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ABSTRACT

Language models frequently generate factually incorrect information with high
confidence, a phenomenon known as extrinsic hallucination. Existing approaches
for improving factuality often come at the cost of diminished performance on other
downstream tasks, limiting their practical deployment. We propose a novel on-
policy reinforcement learning (RL) approach that uses binary retrieval-augmented
rewards (RAR) to address this challenge. Our binary reward scheme assigns a
reward of zero whenever any factual error is detected and one otherwise. We eval-
uate our method through continual RL from Qwen3 models across multiple tasks.
For open-ended generation, binary RAR achieves a 39.3% reduction in halluci-
nation rates, significantly outperforming supervised training or online RL with
dense reward. In short-form settings, models learn calibrated abstention, answer-
ing “I don’t know” when parametric knowledge is insufficient, leading to 44.4%
and 21.7% fewer incorrect answers on PopQA and GPQA, respectively. Crucially,
these factuality gains come without performance degradation on instruction fol-
lowing, math, or code, whereas dense-reward RL, despite improving factuality,
induces quality regressions.

Training 
Data

Policy

Binary Retrieval-augmented Reward

❷ Retrieval

Doc [1] 

; 


Name: Brent Crude Oil Last Day Financ; 

Type: FUTURE

Symbol: BZ=F
Reason: [...] the ticker symbol used in 
the script is  According to 
Doc[1], the correct ticker symbol for 
Brent crude oil futures on Yahoo Finance 
is  

Score: 

 'BRENTR.D',

'BZ=F'.
0

❸ Verification

❶ Responses

The strategy buys when price < lower Bollinger Band and sells when price > 
upper band, assuming mean reversion. [...]

ticker = 'BRENTR.D'

...  # download data, compute rolling std/returns ... 

Instruction: How do I implement a mean-reversion strategy to analyze 
Brent Crude Oil market trends.

Figure 1: Left: Reinforcement Learning with Binary Retrieval-Augmented Reward (RAR). Right:
Binary RAR mitigates hallucination while preserving long-form generation quality.

1 INTRODUCTION

Large language models (LMs) have demonstrated remarkable capabilities in knowledge memoriza-
tion and can recall this knowledge for reasoning in complex tasks, fundamentally transforming how
people seek and process information (Chatterji et al., 2025). However, language models may gen-
erate plausible but factually incorrect content, a behavior known as extrinsic hallucination (Kalai
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et al., 2025). This issue has become particularly concerning as recent state-of-the-art reasoning
models produce incorrect information more frequently (Yao et al., 2025; Song et al., 2025).

Reducing hallucination is challenging because supervised learning on static datasets primarily op-
timizes next-token likelihood and does not enforce factual correctness at inference time (Newman
et al., 2025; Zhang et al., 2024). Recent post-training methods instead optimize dense, scalar fac-
tuality assessments, typically via direct preference optimization (DPO) and report reductions in
hallucination (Tian et al., 2024; Lin et al., 2024). However, a central challenge remains: mitigating
hallucinations without degrading overall utility across diverse instructions.

In this paper, we show that it is possible to substantially reduce hallucination without hurting task
performance. We introduce an online reinforcement learning framework with a binary retrieval-
augmented reward (RAR; Figure 1 left). To compute RAR, we first retrieve candidate evidence
from the web, then verify the factual correctness of a language model’s output against the retrieved
documents; we assign a binary score r ∈ {0, 1} with r = 0 if any contradiction is identified or
support is insufficient, and r = 1 otherwise. The binary reward is designed to prevent overfitting
to noisy dense proxies and reduce reward hacking, thereby helping to preserve the model’s original
capabilities. Training proceeds with KL-regularized policy optimization against a reference model
to constrain distributional drift and stabilize updates. The verifier also credits calibrated abstention
when evidence is unavailable (e.g., deferral or uncertainty statements), encouraging deference un-
der uncertainty rather than unsupported claims. This approach echoes recent advances on binary,
verifiable rewards in math and code RL (Lambert et al., 2025; Shao et al., 2024).

We demonstrate the effectiveness of our approach through experiments on Qwen3 (Team, 2025)
reasoning models (4B and 8B) across four factuality-centric evaluations and eight general capabil-
ity benchmarks, spanning instruction following, knowledge retention, mathematical reasoning, and
code generation. As shown in Figure 1 (right), online RL with our binary RAR improves the long-
form factual precision from 38.1 to 62.5 (+24.4 pts), exceeding prior and concurrent approaches
using DPO (46.6), RL with VeriScore (59.4), or RL with VeriScore and LLM judge (55.3; proposed
in concurrent work by Chen et al. (2025)). Furthermore, binary RAR effectively avoids the utility
regressions observed with dense rewards e.g., AlpacaEval drops from 54.7 to 42.2 under VeriScore,
whereas Binary RAR maintains higher utility (AlpacaEval 53.9; IFEval 85.2). Similar trends hold
on Qwen3-4B (e.g., 33.8 →62.3 long-form with Binary RAR, surpassing VeriScore at 53.1). These
results indicate that optimizing a binary, retrieval-verified signal yields larger hallucination reduction
with fewer side effects on general capabilities compared to dense factuality rewards.

Our ablations and analysis show that (i) the KL constraint cleanly tunes the hallucination–utility
trade-off—lower KL yields larger factuality gains but more utility pressure, while higher KL pre-
serves capabilities; (ii) binary, contradiction-focused RAR is more robust than rating variants and
dense factuality rewards, which are susceptible to reward misspecification and larger capability re-
gressions; and (iii) retrieval-grounded binary feedback induces calibrated abstention (“I don’t know”
under insufficient evidence), reducing incorrect forced answers without dedicated abstention train-
ing. Together, these findings support continued online RL with retrieval-augmented binary reward
as a principled route to improving factual reliability while maintaining general capabilities.

We summarize our contributions as follows:

1. We propose a new method that reduces extrinsic hallucination in the reasoning model Qwen3-8B
by nearly 40%.

2. We introduce an evaluation suite to assess the trade-off between hallucination and general capa-
bilities.

3. We analyze why binary rewards are more effective than dense rewards in reducing hallucinations
while preserving generation quality.

2 RELATED WORK

Measuring hallucinations in LM outputs Despite their impressive capabilities across diverse
tasks, LMs are prone to hallucination—producing factually incorrect statements with unwarranted
confidence—which undermines trust without careful oversight (Mallen et al., 2023). Quantifying
hallucination in long-form generation is particularly challenging. Unlike short-form tasks, the open-
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ended nature of long outputs prevents simple comparison against a single ground-truth reference.
Instead, hallucination detection requires verifying responses against large knowledge sources. Re-
cent work addresses this by evaluating factuality through verifiable claims extracted from model
outputs. FactScore (Min et al., 2023) decomposes a response into atomic, verifiable claims and then
checks each claim against reliable sources such as web search engines. The overall factuality score
is typically the percentage of claims verified as correct. VeriScore (Song et al., 2024) extends this ap-
proach by extracting only verifiable claims, thereby generalizing the method to any type of response.
This line of work connects closely to tool-augmented judges, where a language model’s evaluation
is enhanced by access to external tools (e.g., search engines) to better assess response quality Li
et al. (2024). Building on these foundations, recent research has begun to reduce hallucination by
directly optimizing models against such automatic evaluation metrics.

Reducing hallucination via post-training Various post-training approaches have been explored
to mitigate extrinsic hallucination. The general goal is to reduce the chance of fabricating factually
incorrect information in responses. Supervised fine-tuning (SFT) can improve factuality by avoiding
training on knowledge that the model has not already assimilated during pre-training, as fine-tuning
on unfamiliar knowledge can increase the propensity for hallucination (Newman et al., 2025; Zhang
et al., 2024). Similarly, Direct Preference Optimization (DPO) trains the model to prefer more
factual responses over less factual ones (Tian et al., 2024; Lin et al., 2024). This is often achieved by
generating response pairs where the preference is determined by a continuous factuality assessment
score. Concurrent with this work, Chen et al. (2025) combines offline learning (SFT, DPO) with
online RL to enhance base LMs’ factuality using a dense factuality signal (i.e., VeriScore). However,
prior efforts largely emphasize factuality gains while offering limited assessment of impacts on other
LM capabilities. We address this gap with an on-policy RL method that employs a search-augmented
binary reward, improving the factuality of fully trained LMs without degrading general capabilities.

3 FACTUALITY-ORIENTED ONLINE RL WITH BINARY
RETRIEVAL-AUGMENTED REWARD

Our goal is to directly optimize factual reliability while preserving general capabilities. Prior ap-
proaches that leverage SFT or DPO to improve factuality are typically off-policy: they train on fixed
human/model outputs not produced by the current policy, risking distributional mismatch at infer-
ence. We instead adopt online RL, computing rewards on the model’s own rollouts, and introduce a
novel binary retrieval-verified reward (Binary RAR; Figure 1) that concentrates learning on falsity
avoidance rather than proxy score maximization, with KL regularization to control drift.

This section outlines the training objective and algorithmic setup (§3.1), defines and motivates the
binary reward with retrieval and verification (§3.2), and describes prompt curation for factuality-
oriented RL (§3.3).

3.1 PRELIMINARIES AND TRAINING OBJECTIVE

The application of reinforcement learning (RL) to LMs frames the training process as an optimiza-
tion problem. Given a prompt x, a language model π generates a response y by defining a policy
πθ(y | x). The goal is to train the policy to maximize a reward function r(x, y), which assigns
a scalar score to the generated response. To prevent the finetuned model from deviating too far
from its original capabilities, this optimization is typically constrained by a Kullback-Leibler (KL)
divergence term against a reference model πref. The objective is formally expressed as:

max
πθ

E x∼D
y∼πθ(·|x)

[r(x, y)− βDKL(πθ(· | x)∥πref(· | x))] (1)

where D is the prompt dataset and β is a hyperparameter controlling the strength of the KL penalty.

Several algorithms exist to solve this objective. Among them, Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) has become a popular choice for LM post-training due to its stability
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and computational efficiency. GRPO optimizes the following objective function:

E x∼D
{yi}n

i=1∼πact(·|x)

 1

n

n∑
i=1

1

|yi|

|yi|∑
t=1

min (ISi,t ·Ai, clip(ISi,t, 1− ϵ, 1 + ϵ) ·Ai)− βDKL(πθ∥πref)


(2)

The key terms in this objective are the importance sampling (IS) ratio, ISi,t =
πθ(y

t
i |y

<t
i ,xi)

πact(yt
i |y

<t
i ,xi)

, which
corrects for the difference between the current policy πθ and the actor policy πact used for generation,
and the advantage, Ai =

r(x,yi)−meannj=1(r(x,yj))

stdnj=1(r(x,yj))
, which measures how much better a response yi is

compared to the batch average. Given its simplicity and stability, we adopt GRPO as the default RL
algorithm for our experiments.

3.2 BINARY RETRIEVAL-AUGMENTED REWARD

We define the factual correctness of an instruction–response pair (x, y) as the absence of statements
in y that contradict world knowledge, evaluated in the context of x. This notion targets factual
consistency rather than instruction following: it does not judge task compliance, and it does not
penalize assumptions explicitly prescribed by the prompt (e.g., fictional scenarios). We instantiate
this criterion with a binary retrieval-augmented reward r(x, y) ∈ {0, 1}, used for RL training;
Figure 1 (left) outlines the overall procedure.

Retrieval A datastore DS is a set of documents that are preprocessed, chunked, and indexed.
The documents in the datastore is assumed to be factually correct. To verify the response against
the datastore, for a given pair (x, y), A retriever R is used to retrieve a list of relevant documents
denoted as C(x, y) = {d1, . . . , dk}. These documents serve as evidence for checking the factuality
of the response.

Verification To verify the correctness of instruction-response pairs (x, y), we adopt a language
model judge that takes x, y, and C(x, y) as input, reasons about the correctness, and generates a
binary score. We instruct the LM judge to only detect contradictions between the response and re-
trieved information, rather than requiring all information in the response to be supported by C(x, y).

Formally, given a prompt x and a response y, the reward is defined as:

r(x, y) =

{
1 if no contradictions are found between (x, y) and C(x, y),

0 otherwise.
(3)

We optimize the KL-constrained RL objective (Equation 1) with our binary retrieval-augmented
reward r(x, y). This approach avoids the complexity of designing a continuous reward function and
instead provides an unambiguous or less noisy signal.

Practical efficiency for online RL Both retrieval and verification are computationally expensive,
and evaluating r(x, y) can easily become the bottleneck of RL training. To address this, we pro-
pose several efficiency improvements. First, we adopt a pre-caching strategy for retrieval. For each
prompt x in the training dataset D, we pre-cache a set of relevant documents DScache(x) during
dataset preparation. At training time, we then retrieve C(x, y) from this cached subset rather than
from the full datastore DS. Although we cannot anticipate exactly which information will appear
in the model’s output, we include documents related to both the prompt and the ground truth. This
increases the likelihood that, if the model generates incorrect content, the retrieved documents will
expose contradictions. Second, we optimize the verification stage. Instead of extracting and ver-
ifying many individual claims (as done in VeriScore), we detect contradictions by comparing the
entire response against the retrieved documents in a single LM forward pass. This avoids repeat-
edly processing the same documents and significantly reduces computation, compared to concurrent
work using VeriScore as factuality reward (Chen et al., 2025). We further increase throughput by
launching multiple instances of the LMs for verification and evaluating batched responses in parallel.

4
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3.3 PROMPT CURATION FOR FACTUALITY-ORIENTED RL

Curating high-quality and diverse sources of prompts is crucial for successful RL (Team et al., 2025).
We collect training data based on two key considerations:

1. Responses must contain content that can be factually verified using external knowledge.
2. Instructions must be diverse and cover various scenarios and knowledge domains, rather than

concentrating on a single task type.

Therefore, we source our data from WildChat (Zhao et al., 2024), a collection of instruc-
tion–response pairs from human interactions with OpenAI models. From this source, we select
instances where the responses include verifiable factual content. To automate the selection, we use
the OpenAI gpt-4.1 model with a detailed prompt to classify each instruction–response pair. For
each selected instance, we query the Google Search API with the ground-truth response to retrieve
URLs of potentially relevant web pages. We then crawl and parse the returned websites using a
rule-based Python script. Each instance can be linked to up to 10 documents, determined by the
Google Search API’s limit. Instances with fewer than three retrieved documents are discarded, as
sparse evidence may be insufficient for reliably assessing factual correctness. Importantly, our bi-
nary retrieval-augmented reward does not depend on ground-truth responses during RL training,
which makes the approach scalable to larger datasets.

4 EXPERIMENTAL SETUP

4.1 BENCHMARKING THE HALLUCINATION–UTILITY TRADE-OFF

We holistically evaluate methods for reducing the hallucination of LM generations while preserv-
ing general capability. To this end, we curate four factuality-centric benchmarks (hallucination
evaluation) and six additional benchmarks spanning math, code, general chat, and instruction fol-
lowing (utility evaluation). Our objective is to minimize errors on hallucination evaluations while
minimizing any performance drop on utility evaluations relative to the original LM.

Hallucination Evaluation We assess hallucination behaviors in both long-form generation and
short-form question answering using the following datasets: Biography (Min et al., 2023), Wild-
Hallucination (Zhao et al., 2024) for long-form generations, and PopQA (Mallen et al., 2023) and
GPQA (Rein et al., 2024) for short-form QA focusing on long-tail or complex scientific-domain
knowledge. For long-form generation, we compute factual precision using FACTSCORE (Min et al.,
2023), which extracts atomic claims from model outputs and verifies them against reference doc-
uments. Factual precision is defined as the percentage of correct claims. For short-form QA, we
explicitly instruct the model to answer with “I don’t know” when uncertain. We measure the hallu-
cination rate as the percentage of cases where the model produces an incorrect answer. Evaluation
is conducted on POPQA and GPQA, with correctness determined by a strong LLM judge and
multiple-choice accuracy, respectively.

Utility Evaluation We then evaluate whether models retain general capabilities after continued
fine-tuning. For knowledge retention, we revisit PopQA and GPQA with a no-abstention prompt-
ing setup: instead of allowing the model to abstain, we require it to always provide an answer
(i.e., make its best guess). Accuracy is then measured against the ground-truth answers, using
the same correctness-judging methods as in hallucination evaluation. Beyond knowledge reten-
tion, we assess broader capabilities on six additional benchmarks:AlpacaEval (Dubois et al., 2024)
and IFEval (Zhou et al., 2023) for instruction following; GSM8K (Cobbe et al., 2021) and Min-
erva (Lewkowycz et al., 2022) for mathematical reasoning; and HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) for code generation. We follow each benchmark’s official evalua-
tion protocol to quantify any regressions in utility after fine-tuning. Full details are provided in the
Appendix.

4.2 BASELINES

We compare our method with diverse non-RL and RL methods using various rewards. We first apply
supervised fine-tuning (SFT) and direct preference optimization (DPO) to the base models (Tian

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

et al., 2024; Lin et al., 2024; Chen et al., 2025). For each base reasoning model, we generate 8
responses and use the VeriScore pipeline to assess the factuality of each response. 1 Specifically,
we extract verifiable claims from the model responses, verify their correctness against pre-cached
documents, and compute the percentage of correct claims. We then apply SFT to the language model
using the response with the highest factuality score for each instance. DPO is used to train the model
to contrast pairs of responses with the largest difference in factuality scores, subject to the constraint
that their length difference is less than 10%. This data construction strategy is designed to avoid
length-based optimization, or “length hacking” (Chen et al., 2025).

We also evaluate RL methods with different reward signals. First, we use LM Judge, which takes a
reference response and a model response as input and provides a rating of overall output quality on a
scale from 0 to 10, following common practice (Gunjal et al., 2025). Note that LM Judge optimizes
general quality rather than factuality specifically. We also test VeriScore as an RL reward, which
has been proposed in concurrent work (Chen et al., 2025). For computing VeriScore, we use BM25
as the retriever and split documents into 256-token chunks (tokenized with the Qwen3 tokenizer).
For each claim, the top 4 retrieved chunks are used for verification. Both claim extraction and
verification are performed with Qwen-32B.

4.3 TRAINING DETAILS

We apply continual RL fine-tuning based on the Qwen3-8B and Qwen3-4B models, a popular lan-
guage model family with reasoning capability. We employ GRPO as our main RL algorithm. We
deploy Qwen3-32B as our judge model for computing binary retrieval-augmented rewards. The
judge model is prompted to identify contradictions between model responses and the relevant docu-
ments. We use a learning rate of 1× 10−6 and set the KL coefficient to 1× 10−3 for Qwen3-8B and
3 × 10−3 for Qwen3-4B. To compute binary RAR, we apply BM25 for retrieval, chunking docu-
ments into 512 tokens using the Qwen3 tokenizer. For each response, the top 8 chunks are retrieved
and then verified by Qwen3-32B. We use a early stoping strategy to avoid overtraining leading to
degradation of utility. To ensure the model’s utility is preserved, we stop training if a checkpoint
shows more than a 10% drop on any utility benchmark.

5 MAIN RESULTS

5.1 RESULTS ON HALLUCINATION REDUCTION

Table 1 reports main results across long-form generation and short-form question answering (QA).
The base QWEN3-8B exhibits substantial factuality limitations, achieving only 38.1% factual
precision on long-form generation and 35.9% accuracy on short-form QA. The relatively low
scores of QWEN3-4B align with prior evidence that smaller models have limited parametric re-
call/memorization (Mallen et al., 2023). RL with Binary RAR yields the largest improvements
among all approaches, outperforming SFT, DPO-based methods, and other RL variants.

SFT and DPO: limited effectiveness for hallucination reduction. Approaches that apply SFT
or DPO to high-VeriScore responses provide only modest gains in long-form factual precision and
yield little to no improvement on short-form QA with abstention enabled.

Binary RAR achieves substantially better results than other RL rewards. Online RL with
VERISCORE delivers notable factuality gains (59.4 long-form; 41.5 short-form) over SFT- or DPO-
based approaches, highlighting the effectiveness of online RL guided by a factuality-focused reward.
In contrast, RL with an LM-judge reward degrades long-form performance (34.7), suggesting that
generic instruction-following rewards can conflict with factual-accuracy objectives. On long-form
generation, Binary RAR raises factual precision from 38.1 to 62.5 (+24.4 pts) on QWEN3-8B, sub-
stantially improving the VeriScore-based approach. On short-form QA, Binary RAR increases accu-
racy from 35.9% to 50.6%, the strongest result among all methods. On QWEN3-4B, we observe sim-
ilar improvements in long-form factual precision—from 33.8% to 62.3% (+28.5 pts)—substantially
surpassing RL with VERISCORE (53.1%).

1We do not experiment with SFT or DPO using binary RAR because responses to many prompts are always
zero or one, which makes generation inefficient.
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Long-form (Factual Precision ↑) Short-form (Hallucination Rate ↓)

Models Biography WildHallu AVG PopQA GPQA AVG

Qwen3-8B 23.8 52.4 38.1 71.2 50.0 60.6
+ SFT 24.7 53.5 39.1 70.4 50.0 60.2
+ DPO 33.1 60.2 46.6 65.2 49.1 57.2
+ RL (LM Judge) 19.6 49.7 34.7 68.8 48.0 58.4
+ RL (VeriScore) 48.3 70.5 59.4 43.6 41.1 42.3
+ RL (Binary RAR) 54.2 70.8 62.5 26.8 28.3 27.6

Qwen3-4B 18.1 49.5 33.8 82.2 55.1 68.7
+ SFT 21.1 51.3 36.2 83.8 54.7 69.2
+ DPO 26.6 56.1 41.3 82.6 54.5 68.5
+ RL (LM Judge) 17.4 46.3 31.9 80.4 54.0 67.2
+ RL (VeriScore) 38.9 67.4 53.1 73.0 51.3 62.2
+ RL (Binary RAR) 53.5 71.1 62.3 46.6 37.3 41.9

Table 1: Factuality results comparing different training methods on long-form generation and short-
form QA tasks. We report FactScore precision for long-form generation and hallucination rate for
short-form question answering. Binary RAR achieves the best hallucination reduction, showing the
highest factual precision and the lowest hallucination rate in short-form question answering.

Instruction Following Knowledge Math Coding AVG

Models AlpacaEval IFEval PopQA GPQA GSM8K Minerva HumanEval MBPP

Qwen3-8B 54.7 87.2 20.2 48.2 92.8 80.7 83.5 67.4 66.8
+ SFT 55.7 86.9 20.4 47.9 91.6 82.0 83.8 67.0 66.9
+ DPO 53.0 84.5 18.6 47.5 90.8 82.1 86.7 67.8 66.4
+ RL (LM Judge) 55.0 82.2 19.2 52.2 88.1 77.7 83.8 66.3 65.6
+ RL (VeriScore) 42.2 88.7 19.6 47.7 92.2 79.0 83.4 66.9 65.0
+ RL (Binary RAR) 53.9 85.2 20.6 48.8 93.4 82.3 86.1 67.6 67.2

Qwen3-4B 41.7 86.1 16.4 44.2 91.1 82.8 85.5 65.7 64.2
+ SFT 41.2 82.6 15.2 43.5 91.4 83.6 83.2 65.6 63.3
+ DPO 39.6 81.9 15.8 44.0 90.1 82.7 85.8 66.3 63.3
+ RL (LM Judge) 42.3 74.3 16.0 43.5 87.0 82.1 85.9 66.2 62.2
+ RL (VeriScore) 38.4 86.0 15.4 40.8 90.8 82.5 84.5 66.2 63.1
+ RL (Binary RAR) 43.0 84.7 16.4 42.6 90.7 83.8 84.6 65.0 63.9

Table 2: General capability results across eight utility benchmarks covering instruction following
(AlpacaEval, IFEval), knowledge (PopQA, GPQA), math reasoning (GSM8K, Minerva), and coding
generation (HumanEval, MBPP). We color the cell based on the degree of performance degradation.

Models learn abstention behavior. An important finding is that Binary RAR enables models to
spontaneously learn when to abstain from answering. On short-form QA, the base model rarely ab-
stains despite high uncertainty, leading to frequent incorrect responses. After Binary RAR training,
models strategically abstain on questions they would otherwise answer incorrectly, improving relia-
bility without explicit abstention training. In Section 6.2, we present a detailed analysis of strategic
abstention behaviors.

5.2 RESULTS ON GENERAL CAPABILITIES PRESERVATION

Table 2 shows performance across eight utility benchmarks covering instruction following, mathe-
matics, and coding. Our key finding is that Binary RAR best preserves the model’s original capabil-
ities while improving factuality.

Binary RAR maintains utility better than alternatives. The Binary RAR model achieves an
average score of 78.1, without any performance deterioration from the base model’s 77.7 perfor-
mance. In contrast, RL with VeriScore shows noticeable degradation (75.4 average), particularly on
AlpacaEval, where performance drops from 54.7 to 42.2.

Impacts of factuality-oriented training on each task. The marked AlpacaEval degradation un-
der VeriScore indicates that continuous rewards are more vulnerable to reward hacking—over-
optimizing the proxy at the expense of general utility. We analyze this phenomenon further in Sec-
tion A. When forced to provide answers (no-abstention setting) on short-form question answering
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Models KL Coef. Factuality Utility

Biography WildHallu AVG AlpacaEval IFEval AVG
Qwen3-8B / 23.8 52.4 38.1 54.7 87.2 71.0
+ VeriScore 0.003 40.7 65.0 52.8 45.0 86.9 65.9
+ VeriScore 0.001 48.3 70.5 59.4 42.2 88.7 65.5
+ VeriScore + LM Judge 0.001 42.3 68.4 55.3 47.7 85.6 66.6
+ Binary RAR 0.001 54.2 70.8 62.5 53.9 85.2 69.6
+ Binary RAR 0.0003 58.2 65.0 61.6 49.1 88.2 68.6
+ Rating RAR 0.001 35.0 66.9 51.0 46.9 85.8 66.3

Table 3: Ablation study results examining the effects of KL regularization coefficient, reward com-
position, and reward formulation on factuality and utility performance.

datasets, RL with binary RAR remains largely unchanged after training (PopQA: 20.2% → 20.6%;
GPQA: 48.2 → 48.8%). This demonstrates that Binary RAR training enhances factuality without
degrading the model’s fundamental knowledge or reasoning abilities. In contrast, all training meth-
ods have minimal impact on mathematical reasoning and coding abilities. This is likely because our
factuality-focused training primarily affects knowledge recall tasks, while math and coding perfor-
mance depend more on reasoning over the provided input context. Interestingly, Binary RAR shows
slight improvements on Minerva (+1.6), possibly due to the training data containing some reasoning
and coding examples.

6 ANALYSIS

6.1 ABLATION STUDIES

Table 3 presents systematic ablations across three key dimensions: regularization strength, reward
composition, and reward formulation.

KL regularization is crucial for balancing objectives. All the main experiments on Qwen3-8B
are conducted with a KL coefficient of 0.001. Therefore, we try increasing KL for VeriScore to
see if it helps preserve utility, and decreasing KL for binary RAR to see if it hurts utility. We find
that for both rewards, a higher KL indeed better preserves utility but limits improvements in the
factuality score. Nevertheless, VeriScore still shows a large drop in AlpacaEval with KL 0.003 and
a significant reduction in factuality improvement.

Mixed rewards can mitigate utility degradation. Combining VeriScore with LM Judge rewards,
which is recently proposed by concurrent work by Chen et al. (2025), partially addresses the Al-
pacaEval degradation issue, improving the score from 42.2 to 47.7 while maintaining most factuality
gains. However, this approach still shows modest utility drops compared to Binary RAR.

Binary rewards outperform dense alternatives. Comparing Binary RAR with Rating RAR (a
rating-based version providing 0–10 scores instead of 0–1) reveals that the binary formulation is
more effective. Both its effectiveness in improving factuality and in preserving utility are lower than
that of the binary formulation, supporting our hypothesis that dense rewards are more susceptible to
reward hacking. We conduct a qualitative analysis in Section A to further investigate this issue.

6.2 ANALYSIS OF ABSTENTION BEHAVIOR

Figure 2 illustrates how Binary RAR training fundamentally alters the model’s strategy for handling
uncertain questions. We evaluate performance in two scenarios: one allowing abstention (“I don’t
know” responses) used in hallucination evaluation, and another requiring forced responses used in
utility evaluation.

The base Qwen3-8B model exhibits high error rates and rarely abstains, even on questions where it
lacks sufficient knowledge. After Binary RAR training, the model’s behavior changes dramatically:
it abstains on 55.2% of PopQA questions and 27.5% of GPQA questions. While the overall accuracy
decreases slightly (with a less than 15% relative reduction). Importantly, these abstentions are not
random. The model primarily abstains on questions it would otherwise answer incorrectly. For
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Figure 2: Breakdown of Qwen3-8B responses on short-form question answering, comparing correct
answers, incorrect answers, and abstentions.
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Figure 3: Analysis of informativeness in model outputs. Left: number of total and correct claims in
responses to biography datasets. Right: AlpacaEval length-controlled win rate versus output length.

attempted questions, accuracy increases from 22.3% to 40.2% on PopQA and from 49.4% to 60.9%
on GPQA. This indicates that the model strategically chooses to abstain when uncertain, rather than
refusing answers arbitrarily.

6.3 IMPACT ON QUALITY AND FACTUALITY IN LONG-FORM GENERATION

To understand whether improved factuality comes at the cost of informativeness, we analyze the
information content in model outputs. Figure 3 shows the relationship between training method
and the number of atomic claims generated. Binary RAR training does not significantly reduce the
number of correct claims in model outputs, suggesting that factuality improvements are not simply
due to generating less informative responses. On long-form generation tasks, the model maintains
a similar level of correct detail compared to the base model while substantially reducing incorrect
claims. As a result, although on AlpacaEval, Binary RAR produces slightly shorter responses than
the base model, it maintains both overall win rate (59.3 → 59.2) and length-controlled win rate
(54.7 → 53.9). This further confirms that the model learns to avoid unnecessary or uncertain infor-
mation while preserving response quality, rather than simply generating shorter outputs. By contrast,
although RL with VERISCORE + LM-judge increases the number of correct claims largely by sub-
stantially lengthening outputs, it shows a notable drop of AlpacaEval win rate. A closer inspection
shows the model often defaults to vague, high-level statements rather than precise, source-grounded
facts. In the next section, we present a qualitative analysis of responses produced under different RL
objectives.

7 CONCLUSION

We present a reinforcement learning fine-tuning approach using a binary retrieval-augmented reward
(RAR) to mitigate hallucinations in large language models. By verifying outputs against retrieved
evidence and assigning a simple binary score, binary RAR proves more effective than SFT, DPO, or
RL with dense rewards such as VeriScore. RL with binary RAR enables models to reduce factual
errors in long-form generation, abstain when uncertain in short-form question answering, and at the
same time retain knowledge memorization, maintain informativeness, and preserve general capabil-
ities. These results demonstrate that simple binary rewards offer a practical, robust, and scalable
path toward safer and more reliable language models.
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ETHICS STATEMENT

This research aims to mitigate extrinsic hallucinations in language models, which is crucial for de-
veloping safer and more reliable AI systems that users can trust. By improving the factual accuracy
of model outputs, this work helps reduce the potential for spreading misinformation. The methods
employed use publicly available data and focus on enhancing factual correctness without intention-
ally introducing new societal biases or risks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide a detailed description of the training objec-
tive, algorithms, and binary reward mechanism in Section 3. The experimental setup, including all
benchmarks for factuality and utility, is fully outlined in Section 4 and the Appendix. Furthermore,
specific training details such as the base models, learning rates, and KL coefficients are explicitly
stated in Section 4.3.
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Instruction: What is a futures market and when did they become a thing?

Response #2

A futures market is a platform where standardized contracts are traded for the 
delivery of assets at predetermined prices and dates.  The first organized futures 
market emerged in 1848 with the Chicago Board of Trade (CBOT), established to 
address agricultural price volatility, evolving into the modern derivatives market.

Response #1

Futures markets are platforms for trading standardized contracts to buy/sell 
assets at predetermined future dates. They originated in ancient Babylonian 
markets around 800 BCE, with formalized exchanges emerging in the 19th 
century, such as the Chicago Board of Trade in 1848.    

Binary RAR: 0.0

Reason: The response states 
that futures markets originated 
in ancient Babylonian markets 
around 800 BCE, which is not 
supported by the search results.

LM Judge: 0.6

Reason: The AI answer correctly 
defines a futures market [...] it 
incorrectly states that futures markets 
originated in ancient Babylonian 
markets around 800 BCE [...]

VeriScore: 0.75


#Correct Claims: 3

#Total Claims: 4

Binary RAR: 1.0


Reason: No 
contradiction found.

LM Judge: 0.7

Reason: The AI answer is concise and 
provides a clear definition of a futures market 
along with the correct historical context [...] it 
lacks the broader context and additional 
details provided in the reference answer [...] 

VeriScore: 1.0


#Correct Claims: 5

#Total Claims: 5

Figure 4: Comparing Binary RAR, VeriScore, and LM Judge on LM responses.

Instruction: How did US states get their names?

Model #2 (Qwen3-8B RL finetuned with Binary RAR)

[...]

2. European Colonial Influence


Louisiana: Named after King Louis XIV of France.

Maryland: Named after Henrietta Maria, wife of King Charles I of England.

New York: Named after the Duke of York (James, later King James II).

New Jersey: Named after the English earl of Jersey.

Pennsylvania: Named after William Penn, its founder.

Virginia: Named after Queen Elizabeth I (the "Virgin Queen").

West Virginia: Named after Virginia, as it was split from the original state.

Georgia: Named after King George II of England.

Washington: Named after George Washington.

Model #1 (Qwen3-8B)

Many states were named after British or European royalty or their titles, often as a 
gesture of loyalty or to honor a monarch.


Virginia: Named after Queen Elizabeth I (the "Virgin Queen").

New York: Named after James Stuart, Duke of York (later King James II).

New Jersey: Named after John, Earl of Jersey (brother of the Duke of York).

Maryland: Named after Henrietta Maria, wife of King Charles I of England.

Louisiana: Named after King Louis XIV of France.

Connecticut: Named after the English county of Connecticut.

Rhode Island: Named after the Greek island of Rhodes.


[...]



Figure 5: Comparing the response of models before and after training.

A QUALITATIVE ANALYSIS

To better understand the impact of RL training with Binary RAR, VeriScore, and the LM Judge, we
present a qualitative analysis of the reward signals and the fine-tuned models.

LM Judge alone provides limited factuality assessment. Figure 4 shows two responses to the
same instruction, along with their evaluations from three rewards. The first response contains a
factual error, while the second is entirely correct. All three rewards assign a lower score to the
erroneous response than to the correct one. However, the LM Judge assigns only 0.7 even to the fully
correct response. The generated reason reveals that the LM reward prioritizes detailed elaboration,
which reduces its sensitivity to factual accuracy.

Binary RAR reduces hallucination while preserving detail. Figure 5 compares outputs from
Qwen3-8B before and after RL fine-tuning with Binary RAR. The base model generates incorrect
information about Connecticut” and Rhode Island,” whereas the fine-tuned model avoids these errors
and even adds additional examples of states named after royalty. This demonstrates that RL fine-
tuning with Binary RAR reduces factual errors while retaining informative detail in the responses.
More examples are provided in the Appendix.

B EVALUATION DETAILS

We assess hallucination in both long-form generation and short-form question answering using the
following benchmarks:

• Biography (Min et al., 2023): A benchmark consisting of prompts that ask models to write bi-
ographies of specific individuals.

• WildHallucination (Zhao et al., 2024): A dataset probing factual consistency across diverse real-
world entities, including people, geography, and computing, with emphasis on rare entities.

• PopQA (Mallen et al., 2023): A short-form QA dataset covering entities of varying popularity;
correctness is judged automatically by a strong evaluator.
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• GPQA (Rein et al., 2024): A multiple-choice QA dataset covering graduate-level biology, chem-
istry, and physics, where questions and answers are expert-authored.

To measure whether factuality improvements cause regressions in other areas, we evaluate general
capabilities using these benchmarks:

• AlpacaEval (Dubois et al., 2024): An automatic evaluation framework that compares outputs
pairwise against a baseline using an LLM judge gpt-4.1. We use the length-controlled win rate
metric to reduce length bias.

• IFEval (Zhou et al., 2023): A benchmark of 500 prompts covering 25 types of verifiable instruc-
tions, designed to test instruction fidelity with objectively checkable outcomes.

• GSM8K (Cobbe et al., 2021): A dataset of 8.5K grade-school math word problems requiring
multi-step reasoning (typically 2–8 steps).

• Minerva (Lewkowycz et al., 2022): A collection of 272 graduate-level quantitative reasoning
problems in STEM fields such as physics and chemistry, requiring domain-specific expertise.

• HumanEval (Chen et al., 2021): A benchmark of 164 handwritten Python programming tasks.
• MBPP (Austin et al., 2021): The Mostly Basic Programming Problems dataset, consisting of 974

entry-level Python tasks.

C TRAINING DETAILS

RL Fine-tuning For reinforcement learning, we trained models for a maximum of four epochs.
We used a batch size of 16 unique prompts, generating 8 rollouts per prompt. By default, training ran
for 2,000 gradient steps; however, for the VeriScore reward, we applied an early stopping constraint
at 1,000 steps to prevent degradation in utility benchmark scores.

SFT and DPO Baselines For the non-RL baselines, we found that one epoch of supervised fine-
tuning (SFT) and four epochs of direct preference optimization (DPO) yielded the best results.

Training Prompts The prompts used to train the reward models and conduct fine-tuning are de-
tailed in the figures below.

D LARGE LANGUAGE MODEL USAGE

We use language models to assist with literature reviews, help write experiment code, and check
grammar in paper writing. All ideas, results, and content are produced by the authors, and all
outputs from these tools are verified by the authors.
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Binary Retrieval-augmented Reward

You are a professional fact-checker tasked with evaluating a language model’s response for accuracy.
Your job is to systematically compare the response against the provided web search results to identify
any factual errors or contradictions. A response deserves a full score if every claim it makes is
factually correct, even if it doesn’t include every available detail. Omitting information is not a factual
error. If a response contains anything that contradicts the world knowledge shown in the search
results, it should be considered an error and get a low score.

## EVALUATION PROCESS:
1. Read the search results thoroughly to understand the factual baseline
2. Examine each factual claim in the language model’s response
3. Cross-reference each claim against the search results
4. Classify each discrepancy according to the guidelines below

## CONSIDER CORRECT (No Factual Error):
- Paraphrasing: Same facts expressed in different words
- Reasonable inferences: Logical conclusions drawn from search results
- Partial information: Incomplete but accurate subsets of available information
- Contextual additions: Background information that doesn’t contradict search results
- Minor formatting differences: Different ways of presenting same data

## CONSIDER INCORRECT (Factual Error):
- Direct contradictions: Response states opposite of what search results show
- Numerical errors: Wrong dates, statistics, quantities, percentages
- Categorical errors: Wrong classifications, locations, names, titles
- Causal errors: Incorrect cause-and-effect relationships
- Timeline errors: Events placed in wrong chronological order
- Attribution errors: Wrong sources, authors, or speakers cited

## SCORING RULES:
Your evaluation will result in a binary score: 0 or 1.
- SCORE 1 (No Contradiction): Assign this score if:
1. The response is fully supported by the document.
2. The response contains information that is NOT in the document, but DOES NOT contradict it.
- SCORE 0 (Contradiction): Assign this score ONLY if you find a clear, factual contradiction between
the response and the supporting document. A contradiction occurs when the response states the
opposite of what the document says (e.g., wrong dates, names, events, or outcomes).

## OUTPUT FORMAT:
You must respond ONLY in a valid JSON format with exactly these two fields:
- ”REASONING”: A brief explanation for your score.
- For SCORE 0, specify the contradiction (e.g., ”The response states the event was in 2022, but the
document says it was in 2023.”).
- For SCORE 1, simply state ”No contradiction found.”
- ”SCORE”: An integer, either 0 or 1.

>>> Begin of search results <<<
{passages text}
<<< End of search results >>>

>>> Begin of the prompt <<<
{prompt text}
<<< End of the prompt >>>

>>> Begin of the response <<<
{response text}
<<< End of the response >>>

Respond in JSON format. {{”REASONING”: ”[...]”, ”SCORE”: ”<your-score>”}}

Figure 6: Prompt for binary fact-checking.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Rating Retrieval-augmented Reward

You are a professional fact-checker tasked with evaluating a language model’s response for accuracy.
Your job is to systematically compare the response against the provided web search results to identify
any factual errors or contradictions. A response deserves a full score if every claim it makes is
factually correct, even if it doesn’t include every available detail. Omitting information is not a factual
error. If a response contains anything that contradicts the world knowledge shown in the search
results, it should be considered an error and get a low score.

## EVALUATION PROCESS:
1. Read the search results thoroughly to understand the factual baseline
2. Examine each factual claim in the language model’s response
3. Cross-reference each claim against the search results
4. Classify each discrepancy according to the guidelines below

## CONSIDER CORRECT (No Factual Error):
- Paraphrasing: Same facts expressed in different words
- Reasonable inferences: Logical conclusions drawn from search results
- Partial information: Incomplete but accurate subsets of available information
- Contextual additions: Background information that doesn’t contradict search results
- Minor formatting differences: Different ways of presenting same data

## CONSIDER INCORRECT (Factual Error):
- Direct contradictions: Response states opposite of what search results show
- Numerical errors: Wrong dates, statistics, quantities, percentages
- Categorical errors: Wrong classifications, locations, names, titles
- Causal errors: Incorrect cause-and-effect relationships
- Timeline errors: Events placed in wrong chronological order
- Attribution errors: Wrong sources, authors, or speakers cited

## CONFIDENCE SCORING GUIDE:
- 0-2: Very confident there is a factual error (multiple clear contradictions)
- 3-4: Moderately confident there is a factual error (one clear contradiction)
- 5: Uncertain (ambiguous evidence or unclear from search results)
- 6-7: Moderately confident there is no factual error (mostly accurate with minor concerns)
- 8-10: Very confident there is no factual error (all stated facts are accurate, regardless of completeness)

## OUTPUT FORMAT REQUIREMENTS:
Respond ONLY in valid JSON format with exactly these two fields:
- ”REASONING”: A concise explanation of your assessment (1-2 sentences max, e.g., ”the response
states ... but the search results show ... so there is a factual error” or ”no factual error found”)
- ”SCORE”: An integer from 0-10 representing your confidence level

>>> Begin of search results <<<
{passages text}
<<< End of search results >>>

>>> Begin of the prompt <<<
{prompt text}
<<< End of the prompt >>>

>>> Begin of the response <<<
{response text}
<<< End of the response >>>

Respond in JSON format. {{”REASONING”: ”[...]”, ”SCORE”: ”<your-score>”}}

Figure 7: Prompt for rating-based fact-checking.
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Claim Extraction for VeriScore Training / FactScore Evaluation

Extract as many fine-grained, atomic, and verifiable factual claims as possible from the response.
Each claim should be a single piece of information that could be looked up in a database, official
documentation, reputable forum, or reliable source such as Wikipedia or scientific literature.

Guidelines for atomic claims:
- Split a sentence that joins different facts using “and,” “or,” or by listing into multiple claims.
- If a claim could be split into multiple smaller, independent statements, do so.
- Replace pronouns (e.g., ”he”, ”she”, ”it”, ”they”) with the full entity name explicitly stated in the
response. If the entity name is not explicitly mentioned, leave the pronoun unchanged.
- Extract claims EXACTLY as stated, even if the information appears incorrect or false.

Include as claims:
- Statements about the existence, property, function, or relationship of entities, organizations,
concepts, or technologies.
- Claims about names, definitions, features, purposes, or histories.
- Statements about what something does, who runs it, what it is used for, or what it affects.
- For hedged language (“may be,” “might be,” “could be”), extract the factual association, typical
usage, or commonly reported function as long as the claim is traceable to community consensus,
documentation, or reputable user reports.
- If a quotation is present, extract it verbatim with the source if given.
- Claims must stand alone, using names or clear descriptions, not pronouns.

Do not include as claims:
- Personal opinions, suggestions, advice, instructions, or experiences.
- Pure speculation or possibilities that are not reported in any documentation or user discussions.
- Claims from code blocks or pure math derivations.

Extract claims only from the response section, not from the prompt or question. If the re-
sponse does not contain any verifiable factual claims, output an empty list.

Output a JSON list of strings. Each string should be a single atomic factual claim from the
response, clearly stated and verifiable.

>>> Begin of prompt <<<
{prompt text}
<<< End of prompt >>>

>>> Begin of response <<<
{response text}
<<< End of response >>>

Facts (as a JSON list of strings):

Figure 8: Prompt for atomic claim extraction.
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Claim Verification for VeriScore Training / FactScore Evaluation

You need to judge whether a claim is supported or contradicted by Google search results, or whether
there is no enough information to make the judgement. When doing the task, take into consideration
whether the link of the search result is of a trustworthy source.

Below are the definitions of the three categories:

Supported: A claim is supported by the search results if everything in the claim is supported
and nothing is contradicted by the search results. There can be some search results that are not fully
related to the claim.
Contradicted: A claim is contradicted by the search results if something in the claim is contradicted
by some search results. There should be no search result that supports the same part.
Inconclusive: A claim is inconclusive based on the search results if:
- a part of a claim cannot be verified by the search results,
- a part of a claim is supported and contradicted by different pieces of evidence,
- the entity/person mentioned in the claim has no clear referent (e.g., ”the approach”, ”Emily”, ”a
book”).

>>> Begin of search results <<<
{passages text}
<<< End of search results >>>

Claim: {claim text}
Task: Given the search results above, is the claim supported, contradicted, or inconclusive? Your
answer should be either ”supported”, ”contradicted”, or ”inconclusive” without explanation and
comments.

Your decision:

Figure 9: Prompt for claim verification.
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Dataset Curation

You need to judge whether a claim is supported or contradicted by Google search results, or whether
there is no enough information to make the judgement. When doing the task, take into consideration
whether the link of the search result is of a trustworthy source.

Below are the definitions of the three categories:

Supported: A claim is supported by the search results if everything in the claim is supported
and nothing is contradicted by the search results. There can be some search results that are not fully
related to the claim.
Contradicted: A claim is contradicted by the search results if something in the claim is contradicted
by some search results. There should be no search result that supports the same part.
Inconclusive: A claim is inconclusive based on the search results if:
- a part of a claim cannot be verified by the search results,
- a part of a claim is supported and contradicted by different pieces of evidence,
- the entity/person mentioned in the claim has no clear referent (e.g., ”the approach”, ”Emily”, ”a
book”).

>>> Begin of search results <<<
{passages text}
<<< End of search results >>>

Claim: {claim text}
Task: Given the search results above, is the claim supported, contradicted, or inconclusive? Your
answer should be either ”supported”, ”contradicted”, or ”inconclusive” without explanation and
comments.

Your decision:

Figure 10: Prompt for dataset curation.

Instruction: I'm trying to teach myself to have nicer handwriting. Can you help?

Model #2 (Training with VeriScore)

Improving your handwriting is a personal journey that can be both rewarding and 
enjoyable. Here are some general steps and considerations to help you on your 
path:


Assess Your Current Handwriting: Start by reflecting on your current 
handwriting. Are there specific aspects you'd like to improve, such as legibility, 
consistency, or spacing? Understanding your goals can help you focus your 
practice.

Understand the Basics: Handwriting involves more than just writing letters. It 
includes the formation of each letter, spacing between letters and words, and 
the overall flow of writing. Understanding these elements can help you identify 
areas.


[...]

Model #1 (Training with Binary RAR)

Improving your handwriting is a rewarding journey that requires patience, practice, 
and a structured approach. Here's a step-by-step guide to help you get started, 
tailored to your self-teaching needs:

1. Assess Your Current Handwriting


Self-Evaluation: Write a short paragraph or sample text. Note what you like and 
dislike (e.g., size, spacing, slant, consistency).

Compare to Models: Use examples of good handwriting (print or cursive) to 
identify differences. Look for elements like:


Consistency: Are letters uniform in size and weight?

Spacing: Are letters and words evenly spaced?


[...]

Figure 11: Comparing responses from models RL finetuned with Binary RAR and VeriScore.
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