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Abstract

This paper proposes a novel direct Audio-Visual Speech
to Audio-Visual Speech Translation (AV2AV) framework,
where the input and output of the system are multimodal
(i.e., audio and visual speech). With the proposed AV2AV,
two key advantages can be brought: 1) We can perform real-
like conversations with individuals worldwide in a virtual
meeting by utilizing our own primary languages. In con-
trast to Speech-to-Speech Translation (A2A), which solely
translates between audio modalities, the proposed AV2AV
directly translates between audio-visual speech. This capa-
bility enhances the dialogue experience by presenting syn-
chronized lip movements along with the translated speech.
2) We can improve the robustness of the spoken language
translation system. By employing the complementary in-
formation of audio-visual speech, the system can effectively
translate spoken language even in the presence of acous-
tic noise, showcasing robust performance. To mitigate the
problem of the absence of a parallel AV2AV translation
dataset, we propose to train our spoken language trans-
lation system with the audio-only dataset of A2A. This is
done by learning unified audio-visual speech representa-
tions through self-supervised learning in advance to train
the translation system. Moreover, we propose an AV-
Renderer that can generate raw audio and video in paral-
lel. It is designed with zero-shot speaker modeling, thus the
speaker in source audio-visual speech can be maintained
at the target translated audio-visual speech. The effective-
ness of AV2AV is evaluated with extensive experiments in a
many-to-many language translation setting. The demo page
is available on choijeongsoo.github.io/av2av.

1. Introduction

In our increasingly interconnected world, where commu-
nication transcends linguistic boundaries, Neural Machine
Translation (NMT) [1-6] has played a critical role in break-
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Figure 1. Conceptual illustration of the proposed multilin-
gual Audio-Visual Speech to Audio-Visual Speech Translation
(AV2AV) framework. The system can directly translate between
multilingual AV speech without requiring any text. Note that
the proposed AV2AV can generate both audio speech and visual
speech in listener-oriented (i.e., translated) languages.

ing down barriers in multilingual interaction. Despite their
strong performances, NMT systems exhibit limitations in
seamless application to virtual conferences or face-to-face
interactions. This is due to their reliance on human interven-
tion for text input or speech recognition, as these systems
primarily operate with text modalities. Speech-to-Speech
Translation (A2A") [7—11] can mitigate this problem by di-
rectly translating spoken languages into the target language
at the audio level. With the growth of A2A technologies
[12], it is anticipated that individuals can effortlessly com-
municate with one another using their primary languages,
irrespective of their nationalities. However, there still exists
one unsolved problem in the aspects of multimedia, the dis-
crepancy between the translated speech and the visual stim-
uli. For example, if the A2A is utilized for video conferenc-
ing, people may experience mismatches between what the
presented face says and what they hear. This arises because
A2A exclusively processes audio speech without address-
ing the visual component. As inconsistent visual informa-
tion can negatively affect the perception of speech, which is

IThroughout this paper, we employ abbreviations for input and output
modalities, using A for Audio, V for Visual, and T for Text.
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evidenced by the McGurk effect [13, 14], a method jointly
considering both audio and visual should be developed.

In this paper, we explore a novel direct Audio-Visual
Speech to Audio-Visual Speech Translation (AV2AV)
framework. Shown in Fig. 1, the proposed AV2AV can di-
rectly translate the input Audio-Visual (AV) speech into the
desired target language with multimodal experience (i.e.,
with both audio and visual streams). Therefore, with the
proposed AV2AV, 1) We can provide a real face-to-face-like
conversation experience enabling participants to engage in
discussions using their respective primary languages, miti-
gating the aforementioned mismatched experience. 2) We
can improve the robustness of the system with the comple-
mental information of multimodalities so that the transla-
tion can be accurately performed even under noisy envi-
ronments. 3) We can reduce the computational and main-
tenance costs, compared to the previous 4-stage cascaded
Speech to Audio-Visual Speech Translation (A2AV) ap-
proaches [15—19] which sequentially performed Automatic
Speech Recognition (ASR) [20-22], NMT [4, 23], Text-to-
Speech Synthesis (TTS) [24-26], and audio-driven Talking
Face Generation (TFG) [27, 28]. In today’s world, where
millions of multimedia content pieces are generated daily
and shared globally in diverse languages, the demand for
systems like the proposed AV2AV is anticipated to increase.

However, there is a crucial challenge that must be ad-
dressed in the development of a direct AV2AV framework;
the lack of translation data between AV speech. Multilin-
gual translation typically requires a large amount of parallel
data. While there are relatively abundant text-based datasets
[29-32] for NMT and speech-based datasets [33-36] for
Speech-to-Text Translation (A2T) [37—40] and A2A [41-
43], there is no publicly available parallel AV2AV corpus.
One possible solution could be generating AV translation
data, by separately synthesizing speech and video by apply-
ing TTS [44-46] and TFG [47-49] onto the existing NMT,
A2T, and A2A datasets. Nevertheless, training the model
with synthetic face video does not guarantee sufficient final
performance, considering the current limitations of TFG in
faithfully modeling accurate lip movements [50, 51].

Instead, our strategy is to employ unified AV speech
representations of the recent self-supervised model, AV-
HuBERT [52], which is proven to have the modality-
agnostic characteristics [53, 54]. Since its pre-training in-
cludes modality dropout, we can reliably obtain unified
AV speech representations, whether utilizing audio-only,
visual-only, or audio-visual inputs [55]. Motivated by this,
we show that the proposed AV2AV can be trained with
audio-only data (i.e., A2A dataset) to perform translation
between AV speech. To this end, we introduce a multilin-
gual trained AV-HuBERT (mAV-HuBERT), by pre-training
the model with about 7,000 hours of a multilingual AV
dataset containing over 100 languages. Then, the unified

AV speech representations from mAV-HuBERT are dis-
cretized through K-means clustering [9, 10, 56], yielding
AV speech units. By treating the discretized AV speech
units as pseudo text [11], we train our multilingual spoken
language translation model. At this time, we employ the
modality-agnostic characteristics of AV-HuBERT and uti-
lize audio-only datasets (i.e., A2A datasets) to extract the
AV speech units by masking out the visual input stream
of mAV-HuBERT. Finally, to render the audio and visual
components from the translated AV speech units, we intro-
duce an AV speech unit-based AV-Renderer that can gener-
ate synchronized raw speech audio and talking face video
in parallel. Especially, the proposed AV-Renderer is de-
signed with zero-shot speaker modeling ability, enabling the
preservation of the speaker’s voice and face in both audio
and video before and after translation.

The contributions of this paper can be summarized as
follows: 1) To the best of our knowledge, this is the
first work exploring direct Audio-Visual Speech to Audio-
Visual Speech Translation (AV2AV), whose inputs and out-
puts are both audio-visual speech. 2) In order to mitigate
the absence of translation data between AV speech, we em-
ploy the modality-agnostic characteristics of AV-HuBERT
and propose to train the spoken language translation part
with the audio-only dataset. At the inference, we show that
the trained model with audio-only data can accept any com-
bination of modalities, audio-only, visual-only, and audio-
visual inputs, and can produce multimodal speech outputs.
3) For the seamless experience of translated AV speech, we
design a zero-shot speaker AV-Renderer. With the proposed
AV-Renderer, we can maintain the speaker identity of both
audio and video streams before and after translating the AV
speech. 4) We explore the AV2AV in a many-to-many lan-
guage translation setting, so one model can perform X-to-X
language translations where X is multilingual, while pre-
vious multimodal speech translation systems (e.g., AV2A)
can perform only one specific language direction.

2. Related Works
2.1. Spoken Language Translation

Neural Machine Translation (NMT) [1-6] has achieved ma-
turity in the modality with the richest data, text. Given that
audio modality enables the translation between languages
that have no writing systems and the more improved di-
alogue experience, speech-based translation has emerged.
Speech-to-Speech Translation (A2A) [7, 42] aims to trans-
late speech from one language to the semantically consis-
tent speech of another language. Early A2A works began
with a cascaded approach [57-59] by sequentially perform-
ing ASR, NMT, and TTS. Subsequently, A2T [33, 38—40]
works were proposed to merge the ASR and NMT stages,
and allowed a two-stage A2A system. Recently, it has



evolved even into a direct approach [8, 11, 43, 60, 61] that
can directly translate speech without relying on intermedi-
ate representation.

Despite the recent success of audio-based speech trans-
lation, multimodal (i.e., audio and visual) speech translation
is in its very early stages. One line of research focuses on
language translation between audio input and audio-visual
output, namely Speech to Audio-Visual Speech Transla-
tion (A2AV). They [15-19] utilized a 4-stage cascaded ap-
proach by chaining ASR, NMT, TTS, and TFG. Specifi-
cally, audio from the source video is first transcribed into
text with an ASR [20]. Then, the text is translated from
the source language to the target language through NMT
[4, 23]. The translated text is synthesized into speech using
TTS [24, 25], and finally, the face is synthesized from the
synthesized speech using TFG [27]. Although the cascaded
approach can benefit from the advantage of advancement
made in each of the subsystems, they might suffer from
slow inference time, domain mismatch, error propagation
between the subsystems, and high maintenance costs. Most
recently, AV-TranSpeech [62] first proposed direct Audio-
Visual Speech-to-Speech Translation (AV2A), whose input
is now audio-visual speech and output is audio. By using
AV inputs, they showed that the robustness of the trans-
lation system on acoustic noise can be improved [63—66].
Also, they tried to solve the insufficient AV2A training data
by bringing pre-trained weights for each modal stream from
different pre-trained models [43, 52].

Different from the previous works, this is the first work
to explore a direct Audio-Visual Speech to Audio-Visual
Speech Translation (AV2AV). The proposed AV2AV incor-
porates both audio and visual speech as inputs, translates
the linguistic content, and produces both audio and visual
speech outputs. Moreover, our method is a direct approach
where we do not go through with any intermediate text or
speech. This is a huge leap from the current 4-stage process
in A2AV. Moreover, different from AV-TranSpeech [62]
tried to use different pre-trained models to initialize their
model and finetuned it on small size AV2A dataset, the pro-
posed AV2AV model can be trained on an audio-only A2A
dataset with unified AV speech representations. The trained
model can be directly applied to AV2AV without finetun-
ing. Once trained, we can perform all A2AV, V2AV, and
AV2AV, with one single trained model. Finally, we propose
a zero-shot AV-Renderer enabling the maintenance of the
speaker characteristics of source AV speech at the outputs.

2.2. Self-supervised Speech Model and Speech Units

Self-supervised speech models [67-71] have achieved sig-
nificant performance in various speech processing tasks
such as ASR [67, 69], speaker verification [72], and speech
translation [71, 73, 74]. HuBERT [67], one of the promi-
nent self-supervised speech models, is trained to predict

hidden units obtained by clustering MFCC features from
the masked input, where the hidden units are progressively
refined using its learned features. Once the speech features
obtained from specific layers are clustered into speech units
[75], they can be utilized as pseudo texts containing the lin-
guistic content of speech. By treating the discrete speech
units as pseudo text, various speech processing technologies
were proposed [76—78] such as spoken language modeling
[56, 79] and speech translation [8, 9, 11, 43].

Extending the modalities, self-supervised multimodal
speech models [52, 80, 81] have been proposed. Among
them, AV-HuBERT [52] shows promising results in diverse
multimodal speech modeling, visual speech recognition
[82], AV speech recognition [83], and lip-to-speech syn-
thesis [84, 85]. Recently, its modality-agnostic AV speech
representations have drawn big attention in speech recog-
nition [53, 55] and Visual Speech Translation (V2T) [54].
Previous works showed that we can robustly get unified AV
speech representations with diverse input modalities, audio-
only, visual-only, and audio-visual. This is possible because
AV-HuBERT proceeds pre-training with modality dropout.

Motivated by the recent success of discrete speech units
of HuUBERT, we also propose to train our translation sys-
tem with discretized AV speech units by treating them as
pseudo text. As the proposed system is a multimodal sys-
tem, we employ AV-HuBERT to extract the AV speech
units. Moreover, inspired by the modality-agnostic char-
acteristics of AV-HuBERT representations, we propose to
train our AV2AV translation model with audio-only datasets
(i.e., A2A datasets), by dropping out the visual stream when
extracting the AV speech units. To better capture the multi-
lingual speech features, we introduce mAV-HuBERT which
is trained on about 7,000 hours of multilingual AV dataset.

3. Proposed Method

The proposed direct multilingual Audio-Visual Speech
to Audio-Visual Speech Translation (AV2AV) framework
aims to directly translate both audio stream and visual
stream of an input face video from one language to an-
other. To this end, the proposed system is designed with
three main parts; 1) extracting linguistic content from the
AV input with AV speech units (Fig. 2a), 2) performing lan-
guage translation using the AV speech units (Fig. 2b), and
3) synthesizing each modal speech where the linguistic con-
tent comes from the translated AV speech units, while the
speaker characteristics are controllable (Fig. 2c¢).

3.1. Unified Audio-Visual Speech Representations

In order to train the AV2AV system, basically, a parallel
corpus of AV speech is required. However, publicly avail-
able speech translation datasets are ‘audio to text’ (A2T)
[33], ‘audio to audio’ (A2A) [35], and ‘audio-visual to au-
dio’ (AV2A) [62]. As there is no available ‘audio-visual to
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Figure 2. (a) We extract unified audio-visual speech representations using multilingual trained AV-HuBERT. The speech features are
discretized into audio-visual speech units through quantization and treated as pseudo text. (b) By using audio-visual speech units, we
translate between multilingual languages using a transformer encoder-decoder model. (c) The audio speech and visual speech are generated
in parallel from the translated audio-visual speech units by using the proposed Zero-shot AV-Renderer. The renderer can perform in a zero-
shot setting so that we can keep the speaker identity the same before and after the translation.

audio-visual’ (AV2AV) translation data, it is not feasible to
train our model in a parallel AV2AV data setting. To miti-
gate this, we propose to train our translation model with the
audio-only parallel corpus (i.e., A2A dataset), by learning
the unified representations of audio and visual speech in ad-
vance. Motivated by the recent studies [53—55] showing that
the AV-HuUBERT can extract unified AV speech representa-
tions regardless of input modality, our strategy is training
our spoken language translation model with the unified AV
representations obtained by using audio-only inputs, where
the corresponding visual input is dropped out.

Concretely, we introduce a multilingual trained AV-
HuBERT, mAV-HuBERT, to fit it for our multilingual
modeling purpose. Different from the English-based AV-
HuBERT model [52], mAV-HuBERT is pre-trained on
about 7,000 hours of multilingual audio-visual data by com-
bining LRS2 [86], LRS3 [87], VoxCeleb2 [88], mTEDx
[89], and AVSpeech [90], which altogether contains approx-
imately over 100 languages. Then, we discretize the unified
AV speech representations of mAV-HuBERT through quan-
tization (i.e., K-means clustering) and obtain AV speech
units, following [11, 56]. As our mAV-HuBERT is trained
with modality dropout similar to AV-HUBERT [52], we can
robustly obtain the AV speech units by using different input
modalities, audio-only, visual-only, and audio-visual. This
enables us to train our AV2AV translation model using an
audio-only parallel corpus dataset, while still allowing in-
ference with audio-visual inputs. The processes for obtain-
ing AV speech units are illustrated in Fig. 2(a). It is impor-
tant to note that the discretized speech unit predominantly
encompasses speech content, offering a significant advan-
tage as it can be effectively treated as pseudo text [9]. Fol-

lowing [9-11, 43, 56], we reduce the length of AV speech
units by removing adjacent repeating units.

3.2. Multilingual Spoken Language Translation

As shown in Fig. 2(b), our AV2AV language translation
model is composed of a standard transformer encoder-
decoder architecture [91] which consists of a 12-layer unit-
encoder and a 12-layer unit-decoder, similar to a popular
NMT system [4]. Following the recent A2A method [11]
that can perform many-to-many spoken language transla-
tion, the unit-encoder takes a source language token <L s>
that is for indicating which language should be compre-
hended and the source AV speech units u, = {u’}’,
where T, refers to the length of units. Then, the unit-
decoder takes a target language token <L;> that determines
the output language and its previous predictions‘ufj to au-
toregressively predict the next AV speech unit u? of the tar-
get language at step j. Therefore, the loss function to train
the AV2AV language translation can be represented as

Ty
L=-> logp(ul | u’ uy), (1)
j=1

where T} refers to the length of target AV speech units.

As described before, we can obtain the AV speech units
u, and u; = {u!}%, robustly by using different types of
input modalities, audio-only, visual-only, and audio-visual.
Therefore, we train our AV2AV language translation model
with a large A2A parallel dataset constructed with mTEDx
[89] and VoxPopuli [35]. The total data amount is about
12,000 hours composed of 19 languages and by reversing
the translation direction, the data amount is doubled. Fol-
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Figure 3. Overview of the proposed AV2AV framework. A single
AV2AV model can perform A2AV, V2AV, and AV2AV by learning
with unified AV speech representations of mAV-HuBERT.

lowing [11], we pre-train the model in many-to-many trans-
lation setting on the constructed A2A dataset and finetune
the pre-trained model on the target datasets (i.e., MuAViC
[33] and LRS3-T [62]), respectively. As shown in Fig. 3,
we show that the model trained with the proposed strategy
can perform A2AV, V2AV, and AV2AV with a single model.

3.3. Zero-shot Audio-Visual Renderer

The translated AV speech units should be rendered to au-
dio and video to produce the sound and visual movement
that humans can perceive. To this end, we introduce a
zero-shot AV-Renderer which simultaneously synthesizes
the raw audio and video from the AV speech units as shown
in Fig. 2(c). The crucial aspect is to preserve the speaker
identity from the source AV speech to the translated AV
speech, ensuring a seamless communication experience for
the participants. To achieve this, the proposed AV-Renderer
is devised in a zero-shot speaker setting. Only the linguis-
tic content of the translated speech is extracted from the
translated AV speech units, while the non-linguistic char-
acteristics are modeled from the source AV speech. The
proposed AV-Renderer is comprised of three main compo-
nents, a length predictor, vocoder, and face renderer.

Length Predictor. As the output audio and visual
streams are expected to be synchronized, we only need one
common duration modeling for the two output streams. To
this end, a length predictor is employed to predict the dura-
tion of each AV speech unit. The predicted duration is uti-
lized for synthesizing both audio and visual outputs. Similar
to that of TTS [25], it consists of two 1D convolution layers
with one classifier and is trained with Mean Squared Error
loss measured between the prediction and ground truth du-
ration of each unit, as in [8, 9]. The translated AV speech
units are repeated by the predicted duration before passing
the vocoder and face renderer.

Vocoder. For the vocoder, we basically follow the previ-
ous works [8, 9, 11, 43] that utilized speech unit-based HiFi-
GAN [92] and we additionally add the zero-shot speaker
modeling ability to the model, as the previous works only
support the single-speaker voice. To this end, we leverage
a pre-trained speaker verification [93, 94] model of [95] as
a speaker encoder to extract the speaker embedding, similar
to multi-speaker TTS [96]. It takes a Mel-spectrogram and

produces a single speaker embedding, known as a d-vector
[97]. The d-vector is concatenated to every embedded fea-
ture of the AV speech unit where it is embedded by an em-
bedding layer (i.e., Unit2Speech in Fig. 2(c)). The concate-
nated features are fed into the speech decoder whose archi-
tecture and training objective are the same as HiFi-GAN
[92], to produce the waveform.

Face Renderer. For the face renderer, we bring the fa-
mous audio-driven face synthesis model, Wav2Lip [27], and
modify it to operate with AV speech units as inputs. As
Wav2Lip can generate arbitrary face videos from arbitrary
audio, it is appropriate for our zero-shot purpose. Specif-
ically, the source identity feature and pose feature are ex-
tracted from a source identity face and a pose prior (upper
half of the driving source faces) by a face encoder, as shown
in Fig. 2(c). The discrete AV speech units are embedded
into continuous features through a Unit2Lip encoder which
consists of an embedding layer and a transformer layer [91].
Subsequently, the embedded features and identity features
are jointly decoded to generate the target talking face video.
It is trained with the same objective functions as [27].

4. Experiment
4.1. Dataset

For training m-AVHuUBERT, we use 7,011 hours of multi-
lingual AV data by combining LRS2 [86], LRS3 [87], Vox-
Celeb2 [88], mTEDx [89], and AVspeech [90].

For training AV2AV language translation model, we use
about 12k hours of parallel A2A data containing 19 lan-
guages constructed with Voxpopuli [35] and mTEDx [89]
in a many-to-many language translation setting, following
[11]. Then, we finetune the pre-trained model on each eval-
uation dataset, LRS3-T [62] and MuAViC [33]. The LRS3-
T [62] is AV2A data, derived from the LRS3 dataset [86].
It contains the translation direction of En-Es and En-Fr.
MuAViC [33] is an audio-visual speech-to-text translation
(AV2T) corpus sourced from TED and TEDx. Since it only
provides target text, we generate the target speech by us-
ing pre-trained TTS models, VITS [98], on each language?.
We utilize 4 English (En)-to-X and 4 X-to-En paired data,
where X is Spanish (Es), French (Fr), Portuguese (Pt), and
Italian (It), which gives a total duration of 2,356 hours. The
opposite translation direction is also used for training.

For training the vocoder, we use LRS3 [87] for En and
mTEDx [89] for other languages. For the face renderer, we
follow the previous works [27] and utilize the widely used
LRS3 [87] dataset.

4.2. Evaluation Metrics

We evaluate the translation quality and the generation qual-
ity of both audio and video. For the translation quality,

2 Available on https://github.com/coqui-ai/TTS
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Lang. Method Finetuning data size (LRS3-T)

Ohr  10hr  30hr 200hr

En-Es AV-TranSpeech [62] - 215 222 452
Proposed Method 253 398 44.6 50.9
En-Fr AV-TranSpeech [62] - 244 283 33.6

Proposed Method 271 347 372 41.4
Table 1. AV2A performance comparisons (ASR-BLEU) in low-
resource scenario on LRS3-T [62] dataset. Since the proposed

method can be pre-trained on the A2A dataset, it outperforms the
previous AV2A model [62] which relies on the AV2A dataset.

we employ the BLEU score [99, 100] by transcribing the
transcription using the off-the-shelf ASR models following
[11]. To measure the generation quality of video, we adopt
metrics used for TFG. This includes Fréchet Inception Dis-
tance (FID) [101] to measure visual quality, and LSE-C and
LSE-D [27] to measure the audio-visual synchronization.
Also, we conduct a Mean Opinion Score test to measure the
naturalness of each respective modality, and the realness of
the video.

4.3. Implementation Details

For pre-training mAV-HuBERT, we crop the mouth region
into a size of 96x96 by using face detector [102] and facial
landmark detector [103]. The cropped mouth frames are
converted into grayscale and random cropping and horizon-
tal flipping are applied during training. The audio is resam-
pled to 16kHz and random noise augmentation is applied
using MUSAN [104] and overlapped speech, as in [83]. We
initialize the model with English-trained AV-HuBERT [52]
and train it with the same training objective with it. To ob-
tain the target cluster, we use pre-trained multilingual Hu-
BERT [9, 67] and obtain 1,000 clusters. We train the model
for 150k steps with a max token length of 1,000 using 63
GPUs. Our AV speech units are obtained by clustering the
unified AV representations into 1,000 clusters.

For training the multilingual AV2AV translation model,
we initialize the model with a pre-trained A2A model [11]
and pre-train it on parallel A2A translation data using the
AV speech units driven from mAV-HuBERT for 30k steps
with a max token length 1,024 using 56 GPUs. The pre-
trained model is finetuned on target datasets for 30k steps.

For training the vocoder, we update 1M steps using a
batch size of 16 on each language dataset. For training the
face renderer, the AV speech units are embedded into 512
dimensional features at 25fps, which are channel-wise con-
catenated with the corresponding identity features and de-
coded by the face decoder. It is trained for 35k steps.

4.4. Baseline Models

Since there is no previous method that can perform AV2AYV,
we compare the proposed method with the recently pro-
posed direct AV2A method, AV-TranSpeech [62] on LRS3-
T dataset. Moreover, we compare the translation perfor-
mance with different cascaded methods on MuAViC [33]
dataset. They are built from state-of-the-art off-the-shelf
pre-trained models: AVSR [33], ASR [33], AV2T [33], A2T
[33], NMT [5], TTS [105], and TFG [27]. Please note the
objective of the comparisons with the cascaded method is
not to achieve state-of-the-art performance, but rather to as-
sess the extent to which the performance of the proposed
system can be attained through the direct strategy.

The AVSR and ASR models [33] are trained on the mul-
tilingual audio-visual corpus, covering 1,200 hours of 9 lan-
guages. The AV2T and A2T models [33] support X-to-En
language translations with one model while multiple unidi-
rectional models are used for En-to-X translations. There-
fore, we use one pre-trained AV2T or A2T model for {Es,
Fr, It, Pt}-En translation, while we use 4 individual mod-
els for En-Es, En-Fr, En-It, and En-Pt translations. The
NMT model [5] is trained on the many-to-many text trans-



Input-Output  Translation

D Modality System

Method

® 4-Stage Cascaded System

Al A-AV NMT
A2 AV-AV NMT

" e3-Stage Cascaded System
A3 A-AV A2T A2T [33] + TTS [105] + TFG [27]
A4 AV-AV AV2T AV2T [33] + TTS [105] + TFG [27]

" e 2-Stage Cascaded System (Textless)
A5 A-AV A2A A2A [11]+ TFG [27]

" eDirect System (Textless)
A6 A-AV A2AV Proposed Method
A7 V-AV V2AV Proposed Method
A8 AV-AV AV2AV Proposed Method

ASR [33] + NMT [5] + TTS [105] + TEG [27]  28.66 30.55 23.54 26.14 30.15 24.07 2505 22.17
AVSR [33] + NMT [5] + TTS [105] + TFG [27] 28.70 2921 2454 2630 30.09 24.56 2541 22.66

26.57 3127 2324 2451 2757 2321 1633 1235

Table 2. Translation quality (ASR-BLEU) comparison with baseline systems for X-En and En-X directions. Methods (A1, A2, A3, A4)
use one ASR, AVSR, A2T, and AV2T model for X-En, and 4 different models for En-X directional translations. The methods (A5, A6,
A7, A8, A9) use a single model for all § directional translations. A2A [11] method does not have a vocoder to generate Portuguese speech.

ID Method Ml:cfa‘:itty SNR (@8)

0 5 10 clean
Bl ASR +NMT + TTS + TFG A 3.73 13.90 20.91 24.84 28.66
B2 AVSR + NMT + TTS + TFG AV 15.39 21.93 26.08 26.62 28.70
‘B3 A2T+TTS+TFG A 302 1213 1852 22.75 24.06
B4 AV2T + TTS + TFG AV 13.66 18.75 22.04 23.78 24.61
'BS Proposed Method (A2AV) A 3.64 14.14 19.99 23.87 26.04
B6 Proposed Method (V2AV) %4 10.36 10.36 10.36 10.36 10.36

B7 Proposed Method (AV2AV) AV 17.31 22.69 23.87 24.20 26.57

Table 3. Translation performance (ASR-BLEU) with different in-
put modalities under acoustic noise corruption with different SNR
levels (dB) on MuAViC Es-En dataset.

lation corpus comprising 7.5B sentences for 100 languages.
The TTS model [105] is a state-of-the-art multilingual TTS
model that was recently released by Team Coqui. The TFG
model [27] is one of the popular models that can generate
arbitrary identities and languages, which is trained on 233
hours of audio-visual data.

4.5. Experimental Results

4.5.1 Comparisons with State-of-the-art

We compare the AV2A performance with the state-of-the-
art direct AV2A method, AV-Transpeech [62], by using dif-
ferent amounts of finetuning data, in Table 1. The results
show that the proposed method is much more effective than
AV-Transpeech, especially in the low-resource setting. As
the proposed method can be pre-trained using A2A dataset
to perform with different input modalities, the pre-trained
model can be directly applied to AV2A without finetun-
ing. In contrast, since AV-Transpeech tries to bring different
pre-trained models (i.e., AV-HUBERT [52] and A2A [43]
models) to initialize different parts of their model, the fine-
tuning with the AV2A dataset is mandatory. Even when
no finetuning is applied, the proposed method outperforms
AV-Transpeech that finetuned on 10hr of AV2A dataset,
and achieves comparable performances with the model fine-
tuned on 30hr of dataset. If we finetune the proposed model

with the same amount of AV2A dataset as AV-Transpeech,
it outperforms AV-Transpeech at all data sizes. This shows
the effectiveness of the proposed strategy of learning from
A2A dataset by using unified audio-visual speech represen-
tations. Fig. 4 shows the translated results of the proposed
AV2AV framework. We show both audio and visual outputs
where the audio is transcribed into text through ASR. The
demo page is available here.

4.5.2 Comparisons with Cascaded Approaches

Table 2 shows the BLEU score of different systems for dif-
ferent language pairs. The analysis of results is as follows.

(A2, A4 vs. A8) By comparing the methods that can per-
form AV2AV, the proposed method (A8) shows comparable
results with the text-based translation systems trained on
7.5B parallel data (A2, A4), even though it is trained with-
out using any text supervision. This demonstrates that AV
speech units encompass sufficient linguistic content, allow-
ing the training of a multilingual AV2AV translation model
solely using the discretized AV speech units.

(A1, A2 vs. A3, A4 vs. A5 vs. A6, A8) We can find that
by reducing the cascading stages and shortening the pro-
cessing time, the BLEU scores become slightly worse over-
all. This result is attributed to the powerful performance
of each advanced subsystem, which benefits from a large-
scale dataset. However, we can clearly find that the pro-
posed direct multimodal speech-to-speech translation sys-
tems are comparable with the cascaded systems with just a
single model. Specifically, the proposed method achieves
better performance than the 3-stage cascaded systems (A3,
A4) in the X-to-En translation direction. Please note that
Al, A2, A3, and A4 use one model for X-to-En and 4 dif-
ferent models to perform En-to-X translation, while the pro-
posed method uses just a single trained model to perform all
8 translation directions in the table. Another important thing
is that AS and the proposed systems are textless so that they
can be utilized for the languages that have no writing sys-


https://choijeongsoo.github.io/av2av

X-En

Method

Es-En Fr-En It-En Pt-En
AV-HuBERT [52] 17.63 16.83 21.74 2222
mAV-HuBERT 26.57 31.27 23.24 24.51

Table 4. Ablation study on multilingual translation performance
of English-trained AV-HuBERT and multilingual AV-HuBERT.

ID Method LSE-Ct LSE-D| FID |
o Ground Truth
Cl1  GT Audio-Visual 7.61 6.90 -
" eCascaded System
C2  GT Audio + TFG 8.14 6.68 3.56
C3  GT Text + TTS + TFG 7.36 7.06 3.56
" e Our System (AV-Renderer)
C4  GT AV Speech Unit 7.91 6.65 3.18

Table 5. Performance comparisons of each renderer on LRS3.

tems [9], while Al, A2, A3, and A4 cannot be applied to
such languages as they rely on text modalities.

(AS vs. A6, A7, A8) By comparing the proposed method
with A2A method (AS), the proposed A2AV method (A6)
shows better performances in overall. Moreover, We can
confirm that even though the proposed method is pre-trained
with the same dataset as AS, the proposed method can
be utilized for diverse tasks, including A2AV, V2AYV, and
AV2AV. This is due to the fact that the proposed method
is trained on unified audio-visual speech representations,
eliminating the need for additional training to operate with
different modalities. In contrast, AS utilized audio speech
representations during training, so it requires additional
finetuning to accept different modal inputs.

4.5.3 Analysis of Robustness to Acoustic Noise

In Table 3, we evaluate the noise robustness of different
systems. Following [83], we randomly perturb the input
speech with the sampled babble noise from the test set of
[104] with varying SNR levels (-5, 0, 5, 10dB). By com-
paring audio-only input systems with multimodal systems
(B1, B3, B5 vs. B2, B4, B7), we can confirm the benefits
of using AV inputs by obtaining robust performances un-
der acoustic noises. These results show the importance of
AV input systems to achieve robust performance in practical
situations. The visual input system (B6) is not affected by
acoustic noise and even achieves better performance than
audio-only systems (B1, B3, B5) under a severely noisy en-
vironment (i.e., -5 dB). As one trained AV2AV model can be
employed for diverse tasks, we can choose the input modal-
ities appropriate to a given situation.

We visualize the robustness of the proposed AV2AV sys-
tem to acoustic noise. The BLEU score of the translated
results on MuAViC Es-En data is shown in Fig. 5. As the vi-
sual stream is not affected by the acoustic noise, the visual-
only case shows the constant BLEU score for all noise lev-
els. In contrast, the audio-only model is mostly affected by

30 4
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Figure 5. Evaluation of the robustness of the proposed AV2AV
system using different input modalities on acoustic noise.

the acoustic noise, and the performance is greatly decreased
when the noise becomes strong. The interesting thing is that
the audio-only model even shows worse performance than
the visual-only model in the severely noisy case (i.e., -5 dB).
Therefore, it would be better to utilize a visual-only model
in a very noisy situation. When we utilize multimodal in-
puts, audio-visual, the model shows robust performances to
the acoustic noise. The model always shows the best per-
formances for all noise levels. Even if the noise is strong,
so that the SNR is -5 or 0 dB, the audio-visual model still
can robustly translate the speech. The results show the im-
portance of using multimodal inputs for practical usage of
speech processing systems.

4.5.4 Effectiveness of the mAV-HuBERT

In order to evaluate the effectiveness of our multilin-
gual AV-HuBERT (mAV-HuBERT) compared to the orig-
inal English-trained AV-HuBERT of [52], we compare the
BLEU scores on MuAViC [33] X-En translation directions.
Table 4 shows the comparison results. The results clearly
show that we can improve the multilingual spoken language
translation performance largely by pre-training the model
with a large-scale multilingual AV dataset (i.e., 7,011 hours
with over 100 languages). Conversely, AV-HuBERT trained
exclusively in English struggles to accurately capture mul-
tilingual speech information, resulting in lower translation
performance across all translation directions.

4.5.5 Quantitative Evaluation of AV-Renderer

In Table 5, we evaluate the visual quality (FID), and de-
gree of synchronization between the generated audio and
visual streams (LSE-C and LSE-D). To focus on the perfor-
mance of renderers, we utilize ground truth audio, text, and
AV speech units to generate audio or video for each sys-
tem. Comparing (C1, C2, C3, C4), the results indicate that
the proposed AV-Renderer can generate well-synchronized



Vocoder BLEU SIM
YourTTS [46] - 0.266

Single Speaker 26.38  0.043
Zero-Shot Speaker  26.57  0.222

Table 6. Ablation study using different vocoders on MuAViC Es-
En data. To check the performance of our vocoder, we also report
the SIM of a popular multi-speaker TTS, YourTTS [46].

audio-visual outputs by synthesizing them in parallel, with
shared duration information. In contrast, C3 loses accurate
synchronization by cascading TTS and TFG, where system
error could be propagated between generated samples.

In Table 6, we evaluate the effectiveness of incorporat-
ing zero-shot speaker modeling into the vocoder. To this
end, we first compare the BLEU and voice similarity (SIM)
using WavLM-TDNN [72, 106] between a single speaker-
trained vocoder [11] and our zero-shot speaker vocoder.
The results confirm that by employing speaker embedding,
we do not lose the translation performance, and we can im-
prove the voice similarity (SIM). Please note that this is a
key component for seamless speech-to-speech translation.
To understand the SIM score, we also report that of a pop-
ular multi-speaker TTS, YourTTS [46], and we can confirm
that the proposed zero-shot speaker vocoder has sufficient
ability to maintain the speaker’s voice.

4.5.6 Human Subject Study on Audio-Visual Quality

In order to evaluate the synthesized quality of audio and
video, we conducted a Mean Opinion Score (MOS) test.
We gathered 20 participants and asked them to evaluate
32 generated samples of each method to rate in terms of
Audio Quality (AQ), Visual Quality (VQ), and overall Re-
alness (R). We presented the audio stream only to eval-
uate the AQ, the visual stream only for the VQ, and the
audio-visual stream altogether to evaluate the R. We com-
pare against the best-performing cascaded system, which
is the 4-stage cascaded system of AVSR, NMT, TTS, and
TFG. The MOS results are shown in Table 7. The result
demonstrates that we can attain comparable performances
with the proposed direct AV2AV approach as with the 4-
stage cascaded method comprising state-of-the-art subsys-
tems. Specifically, when both audio and visual streams are
simultaneously presented, the participants assess the pro-
posed method more seamlessly generates the two modali-
ties than the cascaded method, as shown in the table (i.e.,
Realness (R)).

5. Conclusion

In this paper, we proposed a novel direct Audio-Visual
Speech to Audio-Visual Speech Translation (AV2AV)
framework. The proposed AV2AV can translate spoken lan-
guages in a many-to-many setting without text. By employ-

X-En En-X

Method AQ VQ R AQ VQ R
AVSR + NMT + TTS + TFG 3.79 450 3.30 3.60 3.89 3.20
Proposed Method (AV2AV) 397 4.60 4.00 451 4.11 4.07

Table 7. MOS scores on the translated AV output in terms of AQ
(Audio Quality), VQ (Visual Quality), and R (Realness).

ing multimodal inputs, we can improve the robustness of the
system to the acoustic noises. By using multimodal outputs,
we can improve the dialogue experience performed in vir-
tual scenarios with no discomfort. The effectiveness of the
proposed AV2AV is evaluated with extensive experiments.
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6. Appendix
6.1. Generated Results

We show more generated translation results of the proposed
AV2AV system in Fig. 6. The AV2AV system seamlessly
translates the input video into the target language by trans-
forming the mouth region while keeping the head pose and
identity unchanged. The mouth movement aligns well with
the corresponding phonemes as written under each video
frame. The transcription obtained from ASR of the gener-
ated speech is also semantically coherent with the source
speech. Moreover, since our model has been trained in
many-to-many settings, our model supports translation into
multiple different target languages. As shown in the second
and third rows of (a-d), it can faithfully generate translated
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audio and visual speech in different target languages from a
single source input.

Refer to the demo video for more demonstrations of the
generated translation results. The demo consists of four
parts: the first part shows En-X results on LRS3-T data,
the second part shows X-EN results on mTEDx data, the
third part compares the proposed method with the best-
performing cascaded system, and the last part presents re-
sults on a completely different domain, the HDTF [47] data,
The HDTF is a high-resolution (720P or 1080P) audio-
visual dataset for TFG. For HDTF testing, please note that
we have trained the face renderer on the HDTF dataset and
attached a face enhancer [107] to support high-resolution
synthesis of HDTF data.

6.2. Implementation Details

For training the m-AVHuUBERT, we use a total of 7,011
hours of the following combined AV datasets.

LRS2 [14] is an English audio-visual dataset, containing
233 hours of training data from British TV shows.

LRS3 [63] is an English audio-visual dataset consisting
of approximately 430 hours of video clips from TED and
TEDx.

VoxCeleb2 [88] is a large-scale multilingual corpus for
speaker recognition. It has over 1 million utterances from
6,112 celebrities of 145 different nationalities.

AVSpeech [90] is a large-scale multilingual corpus com-
prising 4700 hours of video clips with no interfering back-
ground noises sourced from a total of 290k YouTube videos.
mTEDx [89] is a multilingual corpus built for speech recog-
nition and speech translation sourced from TEDx talks. It
consists of 8 languages; Spanish (Es), French (Fr), Italian
(It), Portuguese (Pt), Russian (Ru), Greek (El), Arabic (Ar),
and German (De). We use cleaned data of Es, Fr, It, and Pt
following [108].

For pretraining the AV2AV language translation model,
we use a total of 12k hours of the following A2A datasets.
Please refer to [11] for detailed data statistics for each trans-
lation pair.

Voxpopuli [35] is a multilingual A2A corpus from Euro-
pean Parliament even recordings. Following [11], we use
translation from 15 source languages to 15 target languages,
which results in 11.2k hours of translation data.

mTEDx [89] contains speech-to-text translation data from
English (En) to Es, Fr, Pt, It, Ru, and El. Since it does
not have target speech, we use generated speech from a
pretrained TTS model which gives a total duration of 0.7k
hours as in [11].

For evaluation, we finetune the AV2AV model on the
following evaluation datasets. The detailed information for
each translation pair is shown in Table 8 and Table 9
MuAViC [33] is a multilingual corpus for audio-visual
speech recognition and audio-visual speech-to-text transla-


https://coqui.ai/blog/tts/open_xtts

En-Es En-Fr En-It En-Pt
437 437 437 437
Es-En Fr-En It-En Pt-En
178 176 101 153

Table 8. Finetuning dataset amount (hours) of MuAViC for each
language pair.

En-Es En-Fr
200 200

Table 9. Finetuning dataset amount (hours) of LRS3-T for each
language pair.

tion (AV2T). It reuses videos of LRS3 and mTEDx datasets
including 1,200 hours of transcribed text from over 8000
speakers in 9 languages. Their transcriptions are generated
by using an NMT model. Since it only provides target text,
we generate the target speech by using pretrained TTS mod-
els, VITS [98] on each language. We utilize 4 En-to-X and
4 X-to-En paired data, where X is Es, Fr, Pt, and It, which
gives a total of 2,356 hours.
LRS3-T [62] is an AV2A corpus curated from the LRS3
[63] dataset by converting the transcribed English text into
the speech in target languages. It results in 200 hours of
parallel AV2A translation pairs for En-to-Es and En-to-Fr.
The mAV-HuBERT has the same architecture as the
AV-HuBERT [52] large configuration which consists of 24
transformer encoder layers with 16 attention heads, a feed-
forward dimension of 4,096, and an embedding dimension
of 1,024. We initialize the model with an AV-HuBERT pre-
trained on 1,759 hours of English subset of LRS3 and Vox-
Celeb2. Given the masked audio and visual streams as in-
put, it aims to predict the corresponding target clusters ex-
tracted from a pretrained multilingual HuBERT [67]. Dur-
ing training, we apply modality dropout with a probability
of 0.5. To extract the AV speech units, we cluster the unified
AV representation into 1,000 clusters using k-mean cluster-
ing. Please refer to Table 10 for training configurations.
The AV2AV model is composed of an encoder embed-
ding layer, 12 Transformer encoder layers, 12 Transformer
decoder layers, and decoder embedding layers. The unit
vocabulary size is 1,000 and the embedding dimension of
each unit is 1,024. Both the unit encoder and the unit de-
coder have 8 attention heads and a feed-forward dimension
of 4,096. The unit encoder is conditioned on the source lan-
guage token and the unit decoder generates the target AV
speech units conditioned on the target language token. We
initialize the model from the mHuUBERT unit-based A2A
model [11] and pretrain it based on our AV speech units on
parallel A2A translation data for 30k steps with a max to-
ken length of 1,024 using the training configuration settings
as shown in Table 11. Then, the pretrained model is further
fine-tuned on the evaluation datasets for 30k steps follow-
ing the configuration settings in Table 12. The number of
GPUs is adjusted according to the dataset size when fine-
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Hyper-parameter Value
# steps 150k
# warmup steps 12k
LR scheduler polynomial decay
peak learning rate Se-4
max frames / GPU 1000
# GPUs 63

Table 10. Training hyper-parameters of the mAV-HuBERT.

Hyper-parameter Value
# steps 30k
# warmup steps 10k
LR scheduler polynomial decay
peak learning rate 3e-4
max tokens / GPU 1024
# GPUs 56

Table 11. Pretraining hyper-parameters of the AV2AV model.

Hyper-parameter Value
# steps 30k
# warmup steps 3k
LR scheduler polynomial decay
peak learning rate le-4
max tokens / GPU 1024
# GPUs 64

Table 12. Fine-tuning hyper-parameters of the AV2AV model.

tuning on the LRS-T dataset and the model with the best
performance in the validation set was used. During train-
ing, we utilized AV speech units extracted from audio-only,
while at inference, we can use AV speech units extracted
from any of audio-only, visual-only, and audio-visual data
to perform A2AV, V2AV, and AV2AV.

The vocoder is based on the unit-based HiFi-GAN
vocoder [92] with an additional speaker encoder [95] to
extract the speaker embedding, a d-vector [97]. The AV
speech units are embedded into 128-dimension through an
embedding layer, and the d-vector is also embedded into
128-dimension with a linear projection. The two embed-
dings from the AVspeech units and the d-vector are channel-
wise concatenated at each timestep. We train the vocoder
with a length predictor for 1M steps on individual languages
with 1 GPU and a batch size of 16. The face renderer is
based on a TFG model, Wav2Lip [27]. The AV speech units
are embedded by an embedding layer of dimension 512 and
a single Transformer Encoder layer, which are channel-wise
concatenated with the corresponding identity features. We
train the face renderer for 35k steps with 1 GPU and a batch
size of 64. Learning rate of le-4 and Adam optimizer are
used for both the vocoder and the face renderer.



Input Video
(Source
Language)

wa t di
English (En): QUITE THE OPPOSITE

Translated
Video
(Spanish)

't
Spanish (Es): EL CONTRARIO

Translated
Video
(French)

r
French (Fr): LE CONTRAIRE

Input Video
(Source
Language)

!

Translated
Video
(Spanish)

Spanish (Es): ESO ES MAS ARO

Translated
Video
(French)

E) ply ku
French (Fr): C'EST PLUS COOTEUX

Input Video
(Source
Language)

!

Translated
Video
(Italian)

Translated
Video
(Portuguese)

N .~ . v
u ‘ay k i
Portuguese (Pt): O ARQE NAO ME EFICIENTE

(c)

Input Video
(Source
Language)

!

Translated
Video
(Italian)

Translated
Video
(Portuguese)

a
Portuguese (Pt): NAO E POSSIVEL

(d)

Figure 6. (a-d) Translated results of the proposed AV2AYV, each of which the first row is the source input and the second and third rows are
the translated outputs in different target languages.
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