefits of CL, as CL
exhibits outstanding performance in utterances at long positions
in conversations, as depicted in Fig 9. Misclassifications are dis-
tributed almost evenly across samples with and without ES types.
This suggests that our method is not affected by the phenomenon
of emotional shift, regardless of whether it is present or not.

4.12 Generalizability Analysis
To evaluate the generalizability of our CMERC, we conduct experi-
ments with MERC models, as presented in Table 6. Noticeably, we
observe a consistent decrease in CEL and an improvement in W-F1
scores across all methods. Additionally, similar enhancements are
reflected in other confidence estimation metrics. These findings
demonstrate that the CMERC significantly enhances the reliability
and generalization capability of various MERC models.

4.13 Case Study
In Fig. 10, we examine misclassified uncertain samples, where color
intensity indicates the contribution of modalities or contextual
cues. The Baseline tends to favor the textual modality, overlooking
other modalities. Through calibration, improvements are observed.
For instance, in the first utterance, the model correctly focuses
on the visual modality to identify the emotion ‘Sad’. Similarly, in
the second utterance, emphasizing visual cues helps identify the
‘Happy’ emotion. For the third and fourth utterances, The Baseline
treats inter- and intra-speaker contexts alike, while calibration
introduces a preference. Specifically, in the fourth utterance, the
model appropriately prioritizes inter-speaker context, recognizing
the influence of others on the speaker’s ‘Frustrated’ emotion.

5 CONCLUSION
In this paper, we introduce a novel calibration framework CMERC
designed to tackle the issue of unreliable predictive confidence in
MERC models without altering their structures. It integrates CL
to guide the model to learn progressively uncertain samples in an
entropy-increasing environment; Hybrid SCL to separate uncertain

Happy

Sad

Neutral
Angry

Excited

Frustrated

w/o ES

w/ ES

Short
Medium

Long

0

1

2

3

HSCL CL CC

Figure 9: Improved W-F1 score (%) across various emotional
categories, types (ES: Emotion shift), and lengths (Short: first
1/3, Medium: middle 1/3, and Long: last 1/3 of a conversation)
in the test set of the IEMOCAP dataset.

Text modality

Acoustic modality

Visual modality

Inter-speaker context
Intra-speaker context

I'm trying the best I can. (Sad)#1

You can always stay with me if you- if 
you have to stay with me for a while and 
get yourself back up on your feet again.  
You know I'm not just going to you 
know just throw you to the wolves or 
something like that.  If there's any way I 
can help you, I will. (Neutral)

#3

I'm sorry.  It's just, it's it's just 
fish to me. (Frustrated)

#4

OursBaseline
 (Sad) (Frustrated)

Yeah.  We'll have so much fun. (Happy)#2
OursBaseline

 (Happy) (Excited)

OursBaseline
(Neutral) (Frustrated)

OursBaseline
(Frustrated) (Angry)

Other: Well, so, what do you think? (Excited)
Self: About what? (Neutral)
Other: What I was just saying. (Excited)
Self: It's ridiculous. (Neutral)
Other: It certainly is not.  It's slightly 
           exaggerated scientific fact. (Frustrated)

Historical utterances of #4

Figure 10: Examples of utterances in the IEMOCAP testing set
for the case study. Predicted and golden labels are highlighted
in red and green fonts, respectively.

samples and reinforce the model’s emphasis on factors causing
uncertainty; and Confidence Constraint to penalize unexpected
confidence surges on uncertain samples. These modules comple-
ment each other to improve the reliability of model predictions,
particularly on uncertain samples that may arise due to the model’s
tendency to overly prioritize textual information or struggle to
effectively balance different contexts. Experimental results on two
datasets show that the CMERC framework significantly enhances
the reliability and generalization capability of various MERC mod-
els, surpassing state-of-the-art methods.
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