
Under review as a conference paper at ICLR 2024

LORAPRUNE: PRUNING MEETS LOW-RANK PARAME-
TER-EFFICIENT FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large pre-trained models (LPMs), such as LLaMA and GLM, have shown excep-
tional performance across various tasks through fine-tuning. Although low-rank
adaption (LoRA) has emerged to cheaply fine-tune these LPMs on downstream
tasks, their deployment is still hindered by the vast model scale and computational
costs. Neural network pruning offers a way to compress LPMs. However, the
current pruning methods designed for LPMs are not compatible with LoRA. This
is due to their utilization of unstructured pruning on LPMs, impeding the merging
of LoRA weights, or their dependence on the gradients of pre-trained weights to
guide pruning, which can impose significant memory overhead. To this end, we
propose LoRAPrune, a new framework that delivers an accurate, compact model
for efficient inference in a highly memory-effective manner. Specifically, we first
design a LoRA-guided pruning criterion, which uses the weights and gradients of
LoRA, rather than the gradients of pre-trained weights for importance estimation.
We then propose a structured iterative pruning procedure, to remove redundant
channels and heads. Extensive experimental results demonstrate the superior perfor-
mance of our LoRAPrune over existing approaches on the LLaMA series models.
For instance, at a 50% compression rate, LoRAPrune outperforms LLM-Pruner
by a perplexity reduction of 4.81 on WikiText2 and 3.46 on PTB datasets, while
concurrently reducing memory usage by 52.6%.

1 INTRODUCTION

Large pre-trained models (LPMs) (Touvron et al., 2023; Du et al., 2022; Frantar et al., 2023) have
showcased remarkable prowess, exhibiting outstanding performance across numerous tasks. To
enable LPMs to perform specific tasks, such as chat-bots (Du et al., 2022; Zeng et al., 2022), they
are often efficiently fine-tuned on downstream datasets (Taori et al., 2023; Chenghao Fan & Tian,
2023) by parameter-efficient fine-tuning (PEFT) methods (Jia et al., 2022; Hu et al., 2022; Chen et al.,
2022), among which LoRA-based fine-tuning methods (Hu et al., 2022; Luo et al., 2023; He et al.,
2023) have gained widespread use. However, the remarkable success of LPMs is accompanied by
obstacles from their vast scale and substantial computational costs, making deployment exceedingly
arduous (Frantar & Alistarh, 2023).

Table 1: The Memory costs for pruning LLaMA-
65B. “Iter.” indicates whether the method supports
iterative pruning and “#GPU" indicates the number
of NVIDIA A100 (80G) GPUs required.

Method Iter. #GPU Mem.(G)
PST (Li et al., 2022b) ✓ 3 234

LLM-Pruner (Ma et al., 2023) × 2 154
LoRAPrune ✓ 1 72

Neural network pruning (Li et al., 2017;
Molchanov et al., 2017), a popular technique for
model compression, can significantly reduce the
model size and complexity. Recently, the post-
training pruning literature, such as SparseGPT
(Frantar & Alistarh, 2023) and WANDA (Sun
et al., 2023), have achieved high-performance
unstructured sparse LPMs. However, unstruc-
tured sparse models face two critical issues: 1)
Unstructured sparse models are hard to obtain
direct inference speedup. They often require specialized hardware support to achieve satisfying accel-
eration benefits, which leads to unstructured pruning not benefiting legacy off-the-shelf platforms,
e.g., CPUs, DSPs, and GPUs (Fang et al., 2023; You et al., 2023; Zhou et al., 2022). 2) Unstructured
sparse models are not compatible with LoRA. As shown in Figure 1 (a), since the weights BA pro-
duced by LoRA are dense, it poses challenges when trying to merge BA into the unstructured sparse

1

Under review as a conference paper at ICLR 2024

W0

B

A

W0

GradB

GradA

Input

GradGrad

Input
✂

Too expensive !

Lightweight !
😊

😡

（c）LoRAPrune(b) Gradient guided pruning

GradW0 ❄🔥
🔥

W0

Input

（a） Unstructured pruning

❄

B

A

BA

❌ Cannot merge ! ☑ Can merge !

🔥

✂

Figure 1: Comparing LoRAPrune with other pruning methods: (a) Unstructured sparse model cannot
directly merge LoRA weights, which is computationally inefficient. (b) Gradient-guided pruning
requires the gradients of the pre-trained weights, which is memory-intensive. (c) LoRAPrune only
needs the gradients of LoRA weights and can seamlessly merge LoRA weights into pre-trained
weights, which is efficient in both memory and computation.

weights. LoRA without merging increases inference time by nearly 54% (see Table 3), diminishing
the benefits of pruning. One potential solution is to perform fine-tuning using LoRA on downstream
tasks first and then carry out post-training pruning. However, separating tuning and pruning can lead
to sub-optimal results (Molchanov et al., 2019; Sanh et al., 2020). To tackle this challenge, PST
(Li et al., 2022b) combines unstructured pruning with efficient fine-tuning, which simultaneously
prunes LoRA and pre-trained weights. This method ensures a seamless merge of LoRA weights and
avoids additional computational overhead that comes from LoRA. However, unstructured pruning
of LoRA necessitates computing BA first and then doing Hadamard product with a binary mask
M, which results in significant memory overhead (see Table 1) since BA and M share the same
shape with pre-trained weights. For instance, when pruning LLaMA-65b, the intermediate variables
necessitate the storage capacity of three NVIDIA A100 (80G) GPUs. This poses a significant memory
challenge when adapting PST to LPMs. Instead, structured pruning can mitigate this issue since
we can directly prune the structured weights of A in LoRA without storing BA. Therefore, it is
significant to combine LoRA with structured pruning to achieve simultaneous parameter-efficient
fine-tuning and direct acceleration on general hardware platforms with high performance.

To this end, we propose a unified framework for LoRA and structured pruning, named LoRAPrune.
As shown in Figure 1 (c), LoRAPrune not only prunes the structured weights (e.g., heads, channels)
from the pre-trained model weights W0 but also trims the corresponding weights in LoRA weight
A without computing BA first. Consequently, after pruning and fine-tuning, the weights of LoRA
can be seamlessly merged with the pre-trained weights, ensuring that no additional computations are
needed during inference. To identify weight connections of structural importance, the criterion used
in the structured pruning methods (Ma et al., 2023; Molchanov et al., 2019; 2017) is often estimated
by gradients or its variants, as shown in Figure 1 (b). However, LoRA typically requires frozen
pre-trained weights without computing their gradients, thus pruning approaches that rely on gradients
of the pre-trained weights cannot be directly applied. To efficiently estimate the importance of
pre-trained weights, LoRAPrune introduces a new criterion by only employing the gradients of LoRA.
In contrast to the vanilla gradient-guided pruning method, LoRAPrune leverages LoRA’s gradients as
the approximation for the gradients of the pre-trained weight. Based on the presented criterion, we
can iteratively perform pruning while simultaneously conducting efficient fine-tuning to restore the
performance of the pruned LPMs, requiring only a small calibration set. Specifically, we compute
the importance of every batch of data and update the importance using a moving average. Every few
iterations, we remove a portion of unimportant structured weights until the desired sparsity is achieved.
Through extensive experiments on a variety of benchmark datasets and different scale LPMs, we
demonstrate that LoRAPrune consistently outperforms other structured pruning techniques tailored
for LPMs. Furthermore, compared to the vanilla gradient-guided pruning method, LoRAPrune
notably reduces memory and computational consumption, enabling simultaneously efficient pruning
and fine-tuning LLaMA-65b on one GPU.

This paper has the following key contributions:

2

Under review as a conference paper at ICLR 2024

• We introduce a novel weight importance criterion for LPMs, LoRA-guided criterion, that seamlessly
works with LoRA. With the gradients of LoRA, we can efficiently approximate the importance of
pre-trained weights without needing to compute their gradients.

• Based on the proposed criterion, we introduce LoRAPrune, a new framework that unifies PEFT
with pruning. Since we can efficiently approximate the gradients and update weights by LoRA,
LoRAPrune allows for iterative structured pruning, which can achieve high compression rates
while ensuring that the pruned model can be seamlessly integrated with LoRA weights.

• Pruning experiments conducted on the LLaMA models demonstrate that LoRAPrune can efficiently
perform structured pruning with up to 65 billion weights on one GPU. Furthermore, the pruning
results achieved by LoRAPrune significantly surpass other pruning methods. For instance, when
compared to LLM-Pruner, LoRAPrune demonstrates remarkable efficiency by requiring only 52.6%
of the memory overhead while achieving significantly lower perplexity scores on the WikiText2
and PTB datasets, outperforming LLM-Pruner by 4.81 and 3.46 perplexity, respectively.

2 RELATED WORK

Parameter-efficient fine-tuning. PEFT methods (Jia et al., 2022; Wu et al., 2022; Chen et al.,
2022; Hu et al., 2022; Luo et al., 2023; He et al., 2023) have received increasing attention from both
academia and industry. Among them, LoRA (Hu et al., 2022) proposes injecting trainable low-rank
decomposition matrices into each layer which can be merged into the pre-trained weights, avoiding
extra computation in inference. Since inference efficiency, many methods based on LoRA have
emerged. For instance, GLoRA (Chavan et al., 2023) facilitates efficient parameter adaptation by
employing a scalable, modular, layer-wise structure search that learns individual adapters of each
layer. LongLoRA (Chen et al., 2023) improves upon LoRA, enabling efficient fine-tuning of LPMs
on long contexts. AnimateDiff (Guo et al., 2023) obtains a personalized generator by inserting LoRA
into the frozen text-to-image model. Quantizing the pre-trained weights into 4-bit, QLoRA (Dettmers
et al., 2023) employs LoRA for fine-tuning LPMs in downstream tasks while maintaining efficient
memory usage. Therefore, LoRA is indispensable for fine-tuning LPMs. Our method seamlessly
integrates LoRA and pruning, making it easily extensible to other PEFT methods based on LoRA.

Neural network pruning. Removing unimportant weights from LPMs to reduce memory and
the computational cost of deployment has become a common approach for model compression.
Unstructured pruning (Dong et al., 2017; Lee et al., 2019; Wang et al., 2020; Sun et al., 2023;
Frantar & Alistarh, 2023; Li et al., 2022b) can obtain highly compressed models by directly pruning
neurons, which also causes unstructured sparsity and hard deployment. In contrast, structured pruning
(Molchanov et al., 2019; 2017; Ma et al., 2023; He et al., 2019; Fang et al., 2023) directly discards the
whole grouped parameters (e.g.heads, channels) and leaves a model with deploy-friendly structures.
Our method also focuses on structured pruning, which can directly obtain inference acceleration.

Pruning criterion. Determining the importance of weights in a network is still an open question
(Blalock et al., 2020). A common approach to model pruning is to use parameter magnitude (Li et al.,
2018; Lee et al., 2020; Elesedy et al., 2020; Han et al., 2015; Li et al., 2017) as a criterion. However,
the small weights can still have a significant impact on the model output due to the complex structure
of neural networks, while large weights may not be as important. Many methods (Molchanov et al.,
2017; 2019; Sanh et al., 2020; Yu et al., 2022a; Zhang et al., 2022; Lee et al., 2019; Yu et al., 2022b;
Wang et al., 2020; LeCun et al., 1989; Hassibi et al., 1993) employ Taylor expansion to approximate
the errors introduced by pruning and use this as the criterion for importance estimation. To avoid
computing the Hessian matrix (Hassibi et al., 1993) or Hessian inverse (LeCun et al., 1989) in
Taylor expansion, Molchanov et al. (2017; 2019) only use the first-order term in Taylor expansion.
Furthermore, LLM-Pruner (Ma et al., 2023) similarly utilizes the first-order expansion for pruning
and extends the pruning technique to LPMs. However, the first-order term in Taylor expansion
still requires gradients of the pre-trained weights. As shown in Table 1, computing and storing
the gradients of pre-trained weights significantly increases the pruning cost. To avoid computing
gradients of pre-trained weights, PST (Li et al., 2022b) learns the gradients of pre-trained weights by
an extra low-rank matrix, which is motivated by LoRA. Nevertheless, PST conducts unstructured
pruning and needs to compute a substantial mask with the equivalent shape of pre-trained weights
in each forward pass, which is memory-intensive and hard to be adapted to LPMs. Different from

3

Under review as a conference paper at ICLR 2024

LLM-Pruner (Ma et al., 2023) and PST (Li et al., 2022b), our criterion only relies on LoRA’s gradients
and does not require expensive mask computation, making it memory-efficient.

3 METHOD

3.1 PRELIMINARY

Initially, we define the notation used in the formula. "Bold" letters represent matrices and vectors,
while "non-bold" letters indicate scalars. "Subscripts" identify the index of elements within a matrix,
and "superscripts" indicate the layer index in a network.

Low-rank adaptation. To efficiently fine-tune LPMs, low-rank adapter LoRA (Hu et al., 2022)
constrains the update of model parameters to maintain a low intrinsic rank. During fine-tuning, the
pre-trained weights remain frozen, abstaining from gradient computation, while the inserted LoRA is
kept trainable. Given two low-rank matrices A ∈ Rr×k and B ∈ Rd×r (r ≪ min(d, k)), the update
of a linear module can be written as

z = xW0 + xBA, (1)

where W0 ∈ Rd×k, z ∈ Rn×k and x ∈ Rn×d denote the pre-trained weights, outputs and inputs,
respectively. After adaption, the new weights W can be re-parameterized as W = W0 +BA.

Pruning with Taylor expansion. In vanilla pruning approaches (Molchanov et al., 2017; 2019), the
importance of a weight Wi,j ∈W0 can be quantified by measuring the impact of its removal on the
loss. For an input x and the ground-truth prediction y, the induced error of Wi,j can be given as:

Ii,j = (L(x,y,W0)− L(x,y,W0|Wi,j = 0))2. (2)

Computing Ii,j for each weight is computationally expensive. Following Molchanov et al. (2019),
we can use first-order Taylor expansion to approximate the importance Îi,j by:

Îi,j = (
∂L

∂Wi,j
Wi,j)

2. (3)

Dependency-aware structured pruning. In structured pruning, it is crucial to consider that pruned
neurons can exhibit dependencies with other neurons due to their interconnected nature. The
dependencies of weights are illustrated in Figure 5. We organize the connected weights as a group
and estimate the group importance by accumulating the weight importance within the same group.
Formally, the importance for the g-th group can be expressed as

Ĝg =
∑

Wi,j∈G
Îi,j , (4)

where Ĝ ∈ R1×G represents the importance of groups, G denotes a set of weights within a group and
G is the candidate group number in a layer.

3.2 PRUNING WITH LOW-RANK ADAPTION

Motivation. To achieve high-compressed LPMs, it is essential to accurately evaluate the importance
of pre-trained weights. A key approach is to utilize the criteria in Eq. (3) for this evaluation. However,
obtaining the gradient of W0 in a LPM is difficult since it requires a lot of computing power and
storage space. Fine-tuning LPMs with LoRA is becoming prevalent (Taori et al., 2023; Chenghao Fan
& Tian, 2023). During LoRA fine-tuning, only the gradients of LoRA’s weights are computed,
yielding remarkable computation and memory efficiencies. Therefore, can we rely solely on the
weights and gradients of LoRA to accurately estimate the importance of pre-trained weights?

LoRA-guided criterion. In this work, we discuss how to estimate the importance of W0 by inserting
the learnable matrices A and B in the downstream task adaption.

The core idea lies in setting the element (BA)ij = −Wij if the element Wij ∈W0 is removed.
The importance of each parameter in Eq. (2) can be reformulated as follows

Ii,j = (L(x,y,W)− L(x,y,W|(BA)i,j = −Wi,j)
2. (5)

4

Under review as a conference paper at ICLR 2024

W0

B

A

Input

0.31.4

1.21.5 1.6 1.4

1.71.8 1.3

1.11.5 1.2 1.4

0.2

0.10.1

✂

5.2

5.0

5.7

1.9

❄ 🔥I=▽W W

GradB

GradA

B

A

+ -
GradB

GradA

▽W≈B•▽A+▽B•A -▽B•▽A

A

B

+

W=BA+W0

✂

.

Figure 2: The pruning process for the LoRA-guided criterion involves utilizing the low-rank matrices
A, B and their respective gradients ∇A, ∇B to compute the importance I. Subsequently, weight
importance (gray) with the same group are aggregated to the group importance (black) and the groups
with low scores are removed.

Exploiting the first-order Taylor expansion with (BA)i,j = −Wi,j to approximate Eq. (5), the
estimated importance Îi,j of parameter Wi,j can be represented by

Îi,j = (
∂L

∂(BA)i,j
((BA)i,j +Wi,j))

2. (6)

However, as shown in Eq. (1), the LoRA computation sequence involves first multiplying by B and
then by A, which means that BA cannot be obtained during the forward and backward pass. Besides,
preserving ∂L

∂(BA)i,j
still entails the same level of complexity as ∂L

∂Wi,j
since BA shares the same

shape of W0.

Here, we only save and use the gradients of two low-rank matrices A and B to approximate ∂L
∂(BA) .

We can rely on the gradient update that (BA)i,j |t = (BA)i,j |t−1 − η ∂L
∂(BA)i,j

to estimate the
gradient, where (BA)i,j |t and (BA)i,j |t−1 represents the (BA)i,j in t-th and (t − 1)-th step,
respectively. For simplicity, we ignore the learning rate η since it has no influence on the importance
criterion. Apparently, ∂L

∂(BA)i,j
is proportional to the change of BA, which can be written as

∂L

∂(BA)i,j
∝ [(BA)i,j |t−1 − (BA)i,j |t]. (7)

Here, (BA)i,j |t = Bi,:|tA:,j |t is generated by the multiplication of the i-th row of B|t with the j-th
column of A|t. Using the above assumption, we can also estimate ∂L

∂A:,j
∝ A:,j |t−1 −A:,j |t and

∂L
∂Bi,:

∝ Bi,:|t−1 −Bi,:|t, respectively. Subsequently, we substitute (BA)i,j to Eq. (7) and obtain

∂L

∂(BA)i,j
∝ [Bi,:A:,j − (Bi,: −

∂L

∂Bi,:
)(A:,j −

∂L

∂A:,j
)],

=
∂L

∂Bi,:
A:,j +Bi,:

∂L

∂A:,j
− ∂L

∂Bi,:

∂L

∂A:,j
.

(8)

Substitute Eq. (8) to Eq. (6), we can estimate the importance in a gradient-based manner

Îi,j = ((
∂L

∂Bi,:
A:,j +Bi,:

∂L

∂A:,j
− ∂L

∂Bi,:

∂L

∂A:,j
)(Wi,j + (BA)i,j))

2. (9)

As shown in Figure 2, the LoRA-guided criterion only needs to compute the gradient of A and B with
the approximation in Eq. (9), which saves memory and computation compared with the gradient of
total pre-trained weights W0. After efficiently estimating the weight importance, we can accumulate
the group importance by Eq. (4) for structured pruning.

Progressive pruning. To efficiently obtain group importance for structured pruning, we can substitute
Eq. (9) into Eq. (4). However, estimating importance and pruning weights with a single batch of

5

Under review as a conference paper at ICLR 2024

Algorithm 1: Progressive pruning with LoRA-guided criterion
Require :Calibration data D; Pre-trained weights W0; Randomly initialized low-rank matrices

A and B; Loss function L; Final sparsity level S; Fine-tuning iterations T .
Output :Trained low-rank adaption A and B; Binary mask M.
Ḡ
l
g ← 0, Ml

g ← 1 ∀l,∀g; // Initialization for masks and group
importance

s← 0; // Initialize sparsity level
for t ∈ [1, . . . , T] do

Clear gradient;
Forward and backward via Eq. (12);
Update A and B via AdamW;
Calculate Î|t via Eq. (9);
Calculate Ĝ|t via Eq. (4);
Calculate Ḡ|t via Eq. (10);
for l ∈ [1, . . . , L] do

p← SortDescending(Ḡ)s; // Set threshold

Ml
g ← 0 where Ḡ

l
g ≤ p, and g ∈ [1, . . . , G] // Remove unimportant groups

end
Progressively increase s until ||M||0 > S;

end

data can lead to significant bias and performance loss. To mitigate this, we apply moving averages to
evaluate group importance G and incrementally prune less critical groups. Specifically, the group
importance at t-th iteration is computed as follows:

Ḡ|t = λḠ|t−1 + (1− λ)Ĝ|t. (10)

Here, Ḡ|t denotes the group importance score calculated by Eq. (9) and Eq. (4) at the t-th iteration,
and λ ∈ [0, 1] balances the importance between historical and current values.

To this end, we can efficiently and accurately estimate the importance of each group. We then prune
the unimportant groups by setting a binary mask M ∈ {0, 1}1×G for each pruned layer. The binary
mask M is given by

Mg =

{
1 Ḡg > p
0 Ḡg ≤ p

, (11)

where 1 ≤ g ≤ G denotes the g-th group in the layer, p represents the threshold of importance.
Groups falling below this threshold will be pruned. After setting the mask, the forward process of
each pruned layer can be written as

z = (xW0 + xBA)⊙M, (12)

where ⊙ denotes Hardamard product and can be calculated by broadcast. The complete algorithm of
LoRAPrune is given in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and metrics. Our method is applied to the LLaMA-1 model family (Touvron et al., 2023),
which comprises LLaMA-7B, LLaMA-13B, LLaMA-30B and LLaMA-65B. Following Sun et al.
(2023) and Frantar & Alistarh (2023), we evaluate with 2048-token segments for LLaMA-13B,
LLaMA-30B and LLaMA-65B. All models are evaluated on the perplexity metric with WikiText
(Merity et al., 2016) and PTB (Marcus et al., 1993) dataset. To assess the zero-shot ability of
LPMs, we follow LLaMA to perform zero-shot task classification on common sense reasoning
datasets: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al.,
2018), OpenbookQA (Mihaylov et al., 2018) and MMLU (Hendrycks et al., 2020). We offer the

6

Under review as a conference paper at ICLR 2024

Table 2: Zero-shot performance of the compressed LLaMA models. We evaluate WikiText2 and
PTB on perplexity with 2048-token segments. The average accuracy is calculated among seven
classification datasets. Bold/Underline denotes the best performance at the same compression rate
with/without fine-tuning, respectively. ⋆ denotes the results obtained by our reproduction.

Pruning Ratio Method WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average↑
Ratio = 0% LLaMA-7B (Touvron et al., 2023) 5.69 8.93 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

Ratio = 20%
w/o tune

Random 20.76 38.85 61.83 71.33 56.26 54.46 57.07 32.85 35.00 52.69
Magnitude ⋆ 15.63 28.10 61.93 69.89 58.87 55.12 56.93 32.54 36.10 53.05
WANDA⋆ (Sun et al., 2023) 15.22 24.90 64.93 70.14 58.12 55.39 56.63 33.98 35.43 53.23
LLM-Pruner (Ma et al., 2023) 14.36 21.82 57.06 75.68 66.80 59.83 60.94 36.52 40.00 56.69
LoRAPrune-8bit (Ours) 14.80 22.01 57.23 74.41 65.91 59.79 61.34 34.71 39.87 56.18
LoRAPrune (Ours) 14.74 21.80 57.98 75.11 65.81 59.90 62.14 34.59 39.98 56.50

Ratio = 20%
w/ tune

Magnitude ⋆ 9.06 13.80 61.89 70.81 58.34 56.87 54.87 34.02 38.40 53.59
WANDA⋆ (Sun et al., 2023) 8.64 12.66 65.75 74.70 64.52 59.35 60.65 36.26 39.40 57.23
LLM-Pruner (Ma et al., 2023) 8.14 12.38 64.62 77.20 68.80 63.14 64.31 36.77 39.80 59.23
LoRAPrune-8bit (Ours) 7.70 11.91 65.37 76.65 69.41 63.78 65.45 36.12 39.50 59.46
LoRAPrune (Ours) 7.63 11.87 65.62 79.31 70.00 62.76 65.87 37.69 39.14 60.05

Ratio = 50%
w/o tune

Random 2481.66 4107.40 46.79 53.37 27.50 50.59 28.07 27.90 30.00 37.75
Magnitude ⋆ 138.96 877.50 44.10 54.98 31.27 52.93 38.76 27.50 29.67 39.88
WANDA ⋆ (Sun et al., 2023) 93.61 276.10 45.13 55.54 31.37 55.87 39.43 25.76 30.12 40.46
LLM-Pruner (Ma et al., 2023) 58.83 147.11 52.32 59.63 35.64 53.20 33.50 27.22 33.40 42.13
LoRAPrune-8bit (Ours) 68.07 163.48 50.83 56.17 34.84 53.80 33.12 27.96 31.88 41.23
LoRAPrune (Ours) 56.30 164.96 51.78 56.90 36.76 53.80 33.82 26.93 33.10 41.87

Ratio = 50%
w/ tune

Magnitude ⋆ 18.36 21.88 47.40 54.36 33.49 53.10 37.88 26.60 30.12 40.42
WANDA ⋆ (Sun et al., 2023) 17.38 21.34 50.90 57.38 38.12 55.98 42.68 34.20 38.78 45.43
LLM-Pruner (Ma et al., 2023) 16.41 20.85 60.28 69.31 47.06 53.43 45.96 29.18 35.60 48.69
LoRAPrune-8bit (Ours) 12.38 17.50 61.43 70.88 47.65 55.12 45.78 30.50 35.62 49.56
LoRAPrune (Ours) 11.60 17.39 61.88 71.53 47.86 55.01 45.13 31.62 34.98 49.71

Table 3: Runtime results of the structured pruned LPMs.
Model Unmerged time (s) ↓ Merged time (s) ↓ Perplexity ↓ Ratio (%)

LLaMA-7B
0.184(+0.0%) 0.105(+0.0%) 5.69 0
0.120(-34.8%) 0.079(-24.7%) 7.63 20
0.089(-51.6%) 0.053(-49.5%) 11.60 50

pruning results on the instruction dataset Alpaca (Taori et al., 2023) in Appendix C. Furthermore, we
extend the applicability of the LoRA-guided criterion to unstructured pruning on ViT-B (Dosovitskiy
et al., 2020) and BERT-Base (Devlin et al., 2018) due to their relatively small scale and memory
requirements. Additional details can be found in Appendix D.

Implementation details. We randomly sample 20k sentences from the C4 (Raffel et al., 2020) and
400k sentences from RedPjama (Computer, 2023) dataset, each having a length of 512 tokens. Our
training configuration includes a batch size of 128, a learning rate set to 1e-4, and a total of 2 training
epochs. As the pre-trained weights remain frozen, there is the option to quantize them into 8-bit
values to save memory. All models are optimized by AdamW optimizer (He et al., 2020) with a cosine
learning rate decay. These experiments are rigorously conducted on one A100 GPU (80G). When
conducting pruning with fine-tuning, we iteratively prune the model until the desired level of sparsity
is reached. This process is guided by a cubic sparsity scheduler (Sanh et al., 2020). Conversely, in
cases where pruning is performed without fine-tuning, we follow Ma et al. (2023), which randomly
samples a batch of data to estimate importance once. Afterward, the model is one-shot pruned, with
no weight updates taking place.

Contenders. We compare LoRAPrune with the following pruning methods in both fine-tuning
and without fine-tuning settings: 1) Magnitude Pruning: iterative pruning based on the absolute
values of model weights. 2) Random Pruning: iterative pruning with randomly selected weights. 3)
LLM-Pruner (Ma et al., 2023): one-shot pruning using criterion in Eq. (3). 4) WANDA (Sun et al.,
2023): one-shot pruning based on the magnitude of input features and pre-trained weights.

4.2 MAIN RESULTS

Zero-shot performance. Tables 2 and 5 demonstrate the effectiveness of our proposed method.
In situations where LoRAPrune does not undergo fine-tuning to restore model accuracy, its results
are comparable to LLM-Pruner which prunes using complete gradients. For example, at a 20%
compression rate, LLM-Pruner achieves an average accuracy of 56.69% across seven different
inference datasets, while LoRAPrune achieves an average accuracy of 56.50%. However, when fine-
tuning is applied to recover model accuracy, our LoRAPrune far surpasses any existing large model
pruning methods under structured sparsity. For instance, at a 50% compression rate, LoRAPrune
achieves a perplexity of 11.60 on WikiText2, significantly outperforming LLM-Pruner’s perplexity

7

Under review as a conference paper at ICLR 2024

Table 4: Perplexity results on RedPajama corpus.
Method WikiText PTB Ratio

LLaMA-7B 5.69 8.93 0%
One-shot Pruning 6.67 10.41 20%
Iterative Pruning 6.32 9.85 20%
One-shot Pruning 9.74 13.94 50%
Iterative Pruning 8.31 10.83 50%

Table 5: Accuracy on MMLU (5-shot).
Method Accuracy (%) Ratio

LLaMA-7B 32.01 0%
LLM-Pruner 28.34 20%

LoRAPrune (Ours) 29.56 20%
LLM-Pruner 26.12 50%

LoRAPrune (Ours) 28.03 50%

0 20 40
Ratio (%)

5

10

15

20

25

30

Pe
rp

le
xi

ty

(a) LLaMA-13B
LoRAPrune
Magnitude
WANDA(2:4)
SparseGPT(2:4)
LLM-Pruner

0 20 40
Ratio (%)

5

10

15

20

(b) LLaMA-30B
LoRAPrune
Magnitude
WANDA(2:4)
SparseGPT(2:4)
LLM-Pruner

0 20 40
Ratio (%)

5.0

7.5

10.0

12.5

15.0

17.5

(c) LLaMA-65B
LoRAPrune
Magnitude
WANDA(2:4)
SparseGPT(2:4)

Figure 3: Pruning results on large-scale LPMs (a) LLaMA-13B, (b) LLaMA-30B, (c) LLaMA-65B.

of 16.41. We also replicate the experimental results of WANDA under structured pruning scenarios.
Our findings reveal that the pruning outcomes achieved by WANDA fell short in comparison to
gradient-based pruning methods such as LLM-Pruner and LoRAPrune. This observation underscores
the superior performance and effectiveness of gradient-based pruning approaches in our experiments.

It’s worth noting that LoRAPrune’s efficient approximation for the gradients of the pre-trained
weights allows for 8-bit quantization of those weights, greatly reducing the memory requirements
for pruning. Moreover, LoRAPrune demonstrates superior pruning results even when models are
quantized to 8 bits. These findings underscore the effectiveness and versatility of LoRAPrune in
achieving impressive pruning results across various scenarios and compression rates.

Acceleration for pruned LPMs. Models with structured pruning can be directly sped up in general
GPU devices. We conducted tests with 2048 tokens, averaging the results over 100 trials. We
specifically examined the inference time with and without merging LoRA weights into the pre-trained
weights. As shown in Table 3, we observed that when pruning 20% weights, LPM without merging
LoRA has an even slower inference speed than LPM with LoRA merged without pruning. In addition,
through structured pruning, the model achieves reductions in inference time of 24.7% and 49.5% at
compression rates of 20% and 50%, respectively.

Pruning on large-scale LPMs. Due to the efficient approximation of the pre-trained weights’
gradients, LoRAPrune enables iterative pruning on larger-scale LPMs. To ensure that all experiments
can be conducted on one GPU, we quantize the pre-trained weights of LLaMA-30b and LLaMA-
65b to 8 bits. The experimental results are shown in Figure 3. We observe that, in comparison
to the magnitude-based method, LoRAPrune exhibits significant superiority across various scales.
Furthermore, in comparison to the 2:4 sparsity model, LoRAPrune achieves comparable pruning
results at a 50% sparsity rate. However, it is worth noting that the 2:4 sparsity model also faces
challenges in direct weight merging with LoRA, resulting in additional computational overhead during
inference. Besides, accelerating 2:4 sparsity models requires specialized hardware support, such
as NVIDIA GPUs based on the Ampere architecture, which significantly increases the deployment
constraints for 2:4 sparsity models.

Scalability of LoRAPrune. Our LoRAPrune is complementary to large-scale fine-tuning to mitigate
the performance drop. We simply replace the tiny post-training calibration set with the large-scale
dataset for fine-tuning. We randomly sample 400k data from RedPajama (Computer, 2023) to
compare one-shot and iterative pruning strategies, with the experimental results on Wikitext2 shown
in Table 4. Under conditions of large datasets, the issue of significant Perplexity reduction is mitigated.
It is noteworthy that even with such data volume, iterative pruning still outperforms one-shot pruning
markedly.

8

Under review as a conference paper at ICLR 2024

Table 6: Pruning resource required by different pruning criteria.

Model Pruning criteria Fine-tuning Throughput ↓ GPU Memory ↓ Perplexity ↓

LLaMA-7B
(Ratio=50%)

Vanilla 38.87s/iter (+0.0%) 38.6G (+0.0%) 11.48 (+0.0%)
Magnitude 13.08s/iter (-66.3%) 16.8G (-56.7%) 17.38 (+52.9%)

LoRA-guided 14.13s/iter (-63.6%) 18.3G (-52.6%) 11.60 (+1.0%)
LoRA-guided (8-bit) 15.63s/iter (-59.8%) 13.8G (-64.2%) 12.38 (+9.0%)

5 10 15 20 25 30
Layer

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y
(%

)

(a) Attention Layer

Ratio=10%
Ratio=30%
Ratio=50%

5 10 15 20 25 30
Layer

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Si
m

ila
rit

y
(%

)

(b) MLP Layer

Ratio=10%
Ratio=30%
Ratio=50%

Figure 4: Similarity between LoRA gradient and vanilla criterion on (a) Attention, (b) MLP layers.

4.3 ABLATION STUDY

Efficiency of LoRA-guided criterion vs. vanilla criterion. We conduct a comparative analysis of
different pruning criteria with respect to their resource requirements and computational efficiency,
including GPU memory and throughput. We adopt the vanilla criterion, as outlined in Eq. (3), as
our baseline. For each forward pass, we set the batch size to 1, and we accumulate this process
iteratively until we reach a total of 128 accumulations. To ensure robustness and reliability, we
compute and subsequently average the results obtained over a span of 100 steps. The comparison
results can be found in Table 6. Compared to the vanilla criterion, LoRA-guided and LoRA-guided
(8bit) criteria demonstrate a significant reduction in GPU memory usage, saving 52.6% and 64.2% of
the memory, respectively. Moreover, as the LoRA-guided criterion does not require the computation
of original gradients, it achieves a 64.6% increase in throughput compared to the vanilla criterion
with comparable performance, greatly enhancing the speed of the pruning process.

Efficacy of LoRA-guided criterion vs. vanilla criterion. Since the LoRA-guided criterion in
Eq. (9) is an efficient approximation of the vanilla criterion in Eq. (3), we evaluate the effectiveness
of the proposed LoRA-guided criterion by comparing mask similarity with the vanilla criterion.
We randomly sample 128 data and then perform one-shot pruning with both LoRA gradient and
vanilla criterion. Figure 4 illustrates that in the case of low compression rates (Ratio=10%), the
masks generated by these two criteria exhibit a high degree of consistency. As the compression rates
increase, the mask similarity may decrease. However, it is crucial to emphasize that LoRAPrune
follows an iterative pruning approach. In each pruning iteration, it only needs to precisely identify
the least important weights (about top-5%), thus ensuring the accurate approximation. Hence, the
LoRA-guided criterion can attain pruning results that are on par with those of the vanilla criterion
while incurring reduced costs.

5 CONCLUSION

In this paper, we have proposed a method to effectively prune and fine-tune LPMs simultaneously,
achieving state-of-the-art efficiency-accuracy trade-offs. Specifically, we have proposed a novel
LoRA-guided criterion, for evaluating the parameter importance by only computing the LoRA
gradients, which greatly reduces the computational resources required for pruning LPMs. Building
upon the proposed criterion, we have presented LoRAPrune, a technique that performs efficient joint
pruning and fine-tuning without the need for computing gradients of the pre-trained weights. Finally,
comprehensive experiments on various LPMs and benchmarks have demonstrated the superiority
of LoRAPrune over other pruning methods. In terms of comparison with the vanilla criterion, the
LoRA-guided criterion shows its efficiency and effectiveness. In the future, we aim to further enhance
the pruning results of LoRAPrune at higher compression rates.

Limitation. LoRAPrune requires fine-tuning to restore model performance. This limitation can
restrict the application of LoRAPrune in scenarios where fine-tuning is unavailable.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proc. AAAI Conf. on Arti. Intel., volume 34, pp. 7432–7439,
2020.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proc. Int. Conf. Mach. Learn. and Syst., 2:129–146, 2020.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. One-for-all: Generalized
lora for parameter-efficient fine-tuning. arXiv preprint arXiv:2306.07967, 2023.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Proc. Adv. Neural Inf.
Process. Syst., 2022.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proc. IEEE Int. Conf. Comp. Vis., pp. 9640–9649, 2021.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2023.

Zhenyi Lu Chenghao Fan and Jie Tian. Chinese-vicuna: A chinese instruction-following llama-based
model. 2023. URL https://github.com/Facico/Chinese-Vicuna.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Proc. Adv. Neural Inf. Process. Syst., 30, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320–335, 2022.

Bryn Elesedy, Varun Kanade, and Yee Whye Teh. Lottery tickets in linear models: An analysis of
iterative magnitude pruning. arXiv preprint arXiv:2007.08243, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp. 16091–16101, June
2023.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023.

10

https://github.com/Facico/Chinese-Vicuna
https://github.com/togethercomputer/RedPajama-Data

Under review as a conference paper at ICLR 2024

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. 33:21271–21284,
2020.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff:
Animate your personalized text-to-image diffusion models without specific tuning, 2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Proc. Adv. Neural Inf. Process. Syst., 28, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In Proc. IEEE Conf. on Neural Networks, pp. 293–299, 1993.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual
parameter-efficient tuning. In ICCV, 2023.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp.
16000–16009, 2022.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
June 2019.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter
pruning criteria for deep convolutional neural networks acceleration. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn., pp. 2009–2018, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In Proc. Int. Conf.
Learn. Repren., 2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In Proc. Eur. Conf. Comp. Vis., 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Proc. Adv. Neural Inf. Process.
Syst., 2, 1989.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for
the magnitude-based pruning. arXiv preprint arXiv:2010.07611, 2020.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In Proc. Int. Conf. Learn. Repren., 2019.

Guiying Li, Chao Qian, Chunhui Jiang, Xiaofen Lu, and Ke Tang. Optimization based layer-wise
magnitude-based pruning for dnn compression. In Int. Joi. Conf. on Artificial Intelligence, pp.
2383–2389, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In Proc. Int. Conf. Learn. Repren., 2017.

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisiting
random channel pruning for neural network compression. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., pp. 191–201, 2022a.

11

Under review as a conference paper at ICLR 2024

Yuchao Li, Fuli Luo, Chuanqi Tan, Mengdi Wang, Songfang Huang, Shen Li, and Junjie
Bai. Parameter-efficient sparsity for large language models fine-tuning. arXiv preprint
arXiv:2205.11005, 2022b.

Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and Ron-
grong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models, 2023.

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In Proc. Int. Conf. Learn. Repren., 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp. 11264–11272, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. 21(1):5485–5551, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Proc. Adv. Neural Inf. Process. Syst., 33:20378–20389, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Chen Henry Wu, Saman Motamed, Shaunak Srivastava, and Fernando D De la Torre. Generative
visual prompt: Unifying distributional control of pre-trained generative models. Proc. Adv. Neural
Inf. Process. Syst., 35:22422–22437, 2022.

Haoran You, Zhanyi Sun, Huihong Shi, Zhongzhi Yu, Yang Zhao, Yongan Zhang, Chaojian Li,
Baopu Li, and Yingyan Lin. Vitcod: Vision transformer acceleration via dedicated algorithm and
accelerator co-design. In Proc. IEEE Int. Sym. on High-Perf. Comp. Arch., pp. 273–286. IEEE,
2023.

12

https://github.com/tatsu-lab/stanford_alpaca

Under review as a conference paper at ICLR 2024

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for
vision transformers. In Proc. AAAI Conf. on Arti. Intel., volume 36, pp. 3143–3151, 2022a.

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
Pruning weights that cancel one another in neural networks. In Proc. Int. Conf. Mach. Learn., pp.
25668–25683, 2022b.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In ACL, pp. 1–9, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In Proc. Int. Conf. Mach. Learn., pp. 26809–26823, 2022.

Minxuan Zhou, Weihong Xu, Jaeyoung Kang, and Tajana Rosing. Transpim: A memory-based
acceleration via software-hardware co-design for transformer. In Proc. IEEE Int. Sym. on High-Perf.
Comp. Arch., pp. 1071–1085. IEEE, 2022.

13

Under review as a conference paper at ICLR 2024

Appendix

A WEIGHT DEPENDENCY FOR LLAMA

Here, we use LLaMA architecture as an example to explain the weight dependency. In terms of
the Attention module, when we decide to prune a specific head of weights in the Query layer, it is
imperative that the corresponding weights with the same index in the Key, Value and Out layers are
also pruned. Similarly, for the Feed-Forward Network (FFN) module, when pruning a particular
channel of weights in the Up layer, it is essential to prune the weights with matching indices in the
Gate and Down layers. This meticulous coordination ensures that pruning maintains the structural
integrity and functionality of the model. Following Ma et al. (2023) and Fang et al. (2023), we prune
heads for Attention and channels for FFN, respectively. The dependency details are shown in Figure
5.

Group 1

...

Query Head 1 Key Head 1 Value Head 1 O
ut

 H
ea

d
1

Group N

Query Head N Key Head N Value Head N

O
ut

 H
ea

d
N

(a) Dependency graph of Attention layer

...

Gate Output
Channel 1

Up Output
Channel 1 D

ow
n

In
pu

t
Ch

an
ne

l 1

Gate Output
Channel N

Up Output
Channel N D

ow
n

In
pu

t
Ch

an
ne

l N

Group 1

Group N

(b) Dependency graph of FFN layer

Figure 5: Weight dependency in (a) Attention layer, (b) FFN layer.

B MORE ABLATION STUDIES

Effectiveness of the moving average. We verify the rationale behind the moving average through the
setting of different values for λ. These experiments were conducted on LLaMA-7b, with experimental
configurations consistent with the above implementation details. The experimental results, as shown
in Figure 6 (a), reveal that as λ increases, the pruning results exhibit a significant reduction in
perplexity. This effect is especially pronounced when λ = 0 where pruning is solely determined by
the importance of the current batch, confirming the effectiveness of the moving average.

0.0 0.2 0.4 0.6 0.8

18

20

22

24

26

28

30

32

Pe
rp

le
xi

ty

(a) Moving average
ratio=20%
ratio=50%

200 400 600 800 1000
Iterations

20

25

30

35

(b) Fine-tuning iterations
ratio=20%
ratio=50%

Figure 6: More ablation studies for pruning hyper-parameters: (a) λ value in moving average, (b)
fine-tuning iterations.

Impact of iterations. To assess the impact of the total fine-tuning iterations on pruning results, we
conducted experiments on the LLaMA-7b model with different iterations. The results are shown in
Figure 6 (b), which indicates that excessive iterations can lead to a decrease in the model’s zero-shot
performance, potentially due to overfitting on the calibration dataset. Furthermore, we observe that

14

Under review as a conference paper at ICLR 2024

Table 7: Perplexity results on 128
token segments.

Method WikiText2 Ratio%

LLaMA-7B 12.36 0%

LLM-Pruner 17.58 20%
LoRAPrune 16.80 20%
LLM-Pruner 38.12 50%
LoRAPrune 30.12 50%

Table 8: Efficiency comparison between LoRAPrune and
LLM-Pruner with CPU off-loading.

Method Throughput (s/iter) GPU Memory (GB) FLOPs (G)

LLM-Pruner 38.87 38.6 20298
LLM-Pruner + CPU offloading 115.67 19.5 20298

LoRAPrune (Ours) 14.13 18.3 12881

the model requires more iterations to regain its performance when pruning with high compression
(e.g., ratio=50%).

Impact of calibration data quantity. We investigate the influence of the calibration data quantity
on pruning results by sampling varying quantities of calibration data from the C4 dataset (Raffel
et al., 2020). The experimental results indicate that when the calibration data is limited in quantity,
the pruning results are unsatisfactory. For instance, with a calibration dataset of only 500 samples,
the results of iterative pruning and fine-tuning are not as good as one-shot pruning. As the quantity
increases, the pruning results gradually improve. The experiments demonstrate that our default
samples (20000 data) are sufficient for fine-tuning and pruning of LPMs.

Impact of token segments length. To verify if LoRAPrune maintains its superiority with short token
segments, we use 128 token segments to test the perplexity of LLaMA-7B on WikiText2. The results,
as shown in Table 7, indicate that LoRAPrune’s performance surpasses that of LLM-Pruner even at a
128 token length.

LoRAPrune vs. LLM-Pruner with gradients off-loading. The gradient off-loading strategy
can partially mitigate LLM-Pruner’s memory demands, such as transferring certain gradients to
CPU memory. However, the memory access cost and computational overhead are substantial. As
illustrated in Table 8, the efficiency gains achieved by our method in LLaMA-7B. In terms of
throughput, LoRAPrune is 2.75× faster than LLM-Pruner with offloading and 8.19× faster without
offloading. This enables us to use iterative pruning to mitigate the drop arising from structured
sparsity.

Joint vs. separate. In order to assess the impact of separating the fine-tuning and pruning phases in
LoRAPrune, we conduct an experiment that prune LLaMA-7b in one-shot and subsequently employ
LoRA to restore its performance. The experimental results presented in Table 10 indicate that joint
pruning and fine-tuning yields much better performance than the separate counterpart, especially
under the high compression ratio.

Pruning frequency. We explore the impact of different pruning frequencies, i.e., how many iterations
of fine-tuning before pruning, on the final performance. The experimental results, as shown in Table
11, indicate that our default frequency (frequency=10) obtains the best pruning result. Additionally,
we observe that if pruning is too frequent (frequency=1), the model may not have enough iterations
to recover through fine-tuning, leading to inaccurate importance estimation. Furthermore, excessive
fine-tuning between pruning iterations (frequency=20) leads to overfitting on the calibration data.

Table 9: Pruning results under different calibration data quantity.

Quantity Fine-tune Perplexity with ratio=20% Perplexity with ratio=50%

128 × 20.67 121.96
500 ✓ 23.56 144.63
5000 ✓ 18.01 35.36

10000 ✓ 17.48 33.18
20000 ✓ 16.80 30.12
30000 ✓ 16.72 29.88

C LORAPRUNE ON INSTRUCTION DATASET

Fine-tuning LPMs on instruction dataset (Taori et al., 2023; Chenghao Fan & Tian, 2023) have
demonstrated a remarkable ability to generalize zero-shot to new tasks. Here, we validate the

15

Under review as a conference paper at ICLR 2024

Table 10: Effect of the joint pruning and fine-
tuning. “Average” represents the average perfor-
mance on seven classification datasets.

Method WikiText2↓ PTB↓ Average↑

Ratio=20% Joint 16.80 28.75 60.05
Separate 19.87 33.69 57.18

Ratio=50% Joint 30.12 38.68 49.71
Separate 39.60 65.79 47.56

Table 11: Results under different pruning fre-
quencies. “Average” denotes the average per-
formance on seven classification datasets.

Frequency WikiText2↓ PTB↓ Average↑
1 31.38 40.02 49.37
5 30.67 39.10 49.16
10 30.12 38.68 49.71
20 31.06 38.93 49.59

Table 12: Generated examples from the Pruned models

Model Generated Sentences

LLaMA-7b
(ratio=0%)

Instruction: Tell me about alpacas. Response: Alpacas are members of the camelid family and are native to the Andes
Mountains of South America. They are known for their soft, luxurious fleece, which is used to make clothing, blankets,
and other items. Alpacas are herd animals and live in groups of up to 20 individuals. They are generally docile and
easy to care for, making them popular as pets and livestock. Alpacas can live up to 20 years in captivity, and their
fleece can be sheared up to three times a year.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish. Response: I no tengo boca pero
tengo que gritar.

Instruction: Write a Python program that prints the first 10 Fibonacci numbers. Response:
def fibonacci(n):

if n == 0:
return 1

if n == 1:
return 1

else:
return fibonacci(n - 1) + fibonacci(n - 2)

for n in range(1, 10):
print(fibonacci(n))

LLaMA-7b
(ratio=20%)

Instruction: Tell me about alpacas. Response: Alpacas are a type of camel-like mammal native to the Americas. They
are related to camels and llamas, but are much smaller in size. Alpacas are herbivores and graze on grass and other
vegetation. They are known for their gentle and friendly nature, and are often kept as pets or as part of a farm. Alpacas
can live up to 10-15 years, and their offspring can live up to 10-15 years as well.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish. Response: Yo no tengo la boca
pero tengo que gritar.

Instruction: Write a Python program that prints the first 10 Fibonacci numbers. Response:
def fibonacci(n):

if n == 0 or n == 1:
return 1

else:
return fibonacci(n - 1) + fibonacci(n - 2)

for n in range(1, 10):
print(fibonacci(n))

generalization capability of the LoRAPrune by simultaneously fine-tuning and pruning LPMs on the
Alpaca (Taori et al., 2023) dataset. The experimental setting follows Alpaca-lora 1. The experimental
instructions encompass common sense, translation, and coding tasks. We show the generative results
in Table 12 and observe that even when pruning 20% of the weights, the model continues to excel in
performing these tasks.

D EXTENDING LOAR-GUIDED CRITERION TO UNSTRUCTURED PRUNING

Since ViT-B (Dosovitskiy et al., 2020) and BERT-Base (Devlin et al., 2018) has significantly fewer
parameters compared to the LLaMA models, its impact on memory consumption is relatively minor.
Therefore, we sought to validate the scalability of LoRA-guided criterion by applying unstructured
pruning to ViT-B (Dosovitskiy et al., 2020) and BERT-Base (Devlin et al., 2018). Specifically, similar
to the PST (Li et al., 2022b) approach, we begin by computing the LoRA weights BA and then
generate a binary mask during each forward pass. This mask is applied not only to the BA but also
simultaneously to the pre-trained weights, introducing unstructured sparsity to both sets of weights.

Models and metrics. For image classification tasks, we employ our method on ViT-B (Dosovitskiy
et al., 2020) with various pretraining techniques, including supervision on ImageNet-21k (Dosovitskiy

1https://github.com/tloen/alpaca-lora/

16

Under review as a conference paper at ICLR 2024

et al., 2020), unsupervision on MAE (He et al., 2022) and MoCOV3 (Grill et al., 2020). We evaluate
the pruned ViTs in VTAB-1k (Zhai et al., 2019) which consists of 19 few-shot classification datasets.

For natural language understanding tasks, we employ BERT-base (Devlin et al., 2018) as the pre-
trained model. The GLUE benchmark (Wang et al., 2018) is used, which consists of nine natural
language understanding (NLU) tasks including natural language inference, text entailment, sentiment
analysis, and semantic similarity, among others. The benchmark comprises CoLA, SST-2, MRPC,
STS-B, QQP, MNLI, QNLI, RTE.

Implementation details. For ViT-B, we set the batch size, learning rate, and weight decay as 64, 1e-3,
and 1e-4, respectively. For BERT-Base, we set the batch size to 32 and perform a hyperparameter
search over learning rate ∈ {3e-5, 5e-5, 1e-4, 5e-4} and epoch ∈ {20, 40}. All models are optimized
by AdamW optimizer (He et al., 2020) with cosine learning rate decay. All experiments are conducted
on one NVIDIA RTX 3090 GPU.

Contenders. Due to the lack of pruning works conducted under PEFT settings, we replicate
several pruning methods: 1) Magnitude pruning (MaP) (Li et al., 2018) computes the importance of
parameters based on their magnitude, making it a data-free pruning method. 2) Magnitude pruning
with LoRA (MaP-LoRA) prunes parameters according to its magnitude and fine-tunes by LoRA.
3) Movement Pruning (MvP) (Sanh et al., 2020) derives importance from first-order information,
making it a data-driven pruning method. 4) Random Pruning (RaP) (Li et al., 2022a) randomly selects
parameters to prune and fine-tunes by LoRA. Both original MaP and MvP are pruned and tuned on
the pre-trained parameters. 5) Parameter-efficient sparsity (PST) (Li et al., 2022b) uses extra low-rank
matrices to learn the gradients of pre-trained parameters.

Image classification. Firstly, our proposed LoRAPrune outperforms other pruning methods on both
FGVC and VTAB-1k datasets, as shown in Table 13. For example, on the 19 tasks of the VTAB-1k
dataset, LoRAPrune achieved 72% average Top-1 accuracy that was 4.3% higher than MvP, which
prunes using the original parameter gradients. This is because MvP requires fine-tuning of the
original parameters during pruning, which can lead to overfitting with limited training data. Moreover,
compared to MvP, our LoRAPrune only requires 0.75% of the total parameters to be computed
during pruning and fine-tuning, which is much less than MaP and MvP methods. When compared
with other PEFT methods such as PST (Li et al., 2022b), MaP-LoRA, and RaP, our LoRAPrune
achieves a higher average Top-1 accuracy by 2.9%, 1.7%, and 16.8%, respectively, demonstrating the
effectiveness of our proposed LoRA gradient criterion. Secondly, compared to fine-tuning methods
without pruning, LoRAPrune produces competitive results. For instance, on the VTAB-1k dataset,
LoRAPrune significantly outperforms Linear and Partial-1, and is on par with the VPT.

In addition to the backbones pre-trained with ImageNet-21k, we experiment with two self-supervised
methods: MAE (He et al., 2022) and MoCo v3 (Chen et al., 2021). The results are shown in Table 14
and we observe that under the self-supervised pre-trained models, LoRAPrune exhibited remarkably
impressive pruning results. For instance, LoRAPrune lags only behind unpruned LoRA-8 using MAE
pre-trained weights. LoRAPrune even outperforms LoRA-8 using MoCO v3 pre-trained weights.

0 20 40 60
Sparsity Ratio (%)

52

54

56

58

60

62

64

66

To
p-

1
Ac

c.
 (%

)

(a) CIFAR-100

Pruning with original gradient
Pruning with LoRAPrune (ours)

0 20 40 60
Sparsity Ratio (%)

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

To
p-

1
Ac

c.
 (%

)

(b) EuroSAT

Pruning with original gradient
Pruning with LoRAPrune (ours)

0 20 40 60
Sparsity Ratio (%)

45.0

45.5

46.0

46.5

47.0

47.5

48.0

To
p-

1
Ac

c.
 (%

)

(c) DMLab

Pruning with original gradient
Pruning with LoRAPrune (ours)

Figure 7: Comparison between LoRAPrune and original gradient-based pruning methods across
different sparsity ratios using (a) CIFAR-100, (b) EuroSAT, and (c) DMLab datasets.

17

Under review as a conference paper at ICLR 2024

Table 13: Comparisons on FGVC and VTAB-1k using ViT-B/16 pre-trained on ImageNet-21k.
The sparsity ratio denotes the ratio of pruned parameters, and “Tuned/Total” denotes the fraction of
trainable parameters. The best result is in bold, and the second-best result is underlined.

ViT-B/16 Sparsity FGVC VTAB-1k
(85.8M) ratio Tuned / Total Mean Acc. Tuned / Total Natural Specialized Structured Mean Acc.

Full 0% 100.00% 88.5 100.00% 75.9 83.4 47.6 69.0

Pruning methods
MaP (Li et al., 2018) 50% 100.00% 84.6 100.00% 71.3 81.7 45.9 66.3
MvP (Sanh et al., 2020) 50% 100.00% 84.9 100.00% 72.8 80.5 49.8 67.7
RaP (Li et al., 2022a) 50% 0.75% 73.1 0.75% 53.8 70.4 41.3 55.2
MaP-LoRA 50% 0.75% 83.1 0.75% 75.4 81.9 53.6 70.3
PST (Li et al., 2022b) 50% 2.14% 85.1 2.14% 73.4 82.7 51.3 69.1
LoRAPrune (Ours) 50% 0.75% 85.4 0.75% 76.6 82.4 57.1 72.0

Unpruning methods
Linear 0% 0.12% 79.3 0.04% 68.9 77.2 26.8 57.6
Partial-1 0% 8.38% 82.6 8.30% 69.4 78.5 34.2 60.7
VPT (Jia et al., 2022) 0% 0.75% 88.4 0.75% 78.5 82.4 55.0 72.0
LoRA-8 (Hu et al., 2022) 0% 0.55% 86.0 0.23% 79.5 84.6 60.5 74.9
LoRA-16 (Hu et al., 2022) 0% 0.90% 84.8 0.69% 79.8 84.9 60.2 75.0
SPT-LoRA (He et al., 2023) 0% 0.41% 89.3 0.31% 81.5 85.6 60.7 75.9

Table 14: Comparisons on VTAB-1k using self-supervised ViT-B/16 pre-trained by MAE and MoCo
v3. The sparsity ratio denotes the ratio of pruned parameters, and “Tuned/Total” denotes the fraction
of trainable parameters. The best result is in bold, and the second-best result is underlined.

ViT-B/16 Sparsity VTAB-1k MAE VTAB-1k MoCo v3
(85.8M) ratio Tuned / Total Natural Specialized Structured Mean Acc. Tuned / Total Natural Specialized Structured Mean Acc.

Full 0% 100% 59.3 79.7 53.8 64.3 100% 72.0 84.7 42.0 69.6

Linear 0% 0.04% 18.9 52.7 23.7 32.1 0.04% 67.5 81.1 30.3 59.6
Partial-1 0% 8.30% 58.4 78.3 47.6 61.5 8.30% 72.3 84.6 47.9 68.3
Bias (Zaken et al., 2022) 0% 0.13% 54.6 75.7 47.7 59.3 0.13% 72.9 81.1 53.4 69.2
LoRA-8 (Hu et al., 2022) 0% 0.23% 66.2 82.6 62.5 70.4 0.23% 69.9 83.4 59.1 70.8
LoRAPrune (Ours) 50% 0.75% 61.3 78.8 58.4 66.2 0.75% 71.5 82.5 58.6 70.9

Natural language understanding. Table 15 demonstrates the effectiveness of our proposed method.
Compared with full fine-tuning methods (MaP and MvP), LoRAPrune achieves comparable or even
superior performance to them while only fine-tuning 2.14% parameters. Compared with PST (Li
et al., 2022b) that maintains the same number of trainable parameters as LoRAPrune, LoRAPrune
achieves an average score improvement of 1.1% on the GLUE dataset when the sparsity ratio is 50%.
These results clearly show that our method outperforms existing methods in terms of both model
compactness and performance.

Effect of the LoRA-guided criterion. We also evaluate the effectiveness of the LoRA gradient
criterion in the unstructured setting by comparing it with the vanilla criterion which uses original
gradients of pre-trained weights. It is worth noting that to ensure the fairness of the experiments, we
only update the LoRA weights for both using the LoRA-guided and vanilla criterion.

We conducted experiments on multiple pruning scenarios with different sparsity ratios using three
types of datasets: Natural, Specialized, and Structured. The experimental results, as shown in Figure
7, demonstrate that LoRAPrune achieves comparable or even superior performance to the original
gradient-based methods on EuroSAT (Specialized) and DMLab (Structured) datasets. In the case of
CIFAR-100 (Natural) dataset, LoRAPrune exhibits competitive performance compared to the original
gradient-based methods. These findings validate the effectiveness of the LoRA-guided criterion.

18

Under review as a conference paper at ICLR 2024

Table 15: Comparisons on GLUE using BERT-Base. The sparsity ratio denotes the ratio of pruned
parameters, and “Tuned/Total” denotes the fraction of trainable parameters. The best result is in bold,
and the second-best result is underlined.

BERT-Base Sparsity GLUE
(110.0M) ratio Tuned / Total MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Mean Acc.

Full 0% 100.00% 84.7 87.8 91.5 93.0 58.6 88.7 89.5 62.9 82.0

MaP (Li et al., 2018) 50% 100.00% 83.6 87.8 91.5 91.0 60.1 89.8 90.7 67.2 82.7
MvP (Sanh et al., 2020) 50% 100.00% 82.3 87.3 90.8 90.8 57.7 89.4 91.1 67.2 82.1
PST (Li et al., 2022b) 50% 2.14% 81.0 85.8 89.8 91.3 57.6 84.6 90.7 67.9 81.0
LoRAPrune (Ours) 50% 2.14% 82.4 87.2 89.6 90.9 54.1 88.7 89.8 69.3 82.2

MaP (Li et al., 2018) 90% 100.00% 78.2 83.2 84.1 85.4 27.9 82.3 80.5 50.1 71.4
MvP (Sanh et al., 2020) 90% 100.00% 80.1 84.4 87.2 87.2 28.6 84.3 84.1 57.6 74.2
PST (Li et al., 2022b) 90% 2.14% 79.6 86.1 86.6 89.0 38.0 81.3 83.6 63.2 75.9
LoRAPrune (Ours) 90% 2.14% 79.4 86.0 85.3 89.1 35.6 83.3 84.4 62.8 75.7

19

	Introduction
	Related Work
	Method
	Preliminary
	Pruning with Low-rank Adaption

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Conclusion
	Weight Dependency for LLaMA
	More Ablation Studies
	LoRAPrune on Instruction Dataset
	Extending LoAR-guided Criterion to Unstructured Pruning

