

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  

# ACTIVATION WITH INTRINSIC-EXTRINSIC CONSENSUS

**Anonymous authors**

Paper under double-blind review

## ABSTRACT

Artificial Neural Networks (ANNs) are powerful tools for complex pattern recognition and decision-making. While existing activation mechanisms often promote sparsity through thresholding, they lack an explicit assessment of channel relevance, making networks susceptible to interference from noisy channels. Such irrelevant activations can propagate through the network and adversely affect the final decision. Inspired by observations that channel relevance can be assessed from both intrinsic activity levels and extrinsic decision weights—and that a strong consensus exists between these two aspects—this paper proposes AIEC (Activation with Intrinsic-Extrinsic Consensus), a novel activation mechanism designed to identify and suppress irrelevant channels during training. AIEC consists of three components: an intrinsic Activation-Counting Unit that tracks channel activation statistics, an extrinsic Decision-Making Unit that learns channel decision weights, and a Consensus Gatekeeping Unit that suppresses irrelevant channels based on the agreement between the intrinsic and extrinsic assessments. Extensive experiments demonstrate that AIEC effectively suppresses irrelevant channels and facilitates sparser neural representations. Furthermore, AIEC is compatible with a wide range of mainstream ANN architectures and achieves superior performance compared to existing activation mechanisms across multiple tasks and domains.

## 1 INTRODUCTION

Artificial Neural Networks (ANNs) (LeCun et al., 2015) have demonstrated remarkable capabilities in solving complex pattern recognition and decision-making problems. From original Multi-Layer Perceptron (MLP) (McClelland et al., 1987) to classical Convolutional Neural Networks (CNNs) (LeCun et al., 1998) and trendsetting Vision Transformers (ViTs) (Han et al., 2022), their evolving architectures have driven breakthroughs in computer vision (Voulodimos et al., 2018) and beyond (Zhou et al., 2022; Ren et al., 2023). A key factor behind their success lies in their feature learning. In particular, channel-wise features are crucial in semantic abstraction, forming the critical foundation for the networks to understand data and make decisions.

As a core component of ANNs’ feature learning, activation mechanisms like ReLU (Glorot et al., 2011) employ thresholding to sparsify representations, achieving preliminary feature selection and offering advantages such as information disentanglement, linear separability, and potential generalization ability (Glorot et al., 2011). However, such mechanisms rely solely on instantaneous activation intensity and lack explicit assessment of channel relevance: on one hand, they struggle to distinguish transient noise from genuine features; on the other hand, they remain oblivious to channels’ actual contributions to the network’s decision. This limitation makes it difficult to effectively prevent noise interference from irrelevant channels. The erroneous activation of these channels may be amplified by subsequent layers, ultimately affecting the network’s final decision. This highlights the urgent need for channel relevance assessment during the training process.

As observed in Figure 1, channel relevance can be measured from both intrinsic and extrinsic aspects. Intrinsically, under stimuli of homogeneous samples, some channels frequently activate and contribute to the network’s decision, whereas the majority of channels, though rarely active, should ideally remain entirely silent. Extrinsically, the decision weights learned by a linear classifier acting on the post-activation feature vector can also reflect each channel’s relevance to the final decision. Moreover, a strong consistency is observed between the intrinsic and extrinsic aspects, with both pointing to the same set of critical channels. This consensus can guide the network in assessing channel relevance throughout training and further suppressing interference from less relevant channels.



Figure 1: The intrinsic activity level (a1) and extrinsic decision weight (a2) are recorded for each channel of the feature vector after ReLU in the final block of ViT-Tiny, specifically for the “truck” category in the CIFAR-10 dataset. The activity level of a channel is computed based on its historical activation statistics over samples from the “truck” category, defined as “(number of activations - number of inhibitions) / total sample count”. The decision weight is learned through a linear classifier applied to the post-activation feature vector. (b1) is (a1) sorted in descending order of activity level, and (b2) is (a2) re-indexed following the index order of (b1).

To address the lack of channel relevance assessment in existing activation mechanisms, and based on the above observations, we propose AIEC (Activation with Intrinsic-Extrinsic Consensus), a novel activation mechanism designed to identify and suppress irrelevant feature channels. AIEC integrates online assessment established through intrinsic-extrinsic consensus to identify irrelevant channels. At the intrinsic aspect, AIEC tracks threshold-activation statistics for each channel across different categories in real time, establishing a channel relevance assessment based on channels’ activity levels. At the extrinsic aspect, AIEC learns decision weights for each channel through supervised feedback, constructing a channel relevance assessment based on channels’ influence on the network’s final decision. The final criterion for irrelevant channel identification is the consensus between the intrinsic and extrinsic assessments. Guided by this consensus, AIEC performs channel-wise gatekeeping for noise cleaning, effectively suppressing activation responses from irrelevant channels while preserving those from relevant channels. Moreover, the proposed AIEC is fast during both training and inference phases. Extensive experiments demonstrate that the proposed AIEC achieves outstanding performance compared to existing activation mechanisms across various mainstream ANN architectures, datasets, and multiple tasks and domains.

The contributions of this paper are summarized as follows:

- The observations that channel relevance can be assessed from two dimensions: intrinsic activity levels and extrinsic decision weights, and that a high consensus exists between them. This consensus provides a reliable basis for assessing channel relevance, an aspect overlooked by existing activation mechanisms.
- The proposal of AIEC (Activation with Intrinsic-Extrinsic Consensus), an innovative activation mechanism that identifies irrelevant channels based on the consensus of intrinsic and extrinsic aspects, and performs channel-wise gatekeeping for noise cleaning.
- Extensive experiments demonstrate that the proposed AIEC delivers outstanding performance compared to existing activation mechanisms across various mainstream ANN architectures, datasets, and multiple tasks and domains.

## 2 OBSERVATIONS

This section presents observations on ANN’s channel activation from both intrinsic and extrinsic aspects, providing insights for addressing deficiencies in existing activation mechanisms.

**Observation 1:** Variance in channel activity levels intrinsically reflects channel relevance.

Under threshold-based activation (e.g., ReLU), relevant signals get activated while irrelevant ones are inhibited. As illustrated in Figure 1(a1), when numerous homogeneous samples are input, different channels show different activity levels, which is deemed to be positively correlated with the channels’



Figure 2: The proposed AIEC (Activation with Intrinsic-Extrinsic Consensus) employs a basic threshold activation mechanism that provides a prior partition boundary (activation threshold) to divide feature channels into irrelevant and relevant groups. Building upon this, intrinsic and extrinsic channel relevance assessments are derived respectively through activation-counting and decision-making processes in a data-driven manner. Finally, a posterior partition boundary between irrelevant and relevant channels is established through intrinsic-extrinsic consensus, enabling channel-wise gatekeeping that effectively suppresses irrelevant channels.

relevance. Also in Figure 1(a1), for classification tasks, each category is correlated with only a sparse and specific set of channels, indicating the presence of a significant proportion of redundant/irrelevant channels in the network, and ideally, these irrelevant channels should remain silent.

**Observation 2:** *Linear classifier acting on activated features learns distinct decision weights for each channel, extrinsically indicating channel relevance.*

For classification tasks, we introduce a linear classifier (without the bias term) on the post-activation feature vector, whose label is the same as the main task. The learned decision weights per channel are shown in Figure 1(a2). It is observed that only a small subset of channels acquires high weights. The underlying mechanism is that: the predicted score (i.e., logit) is the weighted summation of the non-negative activation values of all channels and their corresponding weights. To increase the predicted score for the target category, the linear classifier tends to assign higher weights to important channels to amplify their impact. Consequently, the weights learned by the linear classifier can quantify the relevance of channels to the network’s final decision from an extrinsic view.

**Observation 3:** *Intrinsic and extrinsic aspects show consensus for channel relevance assessment.*

We sort Figure 1(a1) in descending order of activity level to obtain Figure 1(b1), and then re-index Figure 1(a2) following the index order of Figure 1(b1) to obtain Figure 1(b2). It can be observed that the intrinsic and extrinsic observations exhibit consistency, as they both point to some common channels, suggesting that these channels are more likely to be task-irrelevant.

### 3 METHODOLOGY

As illustrated in Figure 2, we propose AIEC (Activation with Intrinsic-Extrinsic Consensus), a novel activation mechanism designed to identify and suppress irrelevant feature channels. AIEC integrates four core components: (1) a basic Threshold Activation Unit (TAU), (2) an intrinsic Activation-Counting Unit (ACU) that tracks each channel’s activation statistics and provides intrinsic channel relevance assessment, (3) an extrinsic Decision-Making Unit (DMU) that learns each channel’s decision weight and provides extrinsic channel relevance assessment, and (4) a Consensus Gatekeeping Unit (CGU) that pinpoints and suppresses irrelevant channels based on the consensus of intrinsic ACU and extrinsic DMU.

#### 3.1 THRESHOLD ACTIVATION UNIT

As a basic part, Threshold Activation Unit (TAU) functions as a gating mechanism for signal transmission. Similar to biological pulse neurons (Hodgkin & Huxley, 1952), given a non-negative activation threshold  $\tau$ , the input signal  $x$  is allowed to pass to the next layer as it exceeds the threshold

162  $\tau$ , otherwise it gets inhibited to zero. The TAU’s operation on input  $x$  can be expressed as  
 163

$$164 \quad \text{TAU}(x) = \begin{cases} x, & \text{if } x > \tau \\ 165 \quad 0, & \text{if } x \leq \tau \end{cases}. \quad (1)$$

166 Consider a pre-activation feature map  $\mathbf{F} \in \mathbb{R}^{H \times W \times C}$  with  $C$  channels. The post-activation feature  
 167 map  $\mathbf{A} \in \mathbb{R}_{[0,+\infty]}^{H \times W \times C}$  is obtained by applying the TAU element-wise to  $\mathbf{F}$ :  
 168

$$169 \quad \mathbf{A} = \text{TAU}(\mathbf{F}). \quad (2)$$

170 While TAU brings some sparsity to feature representation, its effectiveness in identifying truly task-  
 171 irrelevant channels and inhibiting their noise remains limited. Subsequent sections show how to  
 172 overcome this by leveraging the consensus of intrinsic and extrinsic channel relevance assessment for  
 173 sharper suppression.  
 174

### 175 3.2 INTRINSIC AND EXTRINSIC ASSESSMENTS

177 Operating on the post-activation feature at the channel level, this section aims to identify irrelevant  
 178 channels from the intrinsic and extrinsic views, respectively.  
 179

180 First, perform global average pooling on the post-activation feature map  $\mathbf{A}$  to obtain the global feature  
 181 vector  $\mathbf{a} \in \mathbb{R}_{[0,+\infty]}^C$ :

$$182 \quad \mathbf{a} = \frac{1}{HW} \sum_{h=1}^H \sum_{w=1}^W \mathbf{A}_{h,w}. \quad (3)$$

184 **For intrinsic channel relevance assessment**, Activation-Counting Unit (ACU) intrinsically quantifies  
 185 channel relevance by statistically measuring each channel’s activity level. For a given dataset with  
 186  $K$  categories, an ACU maintains three counters for each category:  $\{\theta^k, \eta^k, \phi^k\}_{k=1}^K$ . Over samples  
 187 from category  $k$ ,  $\theta^k \in \mathbb{N}^C$ ,  $\eta^k \in \mathbb{N}^C$ , and  $\phi^k \in \mathbb{N}^C$  tracks each channel’s historical activation  
 188 statistics: the number of activations after TAU, the number of inhibitions after TAU, and the total  
 189 sample count. Specifically, for an input data of category  $k$ , denote  $\mathbf{a}^k \in \mathbb{R}_{[0,+\infty]}^C$  as its channel-level  
 190 activated feature (Eq. 3). Since we only focus on whether a channel is activated or not,  $\mathbf{a}^k$  is binarized  
 191 to  $\tilde{\mathbf{a}}^k \in \mathbb{1}^C$  as follows:

$$192 \quad \tilde{\mathbf{a}}_c^k = \begin{cases} 1, & \text{if } \mathbf{a}_c^k > 0 \\ 193 \quad 0, & \text{if } \mathbf{a}_c^k = 0 \end{cases}. \quad (4)$$

194 Next, based on  $\tilde{\mathbf{a}}^k$ , the ACU updates the activation statistics  $\theta^k$ ,  $\eta^k$ , and  $\phi^k$  as follows:  
 195

$$196 \quad \theta^{k,t} = \theta^{k,t-1} + \tilde{\mathbf{a}}^k, \quad \eta^{k,t} = \eta^{k,t-1} + (1 - \tilde{\mathbf{a}}^k), \quad \phi^{k,t} = \phi^{k,t-1} + 1, \quad (5)$$

198 where  $t - 1$  and  $t$  denote previous and current iteration, respectively.  $\mathbf{1} \in \mathbb{1}^C$  is a vector full of  
 199 one. In implementation, only samples enabling correct predictions from the Decision-Making Unit  
 200 described below are included in the statistics to obtain more accurate results. From these statistics, we  
 201 define “relative firing rate”  $\mathbf{v}^k \in \mathbb{R}_{[-1,1]}^C$ , which quantifies each channel’s activity level for category  $k$ :  
 202

$$203 \quad \mathbf{v}^{k,t} = \frac{\theta^{k,t} - \eta^{k,t}}{\phi^{k,t}}. \quad (6)$$

205 According to the principle of threshold activation, signals from irrelevant channels tend to be inhibited  
 206 when passing through the TAU, resulting in these channels’ low activity level. The intrinsic channel  
 207 relevance division for each category is represented by  $\{\mathcal{G}_c^{k,\text{Intr}}\}_{k=1}^K$ , where  $\text{Intr}$  denotes the term  
 208 “Intrinsic”. With zero as the natural demarcation point,  $\mathcal{G}_c^{k,\text{Intr}} \in \mathbb{1}^C$  can be established as  
 209

$$210 \quad \mathcal{G}_c^{k,\text{Intr}} = \begin{cases} 0, & \text{if } \mathbf{v}_c^k > 0 \\ 211 \quad 1, & \text{if } \mathbf{v}_c^k \leq 0 \end{cases}, \quad (7)$$

212 where the indicator “1” signifies potential irrelevant channels.  
 213

214 **For extrinsic channel relevance assessment**, Decision-Making Unit (DMU) extrinsically quantifies  
 215 channel relevance from the natural reflection of the network’s decision. A DMU contains  $K$  learnable  
 216 decision weights  $\{\mathbf{w}^k\}_{k=1}^K$ , respectively for the  $K$  categories, where  $\mathbf{w}^k \in \mathbb{R}^C$ . For an input data of

category  $k$ , denote  $\mathbf{a}^k \in \mathbb{R}_{[0,+\infty]}^C$  as its channel-level activated feature (Eq. 3). Then, linear projection and softmax are applied to  $\mathbf{a}^k$  to obtain the intermediate predictions  $\{p^k\}_{k=1}^K$  for each category:

$$\{p^k\}_{k=1}^K = \text{softmax}(\mathbf{a}^k \cdot \{\mathbf{w}^k\}_{k=1}^K), \quad (8)$$

where  $p^k \in [0, 1]$  is the predicted probability for category  $k$ . After that, compute the auxiliary loss aiming to minimize the difference between the prediction  $p^k$  and its label  $y^k \in \{0, 1\}$  as follows:

$$\mathcal{L}_{aux} = - \sum_{k=1}^K y^k \log(p^k). \quad (9)$$

The decision weight  $\mathbf{w}^k \in \mathbb{R}^C$  being learned through  $\mathcal{L}_{aux}$  continuously quantifies each channel’s contribution/relevance to the network’s decision for category  $k$ . The extrinsic channel relevance division for each category is represented by  $\{\mathcal{G}^{k, Extr}\}_{k=1}^K$ , where  $Extr$  denotes the term “Extrinsic”. With zero as the natural demarcation point,  $\mathcal{G}^{k, Extr} \in \mathbb{1}^C$  can be established as

$$\mathcal{G}_c^{k, Extr} = \begin{cases} 0, & \text{if } \mathbf{w}_c^k > 0 \\ 1, & \text{if } \mathbf{w}_c^k \leq 0 \end{cases}, \quad (10)$$

where the indicator “1” signifies potential irrelevant channels.

### 3.3 GATEKEEPING WITH CONSENSUS

**With the consensus of intrinsic and extrinsic channel relevance assessment**, Consensus Gatekeeping Unit (CGU) is performed to clean the responses from irrelevant channels during training. The final channel relevance division  $\{\mathcal{G}^k\}_{k=1}^K$  for each category is the intersection (i.e., logical “and”) of the intrinsic division and the extrinsic division:

$$\{\mathcal{G}^k\}_{k=1}^K = \{\mathcal{G}^{k, Intr} \cap \mathcal{G}^{k, Extr}\}_{k=1}^K. \quad (11)$$

Based on this consensus, given an input data of category  $k$ , first filter out irrelevant channels from  $\mathbf{a}^k$  by  $\mathcal{G}^k$ :

$$\check{\mathbf{a}}^k = \mathbf{a}^k \odot \mathcal{G}^k, \quad (12)$$

where  $\odot$  denotes the Hadamard Product. Then, impose gatekeeping on the filtered irrelevant channels by constructing a new loss item  $\mathcal{L}_{gate}$  as follows:

$$\mathcal{L}_{gate} = \frac{\sum_{c=1}^C \|\check{\mathbf{a}}_c^k\|_2}{\sum_{c=1}^C \mathcal{G}_c^k}. \quad (13)$$

In this way, only the activation responses from channels with low relevance will be gradually suppressed, while the ones from other channels with high relevance are preserved.

### 3.4 NEURAL NETWORK LEARNING

The proposed AIEC (Activation with Intrinsic-Extrinsic Consensus) can replace the network’s original activation mechanisms. The gatekeeping applies to the network’s activated global feature. Networks that extract feature maps/sequences compute the global feature by taking the global average of the feature maps/sequences along the channels. Regarding some Transformer models that incorporate a class token, simply peel off the class token separately as the global feature while applying the corresponding gatekeeping. Additionally, for Transformer models, the proposed AIEC is applied to each block, as Transformers excel in capturing global context throughout, while for CNN models, AIEC is applied to the last block since high-level semantics only exist in deep representations (Raghu et al., 2021). The counters in ACU are cleared at the beginning of each epoch to guarantee the timeliness and accuracy of statistics. The final loss  $\mathcal{L}$  is expressed as

$$\mathcal{L} = \mathcal{L}_{task} + \lambda_{aux} \cdot \frac{1}{N} \sum_{n=1}^N \mathcal{L}_{aux}^n + \lambda_{gate} \cdot \frac{1}{N} \sum_{n=1}^N \mathcal{L}_{gate}^n, \quad (14)$$

where  $\mathcal{L}_{task}$  is the primary loss for the specific task; for example, in the context of a standard classification task,  $\mathcal{L}_{task}$  represents the cross-entropy loss.  $N$  is the number of layers in the network that have AIEC applied, and  $\lambda_{\{aux, gate\}}$  are balancing parameters.

270 4 EXPERIMENTAL STUDY  
271272 **Datasets.** We adopt seven datasets, including four vision datasets: CIFAR-10 (Krizhevsky et al.,  
273 2009), CIFAR-100 (Krizhevsky et al., 2009), ImageNet-100 (Deng et al., 2009), and ImageNet-1K  
274 (Deng et al., 2009), and three non-vision datasets: Elliptic (Weber et al., 2019), T-Finance (Tang  
275 et al., 2022), and Weibo21 (Nan et al., 2021), to verify the effectiveness of the proposed AIEC.276 **Compared methods.** The proposed AIEC is compared with different types of mainstream activation  
277 mechanisms mentioned in Related Work §5.1, including Softplus (Dugas et al., 2000), ELU (Clevert  
278 et al., 2015), SELU (Klambauer et al., 2017), SILU (Ramachandran et al., 2017), ReLU (Glorot et al.,  
279 2011), GELU (Hendrycks & Gimpel, 2016), and GDN (Ballé et al., 2015).280 **Experimental settings.** The image size of CIFAR-{10,100} remains 32×32, while the images in  
281 ImageNet-{100,1K} are uniformly scaled to 224×224. To ensure the generality of the network, the  
282 activation threshold  $\tau$  is uniformly set to 0. The balancing parameter  $\lambda_{aux}$  for the auxiliary loss  $\mathcal{L}_{aux}$   
283 is empirically set to 1 to match the magnitude of the task loss  $\mathcal{L}_{task}$ , and the balancing parameter  
284  $\lambda_{gate}$  for the gatekeeping loss  $\mathcal{L}_{gate}$  varies depending on networks and datasets as discussed in  
285 Appendix §A.1. All experiments use the same data augmentations provided by timm (Wightman,  
286 2019), AdamW optimizer with weight decay of 0.05, drop-path rate of 0.1, gradient clipping norm of  
287 1.0, and cosine annealing learning rate scheduler with linear warm-up. All experiments are trained  
288 for 300 epochs from scratch. The automatic mixed precision training strategy is adopted to speed  
289 up the training. All other training settings, including batch size, learning rate, warm-up epochs, and  
290 so on, are kept identical throughout each set of comparative experiments. Note that the numerical  
291 results are the average under three different random seeds, and no pre-training is used.292 4.1 AIEC ON ViTs AND CNNs  
293294 The proposed AIEC can be incorporated into popular Vision Transformer (ViT) and its variants.  
295 Table 1 shows the top-1 accuracy (%) across CIFAR-{10,100} and ImageNet-{100,1K} using the  
296 proposed AIEC on five different ViT architectures: ViT (Dosovitskiy et al., 2020), DeiT (Touvron  
297 et al., 2021a), CaiT (Touvron et al., 2021b), PVT (Wang et al., 2021), and TNT (Han et al., 2021).  
298 The proposed AIEC can replace all the existing activations in each block. The results consistently  
299 illustrate that AIEC outperforms the baselines, showcasing its robustness.300 The proposed AIEC is also evaluated on various mainstream CNNs, including AlexNet (Krizhevsky  
301 et al., 2017), VGG (Simonyan & Zisserman, 2014), MobileNet (Howard et al., 2017), ShuffleNet(V2)  
302 (Ma et al., 2018), and ResNet (He et al., 2016). The proposed AIEC replaces the original activations  
303 in the last block since previous works have shown that high-level semantics in CNNs only exist  
304 in deep representations (Raghu et al., 2021). The results in Table 2 highlight the versatility and  
305 robustness of AIEC in handling diverse CNN architectures and datasets.306 4.2 ABLATION STUDY  
307308 Ablation study is conducted, as presented in Table 3. First, solely introducing  $\mathcal{L}_{aux}$  has no effect,  
309 indicating that the actual performance contribution of AIEC comes from  $\mathcal{L}_{gate}$ . Moreover, ACU  
310 including all samples for statistics does not perform as well as only counting those that lead to correct  
311 DMU predictions. Furthermore, the performance with the intrinsic-extrinsic consensus ( $AIEC_{I \cap E}$ ) is  
312 better than using a single  $AIEC_I$  or  $AIEC_E$ . The consensus of the two assessments ( $AIEC_{I \cap E}$ ) is  
313 better than the combination of both ( $AIEC_{I \cup E}$ ), as the consensus can reduce misjudgments. Finally,  
314 indiscriminately suppressing all channels ( $AIEC_{all}$ ) yields no performance improvement.315 4.3 COMPUTATIONAL COSTS  
316317 ACU, DMU, and CGU only work during the training phase, and in the inference phase, only TAU  
318 needs to be involved. Table 4 presents the computational costs during training and inference regarding  
319 “GPU Memory (GiB)” and “Latency (s)” (the average time it takes for a network to process a batch of  
320 data). Notably, the activation methods used in original networks should be implemented manually  
321 as our AIEC does. Using the methods directly from pre-made libraries (like torch.nn) can result in  
322 unfair comparisons due to their high optimization at the low level. Table 4 shows that AIEC’s training  
323 GPU overhead is negligible and its inference speed is on par with other methods.

324 Table 1: Top-1 accuracy (%) across the CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K datasets  
 325 using the proposed AIEC on Vision Transformer (ViT) and its variants.

| Top-1 Acc / % |           | Softplus | ELU  | SELU | SiLU | ReLU | GELU | GDN  | AIEC        |
|---------------|-----------|----------|------|------|------|------|------|------|-------------|
| CIFAR-10      | ViT-Tiny  | 84.3     | 82.0 | 79.4 | 85.5 | 89.9 | 89.2 | 81.8 | <b>91.8</b> |
|               | DeiT-Tiny | 84.7     | 81.4 | 79.9 | 86.6 | 89.6 | 89.2 | 83.0 | <b>91.9</b> |
|               | CaiT-XXS  | 82.5     | 80.7 | 78.4 | 86.6 | 89.4 | 88.7 | 80.0 | <b>90.5</b> |
|               | PVT-Tiny  | 90.6     | 89.3 | 85.4 | 92.5 | 93.0 | 92.8 | 82.8 | <b>94.0</b> |
|               | TNT-Small | 88.3     | 85.4 | 83.7 | 90.5 | 90.8 | 91.1 | 85.1 | <b>92.7</b> |
| CIFAR-100     | ViT-Tiny  | 62.4     | 60.0 | 57.5 | 65.5 | 65.7 | 65.4 | 59.4 | <b>71.1</b> |
|               | DeiT-Tiny | 63.4     | 60.0 | 58.3 | 67.1 | 67.0 | 67.0 | 59.8 | <b>71.8</b> |
|               | CaiT-XXS  | 60.4     | 59.3 | 55.8 | 63.9 | 65.8 | 65.5 | 56.2 | <b>70.0</b> |
|               | PVT-Tiny  | 69.5     | 69.3 | 65.7 | 70.2 | 70.9 | 70.6 | 64.4 | <b>76.0</b> |
|               | TNT-Small | 65.2     | 63.8 | 60.9 | 65.1 | 65.4 | 64.4 | 62.5 | <b>73.9</b> |
| ImageNet-100  | ViT-Tiny  | 74.1     | 68.9 | 66.4 | 74.1 | 75.4 | 76.4 | 67.9 | <b>82.1</b> |
|               | DeiT-Tiny | 75.3     | 69.4 | 67.0 | 75.1 | 75.6 | 74.6 | 66.3 | <b>82.5</b> |
|               | CaiT-XXS  | 70.9     | 69.1 | 65.9 | 76.1 | 76.0 | 76.7 | 69.5 | <b>81.3</b> |
|               | PVT-Tiny  | 79.5     | 77.1 | 76.1 | 79.5 | 81.9 | 81.4 | 75.8 | <b>86.3</b> |
|               | TNT-Small | 78.9     | 79.3 | 76.4 | 77.6 | 79.9 | 77.2 | 76.9 | <b>86.5</b> |
| ImageNet-1K   | ViT-Tiny  | 70.0     | 64.2 | 63.1 | 66.9 | 70.9 | 70.4 | 65.2 | <b>73.0</b> |
|               | DeiT-Tiny | 71.9     | 67.9 | 66.2 | 72.0 | 73.2 | 73.0 | 66.4 | <b>73.7</b> |
|               | CaiT-XXS  | 70.3     | 68.1 | 66.7 | 73.2 | 74.0 | 73.6 | 66.1 | <b>74.1</b> |
|               | PVT-Tiny  | 71.5     | 69.2 | 68.5 | 72.8 | 73.7 | 73.5 | 66.5 | <b>74.6</b> |
|               | TNT-Small | 72.0     | 70.7 | 70.3 | 71.5 | 73.4 | 73.3 | 68.2 | <b>78.1</b> |

346 Table 2: Top-1 accuracy (%) across the CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K datasets  
 347 using the proposed AIEC on various CNN architectures.

| Top-1 Acc / % |            | Softplus | ELU  | SELU | SiLU        | ReLU        | GELU | GDN  | AIEC        |
|---------------|------------|----------|------|------|-------------|-------------|------|------|-------------|
| CIFAR-10      | AlexNet    | 85.6     | 86.1 | 85.7 | 86.0        | 86.0        | 85.8 | 85.4 | <b>86.3</b> |
|               | VGG-11     | 91.3     | 92.0 | 91.5 | 91.9        | <b>92.2</b> | 91.9 | 91.1 | <b>92.2</b> |
|               | MobileNet  | 87.4     | 87.7 | 87.2 | 87.8        | 87.4        | 87.4 | 87.0 | <b>89.0</b> |
|               | ShuffleNet | 89.2     | 89.0 | 88.9 | 89.3        | 89.4        | 89.3 | 88.5 | <b>89.9</b> |
|               | ResNet-18  | 94.6     | 94.7 | 94.6 | <b>95.1</b> | 95.0        | 94.9 | 94.0 | <b>95.1</b> |
| CIFAR-100     | AlexNet    | 57.6     | 58.4 | 58.1 | 58.1        | 57.2        | 57.4 | 56.8 | <b>58.9</b> |
|               | VGG-11     | 69.6     | 69.9 | 69.7 | 69.9        | 70.2        | 70.0 | 70.1 | <b>71.2</b> |
|               | MobileNet  | 65.4     | 65.5 | 65.6 | 65.2        | 66.0        | 65.4 | 64.8 | <b>66.1</b> |
|               | ShuffleNet | 66.2     | 66.1 | 65.9 | 66.3        | 66.3        | 66.2 | 65.6 | <b>66.9</b> |
|               | ResNet-18  | 75.5     | 75.7 | 75.6 | 76.1        | 75.7        | 75.6 | 74.3 | <b>77.0</b> |
| ImageNet-100  | AlexNet    | 75.7     | 76.0 | 75.7 | 76.6        | 76.3        | 76.3 | 75.5 | <b>79.2</b> |
|               | VGG-11     | 87.0     | 87.3 | 87.6 | 87.8        | 87.7        | 87.5 | 86.7 | <b>88.1</b> |
|               | MobileNet  | 80.6     | 79.3 | 79.2 | 80.1        | 80.6        | 80.5 | 78.7 | <b>80.8</b> |
|               | ShuffleNet | 80.9     | 80.9 | 80.4 | 81.7        | 81.6        | 81.6 | 80.0 | <b>82.2</b> |
|               | ResNet-18  | 84.6     | 84.4 | 84.1 | 84.9        | 84.9        | 84.7 | 83.5 | <b>86.5</b> |
| ImageNet-1K   | AlexNet    | 56.1     | 56.3 | 56.1 | 56.4        | 56.5        | 56.4 | 55.6 | <b>57.8</b> |
|               | VGG-11     | 68.4     | 68.2 | 67.8 | 69.0        | 69.0        | 69.1 | 68.1 | <b>70.1</b> |
|               | MobileNet  | 67.2     | 66.7 | 67.1 | 67.4        | 68.1        | 68.2 | 66.3 | <b>68.6</b> |
|               | ShuffleNet | 68.5     | 68.3 | 68.4 | 69.1        | 69.0        | 68.9 | 68.0 | <b>69.6</b> |
|               | ResNet-18  | 69.3     | 69.4 | 68.9 | 69.7        | 69.7        | 69.4 | 68.3 | <b>70.4</b> |

369 Table 3: Ablation study on CIFAR-100.  $AIEC_{\mathcal{L}_{aux}}$  denotes using the auxiliary loss  $\mathcal{L}_{aux}$  only.  $AIEC_{stats-all}$   
 370 denotes including all samples for ACU's statistics.  $AIEC_I$ ,  $AIEC_E$ ,  $AIEC_{I \cup E}$ , and  $AIEC_{I \cap E}$  denote AIEC with  
 371 the channel relevance assessment in the form of intrinsic only, extrinsic only, intrinsic-extrinsic combination,  
 372 and intrinsic-extrinsic consensus, respectively.  $AIEC_{all}$  denotes suppressing all channels indiscriminately.

| Top-1 Acc / % | $AIEC_{\mathcal{L}_{aux}}$ | $AIEC_{stats-all}$ | $AIEC_{all}$ | $AIEC_I$ | $AIEC_E$ | $AIEC_{I \cup E}$ | $AIEC_{I \cap E}$ |
|---------------|----------------------------|--------------------|--------------|----------|----------|-------------------|-------------------|
| ViT-Tiny      | 66.7                       | 70.3               | 65.8         | 69.7     | 68.5     | 69.6              | <b>71.1</b>       |
| ResNet-18     | 76.1                       | 76.8               | 75.7         | 76.3     | 76.6     | 76.6              | <b>77.0</b>       |

378 Table 4: Computational costs during training and inference regarding “GPU Memory (GiB)” and “Latency (s)”.  
 379 The networks were fed 224×224-pixel images with a batch size of 1024 on an NVIDIA A6000 GPU. “Latency”  
 380 refers to the average time it takes for a network to process a batch of data.

| Computational Costs        | ViT-Tiny |       |       | ResNet-18 |       |       |
|----------------------------|----------|-------|-------|-----------|-------|-------|
|                            | ReLU     | GELU  | AIEC  | ReLU      | GELU  | AIEC  |
| Training GPU Memory / GiB  | 32.2     | 28.3  | 32.5  | 24.3      | 27.9  | 24.8  |
| Inference GPU Memory / GiB | 4.8      | 4.8   | 4.9   | 7.4       | 7.4   | 7.4   |
| Training Latency / ms      | 540.7    | 640.9 | 592.0 | 417.5     | 437.6 | 421.9 |
| Inference Latency / ms     | 9.2      | 10.2  | 9.2   | 7.5       | 8.1   | 7.5   |

388  
 389 Table 5: The generalization performance of the proposed AIEC on the non-vision anomaly detection tasks  
 390 including finance fraud detection and fake news detection.

| Dataset        | T-Finance   |             |             | Elliptic    |             |             | Weibo       |             |             |       |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
|                | Metric      | AUC         | AP          | Rec@K       | AUC         | AP          | Rec@K       | AUC         | AP          | Rec@K |
| GCN-ReLU       | 92.9        | 75.8        | 70.6        | <b>81.1</b> | 21.3        | 25.4        | 98.5        | 94.0        | <b>90.2</b> |       |
| GCN-GELU       | 93.0        | 76.2        | 72.8        | 77.4        | 15.2        | 10.1        | <b>98.6</b> | 94.0        | 89.9        |       |
| GCN-AIEC       | <b>93.1</b> | <b>77.8</b> | <b>73.4</b> | 80.9        | <b>34.9</b> | <b>42.2</b> | <b>98.6</b> | <b>95.1</b> | <b>90.2</b> |       |
| GraphSAGE-ReLU | 84.5        | 60.3        | 63.7        | 84.9        | 35.0        | 38.2        | 96.6        | 92.2        | 88.2        |       |
| GraphSAGE-GELU | 84.9        | 52.9        | 58.5        | 85.0        | 35.1        | 41.0        | 97.3        | 93.3        | <b>89.3</b> |       |
| GraphSAGE-AIEC | <b>90.9</b> | <b>70.0</b> | <b>67.3</b> | <b>85.6</b> | <b>43.1</b> | <b>46.1</b> | <b>98.3</b> | <b>93.4</b> | <b>89.3</b> |       |



400  
 401 Figure 3: Visualization results. The intrinsic activity level (a1, b1) and extrinsic decision weight (a2, b2) are  
 402 recorded for each channel of the feature vector after the activation (ReLU vs AIEC) in the last block of ViT-Tiny,  
 403 specifically for the “truck” category in the CIFAR-10 dataset. More results are provided in Figure 6, 7, 8.  
 404  
 405

#### 416 4.4 GENERALIZATION TO OTHER TASKS

417 The proposed AIEC can also perform various other tasks or domains, like the non-vision task anomaly  
 418 detection, including finance fraud detection and fake news detection. For finance fraud detection, the  
 419 Elliptic (Weber et al., 2019) and T-Finance (Tang et al., 2022) datasets are employed. For fake news  
 420 detection, the Weibo21 (Nan et al., 2021) dataset is employed. GCN (Kipf & Welling, 2016) and  
 421 GraphSAGE (Hamilton et al., 2017) are chosen networks. The results are shown in Table 5.  
 422

#### 424 4.5 VISUALIZATION RESULTS

425 As shown in Figure 3, with the proposed AIEC, the activation responses become sparser, as can be  
 426 seen from the activity levels of the channels, implying that some irrelevant channels are identified  
 427 and suppressed. Moreover, the channel gatekeeping in AIEC leads to clearer sign boundaries in the  
 428 decision weights, reflecting that the network becomes more confident in assigning importance to  
 429 channels that consistently contribute to the correct decision. These phenomena suggest that AIEC  
 430 improves the precision of key feature extraction, which reduces learning difficulty and increases  
 431 interpretability. More visualizations and discussions are provided in Appendix §A.4.

432 

## 5 RELATED WORK

433 

### 5.1 ACTIVATION MECHANISMS

436 The activation mechanism (Dubey et al., 2022) plays a pivotal role in ANNs as it defines how neurons  
 437 respond to input signals, convert them into output signals, and transmit them to the subsequent layer.  
 438 Activation mechanisms are categorized into types, including logistic Sigmoid and Tanh variants  
 439 (LeCun et al., 1998), Rectified Linear Unit variants (Glorot et al., 2011), Exponential Linear Unit  
 440 variants (Clevert et al., 2015), Softplus variants (Dugas et al., 2000), probabilistic variants (Hendrycks  
 441 & Gimpel, 2016), and others (Ramachandran et al., 2017; Ballé et al., 2015; Lee et al., 2022).

442 In the widely used form of activation (LeCun et al., 1998; Glorot et al., 2011; Dugas et al., 2000;  
 443 Clevert et al., 2015; Hendrycks & Gimpel, 2016), irrelevant features are inhibited, and relevant  
 444 features gain amplified influence according to the response rule of the neuron. Furthermore, some  
 445 activation mechanisms (LeCun et al., 1998; Glorot et al., 2011; Dugas et al., 2000) can effectively  
 446 achieve data sparsity, diminish redundant information, and enable better feature distinction. Addi-  
 447 tionally, the activation mechanisms, such as ELU (Clevert et al., 2015) and SiLU (Ramachandran  
 448 et al., 2017) mentioned above, and others (Liu et al., 2020), contain learnable parameters inside the  
 449 activation itself. Parameters in Liu et al. (2020) can adapt to various data distributions, avoiding  
 450 gradient vanishing and explosion, thereby enhancing the convergence speed and precision of ANNs.  
 451 However, these extra parameters can only uniformly influence the response strength for all inputs,  
 452 and are learned without explicit supervision. Consequently, like ordinary activation mechanisms, they  
 453 primarily rely on instantaneous activation intensity to gate feature propagation, lacking interpretable  
 454 evidence for channel relevance awareness.

455 

### 5.2 FEATURE ATTRIBUTION TECHNIQUES

456 Feature attribution (Mandler & Weigand, 2024) aims to assess each feature’s contribution to the  
 457 network’s final decision, distinguishing relevant from irrelevant features. Class Activation Mapping  
 458 (CAM) (Zhou et al., 2016) computes the saliency map by projecting back the weights of the output  
 459 layer onto the input feature maps, which motivates us to explore similar patterns and design extrinsic  
 460 assessment for channel relevance in our study. Grad-CAM (Selvaraju et al., 2017) extends this to  
 461 any layer via the gradient relative to the target class. Built on it, Model Doctor (Feng et al., 2022)  
 462 applies constraints on erroneous channel gradients to correct the decision stream. GradToken (Cheng  
 463 et al., 2025) exploits class-aware gradients to decouple the tangled semantics in the class token and  
 464 leverages class-spatial token relations to generate relevance maps. Layer-wise Relevance Propagation  
 465 (LRP) (Bach et al., 2015) decomposes decisions by propagating attributions backward through the  
 466 network. Chefer et al. (2021), Wu & Ong (2021), and Ali et al. (2022) further extend and apply  
 467 the LRP technique in various tasks. Perturbation-based methods (Ivanovs et al., 2021) operate by  
 468 manipulating input pixels and observing output changes. Geva et al. (2022), Deisereth et al. (2023),  
 469 and Vilas et al. (2023) project internal representations into a human-understandable class embedding  
 470 space, and then determine the relevance of different image regions to the target class. FovEx (Panda  
 471 et al., 2025) combines biologically inspired foveation-based transformations with gradient-driven  
 472 overt attention to iteratively assess the relevance of each location.

473 These techniques inspire us to design a novel activation mechanism with an awareness of channel  
 474 relevance, based on each channel’s contribution to the network’s decision, and is able to effectively  
 475 suppress interference from irrelevant channels.

477 

## 6 CONCLUSION

478 In this paper, we propose AIEC (Activation with Intrinsic-Extrinsic Consensus), a novel activation  
 479 mechanism that identifies and suppresses irrelevant feature channels during training by leveraging  
 480 the consensus between intrinsic activity levels and extrinsic decision weights. Through extensive  
 481 experiments across vision and non-vision tasks, we demonstrate that AIEC consistently outperforms  
 482 existing activation mechanisms, promotes sparser and more interpretable representations, and gen-  
 483 eralizes effectively across diverse architectures, all with minimal computational overhead. Our work  
 484 highlights the importance of explicit channel relevance assessment and represents a step toward more  
 485 robust and effective activation mechanisms in deep learning.

486 REFERENCES  
487

488 Ameen Ali, Thomas Schnake, Oliver Eberle, Grégoire Montavon, Klaus-Robert Müller, and Lior  
489 Wolf. Xai for transformers: Better explanations through conservative propagation. In *International  
490 conference on machine learning*, pp. 435–451. PMLR, 2022.

491 Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,  
492 and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise  
493 relevance propagation. *PloS one*, 10(7):e0130140, 2015.

494 Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Density modeling of images using a  
495 generalized normalization transformation. *arXiv preprint arXiv:1511.06281*, 2015.

496

497 Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In  
498 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 782–791,  
499 2021.

500 Lin Cheng, Yanjie Liang, Yang Lu, and Yiu-ming Cheung. Gradtoken: Decoupling tokens with  
501 class-aware gradient for visual explanation of transformer network. *Neural Networks*, 181:106837,  
502 2025.

503 Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network  
504 learning by exponential linear units (elus). *arXiv preprint arXiv:1511.07289*, 2015.

505

506 Björn Deiseroth, Mayukh Deb, Samuel Weinbach, Manuel Brack, Patrick Schramowski, and Kristian  
507 Kersting. Atman: Understanding transformer predictions through memory efficient attention  
508 manipulation. *Advances in Neural Information Processing Systems*, 36:63437–63460, 2023.

509

510 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale  
511 hierarchical image database. In *IEEE conference on computer vision and pattern recognition*, pp.  
512 248–255. IEEE, 2009.

513

514 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
515 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
516 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint  
arXiv:2010.11929*, 2020.

517

518 Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep  
519 learning: A comprehensive survey and benchmark. *Neurocomputing*, 503:92–108, 2022.

520

521 Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating  
522 second-order functional knowledge for better option pricing. *Advances in neural information  
523 processing systems*, 13, 2000.

524

525 Zunlei Feng, Jiacong Hu, Sai Wu, Xiaotian Yu, Jie Song, and Mingli Song. Model doctor: A simple  
526 gradient aggregation strategy for diagnosing and treating cnn classifiers. In *Proceedings of the  
527 AAAI conference on artificial intelligence*, volume 36, pp. 616–624, 2022.

528

529 Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers  
530 build predictions by promoting concepts in the vocabulary space. *arXiv preprint arXiv:2203.14680*,  
531 2022.

532

533 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In  
534 *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp.  
535 315–323. JMLR workshop and conference proceedings, 2011.

536

537 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.  
538 *Advances in neural information processing systems*, 30, 2017.

539

540 Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in  
541 transformer. *Advances in neural information processing systems*, 34:15908–15919, 2021.

542

543 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,  
544 An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. *IEEE transactions on  
545 pattern analysis and machine intelligence*, 45(1):87–110, 2022.

540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image  
 541 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,  
 542 pp. 770–778, 2016.

543 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*  
 544 *arXiv:1606.08415*, 2016.

545 Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its  
 546 application to conduction and excitation in nerve. *The Journal of physiology*, 117(4):500, 1952.

547 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,  
 548 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for  
 549 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.

550 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In *Proceedings of the IEEE*  
 551 *conference on computer vision and pattern recognition*, pp. 7132–7141, 2018.

552 Maksims Ivanovs, Roberts Kadikis, and Kaspars Ozols. Perturbation-based methods for explaining  
 553 deep neural networks: A survey. *Pattern Recognition Letters*, 150:228–234, 2021.

554 Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.  
 555 *ArXiv*, abs/1609.02907, 2016.

556 Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing  
 557 neural networks. *Advances in neural information processing systems*, 30, 2017.

558 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

559 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional  
 560 neural networks. *Communications of the ACM*, 60(6):84–90, 2017.

561 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to  
 562 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

563 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444,  
 564 2015.

565 Kyungsu Lee, Jaeseung Yang, Haeyun Lee, and Jae Youn Hwang. Stochastic adaptive activation  
 566 function. *Advances in Neural Information Processing Systems*, 35:13787–13799, 2022.

567 Aizhu Liu, Haigen Hu, Tian Qiu, Qianwei Zhou, Qiu Guan, and Xiaoxin Li. Exploring optimal  
 568 adaptive activation functions for various tasks. In *IEEE international conference on bioinformatics*  
 569 and *biomedicine (BIBM)*, pp. 2290–2297. IEEE, 2020.

570 Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through  
 571  $l_0$  regularization. *arXiv preprint arXiv:1712.01312*, 2017.

572 Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for  
 573 efficient cnn architecture design. In *Proceedings of the european conference on computer vision*,  
 574 pp. 116–131, 2018.

575 Hannes Mandler and Bernhard Weigand. A review and benchmark of feature importance methods for  
 576 neural networks. *ACM Computing Surveys*, 56(12):1–30, 2024.

577 James L McClelland, David E Rumelhart, PDP Research Group, et al. *Parallel Distributed Processing, Volume 2: Explorations in the Microstructure of Cognition: Psychological and Biological Models*,  
 578 volume 2. MIT press, 1987.

579 Qiong Nan, Juan Cao, Yongchun Zhu, Yanyan Wang, and Jintao Li. Mdfend: Multi-domain fake  
 580 news detection. In *Proceedings of the 30th ACM International Conference on Information &*  
 581 *Knowledge Management*, pp. 3343–3347, 2021.

582 Mahadev Prasad Panda, Matteo Tiezzi, Martina Vilas, Gemma Roig, Bjoern M Eskofier, and Dario  
 583 Zanca. Fovex: Human-inspired explanations for vision transformers and convolutional neural  
 584 networks. *International Journal of Computer Vision*, pp. 1–23, 2025.

594 Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.  
 595 Do vision transformers see like convolutional neural networks? *Advances in neural information*  
 596 *processing systems*, 34:12116–12128, 2021.

597 Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv preprint*  
 598 *arXiv:1710.05941*, 2017.

600 Jing Ren, Feng Xia, Ivan Lee, Azadeh Noori Hoshyar, and Charu Aggarwal. Graph learning for  
 601 anomaly analytics: Algorithms, applications, and challenges. *ACM transactions on intelligent*  
 602 *systems and technology*, 14(2):1–29, 2023.

603 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,  
 604 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-  
 605 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,  
 606 2017.

607 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image  
 608 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

610 Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly  
 611 detection. In *International conference on machine learning*, pp. 21076–21089. PMLR, 2022.

612 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé  
 613 Jégou. Training data-efficient image transformers & distillation through attention. In *International*  
 614 *conference on machine learning*, pp. 10347–10357. PMLR, 2021a.

615 Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going  
 616 deeper with image transformers. In *Proceedings of the IEEE/CVF international conference on*  
 617 *computer vision*, pp. 32–42, 2021b.

618 Martina G Vilas, Timothy Schaumlöffel, and Gemma Roig. Analyzing vision transformers for image  
 619 classification in class embedding space. *Advances in neural information processing systems*, 36:  
 620 40030–40041, 2023.

621 Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios Protopapadakis, et al.  
 622 Deep learning for computer vision: A brief review. *Computational intelligence and neuroscience*,  
 623 2018, 2018.

624 Wenhui Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,  
 625 and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without  
 626 convolutions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.  
 627 568–578, 2021.

628 Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robin-  
 629 son, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with graph  
 630 convolutional networks for financial forensics. *arXiv preprint arXiv:1908.02591*, 2019.

631 Ross Wightman. Pytorch image models. <https://github.com/rwightman/pytorch-image-models>, 2019.

632 Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block  
 633 attention module. In *Proceedings of the European conference on computer vision (ECCV)*, pp.  
 634 3–19, 2018.

635 Zhengxuan Wu and Desmond C Ong. On explaining your explanations of bert: An empirical study  
 636 with sequence classification. *arXiv preprint arXiv:2101.00196*, 2021.

637 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep  
 638 features for discriminative localization. In *Proceedings of the IEEE conference on computer vision*  
 639 and *pattern recognition*, pp. 2921–2929, 2016.

640 Yu Zhou, Haixia Zheng, Xin Huang, Shufeng Hao, Dengao Li, and Jumin Zhao. Graph neural net-  
 641 works: Taxonomy, advances, and trends. *ACM transactions on intelligent systems and technology*,  
 642 13(1):1–54, 2022.

648 **A APPENDIX**649 **A.1 HYPERPARAMETER IMPACT ANALYSIS**

650 **Activation threshold  $\tau$  for the Threshold Activation Unit (TAU).** To achieve preliminary sparsity, 651 only input signals that exceed the threshold  $\tau$  are activated, while those below the threshold are 652 inhibited to zero. Therefore,  $\tau$  is a non-negative value. Figure 4 demonstrates that as  $\tau$  increases, 653 the performance decreases. Possible reasons could be the influence of weight initialization and 654 feature normalization operations. Typically, weights are initialized using a distribution with a mean 655 of zero, and normalization techniques such as layer normalization and batch normalization are 656 used to make the feature distribution centered around zero (by subtracting the feature mean) to 657 eliminate shifts in data covariates. Under these circumstances,  $\tau = 0$  becomes the optimal activation 658 threshold. Additionally, it may be feasible to modify the strategy for weight initialization and feature 659 normalization to achieve optimal effects when considering a positive  $\tau$ . 660

661 **Balancing parameter  $\lambda_{gate}$  for the gatekeeping loss  $\mathcal{L}_{gate}$ .** The optimal  $\lambda_{gate}$  for  $\mathcal{L}_{gate}$  is specific 662 to individual tasks. The relationship between  $\lambda_{gate}$  and the accuracy on CIFAR-100 with ViT-Tiny is 663 depicted in Figure 5. In this case, the optimal  $\lambda_{gate}$  is roughly 200, and too large a  $\lambda_{gate}$  can result in 664 negative side effects. For other trials, we found the optimal  $\lambda_{gate}$  to be 400 and 200 respectively when 665 training DeiT-Tiny and TNT-Small on CIFAR-100 and the optimal  $\lambda_{gate}$  to be 200 when training 666 ViT-Tiny on CIFAR-10. Searching for the optimal  $\lambda_{gate}$  for each task is time-consuming. Therefore, 667 for the majority of our experiments, we set the default  $\lambda_{gate}$  to 200. 668



669 Figure 4: Top-1 accuracy (%) w.r.t. the activation 670 threshold  $\tau$  for the Threshold Activation Unit (TAU) 671 when training on CIFAR-100 with ViT-Tiny. 672



673 Figure 5: Top-1 accuracy (%) w.r.t. the balancing 674 parameter  $\lambda_{gate}$  for  $\mathcal{L}_{gate}$  when training on CIFAR- 675 100 with ViT-Tiny. 676

677 **A.2 DIFFERENCES BETWEEN CHANNEL GATEKEEPING AND CHANNEL PRUNING**

678 The proposed channel gatekeeping differs from channel pruning as follows:

- 679 • The target of channel pruning is channel weights  $\mathbf{W}$ , while the target of channel gatekeeping is 680 channel responses  $f(\text{input}; \mathbf{W})$ . Channel pruning operates by setting **the weights of certain 681 channels** to zero, resulting in no responses on pruned channels for any input (This is why 682 channel pruning typically leads to accuracy decrease.). In contrast, channel gatekeeping operates 683 by suppressing **the responses of certain channels** to zero, in which case, the channel weights 684 are not necessarily zero, and the suppressed channels can vary for different inputs.
- 685 • Channel pruning requires post-processing to remove irrelevant channel weights and some need 686 further fine-tuning, while channel gatekeeping is conveniently trained end-to-end from scratch 687 and does not require any post-processing or fine-tuning.
- 688 • The objective of channel pruning is trying to reduce computation and storage requirements 689 without sacrificing accuracy, while the objective of channel gatekeeping is trying to improve 690 accuracy without increasing computational overhead.

691 **A.3 POTENTIAL IN REAL-WORLD APPLICATIONS**

692 The proposed AIEC has been designed to be adaptable to various ANN architectures including 693 CNNs, ViTs, and GNNs with minimal computational overhead. The code is modularized and can 694 be easily integrated into existing systems without requiring extra special hardware support. The 695 internal mechanism of AIEC can accommodate data from various categories and domains. The work 696 performed has no negative societal impact.

702 A.4 MORE VISUALIZATION RESULTS  
703

704 This section extends §4.5 of the main paper, providing visualizations for all categories in CIFAR-10,  
705 as shown in Figure 6, 7, 8. With the proposed AIEC, the activation responses become sparser, as  
706 evident from the activity levels across channels. This implies that AIEC has identified and suppressed  
707 some irrelevant channels. Furthermore, channel gatekeeping in the AIEC results in sharper decision  
708 weight boundaries, demonstrating that the network gains greater confidence in prioritizing channels  
709 that consistently support correct decisions. These suggest that the AIEC enhances the precision of  
710 key feature extraction, reducing learning difficulty and improving model interpretability. Notably,  
711 more than half of the channels exhibit their decision weights close to zero, which corresponds to their  
712 activity levels dropping to a minimum, meaning these channels are completely inhibited. As a result,  
713 the decision weights learn no useful information from them. In contrast, the other active channels  
714 provide meaningful input to the decision weights, allowing the weights to assess each channel’s  
715 contribution/relevance and reflect it in the sign and magnitude of the weights.  
716



754 Figure 6: More visualization results extending Figure 3 of the main paper, specifically for the “airplane”,  
755 “automobile”, and “bird” categories in the CIFAR-10 dataset.  
756



Figure 7: More visualization results extending Figure 3 of the main paper, specifically for the “cat”, “deer”, “dog”, and “frog” categories in the CIFAR-10 dataset.

808  
809



Figure 8: More visualization results extending Figure 3 of the main paper, specifically for the “horse”, “ship”, and “truck” categories in the CIFAR-10 dataset.

### A.5 TRAINING AND INFERENCE PROCEDURES

This section provides a comprehensive description of the training and inference procedures as elucidated in Algorithm 1 and 2. During the training phase, TAU, ACU, DMU, and CGU work together. The responses from irrelevant channels are suppressed under the guidance of the gatekeeping loss  $\mathcal{L}_{gate}$  (Eq. 13). By the end of training, the model has already learned how to avoid generating responses on irrelevant channels. Hence, during the inference phase, ACU, DMU, and CGU are all discarded, and only TAU needs to be involved.

### A.6 DETAILED EXPERIMENTAL SETUP

This section provides a more detailed experimental setup including model settings and experimental settings used in this study, as listed in Table 6 and 7.

864

---

Algorithm 1 : Training procedure

---

865 **Input:**  $\mathbb{D}_{train}^K$ : Training dataset with  $K$  categories;  $T$ : Maximum number of iterations;  $l$ : Layer index where  
 866 AIEC is applied (one layer as an example here; multiple layers are possible).

867 **Initialize:**  $f_{1:L}(\cdot)$ : Model with  $L$  layers;  $\{\theta^k, \eta^k, \phi^k\}_{k=1}^K$ : ACU's counters;  $\{\mathbf{w}^k\}_{k=1}^K$ : DMU's decision  
 868 weights;  $\lambda_{aux}, \lambda_{gate}$ : Balacing parameters.  
 869

870

- 1: **for**  $t = 1, 2, \dots, T$  **do**
- 2:   Sample  $\{\mathbf{X}^k, y^k\}$  from  $\mathbb{D}_{train}^K$ , which is of category  $k$ .
- 3:   Compute pre-activation feature map  $\mathbf{F}^k = f_{1:l}(\mathbf{X}^k)$ .
- 4:   Compute post-activation feature map  $\mathbf{A}^k = \text{TAU}(\mathbf{F}^k)$ .
- 5:   Compute post-activation feature vector  $\mathbf{a}^k = \frac{1}{HW} \sum_{h=1}^H \sum_{w=1}^W \mathbf{A}_{h,w}^k$ .
- 6:   Binarize  $\mathbf{a}^k$  to  $\tilde{\mathbf{a}}_c^k = \begin{cases} 1, & \text{if } \mathbf{a}_c^k > 0 \\ 0, & \text{if } \mathbf{a}_c^k = 0 \end{cases}$  based on whether a channel is activated or not.
- 7:   Update counters  $\theta^{k,t} = \theta^{k,t-1} + \tilde{\mathbf{a}}^k$ ,  $\eta^{k,t} = \eta^{k,t-1} + (1 - \tilde{\mathbf{a}}^k)$ ,  $\phi^{k,t} = \phi^{k,t-1} + 1$ .
- 8:   Compute “relative firing rate”  $\mathbf{v}^{k,t} = \frac{\theta^{k,t} - \eta^{k,t}}{\phi^{k,t}}$ .
- 9:   Establish intrinsic channel relevance division  $\mathcal{G}_c^{k,Intr} = \begin{cases} 0, & \text{if } \mathbf{v}_c^k > 0 \\ 1, & \text{if } \mathbf{v}_c^k \leq 0 \end{cases}$ .
- 10:   Obtain intermediate predictions  $\{p^k\}_{k=1}^K = \text{softmax}(\mathbf{a}^k \cdot \{\mathbf{w}^{k\top}\}_{k=1}^K)$ .
- 11:   Compute auxiliary loss  $\mathcal{L}_{aux} = -\sum_{k=1}^K y^k \log(p^k)$  for learning  $\{\mathbf{w}^k\}_{k=1}^K$ .
- 12:   Establish extrinsic channel relevance division  $\mathcal{G}_c^{k,Ext} = \begin{cases} 0, & \text{if } \mathbf{w}_c^k > 0 \\ 1, & \text{if } \mathbf{w}_c^k \leq 0 \end{cases}$ .
- 13:   Establish final channel relevance division  $\{\mathcal{G}^k\}_{k=1}^K = \{\mathcal{G}^{k,Intr} \cap \mathcal{G}^{k,Ext}\}_{k=1}^K$  based on intrinsic-extrinsic consensus, where the indicator “I” signifies potential irrelevant channels.
- 14:   Filter out irrelevant channels  $\check{\mathbf{a}}^k = \mathbf{a}^k \odot \mathcal{G}^k$ .
- 15:   Impose gatekeeping on irrelevant channels by loss  $\mathcal{L}_{gate} = \frac{\sum_{c=1}^C \|\check{\mathbf{a}}_c^k\|_2}{\sum_{c=1}^C \mathcal{G}_c^k}$ .
- 16:   Keep passing  $\mathbf{A}^k$  forward until the final layer outputs  $\text{logits} = f_{l+1:L}(\mathbf{A}^k)$ .
- 17:   Compute task-level loss  $\mathcal{L}_{task} = \text{CrossEntropy}(\text{logits}, y^k)$ .
- 18:   Compute the final loss  $\mathcal{L} = \mathcal{L}_{task} + \lambda_{aux} \cdot \mathcal{L}_{aux} + \lambda_{gate} \cdot \mathcal{L}_{gate}$ .
- 19:   Update model parameters through back-propagation and gradient descent.
- 20: **end for**

---



---

Algorithm 2 : Inference procedure

---

911 **Input:**  $\mathbf{X}$ : a test sample with its category unknown.

912 **Initialize:**  $f_{1:L}(\cdot)$ : Trained model with  $L$  layers.

913

- 1: Compute pre-activation feature map  $\mathbf{F} = f_{1:l}(\mathbf{X})$ .
- 2: Compute post-activation feature map  $\mathbf{A} = \text{TAU}(\mathbf{F})$ .
- 3: Keep passing  $\mathbf{A}$  forward until the final layer outputs  $\text{logits} = f_{l+1:L}(\mathbf{A})$ .
- 4: Predict  $\mathbf{X}$ 's label  $\hat{y} = \text{argmax}(\text{logits})$ .

---

918 Table 6: Detailed model settings. “(left) / (right)” is for training CIFAR-{10,100} (left) and ImageNet-{100,1K} (right), respectively.

| Model / Setting | patch size | embed dim           | # layers     | # heads          | # params     |
|-----------------|------------|---------------------|--------------|------------------|--------------|
| ViT-Tiny        | 4 / 16     | 192                 | 12           | 3                | 5 M          |
| DeiT-Tiny       | 4 / 16     | 192                 | 12           | 3                | 5 M          |
| CaiT-XXS        | 4 / 16     | 192                 | 24           | 4                | 11 M         |
| PVT-Tiny        | 4          | [64, 128, 320, 512] | [2, 2, 2, 2] | [1, 2, 5, 8]     | 13 M         |
| TNT-Small       | 4 / 16     | 384                 | 12           | 6 (out) + 4 (in) | 23 M         |
| AlexNet         | -          | -                   | -            | -                | 23 M / 61 M  |
| VGG-11          | -          | -                   | -            | -                | 28 M / 132 M |
| MobileNet       | -          | -                   | -            | -                | 3 M / 5 M    |
| ShuffleNet      | -          | -                   | -            | -                | 1 M / 2 M    |
| ResNet-18       | -          | -                   | -            | -                | 11 M / 11 M  |

931  
932 Table 7: Detailed experimental settings. “(left) / (right)” is for training CIFAR-{10,100} (left) and ImageNet-  
933 {100,1K} (right), respectively.

| Argument                                | Value                              |
|-----------------------------------------|------------------------------------|
| epochs                                  | 300                                |
| batch size                              | identical in each comparison group |
| optimizer                               | AdamW                              |
| learning rate                           | 0.0005 × (batch_size / 512)        |
| learning rate scheduler                 | cosine annealing                   |
| weight decay                            | 5e-2                               |
| warmup epochs                           | 5 / 20                             |
| warmup learning rate                    | 1e-6                               |
| warmup scheduler                        | linear                             |
| dropout rate                            | 0.0                                |
| drop path rate                          | 0.1                                |
| gradient clipping norm                  | 1.0                                |
| image size                              | 224×224 / 32×32                    |
| horizontal flipping rate                | 0.5                                |
| vertical flipping rate                  | 0.0                                |
| color jitter                            | 0.4                                |
| auto augment                            | rand-m9-mstd0.5-inc1 (from “timm”) |
| interpolation                           | random                             |
| random erasing prob                     | 0.25                               |
| random erasing mode                     | pixel                              |
| random erasing count                    | 1                                  |
| training from scratch (no pre-training) | ✓                                  |
| automatic mixed precision training      | ✓                                  |
| $\tau$                                  | 0                                  |
| $\mathcal{L}_{aux}$                     | 1                                  |
| $\mathcal{L}_{gate}$                    | depending on networks and datasets |

## A.7 COMPARISON WITH OTHER METHODS

933 In addition, we discuss and compare the proposed AIEC with other methods including:

934  
935  **$L_0$  regularization:** Theoretically,  $L_0$  regularization (Louizos et al., 2017) can constrain the number  
936 of non-zero elements in features by adding a loss term. However, when the number of features is large,  
937 such a constraint makes it difficult for the model to determine which specific elements should be  
938 suppressed to zero. In contrast, the proposed AIEC provides clear criteria indicating which elements  
939 should be suppressed, offering more sufficient supervision signals and stronger interpretability.

940  
941 **Attention-based gating modules:** Modules like SENet (Hu et al., 2018) and CBAM (Woo et al.,  
942 2018) introduce additional learnable fully connected or convolutional layers to generate attention  
943 weights at the channel level (or the spatial level). It simply weights the channels without evidence

972 of sparse representation or interpretability. In contrast, the proposed AIEC leverages both intrinsic  
 973 and extrinsic characteristics of threshold activation as direct supervision signals to identify irrelevant  
 974 channels and apply noise cleaning targeted on them, thus providing strong sparsity and interpretability.  
 975

976 The comparison of these methods is presented in Table 8. Note that CBAM is not applicable to  
 977 ViT-Tiny because it contains convolutional layers, which are incompatible with the architecture of  
 978 ViT-Tiny. The results demonstrate that the proposed AIEC achieves superior performance compared  
 979 to these methods.

980 Table 8: Comparison with other methods on the CIFAR-100 dataset.  
 981

| 982 Top-1 Acc / % | 983 ReLU | 984 GELU | 985 ReLU + $L_0$ | 986 GELU + $L_0$ | 987 SENet | 988 CBAM | 989 AIEC        |
|-------------------|----------|----------|------------------|------------------|-----------|----------|-----------------|
| 983 ViT-Tiny      | 984 65.7 | 985 65.4 | 986 67.1         | 987 67.2         | 988 65.7  | 989 N/A  | <b>990 71.1</b> |
| 984 ResNet-18     | 985 75.7 | 986 75.6 | 987 76.5         | 988 76.2         | 989 75.6  | 990 76.2 | <b>991 77.0</b> |

### 992 A.8 DECLARATION OF LLM USAGE

993 Large language models (LLMs) were used to polish the writing at the word (e.g., grammar, spelling,  
 994 word choice) and sentence levels to enhance overall fluency and coherence.  
 995

1000  
 1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025