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Abstract

Effectively capturing the spatiotemporal dependencies between joints is crucial for skeleton-
based action recognition. However, existing methods do not consider the sparsity of skeleton
data, which hinders the accurate capture of complex posture information and subtle action
variations. Moreover, the locality of temporal features requires the model to focus on
certain key features. Yet, most methods overlook the impact of temporal redundancy on
feature focus, resulting in ineffective capture of significant temporal features. To address
the issue of skeleton sparsity, we propose a Multilevel Position-aware Attention module
(MPA) that explicitly leverages the relative positional information of the input data to
enrich spatial information. To achieve a more effective focus on local temporal features, we
develop a Multi-scale Temporal Excitation module (MTE). By scaling temporal features,
the MTE module elevates the prominence of salient features and facilitates the capture of
multi-scale features. Furthermore, we propose a Part Partition Encoding module (PPE) to
aggregate joint data into part data, thereby providing the model with high-level information
carried by the interactions between body parts. The MPA, MTE, and PPE are integrated
into a unified framework called MPAE-Net. Extensive experimental results demonstrate
that the MPAE-Net achieves state-of-the-art performance on two large-scale datasets, NTU
RGB+D and NTU RGB+D 120.

Keywords: Skeleton-Based Action Recognition, Multilevel Position-aware Attention, Multi-
scale Temporal Excitation, Part Partition Encoding

1. Introduction

Action recognition is a critical area in computer vision with extensive applications in various
real-world scenarios, such as video surveillance Xin et al. (2023), autonomous driving Peng
et al. (2024), and human-computer interaction Liu et al. (2022). Based on the types of
data used, action recognition can be primarily classified into RGB image-based methods
and skeleton-based methods. Early studies extensively utilized RGB image data to explore
contextual action information in videos, which is easily affected by factors such as body
scale variations, cluttered backgrounds, and changes in viewpoints. Recently, with the
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development of depth sensors Zhang (2012) and human pose estimation algorithms Zheng
et al. (2023), skeleton-based action recognition has developed rapidly. Compared to RGB
image data, skeleton data consists only of a limited set of 2D/3D coordinates, which is
lower-dimensional, more compact, and easier to process. Given these advantages, this paper
focuses on skeleton-based action recognition in videos.

Skeleton-based action recognition aims to accurately classify different actions by an-
alyzing the motion trajectories and posture changes of human skeleton. Recently, deep
learning has been widely explored to model the skeleton sequence. Some studies adopt
Recurrent Neural Networks (RNNs) Liu et al. (2016) and Convolutional Neural Networks
(CNNs) Ke et al. (2018) to convert skeleton data into vector sequences or pseudo-images.
However, they did not explicitly explore the topological information of the human skeleton,
and therefore could only capture limited features. As the human skeleton can naturally be
represented as graph structures, where nodes represent joints and edges represent the links
between joints. Graph Convolutional Networks (GCNs) can directly model skeleton data as
spatiotemporal graphs to explore the topological information. For this reason, GCN-based
methods Yan et al. (2018); Shi et al. (2019); Cheng et al. (2021); Wen et al. (2022) have
gained widespread attention. However, GCN-based methods rely on the human topological
structure to capture joint features, which limits their ability to capture the relationships
between distant joints. Meanwhile, Transformer-based methods Shi et al. (2020); Plizzari
et al. (2021); Qiu et al. (2023); Wu et al. (2023) do not rely on the human topological
structure but utilize the attention mechanism to construct global joint connections, thereby
capturing their relationships. However, skeleton data is composed of only a limited number
of coordinates in space, and this sparsity brings some new challenges for spatial modeling of
skeleton data, such as the lack of rich contextual information and the weaker ability to re-
sist interference. Moreover, considering the locality of temporal features, specific moments
(such as the takeoff and landing moments in jumping actions) are crucial for accurately
recognizing certain actions. However, the relatively slow changes in human actions over
time result in redundant information in the temporal dimension, which makes it difficult
for the model to effectively focus on key temporal features. Meanwhile, most studies Yan
et al. (2018); Plizzari et al. (2021); Qiu et al. (2023) only utilize joint data, neglecting part
data that provides overall action information. For example, a jumping action involves the
coordinated movement of arms and legs rather than the precise positioning of the finger
and toe joints.

Considering the importance of the aforementioned issues, we construct a novel Multi-
level Position-aware Attention Enhanced Network (MPAE-Net) for skeleton-based action
recognition, which consists of three components: Part Partition Encoding (PPE), Multi-
level Position-aware Attention (MPA), and Multi-scale Temporal Excitation (MTE). PPE
is used to generate part data. A simple method for adding part data is to segment the
joints by regions and then to directly connect these joints from different regions Jia et al.
(2024). In contrast, PPE extends the channel information of joints to enrich features and
then aggregates the information within parts. This approach reduces noise and highlights
the overall characteristics of the part data. Therefore, part data and joint data together
construct multilevel input for the model. To overcome the impact of skeleton sparsity on
the spatial modeling of skeleton sequences, we propose the MPA module. Specifically, MPA
improves the attention mechanism in the vanilla Transformer Vaswani et al. (2017) by ex-
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plicitly introducing the relative positional information of the input data. By calculating the
joint projections on their relative positions, MPA captures the features at specific locations.
This helps the model understand how joint features are influenced by positional informa-
tion. Additionally, considering the different importance of data and positional information,
MPA employs a gating mechanism to dynamically control their fusion. Moreover, to achieve
more effective focus on important local temporal features, we propose the MTE module.
Inspired by the squeeze-and-excitation (SENet) Hu et al. (2018), MTE calculates the excita-
tion weights of temporal features and uses these weights to dynamically recalibrate skeleton
features, thereby amplifying the significance of key features. Then, by employing convolu-
tional operations within the MTE, we capture multi-scale temporal features. In summary,
the main innovations and contributions of this work are as follows:

• We propose the PPE module to generate part data to aggregate information from
multiple joints and provide overall action features. Part data and joint data together
provide the model with both holistic and detailed features.

• We propose the MPA and MTE modules to capture spatiotemporal features. MPA
explicitly incorporates positional information to overcome the impact of skeleton spar-
sity. MTE dynamically recalibrates temporal features and achieves effective focus on
key features.

• Extensive experiments on two large datasets, NTU RGB+D 60 and NTU RGB+D
120, validate the effectiveness of each proposed module and demonstrate the compet-
itiveness of the MPAE-Net.

The remainder of this paper is organized as follows: Section 2 reviews related work. Sec-
tion 3 details the proposed modules in the MPAE-Net. Section 4 presents a comprehensive
analysis of the experimental results. Section 5 summarizes the paper.

2. Related Work

2.1. Skeleton-based action recognition

Skeleton-based action recognition mainly utilizes deep learning methods to extract features
from skeleton data and then identify the actions. Deep learning methods can be classified
into four main types based on the employed architectural frameworks. RNN-based meth-
ods Liu et al. (2016); Li et al. (2018b) primarily deal with the temporal relationships within
skeleton data. Liu et al. (2016) introduced trust gates to selectively focus on the important
joints in the skeleton sequence. Meanwhile, CNN-based methods Ke et al. (2018); Li et al.
(2018a) primarily utilize local convolution operations to capture skeleton features. Li et al.
(2018a) used joint positions and motion information to construct a co-occurrence matrix
and extracted local features of this matrix. However, these earlier methods do not consider
the physical links between different joints, resulting in their limited ability to capture cer-
tain features. Therefore, GCN-based methods Yan et al. (2018); Shi et al. (2019); Cheng
et al. (2020); Ye et al. (2020); Liu et al. (2020); Chen et al. (2021); Cheng et al. (2021); Wen
et al. (2022) model human skeleton as spatiotemporal graphs and use a pipeline of GCNs
and temporal convolutional networks (TCNs) to capture joint features. Yan et al. (2018)



Zhang Zhan Wang

proposed ST-GCN, which initially used GCNs to explore the relationships of joints. Shi
et al. (2019) addressed the static topology in the ST-GCN by proposing an adaptive graph
convolution to dynamically adjust the topology of graphs. Cheng et al. (2020) proposed
Shift-GCN, which introduced shift operations in convolution to capture the relationships
between joints. Subsequently, Cheng et al. (2021) proposed ShiftGCN++, a lightweight
network that combines shift graph operations with lightweight point-wise convolution for
efficient skeleton action recognition. Although GCN-based methods excel in this task, they
have a limited ability to capture distant joint connections. In contrast, Transformer-based
methods Shi et al. (2020); Plizzari et al. (2021); Qiu et al. (2023); Wu et al. (2023) utilize
the attention mechanism to construct global joint correlation. Shi et al. (2020) decoupled
the spatial and temporal dimensions, thereby separately capturing joint features. Plizzari
et al. (2021) combined GCNs and spatiotemporal attention to extract skeleton features. Qiu
et al. (2023) proposed STSA-Net, which divides action sequences into multiple spatiotem-
poral segments and extracted both intra-segment and inter-segment features. The afore-
mentioned Transformer-based methods effectively capture global joint dependencies, but
they do not consider the impact of skeleton sparsity on skeleton sequence modeling. Si-
multaneously, due to the locality of temporal features, utilizing the attention mechanism in
the temporal dimension may not be optimal; instead, it is necessary to focus on temporally
local important features.

2.2. Self-attention mechanism

The self-attention mechanism captures long-range dependencies in sequences by computing
weighted sums of different parts. Bahdanau et al. (2014) initially proposed the self-attention
mechanism to dynamically focus on important parts of the input sequences during transla-
tion tasks. Vaswani et al. (2017) proposed the Transformer, which features a self-attention
mechanism to establish global dependencies between inputs and outputs. Due to its superior
performance, the self-attention mechanism has been widely adopted in various computer
vision tasks, such as image classification Zhang et al. (2023); Roy et al. (2023), object de-
tection Wang et al. (2023a); Gu et al. (2023), and action recognition Ahn et al. (2023); Xu
et al. (2023). Zhang et al. (2023) combined multi-attention to address the issues of infor-
mation redundancy and inaccurate feature extraction in hyper-spectral images. Wang et al.
(2023a) used the attention mechanism to enhance the weighting of adjacency relationships
in point cloud data for 3D object detection. Xu et al. (2023) improved channel attention by
introducing Discrete Cosine Transform(DCT) and proposed a novel multi-frequency chan-
nel attention framework for action recognition. In the domain of skeleton-based action
recognition, Plizzari et al. (2021) proposed ST-TR that combined GCNs and the atten-
tion mechanism to process spatial and temporal information. Wu et al. (2023) utilized the
attention mechanism to capture the relationships between joints and body parts, there-
fore providing more interpretable representations for different skeleton action sequences.
The aforementioned Transformer-based methods merely utilized the attention mechanism
to extract spatiotemporal skeleton features but did not improve the mechanism itself. In
contrast, we improved this by explicitly leveraging the positional information of the input
data in MPA to overcome the impact of skeleton sparsity.
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3. Method

The overall architecture of MPAE-Net is shown in Fig. 1. The entire processing steps are
as follows. First, the raw skeleton data was input into the MPAE-Net, which employed the
PPE module to generate part data. Part data and joint data provide overall and detailed
action information, respectively. Then, the MPA module was employed to overcome the
impact of skeleton sparsity by explicitly incorporating positional information, thereby cap-
turing richer joint and part spatial features. After fusion, these features are fed into the
MTE module, which effectively focuses on temporally local features. It calculates the impor-
tance weights of these features, thereby amplifying their salience and capturing multi-scale
temporal features. Features obtained after spatiotemporal processing are then subjected to
the global pooling and the fully connected layers for action prediction.

Model Architecture

L1
3,64

L2,L3,L4
64,64

L6,L7
128,128

L5
64,128

L8
128,256

L9,L10
256,256

GAP FC

Prediction

Score

MPA MTEInput data OutputPart data

Joint data

Part Partition 
Encoding
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Figure 1: Overview of the MLPA-Net. MLPA-Net consists of the PPE module and 10
spatiotemporal feature extraction layers. Each of these layer includes the MPA
and MTE modules.

3.1. Part Partition Encoding

To generate part-level data and provide with comprehensive information, we propose the
PPE module, as illustrated on the left of Fig. 2. This module expands joint dimensions to
obtain richer features and then aggregates them into corresponding body parts.

The PPE module initially divides joint data into limbs and torso segments based on the
predefined patterns. The joint data XJ ∈ RC×T×V , which contains T frames, each with V
joints across C channel dimensions. The feature expansion layer FC(.) is utilized to expand
the channel dimension of XJ , thereby enhancing the expressive ability. FC(.) comprises
two convolutional layers, each followed by the BatchNorm and the Leaky ReLU functions.
Then, XJ is divided into M parts to obtain xi ∈ RC1×T×Vi , i = 1, 2, . . . ,M .

We assume that there are at most V1 joints in xi. For situations where Vi is less than
V1, the missing joints are filled with zeros. All joint features in xi are average pooled to
aggregate overall features, as shown in Eq. 1.

x̂i = Favg(xi) (1)
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Figure 2: Illustration of the multi-level data and the PPE module. Joint data and part
data are presented on the left, while the process of the PPE module is detailed
on the right.

Subsequently, the aggregated x̂i ∈ RC1×T×1 from all parts are concatenated, as shown in
Eq. 2.

X̂P = Concat(x̂i | i = 1, 2, . . . ,M) (2)

Ultimately, the X̂P ∈ RC1×T×V2 is input to the embedding layer to restore the original
channel dimension, resulting in the final obtained part data XP ∈ RC×T×V2 .

3.2. Multilevel Position-aware Attention Module

To overcome the impact of sparsity on spatial skeleton modeling, we design the MPA module
to fully capture the spatial joint and part features, as illustrated on the left side of Fig. 3.
For clarity, we describe the entire process using joint data as the processing steps for joints
and parts in the MPA module are identical.

The query Q, key K, and value V vectors are generated from the joint data XJ through
convolutional and vector splitting operations, which are described by the following formulae:

Xconv = Conv2D(XJ) ∈ R3Ĉ×T×V (3)

Q,K,V = Split(Xconv) ∈ RĈ×T×V (4)

Here Ĉ represents the channel dimension of the generated vectors. The vanilla Transformer
combines the input with its positional information to generate embedding vectors, and then
uses these vectors to obtain Q, K, and V vectors. The self-attention mechanism in the
vanilla Transformer is expressed as:

Yi =

N∑
j=1

softmax
(
qTi kj

)
vj (5)

Specifically, qi, kj , and vj are elements in the Q, K, and V vectors, with i and j denoting
the indices of these elemen overlooking the impact of joint positions on skeleton features
and, in turn, losing valuable spatial information for accurate action recognition.
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Figure 3: Illustration of the MPA and MTE modules. The left side shows the detailed
process of MPA, while the right side displays the implementation of MTE.

Considering the aforementioned reasons, we propose the MPA module, which not only
calculates the correlations among these vectors but also explicitly incorporates positional
information by computing the dot product with their relative position. Meanwhile, this
module employs a gating mechanism to control the fusion of data and positional infor-
mation, ensuring a balanced integration of both elements. Specifically, the query vector
Q generates dynamic weight coefficients through a linear layer to adjust the weights of
different information, which allows the MPA module to capture more flexible and rich spa-
tial features of skeleton data. The improved attention mechanism in the MPA module is
expressed as:

Yi =
N∑
j=1

softmax
(
wd
i · (qTi kj) + wp

i · (qTi p
q
ji + kTj p

k
ji)

) (
vj + pvji

)
(6)

The pqji, pkji, and pvji are elements of PQ, PK , and PV respectively, which represent the

positional information of Q, K, and V from the position j to i. The wd
i and wp

i are the
data weight coefficient and positional weight coefficient from WD and WP , respectively.
They are used to balance the fusion of data information and positional information at
index i, with wp

i = 1 −wd
i . Finally, the sigmoid is utilized to activate the attention output

Yi, thereby obtaining the output of the MPA module.
Considering the physical connections between joints, we add a topology graph A ∈ RV×V

to enhance the processing capability for skeleton data. Moreover, we extend the improved
attention mechanism to a multi-head form (empirically set head numbers to 8) to extract
diverse features. By concatenating the features of each head, we obtain the final joint spatial
feature YJ .

YJ = Concat
(
Y 1
J , . . . ,Y

h
J

)
∈ RC×T×V (7)



Zhang Zhan Wang

The part spatial features extracted by the MPA module are YP ∈ RC×T×V2 . By inte-
grating the joint features with their corresponding part features, the final spatial features
YS ∈ RC×T×V are obtained.

3.3. Multi-scale Temporal Excitation Module

Due to the locality of temporal features, specific moments (such as the takeoff and landing
moments in jumping actions) are essential for action recognition. Therefore, we design the
MTE module, which includes feature excitation and multi-scale convolutional operations
to effectively focus on the salient features and capture multi-scale features. Inspired by
SENet Hu et al. (2018), the feature excitation operation is performed on the time and
channel dimensions as a whole, adjusting the importance of these features. Meanwhile,
considering the differences in the duration of various actions, the MTE module utilizes
multiple convolutions to extract temporal features.

In order to effectively focus on salient temporal features, the feature excitation operation
first performs spatial pooling on YS ∈ RC×T×V , as shown in Eq. 8.

ŶS = FAvg (YS) =
1

V

V∑
v=1

YS (8)

Then, 2D convolution is used to scale the temporal and channel features of ŶS , thereby
generating the excitation weights, as shown in Eq. 9.

WCT = F2

(
δ

(
F1(ŶS ,

C

α
)

)
, C

)
(9)

The channel dimensions of F1 and F2 are C
α and C, respectively. F1 is utilized for feature

compression, with parameter α determining the degree of compression. F2 is employed for
restoring these features. Batch Norm prevents overfitting, and δ is the ReLU activation
function. WCT ∈ RC×T is the generated excitation weights.

Subsequently, we use the sigmoid function to nonlinearly scale WCT and ensure the
weights are within the range of [0, 1]. The scaled excitation weights are then element-wise
multiplied with the original features, thereby dynamically adjusting the original features.

ŶST = YS ⊙ Softmax (WCT ) (10)

Inspired by Liu et al. (2020), we employ a simplified MS-TCN to capture temporal
features. Dilated convolutions are used to capture cross-step temporal features, while max
pooling extracts key temporal features. The outputs of each branch are aggregated to obtain
the final spatiotemporal features YST .

YST = concat
(
ϕ1

(
ŶST

)
, ϕ2

(
ŶST

)
, ϕ3

(
ŶST

))
(11)

Specifically, ϕ1(.) and ϕ2(.) represent convolutional layers with different dilation rates, and
ϕ3(.) is the max pooling layer. The spatiotemporal features YST are then processed through
global pooling and fully connected layers to obtain the final action prediction results.
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4. Experiments

4.1. Datasets

NTU RGB+D. NTU RGB+D dataset Shahroudy et al. (2016) is a large-scale 3D human
action recognition dataset composed of 56,880 skeleton action sequences. It contains 60
action categories performed by 40 volunteers. Each frame contains at most two subjects,
with each subject including 25 joints. The dataset has two evaluation benchmarks: 1)
Cross-Subject (C-Sub): In this setup, both the training and test sets are composed of
data from 20 different subjects. It is used to evaluate the generalization ability of the model
across different subjects; 2) Cross-View (C-View): In this setup, the training and test
sets consist of data from different camera views. It is used to assess the robustness of the
model across different viewpoints.

NTU RGB+D 120. NTU RGB+D 120 dataset Liu et al. (2019) is an extension of the
original NTU RGB+D. It contains 120 action categories performed by 106 volunteers. This
dataset comprises a total of 114,480 samples and is divided according to two benchmarks:
1) Cross-Subject (C-Sub): In this setup, both the training and test sets consist of data
from 53 different subjects; 2) Cross-Setup (C-Set): In this setup, the training and test
sets respectively contain all samples collected from cameras with even and odd numbers.

4.2. Implementation Details

Following the previous works Plizzari et al. (2021), the Nesterov momentum is set to 0.9
and the weight decay for the SGD optimizer is 0.0004. The batch size is 128, with a total of
65 epochs. The first five epochs are used as a warm-up period. The initial learning rate of
the model is 0.1, and it is reduced to 0.1 of its previous value at the 35th and 55th epochs.

4.3. Ablation Studies

4.3.1. Effect of Parameter α

We evaluate the impact of the compression parameter α used in Equation 9 in the MTE.
Table 1 shows the best results are achieved when α = 8. This indicates that MPAE-Net
needs to balance overall and detailed features when compressing temporal and channel
features. A too-small compression ratio fails to compress data effectively, whereas a too-
large compression ratio may lose crucial detailed features. Both extremes can negatively
impact recognition accuracy. Therefore, our model adopts α = 8 as the compression ratio.

Table 1: Ablation study of parameter α on the NTU RGB+D using joint modality.
Method α C-Sub(%) C-View(%)

MPAE-Net 4 91.78 96.33
MPAE-Net 8 91.83 96.36
MPAE-Net 16 91.75 96.31
MPAE-Net 32 91.65 96.18
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4.3.2. Ablation Study for MPAE-Net

Table 2 presents the results of the ablation study. Our baseline model is ST-TR Plizzari
et al. (2021), which only uses joint data and employs the vanilla attention mechanism
in Transformer Vaswani et al. (2017) to extract spatiotemporal features. Methods 1, 2,
and 3 indicate the effects of each module. Method 1 shows the effect of the PPE, with
improvements of 0.7% and 0.1% over the ST-TR baseline. This suggests that the overall cues
provided by part data are crucial for understanding human actions. Method 2 demonstrates
the influence of MPA, which explicitly utilizes positional information to capture richer
spatial features and resulting in accuracy improvements of 0.6% and 0.1%. Method 3
illustrates the results of MTE and shows an accuracy improvement of 0.4% on the C-Sub
benchmark. These results validate the effectiveness of our proposed modules. Methods
4, 5, and 6 showcase the performance enhancements when using any two of the modules.
Notably, method 6 employs MPA and MTE for spatiotemporal modeling, which allows for
a more equitable comparison with the baseline without the addition of part data. Our
method achieves improvements of 1.2% and 0.2% over the baseline. Method 7 shows that
MPAE-Net, incorporating all three proposed modules, achieves outstanding performance
with accuracies of 91.8% and 96.4% on the C-Sub and C-View benchmarks, respectively.

Table 2: Ablation study of MPAE-Net on the NTU RGB+D using joint modality.
Method +PPE +MPA +MTE C-Sub(%) C-View(%)

baseline Plizzari et al. (2021) - - - 89.9 96.1
1 ✓ 90.6 (↑ 0.7) 96.2 (↑ 0.1)
2 ✓ 90.5 (↑ 0.6) 96.2 (↑ 0.1)
3 ✓ 90.3 (↑ 0.4) 96.1
4 ✓ ✓ 91.3 (↑ 1.4) 96.3 (↑ 0.2)
5 ✓ ✓ 91.1 (↑ 1.2) 96.3 (↑ 0.2)
6 ✓ ✓ 91.1 (↑ 1.2) 96.2 (↑ 0.1)
7 ✓ ✓ ✓ 91.8 (↑ 1.9) 96.4 (↑ 0.3)

4.3.3. Effect of Multi-Modal Data

Most current state-of-the-art methods utilize a multi-stream input. For a fair comparison,
we experiment with four different modalities: 1) Js refers to the joint modality; 2) Bs means
the bone modality; 3) 2s integrates the joint and bone modalities; 4) 4s combines the joint
and bone modalities with their corresponding motion information.

Table 3: Ablation study of the multi-modal data on the NTU RGB+D and the NTU
RGB+D 120.

Method C-Sub 60(%) C-View 60(%) C-Sub 120(%) C-Set 120(%)

Js MPAE-Net 91.8 96.4 87.6 88.8
Bs MPAE-Net 91.2 95.9 87.1 88.3
2s MPAE-Net 92.3 96.6 88.2 89.6
4s MPAE-Net 93.1 96.9 88.7 90.8
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4.3.4. Visualization.

To further evaluate MPAE-Net, we visualize and analyze the attention weights of joints
and parts in the MPA, as shown in Figure 4. The left part shows the joints of ”Jump up”
and ”Clapping” actions. The darker the color, the more important it is in the action. The
middle part shows the attention weights of the joints, with the horizontal and vertical axes
representing the joint IDs. For the ”Jump up” action, the lower limb joints with IDs 14, 15,
16, 18, 19, and 20, and the upper limb joints with IDs 8, 12, 22, 23, 24, and 25 have darker
colors. This indicates the importance of these specific joints and proves the effectiveness of
MPA. For the ”Clapping” action, the upper limb joints with IDs 8, 12, 22, 23, 24, and 25
have darker colors, which demonstrates that the movement of the upper limb joints is crucial
for recognizing this action. The right part of Figure 4 shows the attention weights of part
data, with the horizontal and vertical axes representing the part IDs. It can be observed
that for the ”Jump up” action, the coordination of the upper limb parts with IDs 2 and 3,
and the lower limb parts with IDs 4 and 5 is vital for the action. The coordination of the
upper limb parts with IDs 2 and 3 is critical for the ”Clapping” action. This confirms that
part data provides overall action information, while joint data offers detailed interaction
information.

“Jump up”

“Clapping”

Figure 4: Visualization of the ”Jump up” and ”Clapping” actions and attention weights of
joint and part data in the MPA.

4.4. Comparison with the State-of-the-Art Methods

We compared our MPAE-Net with state-of-the-art methods on the NTU RGB+D and NTU
RGB+D 120 dataset. The results are shown in Table 4. The methods compared include
four major categories: RNN-based methods, CNN-based methods, GCN-based methods,
and Transformer-based methods.

Compared to RNN and CNN methods Liu et al. (2016); Li et al. (2018b); Ke et al.
(2018); Li et al. (2018a), MPAE-Net offers a significant advantage. The main reason is that
RNNs and CNNs cannot fully capture the global relationships of joints. In contrast, the
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MPA in MPAE-Net employs the improved attention mechanism that is capable of capturing
the spatiotemporal connections of all joints. Mainstream GCN methods Yan et al. (2018);
Shi et al. (2019); Cheng et al. (2020); Ye et al. (2020); Liu et al. (2020); Chen et al. (2021);
Cheng et al. (2021); Wen et al. (2022) utilize the topological structure of human skeleton
and have better recognition performance. Compared to GCN-based methods, our MPAE-
Net captures features at different levels through a multi-level input. Therefore, MPAE-Net
exhibits better performance.

Notably, compared with closely related Transformer-based methods Shi et al. (2020);
Plizzari et al. (2021); Wang et al. (2023b); Qiu et al. (2023); Wu et al. (2023), MPAE-
Net considers the skeleton sparsity and proposes MPA to capture richer spatial features.
Moreover, the MTE takes into account the locality of temporal features and dynamically
recalibrates the features, which enhances the ability of the model to focus on salient features.
These improvements significantly boost the spatiotemporal modeling capabilities of MPAE-
Net. In summary, MPAE-Net achieves competitive results on two datasets, with accuracies
of 93.1% and 96.9% on two benchmarks of the NTU RGB+D, and accuracies of 88.7% and
90.8% on two benchmarks of the NTU RGB+D 120.

Table 4: Top-1 accuracy comparison with the SOTA methods on the NTU RGB+D and
NTU RGB+D 120 datasets, with the highest performance highlighted in red and
the second-highest in blue.

Type Methods C-Sub 60(%) C-View 60(%) C-Sub 120(%) C-Set 120(%) Params (M) FLOPs (G)

RNN-&CNN-based

ST-LSTM Liu et al. (2016) 69.2 77.7 - - - -
IndRNN Li et al. (2018b) 81.8 88.0 - - - -
MTCNN Ke et al. (2018) 81.1 87.4 61.2 63.3 - -

HCN Li et al. (2018a) 86.5 91.1 - - - -

GCN-based

ST-GCN Yan et al. (2018) 81.5 88.3 - - 3.1 16.3
2S-AGCN Shi et al. (2019) 88.5 95.1 82.9 84.9 6.9 37.3

4s Shift-GCN Cheng et al. (2020) 90.7 96.5 85.9 87.6 2.8 10.0
Dynamic GCN Ye et al. (2020) 91.5 96.0 87.3 88.6 14.4 -
2s MS-G3D Liu et al. (2020) 91.5 96.2 86.9 88.4 2.8 48.8

4s MST-GCN Chen et al. (2021) 91.5 96.6 87.5 88.5 12.0 -
4s ShiftGCN++ Cheng et al. (2021) 90.5 96.3 85.6 87.5 - -

2s SMotif-GCN+TBs Wen et al. (2022) 90.5 96.1 87.1 87.7 2.0 15.24

Transformer-based

4s DSTA Shi et al. (2020) 91.5 96.4 86.6 89.0 4.1 64.7
ST-TR Plizzari et al. (2021) 89.9 96.1 82.7 84.7 12.1 259.4

4s IIP-Transformer Wang et al. (2023b) 92.3 96.4 88.4 89.7 2.9 7.2
4s STSA-Net Qiu et al. (2023) 92.7 96.7 88.5 90.7 5.8 -
4s STF-Net Wu et al. (2023) 91.1 96.5 86.5 88.2 6.8 -

Ours
MPAE-Net(Ours) 91.8 96.4 87.6 88.8 2.9 2.2

2s MPAE-Net(Ours) 92.3 96.6 88.2 89.6 5.8 4.4
4s MPAE-Net(Ours) 93.1 96.9 88.7 90.8 11.5 8.7

5. Conclusion

In this paper, we propose a novel MPAE-Net for skeleton-based action recognition. MPAE-
Net includes three main modules: PPE, MPA, and MTE. The PPE module aggregates joint
data into part data to provide overall action features carried by the interactions within body
parts. The MPA module addresses the issue of skeleton sparsity by improving the attention
mechanism, explicitly utilizing the positional information of skeleton data to capture richer
spatial features. Meanwhile, the MTE module excites the temporal features to achieve
effective focus on important local features and utilizes multi-scale convolutional operations
to extract cross-step temporal features. Extensive ablation experiments demonstrate the
effectiveness of each module in MPAE-Net. Furthermore, experimental results on two large
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datasets, NTU RGB+D and NTU RGB+D 120, show that the proposed MPAE-Net achieves
better performance than existing SOTA methods.
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