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ABSTRACT

Training a multi-agent reinforcement learning (MARL) model with a sparse-
reward is notoriously difficult because the final outcome (i.e., success or failure)
is induced by numerous combinations of interactions among agents. Earlier stud-
ies have tried to resolve this issue by using hierarchical MARL to decompose the
main task into subproblems or employing an intrinsic reward to induce interac-
tions for learning an effective policy. However, none of the methodologies have
shown significant success. In this study, we employ a hierarchically structured
policy to induce effective coordination among agents. At every step, LPMARL
conducts the two hierarchical decision-makings: (1) solving an agent-task assign-
ment problem and (2) solving a local cooperative game among agents assigned
to the same task. For the first step, LPMARL formulates the agent-task assign-
ment problem into a resource assignment problem, a type of linear programming
(LP). For this, LPMARL uses a graph neural network to generate state-dependent
cost coefficients for the LP problem. The solution of the formulated LP is the
assignments of agents to tasks, which decompose agents into tasks to accomplish
the sub-goals among the agents in the group. For the lower-level decision, LP-
MARL employs a general MARL strategy to solve each sub-task. We train the
GNN generating the state-dependent LP for high-level decisions and the low-level
cooperative MARL policy together end-to-end using implicit function theorem.
We empirically demonstrate that our algorithm outperforms existing algorithms in
various mixed cooperative-competitive environments.

1 INTRODUCTION

As engineering systems become highly complicated and distributed, it becomes challenging to un-
derstand the collective and interactive behavior of such multi-agent systems. Thus, multi-agent
reinforcement learning has recently drawn much attention due to the practical and potential appli-
cations for controlling highly complicated and distributed multi-agent systems in intelligent trans-
portation, smart grid, smart factory, etc. Although numerous multi-agent reinforcement learning
(MARL) training strategies have been successful, these successes have been limited to simple ideal
tasks where the problem-specific immediate reward can be well defined and used to induce the co-
operative policy to achieve the system-level goal. There are practical problems where the success or
failure of the task only reveals after a long sequence of strategic interactions among agents.

The main research objective of the current study is to develop a practical MARL framework for
deriving the cooperative decision-making policy using only a spare and delayed reward. Training a
MARL model with a sparse-reward is notoriously difficult because the final outcome (i.e., success
or failure) is induced by numerous combinations of interactions among agents and stochatic envi-
ronment. To resolve these challenges, one needs to develop an algorithm that can learn how the
interaction among agents over long-term episodes entails the outcome of the target tasks, a delayed
and sparse episodic reward, and deduce this understanding into an effective sequential decision-
making policy.

Earlier studies have tried to resolve this issue by introducing structured decision-making schemes or
devising an effective exploration strategy. As an example of a structured decision-making scheme,
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hierarchical MARL, composed of high-level policy for assigning sub-goals to agents and the low-
level policy for conducting independent goal-dependent primitive action, has been proposed (Tang
et al., 2018). As an example of an exploration strategy, utilizing intrinsic reward to induce interac-
tions among agents (Wang et al., 2019) or sharing experience among agents (Christianos et al., 2020)
have been proposed. Although each of these algorithms was successful for specific tasks, these ap-
proaches require task-specific design choices. For example, one needs to define the high-level and
low-level actions for hierarchical MARL. In addition, one needs to design a task-specific intrinsic
reward, making these approaches difficult to use as a general scheme for solving cooperative tasks.

In this study, we propose a hierarchically structured decision-making scheme to induce effective co-
ordination among agents. At every step, LPMARL conducts the two hierarchical decision-makings:
(1) solving an agent-task assignment problem and (2) solving a local cooperative game among agents
assigned to the same sub-task. For the first step, LPMARL formulates the agent-task assignment
problem into a constrained resource assignment problem, a type of linear programming (LP). For
this, LPMARL uses a graph neural network to generate state-dependent cost coefficients for the LP
problem. The solution of the formulated LP is the assignments of agents to tasks, which decompose
agents into tasks to accomplish the sub-goals among the agents in the group. For the lower-level
decision, LPMARL employs a general MARL strategy to solve each sub-task. We train the GNN
generating the state-dependent LP for high-level decisions and the low-level cooperative MARL
policy together end-to-end using implicit function theorem.

The technical contributions and novelties of the proposed method are as follows:

• Interpretability. In the case of hierarchical MARL, it is sometimes necessary to discover a
latent representation of the goal, but it is difficult to grasp the meaning, and it is difficult to
assign a constraint. On the other hand, LPMARL can impose the behavior inductive bias,
e.g., requiring accomplishing particular objectives or imposing constrained behavior, when
formulating LP for decomposing tasks, making our approach more interpretable.

• Exploration. Because LPMARL employs high-level actions regarding decomposing the
agents into target tasks, we can conduct exploration over decomposing strategies. This
is similar to explore over the goal space for typical hierarchical MARL (Liu et al., 2021;
Tang et al., 2018). The advantage of LPMARL over hierarchical MARL is that we can
effectively control the exploration region by adding the constraints on the decomposing
strategy by LP formulation. For example, when assigning agents to tasks, we can add
the constraint of assigning at least one agent to each task or vice versa. Furthermore,
this exploration strategy is a lot effective than the one conducting exploration over the
primitive action (lower-level action) because this single-level MARL strategy lacks the
temporal abstraction to consistently induce the cohesive and consistent actions to achieve
the meaningful sparse-reward.

2 RELATED WORKS

Hierarchical MARL. Earlier studies have tried to resolve the sparse-reward MARL problem by
adding a hierarchical structure to decompose the main problem into task-dependent subproblems.
Tang et al. (2018) proposed a hierarchical MARL framework with temporal abstraction to solve co-
operative MARL tasks. In their work, agents cooperatively select high-level actions to achieve goals,
while low-level policies are independently trained based on the selected high-level action. Although
the proposed hierarchical MARL framework enables agents to learn cooperation in temporally ab-
stracted high-level policy, it is difficult to induce cooperation within sub-tasks only by parameter
sharing. Vezhnevets et al. (2019); Yang et al. (2019); Wang et al. (2020a;b) also presented methods
for learning the latent goal representation without predefining a set of high-level tasks in a complex
multi-agent system. The latent goal indirectly limits the state space or action space so agents can
cooperate by learning only primitive low-level policy conditioned on the latent goal. However, to
learn the relationship between the global state, the latent goal, and the primitive action, a lot of
training loop and a sparse-reward signal are required. Also, the it is not interpretable because the
decomposes the problem indirectly.

Exploration-based MARL. Another vein of multi-agent policy training with sparse-reward signal
is to train policy with efficient exploration strategies. CMAE (Liu et al., 2021) introduced an explo-
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ration policy instead of random exploration, and expressed the agent’s behavior policy as a mixture
of target policy and exploration policy. Instead of exploring the whole state space, the exploration
policy plays a role in exploring only within the low-dimensional restricted space in which the state
space is projected. SEAC (Christianos et al., 2020) presented a technical way to learning through
shared experience so that agents can do diverse exploration. In SEAC, individual agents consider
the other agent’s trajectory as off-policy data, and learn individual policies through off-policy gra-
dient optimization with importance sampling. REMAX (Ryu et al., 2020) also proposes a technical
strategy to accelerate the training of the agent by generating an initial state similar to the goal state.
Although the above methodologies are useful techniques that can accelerate learning in MARL, they
do not solve the fundamental credit assignment problem of the sparse-reward problem.

Optimization-based agent-task decomposition. Our work draw inspiration from Carion et al.
(2019), a centralized optimization-based decomposition approach. In this paper, authors formulate a
high-level agent-task allocation problem into a linear programming where the optimization param-
eters are learnable. By learning the state-dependent allocation coefficient and constraint coefficient,
agents can optimally decomposed into tasks every step in a centralized point of view. However,
they use rule-based low-level policy to train the high-level allocation coefficient, and thus the agents
may not behave cooperatively in a decomposed subproblem. Also, the optimization problems and
low-level policy training are not end-to-end differentiable when trying to train two policies together.
For this reasons, we formulate the high-level policy as LP to solve agent-task assignment problem
with optimization layer, and low-level policy as agent-action selection policy.

3 BACKGROUND

3.1 IMPLICIT DEEP LEARNING

Implicit deep learning is a framework for incorporating an implicit rules (e.g., ODE, Chen et al.,
2018; fixed point iterations, Bai et al., 2019; optimization, Amos & Kolter, 2017) into a feed-
forward neural network. Specifically, differentiable optimization is a framework for incorporating
an optimization problem into the layer. A differentiable optimization layer indexed with l takes the
optimization variables hl−1 as an input, where hl−1 is the the output of the previous layer. The input
variable hl−1 works as the optimization variable corresponding to the differentiable optimization
layer. The layer then solves the optimization problem and outputs the optimal solution, hl :=
argminx∈g(hl−1) f(x, hl−1), where f(x, hl−1) is the objective function and g(hl−1) is the feasible
solution space defined by hl−1. The output of the layer hl is then fed into the next layer.

By using this approach, one can infuse optimization inductive bias in a layer. OptNet (Amos &
Kolter, 2017) propose an differentiable optimization layer, specifically for a quadratic programming
(QP). The backpropagation of this optimization layer requires the computation of the derivative of
the QP solution with respect to the input parameters, which is derived by taking the matrix differen-
tials of the KKT conditions of the QP. Ferber et al. (2020) and Wilder et al. (2019) extended the idea
of OptNet to general linear programming (LP) and mixed-integer linear programming (MILP). To
compute the gradient of the optimal solution on discontinuous solution space, they considered the
continuous surrogate formulation of the original integer programming problem based on the cutting
plane method. To further develop the computation of the gradient of the optimal solution of the
combinatorial optimization, Vlastelica et al. (2019) provides a way to construct a continuous inter-
polation of the loss function. In combinatorial optimization problems, the optimal solution may not
vary in small change on the input parameters; thus, the loss function may in the form of the piece-
wise constant. To solve this problem, Vlastelica et al. (2019) presented a piecewise linear surrogate
loss function that can approximate the original loss function of the combinatorial optimization layer.

3.2 HIERARCHICAL MULTI-AGENT REINFORCEMENT LEARNING

A decentralized partially observable Markov decision process (Dec-POMDP) is an extension of the
partially observable Markov decision process for a game with multiple agents. Dec-POMDP consists
of < N ,S, {Oi}i∈N , {Ai}i∈N ,R, T >, where N is a set of agents, S is state space, {Oi}i∈N is
the observation space, A = {A}i∈N is an action space, R is a reward function, and T is transition
probability. At each timestep, each agent i obtains a partial observation ot,i : S → Oi from a global
state st ∈ S and selects action at,i through its policy πi : Oi → Ai. Agents obtain a global reward,
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Figure 1: Overall architecture of LPMARL.

rt : S × {Ai}i∈N → R from the environment. The objective of Dec-POMDP is to find a set of
individual policies, π(at|st) ∼

∏
i πi(at,i|ot,i), that maximizes the expected sum of cumulative

high-level reward, Eat∼π

[∑T
t=0 γ

tr(st,at, st+1)
]
.

Tang et al. (2018) considered a hierarchical Dec-POMDP to introduce a temporal abstraction. A
high-level of hierarchy can be modeled as a Semi-Markov game, a multi-agent extension of Semi-
MDP (Sutton et al., 1999). Formally, each agent i receives observation ot,i and chooses a high-level
action aht,i ∈ Ai,h, where Ai,h denotes a set of possible high-level actions (goals). The high-level
action may last for τ timesteps with low-level action execution until current high-level action aht,i is
terminated. After the high-level action ends, a next high-level action ai,ht+τ is selected based on the
observation, ot+τ,i.

To train high-level policy and low-level policy, rewards for each level of hierarchy are defined.
Agent receives the high-level reward rh(st,at, st+1) whenever the agent accomplishes the whole
task, i.e., st+1 corresponds is the success state. Agent receives a low-level reward (intrinsic reward)
for reaching sub-goal, denoted by rl(st,at, st+1|aht,i) depending to its own high-level action, aht,i.

4 METHODOLOGY

At every step, LPMARL conducts two forward decision-makings steps:(1) solving an agent-task
assignment problem and (2) solving a local cooperative game among agents assigned to the same
sub-task. For the first step, we represent a global state s as a graph G = (V, E) and use a graph neural
network to generate an encoded graph G = (V ′, E ′). Using the encoded graph embeddings, we com-
pute a state-dependent cost coefficient Cθc(G′) ∈ RN×M for the constrained resource assignment
problem. The solution of the formulated LP Z∗(Cθc) is the assignments of agents to tasks, which
decompose agents into tasks to accomplish the sub-goals among the agents in the group. For the
lower-level decision, LPMARL employs a general MARL strategy to solve each sub-task. Figure 1
illustrates an decision-making process of LPMARL.

4.1 CONSTRUCTING AGENT-TASK SCORE MATRIX

We generate a state-dependent cost coefficient matrix C ∈ RN×M for the LP problem. First, we
represent a global state into a directed graph G = (V, E) to explicitly define the relationship between
agents and tasks. The graph nodes are composed of agent nodesN and task nodesM, V = N ∪M.
The agent node embedding and task node embedding are initialized as the local state of agent and
task, respectively. Two sets of edges are defined; agent-agent edges, EN = {(i, j) : i ∈ N , j ∈ N}
and task-agent edges, EM = {(i, j) : i ∈M, j ∈ N}.
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With the constructed graph, we use message-passing graph neural network (Battaglia et al., 2018)
to encode G = (V, E):

mNij ← f(si, sj ; θ
N
g ), ij ∈ EN ; mMij ← f(si, sj ; θ

M
g ), ij ∈ EM (1)

hi ← f([
∑
ji∈EM

mji‖
∑
ji∈EN

mji‖si]; θvg),∀i ∈ V (2)

where θg = (θNg , θ
M
g , θvg) are a parameters of the GNN. After the graph encoding process, the

updated node embedding {hAi }i∈N and {hTj }j∈M constructs an encoded graph, G′ = (V ′, E ′).

Using the encoded graph node embeddings V ′, we can compute a coefficient matrix as follows.

cij := [Cθc(G′)]i,j = f(hAi , h
T
j ; θc) (3)

where θc is a parameter computing agent-task score, shared among all of agent-task pairs. The
coefficient cij is an allocation score for agent i to finish task j. The constructed cost coefficient will
be used to construct the objective function of the agent-task allocation problem.

4.2 HIGH-LEVEL POLICY: SOLVING AGENT-TASK ALLOCATION OPTIMIZATION

We formulate the high-level agent-task assignment problem into an LP, especially resource-
constrained allocation problem (Katoh & Ibaraki, 1998). The high-level policy aims to find the
optimal agent-task allocation action in a centralized way. Formally, we consider the optimal solu-
tion of LP Z∗ := Z∗(Cθc(G′)) as a function the input coefficients Cθc(G′) ∈ RN×M given resource
constraints. The LP formulation is as follows:

maximize
∑
i,j

cij · zij (4)

s.t.
∑
i

zij ≤ ki ∀j ∈M (5)∑
j

zij = 1 ∀i ∈ N (6)

0 ≤ zij ≤ 1 ∀i ∈ N , j ∈M (7)

where {zij}i∈N ,j∈M is decision variable, equation 4 is objective function to maximize, equation 5 is
capacity constraint to restrict maximal number of agents per goal, equation 6 is allocation constraint,
and equation 7 is boundary constraint.

The solution of the above optimization problem, {z∗ij}i∈N ,j∈M, can be interpreted as the con-
tribution of the agent i to a given task j, and will be used as the policy of all agents, i.e.,
πhi (ahi = j|s) = zij . This high-level decision decomposes the global task into sub-tasks, inducing a
sub-group dedicated to solving the sub-problem per task. A high-level action is obtained only from
events that require reallocation, such as a change in the number of agents or tasks. Once a high-level
action is calculated at timestep t, the high-level action is maintained for timestep τ until the next
event at t+ τ .

4.3 LOW-LEVEL POLICY: SELECTING LOW-LEVEL ACTION

Since the global problem is decomposed into the task-dependent sub-problems, agents only need
to cooperate with other agents assigned to the same task to accomplish the sub-problem. Given the
selected high-level action ahi , agent i select the low-level action ali using the selected task embedding
hT
ahi

as follows:

ali ∼ πl(·|s, ahi ) = f(hAi , h
T
ahi

; θl). (8)

The low-level policy may either continuous or discrete, and we validated two different policy on
experiment (continuous policy in section 6.2 and discrete policy in section 6.3).
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5 TRAINING

We have the following parameters to train:

• Parameters θg = (θNg , θ
M
g , θvg) of GNN modules f(·; θg) : G → G′

• Parameters θc of coefficient generating function f(·; θc) : G′ → C
• Parameters θh = (θg, θc) for high-level policy, ahi ∼ πh(·|s; θh)

• Parameters φh for high-level critic, Qh(s, ahi ;φh),

• Parameters θl for low-level policy, ali ∼ πl(·|s, ahi ; θl),

• Parameters φl for low-level critic, Ql(s, ali|ahi ;φl).

The objective of the high-level policy is to maximize a sum of the discounted global high-level
return, J (θh) = E[

∑
t γ

trht ] = Eat∼π[Qh(st,at)] ≈ E(s,ahi ,r
h,s′)∼D[

∑
iQ

h(st, a
h
t,i;φh)].

Similarly, the objective of the low-level policy is to maximize a sum of discounted
individual low-level return when assigned to a task, J (θl) = E[

∑
t

∑
i γ

trlt,i] ≈
E(s,aht,i,a

l
t,i,r

l
i,s
′)∼D[

∑
iQ

l(st, a
l
t,i|aht,i;φl)].

Since the same high-level action may continuously repeated over a period, the target of the high-
level actor-critic is discounted proportionally to the length of timestep the high-level action lasted
on. The high-level critic Qh(·;φh) is trained to minimize the mean squared error between predicted
critic value and target L(φh), defined as

L(φh) = E(s,ahi ,r
h,s′)∼D

(∑
i

Qh(st, a
h
t,i;φh)− y

)2
 (9)

where y is the target computed as y = rht + γτ ·
∑
i maxaht,i Q(st+τ , a

h
t,i; φ̄h) with φ̄h being the

target parameter. The parameters of high-level actor θh is optimized using the partial gradient of the
objective, computed as:

∇θhJ (θh) = E(s,ahi ,r
h,s′)∼D

[∑
i

{Qh(st, a
h
t,i; φ̄h)− V (st)}∇θh log πh(aht,i|st; θh)

]
(10)

The combined procedures of (1) computing the node embedding, (2) constructing the agent-task
score matrix C, and (3) solving the agent-task allocation problem can serve as the high-level policy
(πh(·; θh) : G → Z). This decision making pipeline then construct the following forward propaga-
tion chain:

πh(·; θh) : G f(·,θg)−−−−→ G′ f(·,θc)−−−−→ C
solver−−−→ Z∗ (11)

where θh = (θg, θc).

Then, the gradient of the loss function J (θh) with respect to the policy parameter θh = (θg, θc) can
be computed as the following chain rule:

∂J (θh)

∂θh
=

∂J
∂Z∗

· ∂Z
∗(C)

∂C
· ∂C
∂θh

(12)

In our optimization problem, there exists some extreme points generated only by boundary con-
straints (equation 7). Thus, optimal solution may integer-valued on this extreme point (please refer
to Appendix A.1 for more description). In this case, the optimal solution may not vary continuously
with respect to the input; a small change can induce an abrupt change in the objective value. Thus,
the ∂Z∗(C)

∂C be in the form of the piecewise constant, making it difficult to estimate the gradient. To
solve this issue, Vlastelica et al. (2019) presented a piecewise linear surrogate loss surface that can
approximate the original piecewise constant surface ∂J

∂C of the combinatorial optimization layer. To
obtain a meaningful gradient for this integer-solution, we modify the gradient ∂J∂C = ∂J

∂Z∗ ·
∂Z∗(C)
∂C

by of solution gap between the original solution of the optimization problem and the solution of the
perturbed optimization problem, as:

∂J
∂C
≈ − 1

λ
(Z∗ − Z∗λ) (13)
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Figure 2: Visual description on the experiment environments

where Z∗ is the optimal solution used in forward computation and Z∗λ is the optimal solution of LP
with perturbed coefficient. In a backward pass, equation 13 replaces ∂J

∂Z∗ ·
∂Z∗(C)
∂C in equation 12.

We refer to Appendix A.2 for more details of computation of high-level policy.

5.1 TRAINING LOW-LEVEL ACTOR-CRITIC

The low-level parameters, φl and θl are trained using an independent actor-critic algorithm with
the task embedding corresponding to the high-level action is argument with. The training of the
low-level parameters can be found in Appendix A.3.

6 EXPERIMENT

Figure 2 shows the environments we use to evaluate the performances of the proposed LPMARL
algorithm. These environments are designed to measure how efficiently the overall work is well-
divided into sub-tasks, and sub-tasks are assigned to agents.

6.1 SINGLE-STEP, STATIC ASSIGNMENT: SINGLE-STEP GROUPING ENVIRONMENT

The first environment is a single-stage task assignment problem. The environment consists of N
agents and M destinations. The high-level policy assigns each agent an index of groups as an
action, i.e., ai ∈ {1, . . . ,M},∀i ∈ N . The goal of the policy is to divide agents into exactly
K groups (with K ≤ M ). Agents receive the maximum high-level reward (+10) when they are
divided into exactly K groups. Otherwise, agents receive a penalty proportional to the difference
between the number of groups selected and K. We implemented the task with N = 10, M = 10.
This environment is designed to evaluate the capability of the high-level policy module in LPMARL
in optimally allocating tasks to agents.

Figure 3: Training curve on single-step grouping environment.

The baseline algorithms we use to compare the performance with LPMARL are MAAC (Diddigi
et al., 2019) and QMIX (Rashid et al., 2018), both of which are designed to learn a cooperative
policy for the discrete-action space. Figure 3 compares the training curves for all models on the
single-stage task allocation problems with the different numbersK = {2, 4, 6, 8} of groups required
to form. Table 1 reports the winning ratio of different algorithms on each experiment.
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Table 1: Winning ratio (%) of MARL algorithms on single-step grouping environment.

#. optimal groups QMIX MAAC LPMARL
K = 2 97.2±1.7 0.0±0.0 99.9±0.1
K = 4 91.0±2.5 96.2±0.4 100.0±0.0
K = 6 95.7±1.5 98.8±0.9 100.0±0.0
K = 8 96.8±1.4 99.5±0.8 99.9±0.1

Figure 3 shows that LPMARL effectively learns how to optimally cluster agents into the specified
number of groups. LPMARL has the highest average wining ration and the lowest standard deviation
of it. Table 1 compares the performance of the algorithms in more detail. It can be seen from the
result that LPMARL shows consistent performance even when K is large.

6.2 MULTI-STEP, STATIC ASSIGNMENT: COOPERATIVE NAVIGATION

The second environment is cooperative navigation, whose objective is to have all agents reach and
occupy distinct destinations (Lowe et al., 2017). In this game, each agent is allowed to make s
series of navigation actions; therefore, consistent coordination among agents is vital to solving the
problem. LPMALR solves this problem by allocating agents to the destination (high-level action)
and having each agent navigate itself to the assigned destination (allocation). Thus, this environment
is used to mainly verify the effectiveness of the task allocation module of LPMARL in solving the
dynamic cooperative game. We consider both dense-reward and sparse-reward settings. In a dense-
reward setting, the global reward the agents receive is the combination of the distance between agent
and landmarks, a collision between agents, and the number of occupied landmarks. In a sparse-
reward setting, agents receive a high-level reward when agents occupy all the landmarks (+10) and
receives a low-level reward when the agent occupies the landmark selected by high-level policy
(+10). To compare algorithms fairly, individual agents of algorithms other than LPMARL receive
low-level (individual) rewards plus high-level (global) rewards.

Table 2: Winning ratio (%) and the percentage of the landmarks occupied (%) on cooperative nav-
igation. In the table, the left column corresponds to the winning ratio, and the right column cor-
responds to the landmark occupied ratio for each algorithm. The mean and standard deviation of
1,000 repeated experiments is reported.

Number
of agents MADDPG MAAC CommNet LPMARL

N = 3 (dense) 85.7±1.1 74.7±10.7 74.2±3.2 69.8±15.1 86.2±3.9 85.1±13.2 88.3±5.1 90.8±7.1

N = 5 (dense) 21.3±5.2 54.8±6.4 16.7±3.1 51.3±7.5 28.3±5.9 61.2±8.0 37.9±2.8 72.0±5.7

N = 7 (dense) 5.7±0.1 21.8±4.8 4.1±1.9 31.7±3.0 8.6±0.7 43.0±5.1 8.5±2.8 61.3±10.1

N = 3 (sparse) 11.8±1.1 40.7±9.7 13.7±2.4 42.8±10.2 23.2±3.4 75.6±5.1 30.1±2.8 81.8±5.5

N = 5 (sparse) 0.0±0.0 25.8±5.9 1.8±0.0 28.0±9.1 5.2±1.6 35.6±7.8 11.2±3.2 58.7±8.1

N = 7 (sparse) 0.0±0.0 27.0±2.4 0.0±0.0 22.2±5.9 2.9±1.1 34.9±5.2 5.1±1.7 49.8±6.7

The baseline algorithms we use to compare the performance with LPMARL are MADDPG (Liu
et al., 2021), MAAC (Iqbal & Sha, 2019), and CommNet (Sukhbaatar et al., 2016), which are de-
signed to learn multi-agent policy in fully-cooperative setting. We compare algorithms with two
performance metrics: winning ratio and the number of landmarks occupied.

Table 6.2 shows the average performance metric of 1,000 repeated evaluation in N = {3, 5, 7}. In
a dense reward setting, all the algorithms have shown similar performance. As the number of the
agent increases, the success ratio typically decreases due to the increasing complexity of the game.
Nevertheless, LPMARL shows the best performance among the baseline models. In a sparse reward
setting, most baseline algorithms except LPMARL have shown significantly reduced performance
comparing the dense reward setting. In addition, when the number of agents is large, MADDPG
and MAAC result in a zero percent of success ratio. On the other hand, LPMARL can still solve the
game even when N is large. In addition, LPMARL has a similar landmark occupied ratio between
dense-reward and sparse-reward settings.
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6.3 MULTI-STEP, DYNAMIC ASSIGNMENT: STARCRAFT2 MICROMANAGEMENT

The last environment we consider is the StarCraft Multi-Agent Challange (SMAC, Samvelyan et al.,
2019), where a team of agents battle against enemy agents. We use sparse reward setting for the
game: agents get rhi = 10,∀i when they win a scenario (i.e., when all enemy units are killed), and
get rli = 10 when the selected enemy ahi is killed. When such spare reward is used, it is notoriously
difficult to induce the coordinated policy. Thus, SMAC with a sparse reward setting is often used as
a challenging environment to develop effective MARL strategies.

Table 3: Winning ratio (%) on Starcraft Micromanagement environment. The mean and standard
deviation of 1,000 repeated experiments is reported.

CMAE SEAC QMIX LPMARL
3m (sparse) 38.2±23.2 0.0±0.0 0.0±0.0 44.2±4.7

2m vs 1z (sparse) 44.3±20.8 0.0±0.0 0.0±0.0 35.1±5.1

3s vs 5z (sparse) 0.0±0.0 0.0±0.0 0.0±0.0 0.9±0.1

3m (dense) 98.7±1.7 88.9±0.8 97.9±3.6 98.1±0.4

2m vs 1z (dense) 98.2±0.1 82.5±0.5 97.1±2.4 100.0±0.0

3s vs 5z (dense) 81.3±16.1 70.8±10.3 75.0±17.6 81.1±5.1

The baseline algorithms we consider for this environment are CMAE (Liu et al., 2021) and SEAC
(Christianos et al., 2020), the MARL algorithms designed to solve cooperative tasks with sparse
reward. We also consider QMIX algorithm that has shown great success in the various SMAC
environment with dense rewards. Note that other than CMAE and SEAC, there were no MARL
algorithms that have shown s meaningful success in the literature so far.

Table 3 shows the final winning ratio on SMAC tasks. In a dense-reward setting, LPMARL achieved
at least similar or better performance than other learning algorithms. Note that in 2m vs. 1z envi-
ronment, LPMARL does not conduct the high-level action since there is only a single enemy agent
(target); nevertheless, LPMARL shows a good performance, possibly due to the effective state rep-
resentation module constructed based on GNN.

In a spare-reward setting, SEAC and QMIX show a zero percent winning ratio, which means that
these two algorithms cannot learn a cooperative policy using an only spare rewards. On the other
hand, SEAC and LPMARL achieve meaningful winning ratios in 3m and 2m vs 1z environments.
Note that LPMARL has a lower variance of winning ratio than SEAC. In addition, although it is
very low, LPMARL occasionally achieves a win for the difficult task 3s vs 5z.

7 CONCLUSION

In this work, we proposed LPMARL, a linear programming-based hierarchical MARL approach.
The high-level decision making of LPMARL is to assign agent into tasks, and formulated as linear
programming. The low-level decision making is to solve a cooperative game for each sub-task. The
high-level and low-level policy of LPMARL are trained end-to-end using differentiable optimization
framework. We demonstrated that LPMARL can decompose the agents into sub-tasks in various
MARL environment with sparse-reward setting.
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A APPENDIX

A.1 VISUALIZATION OF EXTREME POINT OF LP

Figure 4: Visual description of extreme points

Figure 4 illustrates the extreme points of the linear programming in 3-dimensional case, where the
decision variables are (z1, z2, z3) ∈ R3. The boundary constraints are illustrated as the surface
of the cube, and additional constraints other than boundary constraints are illustrated as the surface
generated by blue lines. In figure 4 (left), extreme points corresponding only to boundary constraints
are marked as black dots, and other extreme points are marked as blue dots.

The objective of the optimization is to maximize f(z) = c1z1 + c2z2 + c3z3. The objective co-
efficients, (c1, c2, c3) determines the slope of the plane of the objective function, as illustrated as
the red arrow on figure 4. In figure 4, we consider possible two optimization outcomes. For case
(1), the optimal solution z∗ = (z∗1 , z

∗
2 , z
∗
3) occurs on the extreme point only generated by boundary

points, and for case (2): z∗ occurs on the other extreme points. In case (1), the optimal solution z∗ is
integer-valued. In our LP formulation, we have N ×M boundary constraints and N +M additional
constraints. Thus, depending on the value of the objective coefficient and constraint coefficients,
there may exist some integer-valued solution. In addition, the solution of the LP changes discontin-
uously changes on the continuous change on the slope of the objective plane. For this reason, we
need continuous interpolation of gradient of discontinuous surface ∂J

∂C .

A.2 TRAINING OF HIGH-LEVEL POLICY

The gradient of the high-level policy loss function J (θh) with respect to the policy parameter θh =
(θg, θc) can be computed as the following chain rule:

∂J (θh)

∂θh
=

∂J
∂Z∗

· ∂Z
∗(C)

∂C
· ∂C
∂θh

(14)

We can compute the gradient ∂Z∗(C)
∂θh

= ∂Z∗(C)
∂C · ∂C∂θh by differentiating the equality of the KKT

conditions. The previous works (Wilder et al., 2019; Ferber et al., 2020) proposed to add additional
quadratic regularization term γ||z|| in the objective function (equation 4) to make LP as smooth QP
and induce non-singular Jacobian matrix, to differentiate through the equality of the KKT conditions
as in Amos & Kolter (2017).

However, although our high-level optimization problem is formulated as an LP, there exist extreme
points generated only by boundary constraints (equation 7). Thus, optimal solution may integer-
valued on this extreme point (please refer to Appendix A.1 for more description). In this case, the
optimal solution may not vary continuously with respect to the input; a small change can induce an
abrupt change in the objective value. Thus, the ∂Z∗(C)

∂C be in the form of the piecewise constant,
making it difficult to estimate the gradient. To solve this issue, Vlastelica et al. (2019) presented
a piecewise linear surrogate loss surface that can approximate the original piecewise constant sur-
face ∂J

∂C of the combinatorial optimization layer. To obtain a meaningful differential value for this
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integer-solution, we modify the gradient ∂J∂C = ∂J
∂Z∗ ·

∂Z∗(C)
∂C by of solution gap between the original

solution of the optimization problem and the solution of the perturbed optimization problem, as:

∂J
∂C
≈ − 1

λ
(Z∗ − Z∗λ) (15)

where Z∗ and C are the optimal solution and coefficient used on the forward pass, respectively. Z∗λ
is the approximate solution computed as

Z∗λ = Z∗(C ′λ). (16)

Here, C ′λ is the perturbed cost coefficient computed as

C ′λ := C + λ · dJ
dZ

(Z∗) (17)

where λ is the hyperparemeter scaling the amount of perturbation considering the gradient respect
to the solution Z∗. dJ

dZ (Z∗) is the gradient of J with respect to solver output Z at given point Z∗.
The amount of solution gap between original solution and perturbed solution Z∗−Z∗λ is the slope of
piecewise linear function that will replace ∂J

∂C evaluated at C. One can guarantee that the modified
loss function is piecewise affine and similar to the original loss function (we refer to Vlastelica et al.,
2019 for more detail). In a backward pass, equation 15 replaces ∂J

∂Z∗ ·
∂Z∗(C)
∂C in equation 12.

A.3 TRAINING OF LOW-LEVEL PARAMETERS

The objective of the low-level policy is to maximize a sum of discounted individual low-level return
when assigned to a task, J (θl) = E[

∑
t

∑
i γ

trlt,i] ≈ E(s,aht,i,a
l
t,i,r

l
i,s
′)∼D[

∑
iQ

l(st, a
l
t,i|aht,i;φl)].

The low-level critic is trained to minimize the mean squared error between predicted low-level critic
value and target value,

L(φl) = E(s,ahi ,a
l
i,r

l,s′)∼D

[∑
i

(
Ql(hAt,i, h

T
t,aht,i

, alt,i;φl)− y
)2]

(18)

where y is the target computed as y = rlt,i+γ ·maxalt,i Q
l(hAt+1, h

T
t+1,ahi

, alt+1,i; φ̄l) . The low-level
policy either can be continuous or discrete. For continuous policy, we use deep deterministic policy
gradient method,

∇θlJ (θl) = E(s,ali,a
h
i ,s
′,rli)∼D

[
∇aliQ

l(hAi , h
T
ahi
, ali;φl)∇θlπl(ali|hAi , hTahi ; θl)

]
(19)

For discrete policy, we train policy using actor-critic,

∇θlJ (θl) = E(s,ali,a
h
i ,s
′,rli)∼D

[
∇θl{Ql(hAi , hTahi , a

l
i; φ̄l)− V l(hAi , hTahi )} · ∇θlπl(ali|hAi , hTahi ; θl)

]
(20)

As both high-level actor and low-level actor takes as input the hidden embedding of the graph,
we need to either freeze the parameters of GNN or train whole networks together. Therefore, we
set the global loss as the weighted sum of low-level parameters and high-level parameters, L =
w ·(∇θlJ (θl)+L(θl))+(1−w)·(∇θhJ (θh)+L(θh)). This also accelerates the policy training. At
the beginning of the training, high-level policies are harder to train than low-level policies because
high-level rewards are more sparse than low-level rewards. We set w = 1 initially and lineally
decayed to w = 0 at the end of the training.

A.4 HYPERAPAREMETERS

The hyperparameters of LPMARL used in the experiment are summarized in table 4. We used an
CVXPY solver (Diamond & Boyd, 2016) to solve the linear programming in section 4.

For other baselines algorithms, we used 2-layered MLP with LeakyReLU activation for every policy
network and actor network. Additionally , 4 attention heads are considered on MAAC. The opti-
mizer, learning rate, and discounting rate γ are set to be the same as the LPMARL, as in table 4.
As the batch size, training steps, and replay buffer size are different for each experiment, these are
given in Appendix A.5.

13



Under review as a conference paper at ICLR 2022

Table 4: Hyperparemeters of LPMARL

Hyperparemter Values

MLP units for GNN, f(·; θNg ), f(·; θMg ), f(·; θvg) [32,32]
MLP units for coefficient matrix, f(·; θc) [64,64]

MLP units for policy network, f(·; θh), f(·; θl) [64,64]
MLP units for critic network f(·;φh), f(·;φl) [64,64]

Nonlinear activation LeakyReLU, negative slope=0.01
learning rate 10−3

Discount rate, γ 0.99
λ 40

Optimizer Adam

A.5 DETAILS ABOUT EXPERIMENTS

A.5.1 SINGLE-STEP GROUPING ENVIRONMENT

We run 10,000 episodes (1 step per episode) for training each algorithm. For every algorithms, we
set the size of the replay buffer as 500, and set batch size as 100. Agents receiveR = 10 WhenK =
|{ai}i∈N | (agents are exactly divided intoK groups), and get rewardR = 10−2 · |K − |{ai}i∈N ||.

A.5.2 COOPERATIVE NAVIGATION

We used 50,000 episodes with 50 timesteps. For every algorithm, we set the size of the replay buffer
as 5,000 with a batch size of 100 to train. For LPMARL, we set ki, the capacity constraint coefficient
of 5 as 1 at every scenario. In addition, we decayed the w by 5× 10−5 at every episode.

The Ornstein-Uhlenbeck process with µ = 0.15 and σ = 0.3 is employed for exploration. The
initial location of agents and landmarks are randomly spawn on [−1, 1]× [−1, 1].

A.5.3 STARCRAFT MULTI-AGENT CHALLENGE

We train all models over 10,000 episodes. For every algorithm, we set the size of the replay buffer as
5,000 with a batch size of 100 to train. For LPMARL, we set ki, the capacity constraint coefficient
of equation 5 same to M at every scenario. In addition, we decayed the w by 2 × 10−4 at every
episode.

We considered three SMAC scenarios:

• 3m: 3 marines (N = 3) versus 3 marines (M = 3). The episode limit is 60 timesteps.
• 2m vs 1z: 2 marines (N = 2) versus 1 zealot (M = 1). The episode limit is 150 timesteps.
• 3s vs 5z: 3 stalker (N = 3) versus 5 zealots (M = 5). The episode limit is 150 timesteps.

Difficulty levels of scenarios are all set to be very difficult (7).
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