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Abstract

We introduce FailureSensorlQ, a novel Multi-Choice Question-Answering (MCQA)
benchmarking system designed to assess the ability of Large Language Models
(LLMs) to reason and understand complex, domain-specific scenarios in Industry
4.0. Unlike traditional QA benchmarks, our system focuses on multiple aspects
of reasoning through failure modes, sensor data, and the relationships between
them across various industrial assets. Through this work, we envision a paradigm
shift where modeling decisions are not only data-driven using statistical tools like
correlation analysis and significance tests, but also domain-driven by specialized
LLMs which can reason about the key contributors and useful patterns that can
be captured with feature engineering. We evaluate the Industrial knowledge of
over a dozen LLMs including GPT-4, Llama, and Mistral on FailureSensorIQ from
different lens using Perturbation-Uncertainty-Complexity analysis, Expert Evalua-
tion study, Asset-Specific Knowledge Gap analysis, ReAct agent using external
knowledge-bases. Even though closed-source models with strong reasoning capa-
bilities approach expert-level performance, the comprehensive benchmark reveals
a significant drop in performance that is fragile to perturbations, distractions, and
inherent knowledge gaps in the models. We also provide a real-world case study
of how LLMs can drive the modeling decisions on 3 different failure prediction
datasets related to various assets. We release: (a) expert-curated MCQA for various
industrial assets, (b) FailureSensorIQ benchmark and Hugging Face leaderboard
based on MCQA built from non-textual data found in ISO documents, and (c)
“LLMFeatureSelector”, an LLM-based feature selection scikit-learn pipeline. The
software is available at https://github.com/IBM/FailureSensorIQ.

1 Introduction

In the era of agentic workflows, LLMs must not only answer domain-specific questions accurately
but also generate appropriate reasoning as part of an Al agent’s decision-making process. LLMs such
as GPT [24], LlaMA [33]], Gemini [31], Mistral [13]], and others are typically pre-trained on vast
corpora like CommonCrawl, Wikipedia, and books, and then fine-tuned on domain-specific datasets,
including code (e.g., GitHub), biomedical data (e.g., PubMed), and scientific literature (e.g., Semantic
Scholar, Arxiv). This enables LLMs to assimilate broad knowledge across diverse fields, including
general knowledge, mathematics, finance, and more. However, a key question remains: Do these
models possess the specialized knowledge and reasoning abilities necessary for complex domains
like medicine, chemistry, biology, and industrial applications? As evident in recent literature [49], the
domain-specific and general QA datasets have played a pivotal role in advancing LLM capabilities
and assessing their readiness for real-world applications, however exploration in industrial domains
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remains limited. Although some isolated efforts have addressed tasks like classifying work orders or
managing maintenance issues [30], comprehensive benchmark datasets to assess LLMs on critical
industrial challenges such as predictive maintenance, sensor fault detection, and asset management
are still lacking.

This paper aims to address the existing gap by introducing a set of specialized benchmarks designed
to assess LLMs’ reasoning abilities within the context of industrial operations. In doing so, we seek
to enhance their utility in domains like Industry 4.0, where domain-specific expertise and accurate,
real-time decision-making are critical. A key application within Industry 4.0 is Condition-Based
Maintenance (CBM), which focuses on monitoring the health of assets using sensor data. Typically,
IoT devices collect data from various sensors, such as temperature, power, and pressure, which is
then analyzed to predict potential failures and recommend proactive maintenance before breakdowns
occur [11]]. To improve failure detection, Failure Modes and Effects Analysis (FMEA), a reliability
engineering methodology, is often applied to the sensor data and failure modes. This process involves
establishing relationships between an asset’s potential failures and one or more monitored
sensors that may indicate these failures when anomalies in the sensor data are detected.

1.1 Fundamentals of Condition-Based Maintenance for Industrial Assets

Detecting maintenance needs early in the asset lifecycle is essential for proactive management and
maximizing asset reliability [22] 43]]. To facilitate this, effective monitoring systems need to be able
to identify the specific parameters associated with each failure mode. Table[T|presents an example of a
mapping table for turbines. Each row corresponds to a specific failure mode of the turbine, while each
column represents a measurable parameter or sensor typically used to monitor turbine performance.
Cells marked with a v/ symbol indicate the relevant parameters that can help detect a particular failure
mode. For example, the power sensor is marked as useful for detecting unbalance faults in turbines.
When introducing a new asset into the CBM process, subject matter experts traditionally face the
labor-intensive task of using a data-driven approach to identify the relationships between each failure
mode and the corresponding sensor parameters. This process involves extensive data collection and
requires a high level of expertise in asset management.

In contrast to a purely data-driven approach, could an LLM assist in automating the discovery of these
mappings? Such a knowledge-driven method could leverage the internal domain expertise of LLMs to
augment the knowledge of subject matter experts. As shown in Figure[I] LLMs have the potential to
act as knowledge generators, offering insights into the relationships between failure modes and sensor
parameters. Rather than relying exclusively on extensive data collection, an LLM-based workflow
could improve decision-making by providing a contextual understanding of how failure modes are
linked to the relevant sensor parameters. We consider two key diagnostic mapping tasks involving
expert knowledge:

1. Failure Modes to Sensor Relevance (FM2Sensor): Identifying the most relevant sensors
for detecting early signs of a given failure.

2. Sensor to Failure Mode Relevance (Sensor2FM): Understanding which failure modes can
be detected early by monitoring a specific sensor.

These mappings help structure prior expert knowledge in ways that LLMs can use for reasoning in
failure diagnosis tasks. The FM2Sensor query is useful for automating an Al agent responsible for



building anomaly detection models or assisting engineers in selecting and planning sensor installations
on machinery to track early failure signs. Conversely, the Sensor2FM query supports root cause
analysis and allows Al agents to suggest maintenance tasks proactively, reducing downtime. By
automating these processes, LLMs/Agents can significantly enhance decision-making efficiency in
predictive maintenance. However, a critical question remains: How well do LLMs understand the
intricate relationships between assets, their failure modes, and sensor parameters?

1.2 Key Contributions and Insights

We introduce FailureSensorIQ, a multiple-choice QA benchmarking system with a dataset that ex-
plores the relationships between sensors and failure modes for 10 industrial assets. By only leveraging
the information found in ISO documents [[11]] and expert crafted question templates, we developed a
data generation pipeline that creates questions in two formats: (i) row-centric (FM2Sensor) and (ii)
column-centric (Sensor2FM). Additionally, we designed questions in a selection vs. elimination
format, taking advantage of the fact that the absence of an v in a cell (as shown in Table|l) indicates
irrelevant information. The FailureSensorIQ dataset consists of 8,296 questions across 10 assets,
with 2,667 single-correct-answer questions and 5,629 multi-correct-answer questions.

The true challenge of the FailureSensorIQ dataset becomes evident through three key observations
that underscore its exceptional difficulty. First, the top-10 performing models which consists of a
range of frontier and large open-source models averages just 53.5% accuracy on 2,667 single-correct-
answer multiple-choice questions, a result that is widely regarded as a hallmark of “hard” datasets
[28 137, 139]]. Second, even models fine-tuned on datasets with diverse knowledge like HotpotQA
[45] struggle, achieving only 29% accuracy on our dataset (See Appendix [E.4). Third, our unified
Perturbation—Uncertainty—Complexity analysis reveals significant performance degradation under
three stressors: (i) perturbing the question results in a 5-20% performance drop (measured via
ACC@Consist [14]); (i1) model uncertainty increases significantly, with an average of three options
needing to be selected to achieve 90% coverage; and (iii) increasing the number of distractor options
caps the maximum achievable accuracy at 12%.

The complexity of the dataset underscores the critical role that reasoning strategies play in shaping
model’s performance. This is evident from the fact that, although the top-3 models vary across
different performance metrics on our Hugging Face leaderboard, all consistently exhibit implicit
reasoning capabilities. To investigate this further, we evaluated different prompting methods on a set
of 2,667 single-answer multiple-choice questions using a range of large open-source models. These
strategies, namely Chain-of-Thought [38]], Role-Playing Chain-of-Thought [19]], and Self-Plan [36]]
revealed a compelling trend: while larger models tend to perform better overall, medium-sized models
(around 70 billion parameters) experience significant performance gains via effective prompting.

Beyond reasoning complexity, expert evaluation on a curated subset of the dataset and analysis
of asset-centric external knowledge offer deeper insights into model reliability and underlying
knowledge gaps. Human experts achieved a maximum accuracy of 66.19% and a mean accuracy of
60.20% across three participants, underscoring the intrinsic difficulty of the task even for domain
specialists. Given the vast landscape of industrial assets and their thousands of failure modes, our
asset-level performance analysis reveals a modest correlation between the volume of external
knowledge (e.g., Wikipedia, arXiv) and an LLM’s ability to answer related questions. However, the
current ReAct-based Agent [46] fails to deliver the expected performance improvements, indicating a
need for future research into effective reasoning and retrieval strategies.

Furthermore, we evaluate models on multiple-correct MCQAs (MC-MCQA), where each question has
exactly two correct options. The primary challenge in this setting is not only selecting all valid
answers but also avoiding reasonable distractors. We evaluate several recent models using same
prompt setting as single-correct MCQAs (SC-MCQA), where models must directly select the correct
set without being told how many answers to choose. Despite progress in language modeling, exact
match scores remain low (below 21%), highlighting the difficulty of precise multi-option reasoning.
This stark difference underscores the importance of knowing the number of correct answers, a piece
of information that is typically unavailable in standard prompting scenarios.

Finally, we present “LLMFeatureSelect”, an sklearn and LLM-based feature selection pipeline tool.
This tool can reason around variables relationships involving Assets, Failure Modes, and Sensors.
We use it on 3 real-world datasets, quantify the quality of the feature recommendations, and find
promising model capabilities with room for improvement (Section [6)).



2 Methodology

Our dataset includes two question formats aligned with Truthful QA [18]]: Single Correct and Multi
Correct multiple-choice QA. SC-MCQA questions have one correct answer, while MC-MCQA questions
require selecting two correct answers from five options. These questions are generated using our
automated pipeline, as outlined in Figure 2]
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2.1 Dataset Structure
Each question in the dataset is formally defined as a tuple (Q, C, O, A), where:

1. @Q: Represents the question.

2. C: Refers to the option ID (e.g., choices A, B, C, D and E. The number of choices are
between 2 to 5).

3. O = (01,09,...,0;): Represents the content of the options, assuming () has k candidate
options.

4. A: Denotes the ground-truth answer, consisting of both its ID and content.

An example prompt can be found in Appendix

2.2 Question Generation Pipeline

The benchmark questions in our dataset are accompanied by meta-information, including asset names,
task types, relevance types, and answer types. These attributes are defined during the question
generation process. Note that no LLM is used to generate the dataset. Appendix [B|provides the
pseudo-code. The process goes as follows:

1. Asset Selection: The pipeline begins with selecting relevant assets, such as electric motors,
pumps, compressors, or other industrial equipment. These assets are defined based on
standardized knowledge sources, like ISO documents.

2. Task Type Identification: The next step involves identifying the task type. Examples
include FM2Sensor (failure modes to sensors) or Sensor2FM (sensors to failure modes).

3. Relevance Type Determination: Relevance type is defined based on the context of the task.
This could involve selecting the most relevant or irrelevant options for the given scenario.

4. Answer Type Definition: Finally, the answer type is determined, specifying whether the
question has a single correct answer (SC-MCQA) or multiple correct answers (MC-MCQA).

Using predefined, domain-expert-curated question templates and the above selections, closed-ended
questions are generated for each asset. We have prepared approximately 10 templates per relevance
and task type (see Appendix [B.I). Currently, we use ISO documents [[[1], along with expert-
curated information, to establish an initial mapping. The result is a comprehensive benchmark
dataset containing well-structured questions, multiple answer options, and their corresponding correct
answers. An example is shown in the last column of Figure[2] Our SC-MCQA corpus consists of 2,667
generated questions, although not all feature five answer options. To better understand the structure



of the corpus, we analyzed: (a) the distribution of questions by the number of answer options; (b) the
frequency of selected answers across those options; and (c) the total number of questions per asset
(see Figure[3). The distribution of selected options is as follows: A (752), B (729), C (491), D (408),
and E (208). This imbalance in the distribution underscores the need for a robust model qualification
test, which we formalize in Section[3] Such a test is essential for evaluating an LLM’s tendency
to favor specific answer choices and identifying emerging response patterns. The distribution of
questions by the number of answer options is as follows: 2 options (487), 3 options (266), 4 options
(389), and 5 options (1525). Over 50% of the questions have five answer choices, indirectly reflecting
the dataset’s complexity.

3 Perturbation-Uncertainty-Complexity Analysis

We evaluate the accuracy of several frontier and open source foundation models on the SC-MCQA
benchmark using three settings: Perturbation, Uncertainty and Complexity. All these settings assume
a closed-book scenario, meaning that models have no access to external information beyond the
question, the prompt, and their own parameters. To ensure a diverse and representative evaluation, we
select over two dozen models [7]]. These include both closed-source models o1, 03-mini, gpt-4.1 [24],
and open-source models (deepseek-rl [9], qwen [3]], granite [8], gemma [32]], phi [[1], mistral[[13],
and llama [33]]).

3.1 Perturbed/Complex Dataset Preparation

Recent studies question whether LLMs reason before answering or justify preselected choices,
revealing option biases that vary across models [4]. To address these challenges, we evaluate model
performance on both the original (SC-MCQA) and perturbed datasets, which underwent rigorous
modifications. We extend the PertEval toolkit [[14] and develop two versions of the perturbed dataset:
(i) SimplePert, which modifies the formatting of the questions by reordering the options, adding a
right parenthesis to each option, and changing the option labels from A, B, C, etc., to P, Q, R, and so
on. (ii) ComplexPert, apply all the question permutation as well as use LLM (1lama-3.3-70b-instruct
in this case) to change the questions also. Furthermore, to increase the question complexity, we
extend each question in SC-MCQA to have 10 options [37]]; where new choices are all distractors and
then we randomized the options. We call this new dataset as OptionsPert. Appendix shows the
pipeline that is adopted to generate the ComplexPert dataset.

3.2 Performance Study

We use a zero-shot direct prompting method for knowledge assessment and employ a structured
output approach to simplify answer decoding after execution. It is worth noting that the prompt does
not specify whether a question has a single correct answer or multiple correct answers, leaving it
up to the models to infer the appropriate response based on their understanding of the task.

We evaluate model performance using several metrics: (a) Accuracy (Acc@Original) or Acc)
measures the fraction of correct predictions on the original test set: Acc = ﬁ Y wen M (gz) = e,

where M (g, ) is the model’s top prediction and y, is the ground-truth label. (b) Perturbed Accuracy
(Acc@Perturb) uses the same formula on modified queries ¢’ (z). To capture robustness under
ambiguity, we use (c) Consistency-Based Accuracy (Acc@Consist) as: Acc@Consist(M, D) =
|—£)| Y wen 1M (qz) = yo AN M(q}(x)) = yj(x)], where ¢ (z) is a perturbed version of the input
and y*(x) its corresponding label. (d) Set Size (SS) reflects the average number of options selected
per question, indicating model selectivity. (e) Coverage Rate (CR) quantifies how often the correct
answer appears in the selected set. (f) Uncertainty-Adjusted Accuracy (UAcc) combines correctness
with prediction confidence, rewarding confident and accurate responses.

3.3 Real Knowledge Capacity Evaluation using Perturbation Analysis

Figure ] shows performance result on SC-MCQA and its complex perturb version ComplexPert using
ACC@Original, ACC@Perturb and ACC@Consist. We select top-10 performing models out of
24 entries in our leader board. From the lens of ACC@Original, “ol” is the best performing, but
other frontier models are very close. We can see a significant decline in model performance when
subjected to perturbed data (Wilcoxon signed-rank test with alpha = 0.1). For example, “o1” and
“llama-4-scout” show noticeable drops in accuracy, with ACC@Original scores of 60.4% and 54.0%,
falling to ACC@Perturb values of 44.2% and 24.1% respectively. Even another top-performing
model, “03-mini”, only achieves an ACC@Consist of 47.5%. These results highlight the substantial
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Figure 4: Real-world knowledge capacities assessed by ACC@Consist.

gap between the perceived knowledge capacity of LLMs based on static datasets and their actual
ability to retain and apply knowledge under dynamic, perturbed conditions. The performance of the
latest “gpt-4.1” series model is still behind reasoning driven LLMs.

Despite the drop in performance, all models demonstrate consistent mastery of certain knowledge.
This is assessed by comparing each model’s performance against random guessing. Given k possible
options (ranging from 2 to 5) with one correct answer, the expected ACC@Consist for random
guessing is kQ For example, with k£ = 4, the expected value would be 0.0625 (6.25%). As shown in
Figure[d] the ACC@Consist values of all models are well above this random baseline. This suggests
that while each model has successfully mastered some knowledge, the models still show limited
knowledge retention, as they have ACC@Consist values below 50%, indicating they have mastered
less than half of the total knowledge. This result reemphasizes the fact that an agent may probe LLMs
in a different way and produce significantly different results. The performance of other models is
available in Appendix [E.T]
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Figure 5: Response Pattern Analysis between
Original Data and Complex Perturbed Data on
SC-MCQA for ol.

Table 2: PDR 7 and hypothesis test results of
LLMs w.r.t. perturbation. “**”: stat. significant

Response Pattern Analysis. Since models can select more than one options as the answer, we
measure the performance of “o1” on 5 different cases. As illustrated in Figure[5] the most significant
factor contributing to the performance drop is the higher frequency of selecting additional incorrect
options in the perturbed data (from 11.20% to 23.6%). This behavior indicates that LLMs often
choose extra incorrect options alongside the correct ones under perturbations. A potential explanation
for this phenomenon could be the model’s increased sensitivity to subtle variations in input, leading
to over-selection.

Performance Stability Test. We calculate the discrepancy between the LLM’s accuracy on original
dataset and the perturbed dataset using Performance Drop Ratio (PDR). Table [2] shows result for



top-10 models. When PDR < 0, the perturbation decreases the overall performance of an LLM,
indicating that it does not robustly acquire knowledge and skills. From a column-wise perspective,
all tested LLMs show negative PDRs under the complex perturbation ComplexPert, indicating that
these models consistently struggle to maintain performance across datasets. Furthermore, the PDR
results for most models, such as “ol” and “llama-4-scout”, are significantly negative, emphasizing a
call for action for these models when faced with knowledge-invariant perturbations. From a row-wise
perspective, the complex perturbations result in substantial performance drop for all models. These
results highlight the universal vulnerability of current-generation LLMs to content-level paraphrasing
and format-level changes, suggesting a pressing need for improved robustness in future models.

3.4 Uncertainty Quantification Analysis

To calculate uncertainty for SC-MCQA we follow [47]; see Appendix [K]for details. Our uncertainty
analysis across 14 models on SC-MCQA (See Table@ reveals that larger models, such as mistral-large,
are better calibrated, selecting fewer answer options and achieving better performance. We get a
coverage guarantee but only after a higher value of set size. In contrast, smaller models especially
deepseek distill variants exhibit greater uncertainty, often over-hedging with larger set sizes and lower
accuracy, despite high coverage. These trends suggest that model size correlates with confidence, and
calibration remains a key challenge particularly for smaller size models, where alignment strategies
may inadvertently increase ambiguity. For Industrial QA, deploying well-calibrated models (e.g.,
mistral-large or phi-4) is critical, while smaller models may benefit from fine-tuning to reduce
uncertainty and improve reliability.

Table 3: Uncertainty Quantification. Model se-  Table 4: Multi-choice question complexity anal-

lection is constrained by available hardware. ysis for various models including top-10.

Model | UAcet SS| CR?T  Acct Model | Acct CRT SS|
mistral-large 50.03 3.02 9132 60.83 llama-3-1-405b 10.69 3735 3.51
phi-4 46.51 302 912 5639 mistral-large 7.8 3341 3.06
mixtral-8x22b 41.55 336 9346 54.75 llama-4-mav-17b-128e | 7.72  32.02 2.68
gemma-2-9b 33.47 3.61 9474 48.6 deepseek-r1 6.75 4698 3.71
granite-3.3-8b 34.00 355 9400 4852 llama-4-scout-17b-16e 6.34 7983 7.77
granite-3.2-8b 32.46 3.65 9552 4798 ol 5.74 4143 372
mixtral-8x7b 30.55 3.65 9548 45.09 ol-preview 5.62 4184 3.73
qwen2.5-7b 29.57 354 9248 42.06 03-mini 5.62 41.66 3.72
granite-3.0-8b 27.32 3.67 9393 40.65 gpt-4.1 5.62 4192 3.74
llama-3.3-70b 23.53 3.62 9322 3442 deepseek-r1-llama-8b 832 28.83 2.65
dsrl1-llama-70b 20.96 3.81 95.02 3248 granite-3.2-8b 5.66 50.73 4.82
llama-3.1-8B 19.94 3.83 9494 31.15 granite-3.3-8b 5.55 4451 423
dsrl-qwen-7b 17.76 373 94.04 26.87 gpt-4.1-nano 5.51 4139 3.71
dsrl-llama-8b 16.38 394 9595 2632

3.5 Question Complexity Analysis

We use the OptionsPert dataset to assess question complexity. As discussed in Section [3.1] the
purpose of this dataset is to reduce the likelihood of random guessing and enable systematic evaluation
of model robustness under increased ambiguity. Table |4 presents the results. The top-performing
model “ol1” experiences a sharp accuracy drop from 60% to just 5.74% when distractor options
are introduced, highlighting models’ vulnerability to increased choice complexity. This mirrors
real-world scenarios, such as Kaggle challenges, where selecting the relevant parameters from more
than 10 options is common. These findings underscore the need for models with improved uncertainty
calibration and adaptive reasoning strategies to perform reliably in complex settings.

3.6 Knowledge Gap Study for Industrial Assets

Each question is associated with several meta-data such as asset type (see Section[2.2)). This enables
us to obtain the asset-centric performance of the model. Table [5 presents the performance of the o1
model on the SC-MCQA benchmark across various asset types, sorted by increasing ACC@Original.
The results reveal substantial variation in model accuracy. Assets like Steam Turbine (43.59%) and
Electric Motor (43.59%) exhibit the lowest scores, suggesting difficulties in reasoning over their
operational principles. Given that large LLMs are generally trained on broad open-domain corpora,
we investigated whether access to such content correlates with task performance. Specifically, we



compare model accuracy per asset type with the number of documents retrieved from trusted open-
access repositories such as Arxiv, CrossRef, Wiki and Google Search. A scatter plot on a logarithmic
scale reveals a mild positive correlation (See Figure[6): asset types with richer public documentation
tend to yield higher accuracy for Arxiv (See Appendix [E.3]for others). This trend suggests that
LLMs benefit from greater domain-specific exposure during training or inference. However, some
variation persists, likely influenced by factors such as terminology ambiguity, data formatting, or
documentation consistency. These findings underscore the importance of high-quality domain data in
enhancing LLM reliability for specialized industrial tasks.

Asset Type Total Q. % Correct - Accuracy vs. Sample Volume by Asset Type
Electric Motor 234 43.59% o ¥ 3
Steam Turbine 171 47.95% £70

Aero Gas Turbine 336 50.89% Z 65 ¥
Compressor 220 56.36% g fén power transformer
Power Transformer 544 57.35% 860"* € ¥ l ’ l ’ ’
Fan 200 58.00% 2 $ )

Pump 152 58.55% 15:55 aero gaI turbine
Reciprocating Internal )

Combustion Engine 336 65.48% 3 ¢

Industrial Gas Turbine 240 70.83% <45 3

Electric Generator 234 70.94% 10° 10° 10° 10°

Number of Samples (Log Scale)
Table 5: Performance Analysis of )
Correct Answer Percentage and To- Figure 6: Accuracy vs. Sample Volume by Asset

tal Questions for Each Asset Type Type

4 Experimental Results

This section presents extended evaluation experiments on SC-MCQA, examining how reasoning-
based prompting and external knowledge integration affect model performance. We further assess
FailureSensorIQ through human expert evaluation to validate the quality of dataset.

Impact of Reasoning-Based Prompting. As shown in Figure[d] reasoning-centric models dominate
leaderboard positions. To assess the impact of explicit reasoning, we evaluate llama models using
different reasoning strategies: Chain-of-Thought (CoT) prompting in Standard, Expert, and Inductive
configurations, and the P1an@Solve method (see Appendix [E.2]for prompt templates and additional
results). While CoT@Standard and Plan@Solve are general-purpose, the other two prompts are
tailored for industrial contexts. As shown in Table [] CoT prompting enables smaller models to
match or even outperform larger models using direct prompting (see Baseline row). Interestingly,
1lama-3-70b improves from 41.69% to 51.18% with CoT. Moreover, accuracy scales with model
size: the largest model, 4-Maverick-17B-128E, achieves 56.90% average accuracy which is about
+41% higher than the smallest model, 3.1-8b (40.27%). Overall, reasoning-oriented prompts like
CoT@Standard and Plan@Solve consistently enhance model performance across scales.

Method/Model 4-Mav-17B-128E | 4-scout-17b-16e 3-405b 3.3-70b 3.1-8b
Direct Prompt 55.83 53.96 51.26 41.69 40.04
COT @Inductive 56.88 54.22 53.17 49.46 40.27
COT @Expert 56.96 53.06 55.38 50.96 42.11
COT @Standard 57.29 52.53 55.57 51.18 45.74
Plan@Solve 56.47 55.46 54.89 50.36 46.46
| Average [ 56.90 [ 53.82 ] 54.75 ] 50.49 [ 43.65 ]
Baseline 60.40 55.83 55.83 51.26 41.69
ol 4-Maverick 4-Maverick 3-405b 3.3-70b

Table 6: Performance Comparison across Different Reasoning Models for llama models

Al Agent with External Knowledgebase. Given the sheer volume of content about industrial assets
(as shown in Figure[6), we deploy a ReAct [46] agent equipped with Wikipedia and arXiv search tools
to dynamically retrieve relevant information while answering questions. On average, the agent issues
2-3 queries per question, using both tools in an interleaved manner. However, our analysis reveals
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Figure 7: Accuracy comparison between Direct Prompting and ReAct across llama models.

Table 7: Expert Evaluation (Quiz Scores). Numbers in parentheses indicate

“Don’t know” responses.

ID (Role) Quiz 1 (%) | Quiz 2 (%)
A (Expert) 55.56 (4) 64.86 (3)
B (Expert) 66.67 (1) 65.71 (5)
D (Expert) 57.89 (2) 50.00 (0)
E (Expert) -(=) 61.11 (22)
C (Practitioner) 20.59 (6) 43.24 (3)

that such tool-augmented setups do not reliably enhance performance. Among five llama models,
only one shows marginal improvement, while others including 11ama-4-maverick experience drops
(e.g., from 55.83% to 48.44%). This suggests that success on industrial QA tasks depends more
on reasoning over internal representations and navigating fine-grained distractors than on retrieving
surface-level facts. These results highlight that just access to external knowledge, but the method of
search and reasoning is a critical and currently underexplored dimension for tool-augmented agents
in specialized domains.

Human Evaluation. We conducted a human study involving 5 participants, where 4 have expertise in
industrial assets (reliability engineers) and 1 industrial data scientist. We selected a balanced sample
of 80 questions spread across 10 asset types. Questions were balanced along two axes: query type
(elimination vs. selection) and axis of reasoning (failure mode — sensor, and sensor — failure mode).
We divided the 80 questions into 2 quizzes: Quiz 1 focused on elimination (select the irrelevant
option), and Quiz 2 on selection (select the most relevant option). Since participants had varying
expertise across asset types, a “don’t know” option was included. Our setup is consistent with human
evaluation methods in similar works (see Appendix [J).

Table [7| shows the results. Domain expertise significantly improves performance on reasoning-
intensive QA tasks in industrial contexts, with experts outperforming the practitioner by over 25
percentage points on average, and up to 39.45 points in Quiz 1. Inter-rater agreement among experts
with IDs A, B and D yield a moderate Cohen’s Kappa (x = 0.462 overall [6]), indicating that
while domain knowledge enhances accuracy, the task retains nuanced complexity. This suggests
that the task is neither trivially objective nor entirely subjective, involving a diverse set of assets and
underscoring its nuanced reasoning demands. These findings highlight the value of integrating expert
knowledge into both QA system development and evaluation.

5 Multi-Correct MCQA

We report results for ten LLMs evaluated under the MC-MCQA-Direct protocol (Table , where
each question requires selecting exactly two correct answers from a candidate set. The evaluation
emphasizes both exact match and soft matching metrics such as F1, Jaccard, and a consistency-
weighted score that penalizes partial but incorrect selections. Despite decent F1 scores (0.59), exact
match remains under 21%, highlighting the challenge of jointly identifying all correct options. Models



like 04-mini and gpt-4.1-nano show relatively better consistency, but overall performance suggests
that exact selection of multiple true answers remains a difficult task, especially without explicit
guidance on how many options are correct.

Table 8: Performance on multi-correct MCQA (2-answer) benchmark using the MC-MCQA approach.
EM = exact match.

Model EM  Precision Recall MicroF1 MacroF1 Hamming Loss Set Size
03 0.200 0.591 0.710 0.645 0.645 0.313 2.40
o4-mini 0.201 0.590 0.710 0.645 0.644 0.313 2.41
gpt-4.1 0.186 0.590 0.676 0.630 0.630 0.317 241
gpt-4.1-mini 0.181 0.580 0.682 0.627 0.626 0.325 2.41
gpt-4.1-nano 0.186 0.586 0.682 0.630 0.630 0.320 2.41
llama-4-maverick  0.184 0.590 0.671 0.628 0.627 0.318 1.80
llama-4-scout 0.205 0.607 0.684 0.643 0.643 0.303 1.94
llama-3-405b 0.196 0.599 0.686 0.640 0.640 0.309 2.40
llama-3-70b 0.185 0.585 0.679 0.629 0.628 0.321 2.55
llama-3-8b 0.178 0.577 0.676 0.623 0.623 0.328 2.56

6 LLMFeatureSelect: scikit-learn Transformer

We implement LLMFeatureSelector, a prompt-based method that leverages an LLM to recommend
relevant features given a problem statement, sensor names, and a target variable. As shown in the
detailed system prompt in Appendix Figure[I7] we use a one-step process to extract the important
variables along with reasoning. While prior work has explored similar tasks [[12], our goal is to
evaluate LLM capabilities specifically in the industrial domain. We test the approach on three
open-source, real-world datasets and assess performance by computing the correlation between the
LLM-recommended features and the target variable (next timestep).

As seen in Table[9] 3 out of 6 test cases, the most highly correlated signal, which is highlighted, is
among the LLM’s top-5 suggestions, indicating promising alignment between model predictions and
empirical sensor importance. Dataset descriptions and further findings are provided in Appendix [
and correlation results in Table[9} FailureSensorIQ can complement this approach, as reasoning is
central to effective feature selection.

Table 9: Absolute value Correlations between the top-5 recommended sensors and the target variable

Asset Task: (Failure or Top-5 recommended features Max

Energy Pred.) 1 2 3 4 5 Corr.
Electrical Transf. | Magnetic Oil Gauge | 7.83 | 12.52 | 20.33 | 0.25 | 0.31 | 35.88
Air Compressor | Bearings 0.07 1.94 | 451 275 | 0.01 | 36.03
Air Compressor | Water Pump 15.28 | 21.38 | 13.62 | 15.87 | 14.52 | 21.38
Air Compressor | Radiator 31.85 | 31.83 | 31.78 | 86.88 | 25.16 | 86.88
Air Compressor | Valve 1.66 | 52.64 | 1442 | 143 | 030 | 52.64
Wind Mill Energy Production 92.02 | 82.79 | 82.83 | 36.0 | 35.75 | 94.40

7 Limitations and Future Work

A key limitation of FailureSensorlQ is its current focus on static knowledge, without modeling
temporal sensor-failure dynamics. Additionally, performance varies due to uneven online knowledge
availability across assets, affecting benchmarking consistency. Our experimental results underscore
these limitations and present an opportunity for innovation in reasoning-aware and agentic LLM
systems tailored to industrial diagnostics. Future work will extend the benchmark with temporal
reasoning tasks to evaluate how well LLMs integrate dynamic signals into feature selection. Another
direction is to expand the scope of the dataset by incorporating more assets and failure modes. Based
on preliminary studies, synthetic data generation and knowledge distillation from bigger and more
capable models to smaller ones are promising directions [17]].
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A Dataset Benefits for AI and Industrial Research

Our dataset provides a range of opportunities across various domains. Below, we highlight seven
key application areas: the first four focus on reasoning and knowledge integration ability, while the
remaining three are centered around domain-specific applications.

4P MCQA Reasoning Analysis: Focuses on LLMs’ ability to solve multi-choice problems
effectively [4} 129,150, 51} 51].

. ReAct-style Reasoning with Multiple Data Sources: Supports dynamic retrieval of
external knowledge sources (e.g., Wikipedia, ArXiv) for open-book experimentation [2} 46]

. Knowledge Transfer Across Model Scales: Explores model scalability, pushing the
limits of smaller models compared to larger ones.

+ @ Knowledge-Invariant LLM Testing: Evaluates LLMs’ consistency in applying
domain-specific knowledge [[14]].

+ £ Domain-Specific Embedding Models: Facilitates the creation of domain-specific
embedding models for improved performance [[16}42].

+ G Synthetic Data Generation for Domains: Enables large-scale synthetic datasets for
data-scarce industries [41]].

. IoT Integration and Real-World Validation: Validates AI models using real-world
IoT data for continuous improvement [[10} 44].

B Dataset Preparation : Real and Perturbed

We systematically create a dataset of multiple-choice questions (MCQs) using the relevant and
irrelevant relationships between sensors and failure modes of an asset (D, .ccvqrt) Which are found
from expert curated tables (example in Table [I)) and question templates (Q7T/,,; and QT. ).
For each entry in D,..;.,qn¢ it selects an appropriate question template, replacing placeholders with
corresponding attributes like failure mode, sensor type, or asset class. We then identify the correct and
incorrect answer pairs from the item’s multiple-choice targets (mc_targets), ensuring at least one
correct answer A and one incorrect answer [ is available (JA| > 1 and |I| > 1) to form meaningful
questions. For each valid pair of correct answers, incorrect answers are sampled, shuffled, and
integrated into a final MCQ format. The resulting questions with associated passage, answers, and
indices of correct answers, are appended to the results list (res,.cjcpant) Which is returned as the
output.
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Algorithm 1: Generate Multiple-Choice Questions

Input: D, cicvant QT
OUtPUt: T€Srelevant

, QT , max_n_choices

Initialize 7€, cicvant < [];
for each item € D,cjevan: do

else

L continue;

return T€Srelevants

if / failure_mode’ € item then
q + random.choice(QT../);
Replace placeholder in g with item[* failure_mode”];

q + random.choice(QT );
Replace placeholder in g with item/[“sensor”];

Replace placeholder with item[“asset_class”];

Extract qa_pairs < {(key,value) | key € item[“mc_targets’]};
Identify correct answers A, incorrect answers [;

if |I| < 1or|A| < 1then

for each pair (i,j) € Ado
correct + [qa_pairsli], ga_pairs[jl];
Sample incorrect + random.sample(I, n);
Shuffle answers, find indices A;q,;
qfinal < Question(passage, answers, Aiqz);
Append qfinal to reSrelcvants

B.1 Question Templates

We have developed question templates as shown in Table [0} We only show one example per
task. The table provides structured templates for generating questions aimed at exploring the
relationships between sensors, failure modes, and industrial asset classes, supporting tasks like
Condition-Based Monitoring (CBM) and reliability analysis. Each task targets a specific aspect of
relevance. FM2Sensor-Sel. focuses on identifying the most relevant sensors for a failure mode in
an asset class, while FM2Sensor-El. identifies sensors that are not relevant. Similarly, Sensor2FM-
Sel. determines the most relevant failure modes associated with abnormal sensor readings, and
Sensor2FM-EIL. identifies failure modes that are irrelevant in such contexts. These templates enable
systematic question formulation, facilitating analysis of sensor-failure mode interactions to enhance

asset performance and reliability.

Task

Question Template

FM2Sensor-Sel.

For {asset_class}, if a failure event

occurs, which sensors out of the choices are the

most relevant regarding the occurrence of the failure
event?

FM2Sensor-El.

For {asset_class}, if a failure event

occurs, which sensors out of the choices are not
relevant regarding the occurrence of the failure
event?

Sensor2FM-Sel.

In the context of {asset_class}, which failure modes

are the most relevant when shows abnormal
readings?

Sensor2FM-El. In the context of {asset_class}, which failure events
are not relevant when the sensor shows an

abnormal reading?

Table 10: Examples of question templates for sensor selection and failure mode identification. Each

template is rephrased multiple times for different tasks.
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B.2 Raw Data

We have 10 assets at present in our analysis, and per asset we have two mapping information available
in a form of Knowledge Graph (KG). Figure[§]provide a KG view.
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B.3 Perturbed Pipeline

The following Figure 9] show a pipeline for data generation. The pipeline depicted in the diagram
represents a systematic process for perturbing questions through a series of transformations. It starts
with the Original Question (Q) and progresses through multiple stages, each applying a specific
modification. The first stage, OptionCaesar, introduces a basic transformation to the options, such as
encoding or shifting values. Next, OptionPerm rearranges the order of the options without changing
their content. The OptionForm stage modifies the format of the options, such as rephrasing or altering
their presentation. Following this, ChangeType alters the question type, for example, converting a
multiple-choice question to a true/false format. The pipeline then proceeds to Question Paraphrase,
where the question itself is rephrased while preserving its original meaning. Finally, the SwapPos
stage changes the positions of key elements within the question, such as swapping the subject and
predicate.

The pipeline produces two potential outputs: an Easy Perturbed Question (Q) after moderate trans-
formations (indicated by a green arrow) or a Hard Perturbed Question (Q) after more extensive

Original
Question (Q)

OptionCaesar |
OptionPerm -
OptionForm [ — e
ChangeType i
Question
Paraphrase

SwapPos

Hard Perturbed
Question (Q)

Figure 9: Pipeline for Preparing Perturb Dataset

17



transformations at the final stage. The dotted arrows between stages represent the sequential applica-
tion of these perturbation techniques, progressively increasing the complexity of the modifications.

C Experimental Configuration

We use IBM watsonx and Microsoft Azure platforms which host various LLMs to perform the
inference for the different experiments. For models that are not available on these platforms, we run
on an internal GPU cluster equipped with 8 x Nvidia A100 (80 GB) and 16 x AMD EPYC 7763
64-Core CPUs, along with 128 GB RAM and 1TB SSD.

D Result Trace Analysis Demonstration

For the input prompt shown in Figure[T0] we provide the reasoning and answers for o1, llama-3.3-70b,
and mistral-large-instruct-2407. We’re given the failure mode “fuel filter blockage” for the asset
“reciprocating internal combustion engine” it is asked to find the most relevant sensors. OpenAl ol
(Figure [TT)) constructs a causal chain based on the effects of blockage in the fuel filter. It reasons
that it “reduces the amount of fuel filter reaching the engine cylinders”. This leads to “incomplete
combustion or a lean fuel mixture”. Then this causes “lower combustion pressure within cylinders”.
Based on this causal analysis the model now selects the options: (C) Cylinder Pressure Sensor and
(E) Output Power Sensor. However, the correct answer is (B) Exhaust Pressure.

In similar lines, Mistral-Large-Instruct (Figure [I2)) forms a reasoning in the form of a causal chain
and comes with the answers (B) Exhaust Pressure and (E) Output Power. It gets 1 out of the 2 correct.

In contrast with the previous 2 models, Llama-3.3-70B-Instruct (Figure I3 does not go in the same
depth as the other models. We see that it enumerates the options and just decides whether the sensors
are related or not with minimal reasoning. It finally selects (C) Cylinder Pressure which is incorrect.

The example presented in this section highlights the importance of the deep reasoning to be able to
answer these questions.

Input Prompt

Please select the correct option(s) from the following options given the question.
To solve the problem, follow the “Let me think step by step reasoning strategy”.
Question: Which sensor out of the choices can indicate the presence of fuel filter blockage
in asset reciprocating internal combustion engine?
Options:
A air flow
B exhaust pressure
C cylinder pressure
D engine temperature
E output power
Your output must strictly follow this format:
{"reasoning": <"Your reasoning step-by-step">, "answer": <the list of selected options, e.g.,
["A", "B", "C", "D", "E"]>}
Your output:
\_ J

Figure 10: Input Prompt. Ground truth is B, Exhaust Pressure.
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OpenAl o1 Reasoning and Response

Reasoning:
A blockage in the fuel filter reduces the amount of fuel reaching the engine cylinders. This
leads to incomplete combustion or a lean fuel mixture, causing lower combustion pressure
within the cylinders.
Therefore, a cylinder pressure sensor (Option C) can detect reduced pressures indicating a
fuel filter blockage.
Additionally, with less fuel available for combustion, the engine’s performance declines,
resulting in decreased power output.
Hence, an output power sensor (Option E) can also indicate a drop in engine power due to
fuel filter blockage.
Other sensors like air flow, exhaust pressure, and engine temperature are less directly affected
or may not provide a clear indication of fuel filter blockage.
Answer:
C,E

\_ J

Figure 11: Reasoning Trace by ol.

Mistral-Large-Instruct-2407 Reasoning and Response

Reasoning:

Let me think step by step:

1. A fuel filter blockage would restrict the flow of fuel to the engine.

2. This restriction would lead to a reduction in the engine’s ability to burn fuel efficiently.
3. Inefficient fuel burning would result in a decrease in output power and an increase in
exhaust pressure due to incomplete combustion.

4. Other sensors like air flow, cylinder pressure, and engine temperature might not directly
indicate a fuel filter blockage as they are influenced by various factors.

Therefore, the most indicative sensors for a fuel filter blockage would be exhaust
pressure and output power.
Answer:
B,E
\_ J

Figure 12: Reasoning Trace by Mistral-Large-Instruct-2407.
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Llama-3.3-70B-Instruct Reasoning and Response

Reasoning:

To determine the presence of a fuel filter blockage in an asset reciprocating internal combus-
tion engine, we need to consider the effects of such a blockage on the engine’s operation.
A fuel filter blockage would restrict the flow of fuel to the engine, leading to a decrease in
engine performance and potentially causing the engine to run rich or lean.

Let’s analyze the options:

A. Air flow: A fuel filter blockage would not directly affect air flow, so this option is unlikely
to indicate the presence of a blockage.

B. Exhaust pressure: While a fuel filter blockage might affect engine performance, it would
not directly impact exhaust pressure, making this option less likely.

C. Cylinder pressure: A fuel filter blockage would lead to a decrease in fuel flow, resulting in
lower cylinder pressures. This option is a strong candidate.

D. Engine temperature: A fuel filter blockage might cause the engine to run rich or lean,
potentially affecting engine temperature. However, this is an indirect effect, and engine
temperature is not the most reliable indicator of a fuel filter blockage.

E. Output power: A fuel filter blockage would likely cause a decrease in engine output power,
but this is a more general indicator of engine performance issues and not specific to fuel filter
blockages.

Considering the options, the most direct and reliable indicator of a fuel filter blockage is a
decrease in cylinder pressure

Answer:

C

Figure 13: Reasoning Trace by Llama-3.3-70B.
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E Additional Experimental Results

E.1 Leaderboard

In this section, we present the performance of 24 different LLMs on the SC-MCQA and its complex
perturbation version ComplexPert.

Model Acc. Total | Acc. Sel. | Acc El. | Acc Perturb. | Acc. Consist.
ol 60.40 61.06 67.89 49.76 44.17
03-mini 58.46 56.81 69.84 53.28 47.47
llama-4-mav.-17b-128e 55.83 44 47 71.90 49.12 40.83
llama-4-scout-17b-16e 53.96 44.47 63.53 29.36 24.11
gpt-4.1 53.47 56.38 59.17 45.74 39.93
ol-preview 52.31 49.57 62.5 47.51 40.68
llama-3.1-405b-instruct 51.26 48.72 61.24 40.04 30.93
ds-rl 50.09 45.74 59.75 54.37 42.93
mistral-large-instr.-2407 50.09 51.28 57.57 38.10 29.32
gpt-4.1-mini 49.27 45.53 57.34 39.97 31.76
phi-4 48.56 40.43 60.32 36.30 29.62
mixtral-8x22b-v0.1 45.18 42.55 59.06 27.52 19.57
ds-rl-dist.-llama-7b 44.62 36.38 65.14 44.99 30.30
gemma-2-9b 43.98 30.43 58.6 45.29 36.07
ds-rl-dist.-llama-8b 43.04 38.94 54.36 24.26 16.27
gpt-4.1-nano 41.77 40.00 50.34 14.47 9.30
llama-3.3-70b-instruct 41.69 35.11 55.85 37.57 25.27
llama-3.1-8b-instruct 40.04 36.17 51.15 25.35 13.95
llama-3.2-11b-vision 39.11 33.83 50.92 45.74 30.90
gwen2.5-7b-instruct 38.73 40.64 49.54 28.20 16.42
ds-rl-dist.-qwen-7b 34.01 23.83 50.11 17.02 8.02
granite-3.2-8b-instruct 30.26 41.70 29.82 19.24 8.74
mixtral-8x7b-v0.1 27.60 25.32 38.19 11.21 4.46
granite-3.3-8b-instruct 25.83 32.13 29.47 23.73 14.40
granite-3.0-8b-instruct 22.85 16.17 36.70 16.16 4.87

Table 11: Performance comparison of different models across total, selection, elimination, perturba-
tion, and consistency accuracies.
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Model Electric Steam Aero Industr. Pump Compresbor
Motor Turbine | Gas Gas
Turbine | Turbine

ol 68.8 47.95 50.89 70.83 58.55 56.36
03-mini 63.25 49.71 51.49 68.33 52.63 55.45
llama-4-maverick-17b-128e 66.24 47.37 47.32 69.17 55.26 52.27
1lama-4-scout-17b-16e 60.26 40.94 47.02 67.5 50.0 46.36
gpt-4.1 58.12 43.27 43.75 69.17 52.63 46.36
ol-preview 65.38 43.86 42.56 62.92 50.0 46.82
llama-3.1-405b-instruct 61.11 39.18 48.51 59.17 46.05 45.0
mistral-large-instruct-2407 51.71 36.26 44.64 59.58 45.39 46.82
deepseek-rl 58.97 39.18 44.94 63.33 50.66 44.09
gpt-4.1-mini 55.98 43.27 41.67 56.67 45.39 43.18
phi-4 50.85 40.35 45.83 57.92 50.0 41.36
mixtral-8x22b-v0.1 46.58 40.35 39.29 57.5 46.05 43.18
deepseek-r1-distill-llama-70b 50.0 36.84 40.77 51.25 39.47 34.55
gemma-2-9b 453 35.67 42.86 53.33 43.42 40.91
deepseek-r1-distill-llama-8b 46.58 36.26 43.45 50.0 40.79 41.82
gpt-4.1-nano 44.87 31.58 38.99 50.83 40.13 37.73
1lama-3.3-70b-instruct 453 29.24 3542 45.42 37.5 3591
llama-3.1-8b-instruct 39.74 33.33 37.5 48.75 36.84 3591
1lama-3.2-11b-vision 38.46 31.58 36.61 42.92 38.16 37.73
qwen2.5-7b-instruct 41.03 30.41 3542 45.0 39.47 35.0
deepseek-r1-distill-qwen-7b 37.18 28.07 32.44 43.33 34.87 31.82
granite-3.2-8b-instruct 34.19 27.49 24.7 30.0 35.53 28.18
mixtral-8x7b-v0.1 29.06 20.47 20.24 24.58 23.68 22.73
granite-3.3-8b-instruct 26.5 24.56 19.05 26.67 28.95 26.36
granite-3.0-8b-instruct 28.63 19.3 18.75 19.17 23.68 20.45

Table 12: FailureSensorlQ performance per asset (Part A).

Model Recipr. In- | Electric Fan Power Trans-
tern. Comb. | Generator former
Engine

ol 65.48 70.94 58.0 57.35
03-mini 63.39 65.81 61.0 54.78
llama-4-maverick-17b-128e 61.01 62.39 56.5 48.71
llama-4-scout-17b-16e 66.96 59.4 60.5 45.04
gpt-4.1 61.01 58.12 57.0 48.9
ol-preview 58.33 62.82 53.5 44.85
llama-3.1-405b-instruct 58.63 55.56 515 46.51
mistral-large-instruct-2407 59.52 50.85 50.0 49.45
deepseek-r1 51.49 56.84 535 443
gpt-4.1-mini 56.85 49.15 54.5 46.69
phi-4 52.98 52.56 55.0 43.38
mixtral-8x22b-v0.1 52.38 39.74 53.5 39.71
deepseek-r1-distill-llama-70b 52.98 49.15 48.5 41.18
gemma-2-9b 53.57 44.44 55.0 33.82
deepseek-r1-distill-llama-8b 55.65 52.14 43.5 29.6
gpt-4.1-nano 50.89 45.73 49.5 33.27
llama-3.3-70b-instruct 50.0 42.74 48.0 41.91
llama-3.1-8b-instruct 47.92 37.61 46.5 36.4
llama-3.2-11b-vision 47.62 36.32 48.5 34.93
qwen2.5-7b-instruct 47.62 42.74 44.5 31.62
deepseek-r1-distill-qwen-7b 41.67 35.04 34.0 26.84
granite-3.2-8b-instruct 36.9 28.63 33.0 27.94
mixtral-8x7b-v0.1 36.61 23.08 34.0 32.17
granite-3.3-8b-instruct 36.31 25.21 30.5 20.77
granite-3.0-8b-instruct 32.14 22.22 27.0 19.12

Table 13: FailureSensorlIQ perf:
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E.2 Trigger Statement for Induced Reasoning

Table [14] shows the trigger statement we have used as a part of CoT based prompting to LLM.
Similarly, Table [I5]shows the prompt for Plan-Solve mechanism.

CoT Stype Trigger Statement

Standard Let me think step by step

Expert Let me think step by step as a reliability engineer

Inductive Let’s use step by step inductive reasoning, given the
domain specific nature of the question

Table 14: CoT Style

Plan-Solve Trigger Statement

prompt-3 Let’s first prepare relevant information and make a

plan. Then, let’s answer the question step by step

(pay attention to commonsense and logical coherence).
Table 15: Plan-Solve

E.3 Probing External Knowledge Sources

In this section, we examine how external knowledge sources are probed to estimate the volume of
documents they possess, which may have been leveraged during model fine-tuning. To operationalize
this, we use keyword-based querying across multiple platforms (Wikipedia, arXiv, CrossRef, and
Google) and record the number of matching documents related to each asset type.

We document the querying process using a sample pseudocode procedure in Algorithm [2} which
outlines how we retrieved the number of Wikipedia entries associated with a given keyword. Similar
script is developed for the other sources. Our goal is to understand the potential influence of these
sources on the model’s performance by analyzing the extent and nature of available data related to
specific asset types.

Algorithm 2: Search Wikipedia for Keyword Hits

Input: Search keyword &

Output: Total number of matching pages h

Define Wikipedia API endpoint: url - "https://en.wikipedia.org/w/api.php" ;

Construct query parameters: params <— { action: "query", list: "search", srsearch: k,
format: "json" };

Send HTTP GET request: response <— GET(url, params) ;

Parse JSON response: data <— ParseJSON(response) ;

Extract hit count: h <— data["query"] ["searchinfo"] ["totalhits"] ;

return h ;

The distribution of document volume shown in Figures: [T4{I6|reveals discrepancies across sources:

* CrossRef Scholarly Dominance: Assets like industrial gas turbine, power transformer,
and reciprocating internal combustion engine exhibit extremely high coverage in CrossRef
(e.g., over 1.8M entries for industrial gas turbine). This suggests substantial representation
in peer-reviewed literature, reflecting their critical role in energy and infrastructure systems.

» Wikipedia vs. arXiv Divergence: While fan has extensive representation on Wikipedia
(over 253K articles), it has modest coverage on arXiv (20K). Conversely, electric motor is
strongly represented on arXiv (75K) but appears in fewer Wikipedia articles (33.5K). This
contrast implies a split between assets emphasized in technical vs. general public domains.

* Underrepresented Public Topics: Assets like aero gas turbine and electric generator have
very low Wikipedia visibility (fewer than 1.5K hits each), yet they appear prominently in
arXiv and CrossRef. This suggests that these domains are underrepresented in public web
knowledge despite being well-documented in scientific literature.

* Public vs. Research Interest Misalignment: Pump and fan have significant Google
presence (1.4B and 7.08B hits, respectively), underscoring their ubiquitous usage. However,
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their academic representation is comparatively limited, pointing to a potential mismatch
between public visibility and scientific exploration.

* Research Intensity Metric: We compute a simple research intensity ratio, defined as
CrossRef volume over arXiv volume, to assess where scholarly publication concentrates:

— Steam turbine has the highest ratio (91.7), suggesting more journal-level than pre-print
research.

— Electric generator exhibits a low ratio (0.10), possibly indicating a heavier reliance on
open-access pre-prints.

Implications for Model Exposure and Bias
These findings reveal a skewed exposure landscape across assets:

* Assets with higher web-scale and academic document volumes are more likely to have
influenced pretrained LLMs.

» The absence or presence of certain assets across specific knowledge modalities (e.g.,
Wikipedia vs. CrossRef) may lead to knowledge blind spots or biases in LLM outputs.

Therefore, understanding these variations is critical for evaluating knowledge-dependent tasks, such
as multiple-choice question answering in technical domains.

Asset-Specific Challenges:

» Asset Complexity: We can consider the difficulty of the questions in the asset level. Assets
have a varying number of connected components and subsystems and their dynamics. For
instance, Steam Turbine has many components and requires knowledge in thermodynamics,
materials science, and rotor dynamics.

* Knowledge Gaps: Alternatively, is the complexity due to limited understanding of specific
failure modes, sensor interactions, or component behaviors?

* Amount of reasoning needed to combine knowledge and infer relationships: Combining
knowledge with logical deductions to answer. Example reasoning in Appendix Figures|[11]

213}

E.4 Fine-tuning on HotpotQA

We conduct an experiment to demonstrate that the existing datasets lack information related to
industrial assets to support the importance of FailureSensorIQ dataset to bridge this gap. We select
HotpotQA [45] which is a dataset that consists of 113K question, answer pairs from Wikipedia
and fine-tune Flan-T5-XL [25]. We ignore any contextual information and only fine-tune on the
questions and answers and generate the answer conditioned on the question. A full fine-tuning is
done for 3 epochs, using an A100 80GB GPU with a batch size of 16. The results reveal a drop in
accuracy after fine-tuning from 36% to 29% which can be attributed to catastrophic forgetting, and
the lack of information about industrial assets in HotpotQA. This result reinforces the importance for
a domain-specific dataset for industrial assets like FailureSensorIQ.

E.5 Analyzing Failure Mode Coverage from Online Industrial Datasets

We analyze 135 publicly available industrial datasets with many sourced from platforms like Kaggle
and the UCI Machine Learning Repository [34]. The motivation is to evaluate them through the lens
of failure mode coverage, as described in their dataset documentation or challenge descriptions.

Despite the diversity of assets and use cases, a common pattern emerges: most datasets focus
on a single failure mode analysis, limiting their applicability in real-world, large-scale predictive
maintenance systems. This highlights a scalability gap in the literature when it comes to handling
multiple concurrent failure modes per asset.

Analysis metrics:
* Total datasets analyzed - 135
» Datasets with work order information - 1

e Datasets with time series sensor data - 84
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* Datasets explicitly mentioning failure modes - 53

 Datasets with alert/alarm signals - 3

¢ Failure Mode Count Distribution - 0: 93, 1: 18,2:9,3: 4,4:5,5:2,6:1,7:1,8: 1, 10: 1.
Key Findings:

* From this distribution we conclude that 93 datasets do not mention any failure modes.

* Only 42 datasets describe more than one failure mode.

* Just 6 datasets include four or more failure modes.
This underscores a critical limitation in the existing datasets: limited support for multiple failure

modes scenarios, which are common in operational industrial systems.

F Additional Dataset Formats

F.1 True/False format

We prepare a True/False version similar to Truthful QA [18]], comprising 2,995 questions. For each
question, we provide a statement describing the relationship between an asset’s failure mode and
a sensor and then ask whether it is true or false. For each asset and failure mode and sensors
combination we construct a question. We run this dataset through the Perturbation and Uncertainty
evaluation pipelines, as described in Section[3] Answers with invalid formatting are considered
incorrect. We report results for several 8B models in Tables [16]

Perturbation Analysis (Similar to Table d):

Model ACC@Original ACC@Simple ACC@Complex Consistency
Llama-3.1-8B-Instr 49.30 47.07 42.52 27.38
Qwen3-8B 65.71 64.90 63.88 49.26
Mistral-8B-Instr-2410 49.63 48.78 4421 26.26
Granite-3.3-instr 58.81 34.57 52.64 21.52

Table 16: True/False question format Perturbation Analysis.

Uncertainty Quantification (Similar to Table 3):

Model UAce SS CR Acc
Llama-3.1-8B-Instr 88.06 1.82 95.11 65.14
Qwen3-8B 4744 1.89 93.03 36.57
Mistral-8B-Instr-2410 88.53 1.79 95.17 63.91
Granite-3.3-Instr 81.75 1.80 94.56 59.57

Table 17: True/False question format Uncertainty Analysis.

Accuracy is naturally higher since there are only 2 options when compared to the original multiple-
choice which mostly has 5 options. We observe a similar phenomenon of performance degradation
with simple and complex perturbation of the prompt. Overall, performance on original > perturb
simple > perturb complex, with only exception of granite which had severe performance degradation
on perturbed complex questions.

Consistency is below 50%, and the Set Score Size (SS) is close to 2, despite the Uncertainty Accuracy
(UAcc) being higher than 80%. This indicates that in the majority of cases, the model is highly
uncertain between the two options. These results will be included in the Appendix, along with a
mention of additional datasets as part of our key contributions. We encountered some difficulty with
the Qwen3-8B model during the uncertainty evaluation. This is due to the <think> output format, and
the fact that the underlying implementation does not yet support reasoning-based models.

F.2 Open-Ended question format

Question Prompt Generation: We manually create 88 open-ended questions, such as: “List all
failure modes of an electric motor that can be detected by vibration, cooling gas, or axial flux sensors”.
These open-ended questions can vary in complexity, especially when combining multiple aspects
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such as different sensor types, as shown in the example or assets or failure modes. The answer to all
the questions is in a list form and the average number of items in the ground truth set is 5.7.

Evaluation: Open ended question is complex problem than MCQA from generation and evaluation
purpose. Such questions may yield a single answer or responses long enough to fill the entire context
window. To address this, our system prompt (to be included as part of the paper) explicitly provides
guidance: “Include only 1 to {item_count} items in a Python-style list, e.g., ["answer 1", "answer
2"]”, where {item_count} is dynamically set to 5 or 10 based on the evaluation setting. We adopt
a two-phase approach: a generation phase to generate potential candidate answers, followed by
an extraction phase which structures the output into a valid JSON format. We then compare the
generated list with the ground truth using structured semantic entity evaluation metrics for evaluation
[20] and obtained precision and recall.

To assess the generation performance, we experiment with five models on this new set of open-ended
questions. Results are reported in[T§]

Model Precision@5 Recall@5 Precision@10 Recall@10
Ministral-8B-Instruct 0.2877 0.0563 0.2144 0.0695
mistral-medium-2505 0.3273 0.2545 0.1778 0.2305
mistral-large 0.3826 0.4089 0.2349 0.3945
Llama-3.1-8B 0.1955 0.0367 0.1216 0.1018
Llama-3-3-70b 0.3205 0.1624 0.2812 0.2022
Llama-3-405b 0.2554 0.2407 0.1933 0.2739
Llama-4-maverick 0.3251 0.2808 0.2579 0.2826
granite-3-3-8b 0.0732 0.0283 0.1086 0.0486
Qwen-3-8B 0.3229 0.1301 0.2292 0.0874

Table 18: Open-ended question format performance. Precision@K means that for each question there
are K candidate answers.

Increasing the number of candidates from top-5 to top-10 did not significantly improve recall and
consistently reduced precision. This indicates that most relevant results are already captured within
the top-5, and additional candidates introduce noise. Mistral-large seems to have the best performance
overall.

G Explicit mention of the Number of Correct Options

In our original experiments in Section[E.I| we did not explicitly inform the models of the number
of correct choices to align with real-world scenarios, where such information is not provided which
is harder hence low exact match (EM) rates. We conduct an additional experiment with with select
LLMs in which we explicitly mention the number of correct options where we observe that they
perform better. We perform this on the Single Correct MCQA (SC-MCQA).

Model EM F1 Set Size
03 0.384 0.635 2.0
04-mini 0.382 0.633 2.0
gpt-4.1 0.385 0.633 2.0
gpt-4.1-mini 0.385 0.635 2.0
gpt-4.1-nano 0.384 0.634 2.0

llama-4-maverick 0.434 0.678 2.0
Llama-4-scout 0.403 0.661 1.99
llama-3-1-405b 0.376  0.635 2.0
llama-3-3-70b 0.343 0.610 2.0
Llama-3.1-8B 0.252 0.561 2.16
Table 19: Model performance when number of correct options is provided.
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H Does External Knowledge Help?

To investigate whether access to external tools enhances performance on MCQA, we evaluate a ReAct
agent equipped with Wikipedia and arXiv search capabilities. The agent is allowed to autonomously
choose sources, formulate search queries, and perform iterative reasoning to reach an answer.

Surprisingly, the tool-augmented setup does not outperform baseline prompting. In fact, for LLaMA-
3-70B, the accuracy drops from 41.7% (baseline) to 37.6% (ReAct). Across all five llaMA models,
only one show marginal gains, while the remaining four experience clear declines. This suggests that
answers to MCQA questions are generally not directly retrievable from external corpora such as
Wikipedia or arXiv.

Instead, successful performance appears to require reasoning over latent knowledge, internal
representations, and the ability to distinguish fine-grained distractors, which are capabilities not
easily captured by Retrieval-Augmented Generation (RAG) alone. These findings underscore the
benchmark’s value as a test of internal reasoning, rather than surface-level factual recall.

We conduct an experiment where a ReAct agent was executed using Wikipedia and arXiv as external
tools. Table[6] presents the results across several 1lama models. For each input question (), the agent
autonomously selects the source, issued queries, and performs iterative reasoning before generating
an answer. The process is implemented using the LLaMA-3-70B model.

Surprisingly, the use of external tools did not yield consistent improvements. In fact, for most
models, ReAct-based reasoning led to a drop in correct response rates compared to direct prompting.
For instance, the 3.3-70b model dropped from 41.69% (baseline) to 37.57%, and 3.1-8b from
40.04% to 37.05%. Only one configuration, 4-scout-17b-16e, showed marginal improvement.
Additionally, ReAct executions introduced more invalid or malformed responses and incorrect answer
formats, suggesting limitations in decision quality when navigating external sources.

These findings point to a broader implication: merely incorporating external information retrieval is
insufficient for this task. The performance degradation under ReAct suggests that success depends
not on accessing facts alone, but on executing multi-step reasoning that integrates and interprets
information coherently. In that sense, this task poses a meaningful challenge beyond conventional
retrieval-augmented generation (RAG) pipelines and instead aligns more closely with benchmarks
that test deliberate, high-quality reasoning.

I Data Collection Details and Demographics

We leverage our internal reliability strategy library which has information for hundreds of assets
and thousands of failure modes, to get the list of failure modes, and then our experts with a diverse
background in mechanical and electrical engineering provide us the Failure Modes and Sensors
mapping. The evaluators are experts in industrial maintenance products and have helped in assessing
the dataset’s correctness and difficulty and have an extensive knowledge about the assets’ operations.
There were eight male experts: two from Spain, two from United Kingdom, one from India, one
from Brazil, one from Canada, and two from the United States. Everyone has at least twenty years of
experience. The composition of our industrial product team is:

* Asset Performance Management (APM) — Focuses on building solutions for physical asset
lifecycle management, composed of reliability engineers and electrical engineers.

* QOperational Site Management — Site managers and plant operators with years of hands-on
experience managing critical infrastructure in data center environments.

* Industrial AI Community — Industrial data scientists and SMEs involved in deploying Al
solutions in domains such as Oil & Gas.

J Human Evaluation in Dataset Development

Human evaluation plays a pivotal role in the development of reliable and high-quality benchmark
datasets, especially in domain-specific or knowledge-intensive contexts. Evaluators ranging from
domain experts to informed non-experts contribute to critical tasks such as validating answer correct-
ness, assessing question formulation, verifying distractor quality, and establishing human baselines.
The experts are from our industrial product team and helped in assessing the dataset’s correctness
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and difficulty. The design and scope of these human studies significantly influence the dataset’s
robustness and the interpretability of model performance.

Evaluator Expertise and Responsibility. The choice of evaluators is often aligned with the
dataset’s domain complexity. For example, StatQA [52] engaged six postgraduate students (three
with statistics backgrounds and three without) to evaluate 10% of the mini-StatQA dataset, comprising
117 examples. These evaluators participated in both closed-book and open-book assessments, enabling
comparisons across expertise levels.

In SPIQA [47], a single experienced AI/ML researcher evaluated a 20% subset of the Test-A set.
Given the dataset’s cross-domain nature, the authors emphasized the challenge of obtaining a stable
human performance upper bound and recommended future work include multiple evaluators from
diverse scientific fields.

Similarly, MEQA [15] involved human verification of 100 questions to ensure answer correctness
and question clarity, while Wang et al. [35] collected answers from three physicians for 120 medical
questions, highlighting the need for expert-grounded validation in high-stakes domains.

Multi-Phase Evaluation and Error Taxonomy. The MMLU-Pro benchmark [37] implemented
a two-phase validation pipeline. Phase 1 focused on correctness and appropriateness, removing
problematic items such as proof-based, image-dependent, or poorly worded questions. In Phase 2,
experts reviewed distractors to ensure that flagged options were clearly incorrect and distinguishable
from the correct answer. This procedure identified and corrected systematic issues, including false
negatives and unsuitable formats.

Scale, Consistency, and Annotation Design. Ying et al. [48] sampled 120 data points and
employed five senior computational linguistics researchers to rate questions on fluency, coherence,
and category accuracy, and answers on factuality, coherence, and correctness. Results included full
score rates and inter-annotator agreement, underscoring the importance of evaluation consistency.

Other recent efforts, such as BlendBench [21]], emphasize expert review of question quality, and
CiteMe [26]] adopts conventional human validation strategies to refine citation correctness. Wen et
al. [40] reviewed 200 instruction examples to ensure clarity and task relevance.

Summary. Across benchmarks, human evaluation typically covers 10-20% of dataset samples,
though methodologies and evaluator roles vary significantly. Some focus on answering questions
(e.g., StatQA, Wang et al.), while others emphasize correctness verification, coherence, and distractor
evaluation (e.g., MMLU-Pro, Automating Dataset Updates). These subsets, often ranging between
100-200 examples, are generally sufficient to surface structural flaws, identify ambiguous instances,
and calibrate model evaluation pipelines. This aligns with findings from LM benchmarking literature,
which suggest that compact, high-quality evaluation sets can offer meaningful diagnostic insights at
significantly lower annotation cost. Nonetheless, the resource-intensiveness of expert involvement,
especially in scientific and technical domains, remains a key constraint on dataset scalability and
update frequency.

K Uncertainty Quantification Details

Overall Procedure. For each original question we extract token probabilities for all options. The
data is split into calibration and test sets from the calibration set and we compute conformal scores
to determine a confidence threshold ¢. On the test set, any option with probability exceeding g is
selected as a prediction, allowing for a variable number of predicted options per question.

Data Partitioning. We partition the dataset into distinct calibration and test sets by randomly
sampling asset types without overlap. The calibration set comprises: aero gas turbine, power
transformer, pump, industrial gas turbine, and reciprocating internal combustion engine. The fest set
includes: fan, steam turbine, compressor, electric motor, and electric generator.

Prompting Strategy. We adopt the Base Prompting method, as described in prior work, where the
input to the LLM consists of the complete question followed by all answer options. The model is
instructed to return the correct choice, prefixed by “Answer:”.

Explaining Accuracy Variations. Observed variations in accuracy for the same LLM across different
setups (e.g., in comparison to PertEval) can be attributed to the following:

¢ Evaluation is conducted on a held-out test subset rather than the full dataset.

29



* Prompt format and phrasing differ from other benchmarks.

* In PertEval, answers are derived from structured JSON-based reasoning, while in our setup,
predictions are based on direct option selection using model logits.

Uncertainty-Adapted Accuracy (UAcc). We define UAcc as:

Accuracy
UAcc = ——/
¢ Set Size M

where || is the number of classes. In our reporting, UAcc is scaled by 100, and may exceed 100 in
cases of high model certainty and small prediction sets.

Confidence Level. We set the error tolerance to o = 0.1, ensuring that prediction sets include the
true label with probability at least 0.9.

L Real World Applicability

L.1 Electrical Transformer Predictive Maintenance

This dataset [27]] consists of 48 timeseries variables collected from IoT devices placed in an electrical
transformer from June 25th, 2019 to April 14th, 2020 which was updated every 15 minutes. We
focused in predicting magnetic oil gauge faults.

L.2 Air Compressor Predictive Maintenance

The Air Compressor dataset [23]] consists of 19 sensor variables and 5 different failure modes: bearing,
water pump, outlet valve, motor, and radiator failure indicators. For each failure mode, we provide
the top-5 recommendations along with their correlations. We omit motor failure, because the dataset
doesn’t include any failure instance.

L.3 Wind Mill Power Production Forecasting

The aim of this dataset [S]] is to predict the wind power that could be generated from the windmill for
the next 15 days across 20 sensor variables.

L.4 Findings

For tasks like Air Compressor — Radiator failure prediction and Wind Mill — Energy Production
forecasting, the top-ranked features exhibit strong correlations (up to 94.40%). These results demon-
strate the LLLM’s ability to surface high-value variables for both forecasting and failure prediction.
In contrast, for some failure tasks (e.g., Bearings, Valve), the LLM recommended low-correlation
features which potentially reflects ambiguity or degraded signal quality. Interestingly, in one case
(Magnetic Oil Gauge), the most correlated feature was ranked third, suggesting the LLM may priori-
tize semantic or contextual cues over raw correlation. These findings highlight both the promise and
current limitations of LLM-driven feature selection in industrial settings.
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LLMFeatureSelect Input Prompt

Select the variables from the list that are most relevant for predicting motor failure in air
compressors. Provide the variables sorted starting with the one with the highest priority.
Variables and their descriptions:

torque: Torque is the turning force of a one-meter rod required to hold a 1kg mass constant
outlet_pressure_bar: The outlet pressure next to the piston valve

air_flow: amount of air that an air compressor can deliver

noise_db: Level of sound produced by an air compressor during operation

outlet_temp: temperature of the compressed air as it exits the compressor
wpump_outlet_press: water pump outlet pressure

water_inlet_temp: Water inlet temperature occurs according to the radiator size and fan
capacity

water_outlet_temp: Water outlet temperature is related to how much of the heat generated
by the heating of the compressed air is transferred to the water

wpump_power: Water pump power

water_flow: Water flow

oilpump_power: Oil pump power

gaccx: Ground acceleration in the x axis from where the compressor is attached to a rigid
part or construction

gaccy: Ground acceleration in the y axis from where the compressor is attached to a rigid
part or construction

gaccz: Ground acceleration in the z axis from where the compressor is attached to a rigid
part or construction

haccx: Head acceleration in the x axis measured from the compressor head bolt or upper
cooling fin. Each piece has a natural frequency and they oscillate at a certain frequency as a
result of the incoming drive

haccy: Head acceleration in the y axis measured from the compressor head bolt or upper
cooling fin. Each piece has a natural frequency and they oscillate at a certain frequency as a
result of the incoming drive

haccz: Head acceleration in the z axis measured from the compressor head bolt or upper
cooling fin. Each piece has a natural frequency and they oscillate at a certain frequency as a
result of the incoming drive

rpm: Number of revolutions per minute of the electric motor

motor_power: amount of electrical energy that a motor can convert into mechanical power
json:

{"reasoning": "<your reasoning>", "selected_variables": ["variable 1", "variable 2", ...,
"variable n"]}

\. J
ChatGPT Response
Reasoning:

Motor failure in air compressors is commonly associated with electrical overload, mechanical
stress, excessive vibration, and thermal issues. The most indicative variables include motor
power (to detect overloading or unusual consumption), torque (for mechanical resistance),
and rpm (to observe speed fluctuations or stalling). Vibrations at the motor mounting (ground
acceleration) and head (if driven directly) help detect mechanical imbalances, while noise
can reflect internal wear or misalignment. A drop in air flow or changes in outlet pressure
may signal downstream effects of motor underperformance.
Selected Variables sorted by priority:
motor_power, torque, rpm, gaccx, gaccy, gaccz, noise_db, haccx, haccy, haccz, air_flow

\_ _/

Figure 17: LLMFeatureSelect input prompt and ChatGPT response.
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M Human Evaluation via Expert Quiz

To assess the quality and realism of generated outputs, we conducted a human evaluation in the form
of an expert quiz. The quiz was administered via Google Docs and designed to simulate real-world
asset management decision-making tasks. Participants were domain experts who were provided with
sufficient context, including the problem statement and the objective of the quiz.

Importantly, participants were not given access to any ISO standards or reference documents and
were instructed to rely solely on their domain expertise. No external sources of information were
permitted during the evaluation. Additionally, we did not disclose the source documents or datasets
used to generate the quiz content, ensuring that judgments were based strictly on the information
presented within the quiz itself.

The quizzes were not time-restricted, but we recorded the time each participant took to complete
the 40 questions. Completion times ranged from 21 minutes to 90 minutes, with an average of 35
minutes, including questions where participants responded with “I don’t know”. The latter questions
are not taken into consideration when calculating the participant’s score.

Quiz2

B I U o Y

Please read the questions and select the option that IS relevant

33. For electric motor, if loss of input power phase happens, which sensor should be
prioritized for monitoring this specific failure?

voltage

coast down time
cooling gas
partial discharge
oil debris

Other/Don't Know

36. Which sensor among the choices best correlates with the presence of unbalance in asset *
electric motor?

vibration
voltage

coast down time

Figure 18: Screenshot from the quiz used for the user study.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We release a benchmarking system designed to assess the ability of LLMs
for industrial assets which takes into consideration different types of perturbations and
uncertainty quantification. We provide all the experiments with many state-of-the-art LLMs.

Guidelines:

e The answer NA means that the abstract and introduction do notable include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will notable be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are notable attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have provided a separate section to discuss the limitation of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are notable discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might notable be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to notable penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does notable include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or notable)?

Answer: [Yes]

Justification: We release the benchmarking code and dataset on github for anyone to run
with the settings we used.

Guidelines:
* The answer NA means that the paper does notable include experiments.

* If the paper includes experiments, a No answer to this question will notable be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or notable.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We release the benchmarking code and dataset on github for anyone to run.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided enough detail for experimental validation. Also, the
benchmarking code we open-sourced it.

Guidelines:
* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included several experiments capturing the statistical significance of
experiments.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provided a section on computer resource needed.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no harm that can be caused by this work or societal harmful conse-
quences. This work aims to help LLMs specialize in maintaining industrial assets to reduce
failures, business downtime, and human injuries.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive societal impact in Appendix section of the paper.
Societal impact: increase productivity of engineers by reducing asset failures, reduce money
spending on maintenance, and increase the reliability in a variety of business types. We
authors are not aware of any negative societal impacts of the work performed.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the authors of the tools we leveraged to build this benchmark and prior
work.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, we also provide a documentation on the github how to install and run it.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We include this in the paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study only involved the expert participants to complete an 80 questions
quiz about industrial assets. There are no risks associated with this study.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only use the LLMs for improving the grammatical syntax and it did not
impact the core methodology, scientific rigorousness, and originality of the research.
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Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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