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ABSTRACT

In this paper, we study the Multi-Objective Bi-Level Optimization (MOBLO) prob-
lem, where the upper-level subproblem is a multi-objective optimization problem
and the lower-level subproblem is for scalar optimization. Existing gradient-based
MOBLO algorithms need to compute the Hessian matrix, causing the compu-
tational inefficient problem. To address this, we propose an efficient first-order
multi-gradient method for MOBLO, called FORUM. Specifically, we reformulate
MOBLO problems as a constrained multi-objective optimization (MOO) problem
via the value-function approach. Then we propose a novel multi-gradient aggrega-
tion method to solve the challenging constrained MOO problem. Theoretically, we
provide the complexity analysis to show the efficiency of the proposed method and
a non-asymptotic convergence result. Empirically, extensive experiments demon-
strate the effectiveness and efficiency of the proposed FORUM method in different
learning problems. In particular, it achieves state-of-the-art performance on three
multi-task learning benchmark datasets.

1 INTRODUCTION

In this work, we study the Multi-Objective Bi-Level Optimization (MOBLO) problem, which is
formulated as

min
α∈Rn,ω∈Rp

F (α, ω) s.t. ω ∈ S(α) = argmin
ω

f(α, ω), (1)

where α and ω denote the Upper-Level (UL) and Lower-Level (LL) variables, respectively. The
UL subproblem, F := (F1, F2, . . . , Fm)⊤ : Rn × Rp → Rm, is a vector-valued jointly continuous
function for m desired objectives. S(α) denotes the optimal solution set (which is usually assumed
to be a singleton set (Franceschi et al., 2017; Ye et al., 2021)) of the LL subproblem by minimizing a
continuous function f(α, ω) w.r.t. ω. In this work, we focus on MOBLO with a singleton S(α) and a
non-convex UL subproblem, where Fi is a non-convex function for all i. MOBLO has demonstrated
its superiority in various learning problems such as neural architecture search (Elsken et al., 2018;
Lu et al., 2020; Liu & Jin, 2021; Yue et al., 2022), reinforcement learning (Chen et al., 2019; Yang
et al., 2019; Abdolmaleki et al., 2020), multi-task learning (Ye et al., 2021; Mao et al., 2022), and
meta-learning (Ye et al., 2021; Yu et al., 2023).

Recently, MOML (Ye et al., 2021) and MoCo (Fernando et al., 2023) are proposed as effective
gradient-based MOBLO algorithms, which hierarchically optimize the UL and LL variables based on
ITerative Differentiation (ITD) based Bi-Level Optimization (BLO) approach (Maclaurin et al., 2015;
Franceschi et al., 2017; 2018; Grazzi et al., 2020). Specifically, given α, both MOML and MoCo first
compute the LL solution ω∗(α) by solving LL subproblem with T iterations and then update α via
the combination of the hypergradients {∇αFi(α, ω

∗(α))}mi=1. Note that they need to calculate the
complex gradient ∇αω

∗(α), which requires to compute many Hessian-vector products via the chain
rule. Besides, their time and memory costs grow significantly fast with respect to the dimension of ω
and T . Therefore, existing gradient-based methods to solve MOBLO problems could suffer from the
inefficiency problem, especially in deep neural networks.

To address this limitation, we propose an efficient First-OrdeR mUlti-gradient method for MOBLO
(FORUM). Specifically, we reformulate MOBLO as an equivalent constrained multi-objective
optimization (MOO) problem by the value-function-based approach (Liu et al., 2021c; 2022a; Sow
et al., 2022). Then, we propose a multi-gradient aggregation method to solve the challenging
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constrained MOO problem. Different from MOML and MoCo, FORUM is a fully first-order
algorithm and does not need to calculate the high-order Hessian matrix. Theoretically, we provide
the complexity analysis showing that FORUM is more efficient than MOML and MoCo in both time
and memory costs. In addition, we provide a non-asymptotic convergence analysis for FORUM.
Empirically, we evaluate the effectiveness and efficiency of FORUM on two learning problems, i.e.,
multi-objective data hyper-cleaning and multi-task learning on three benchmark datasets.

The main contributions of this work are three-fold:

• We propose the FORUM method, an efficient gradient-based algorithm for the MOBLO
problem;

• We demonstrate FORUM is more efficient than existing MOBLO methods from the perspec-
tive of complexity analysis and provide a non-asymptotic convergence analysis;

• Extensive experiments demonstrate the effectiveness and efficiency of the proposed FORUM
method. In particular, it achieves state-of-the-art performance on three benchmark datasets
under the setting of multi-task learning.

2 RELATED WORKS

Multi-Objective Optimization. MOO aims to solve multiple objectives simultaneously and its goal is
to find the Pareto-optimal solution. MOO algorithms can be divided into three categories: population-
based (Angus, 2007), evolutionary-based (Zhou et al., 2011), and gradient-based (Désidéri, 2012;
Mahapatra & Rajan, 2020). In this paper, we focus on the last category. MGDA algorithm (Désidéri,
2012) is a representative gradient-based MOO method, which finds a gradient update direction to
make all the objectives decrease in every training iteration by solving a quadratic programming
problem. Compared with the widely-used linear scalarization approach which linearly combines
multiple objectives to a single objective, MGDA and its variants (Fernando et al., 2023; Zhou et al.,
2022) have shown their superiority in many learning problems such as multi-task learning (Sener
& Koltun, 2018) and reinforcement learning (Yu et al., 2020), especially when some objectives are
conflicting.

Bi-Level Optimization. BLO (Liu et al., 2021b) is a type of optimization problem with a hierarchical
structure, where one subproblem is nested within another subproblem. The MOBLO problem (1)
reduces degrades to BLO problem when m equals 1. One representative category of the BLO method
is the ITD-based methods (Maclaurin et al., 2015; Franceschi et al., 2017; 2018; Grazzi et al., 2020)
that use approximated hypergradient to optimize the UL variable, which is computed by the automatic
differentiation based on the optimization trajectory of the LL variable. Some value-function-based
algorithms (Liu et al., 2022a; 2021c; Sow et al., 2022) have been proposed recently to solve BLO by
reformulating the original BLO to an equivalent optimization problem with a simpler structure. The
value-function-based reformulation strategy naturally yields a first-order algorithm, hence it has high
computational efficiency.

Multi-Objective Bi-Level Optimization. MOML (Ye et al., 2021) is proposed as the first gradient-
based MOBLO algorithm. However, MOML needs to calculate the complex Hessian matrix to
obtain the hypergradient, causing the computationally inefficient problem. MoCo (Fernando et al.,
2023) also employs the ITD-based approach like MOML for hypergradient calculation. It uses a
momentum-like gradient approximation approach for hypergradient and a one-step approximation
method to update the weights. It has the same inefficiency problem as the MOML method. Yu et al.
(2023) propose a mini-batch approach to optimize the UL subproblem in the MOBLO. However, it
aims to generate weights for a huge number of UL objectives and is different from what we focus on.
MORBiT (Gu et al., 2023) studies a BLO problem with multiple objectives in its UL subproblem
but it formulates the UL subproblem as a min-max problem, which is different from problem (1) we
focus on in this paper.

3 THE FORUM ALGORITHM

In this section, we introduce the proposed FORUM method. Firstly, we reformulate MOBLO as an
equivalent constrained multi-objective problem via the value-function-based approach in Section 3.1.
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Next, we provide a novel multi-gradient aggregation method to solve the constrained multi-objective
problem in Section 3.2.

3.1 REFORMULATION OF MOBLO

Based on the value-function-based approach (Liu et al., 2021c; 2022a; Sow et al., 2022; Kwon et al.,
2023), we reformulate MOBLO problem (1) as an equivalent single-level constrained multi-objective
optimization problem:

min
α∈Rn,ω∈Rp

F (α, ω) s.t. f(α, ω) ≤ f∗(α), (2)

where f∗(α) = minω f(α, ω) = f(α, ω∗(α)) is the value function, which represents the lower
bound of f(α, ω) w.r.t. ω. To simplify the notation, we define z ≡ (α, ω) ∈ Rn+p and Z ≡ Rn×Rp.
Then, we have F (z) ≡ F (α, ω) and f(z) ≡ f(α, ω). Thus, problem (2) can be rewritten as

min
z∈Z

F (z) s.t. q(z) ≤ 0, (3)

where q(z) = f(z)− f∗(α) is the constraint function. Since the gradient of the value function f∗(α)
is ∇αf

∗(α) = ∇αf(α, ω
∗(α)) = ∇αf(α, ω

∗) by the chain rule and ∇ωf(α, ω) |ω=ω∗(α)= 0, we
do not need to compute the complex Hessian matrix ∇αω

∗(α) like MOML and MoCo.

However, solving problem (3) is challenging for two reasons. One reason is that the Slater’s condition
(Chen et al., 2023), which is required for duality-based optimization methods, does not hold for
problem (3), since the constraint q(z) ≤ 0 is ill-posed (Liu et al., 2021c; Jiang et al., 2023) and
does not have an interior point. To see this, we assume z0 = (α0, ω0) ∈ Z and q(z0) ≤ 0. Then
the constraint q(z) ≤ 0 is hard to be satisfied at the neighborhood of α0, unless f∗(α) is a constant
function around α0, which rarely happens. Therefore, problem (3) cannot be treated as classic
constrained optimization and we propose a novel gradient method to solve it in Section 3.2. Another
reason is that for given α, the computation of ω∗(α) is intractable. Thus, we approximate it by ω̃T

computed by T steps of gradient descent. Specifically, given α and an initialization ω̃0 of ω, we have

ω̃t+1 = ω̃t − η∇ωf(α, ω̃
t), t = 0, · · · , T − 1, (4)

where η is the step size. Then, the constraint function q(z) is approximated by q̃(z) = f(z)−f(α, ω̃T )
and its gradient ∇zq(z) is approximated by ∇z q̃(z). We show that the approximation error of gradient
exponentially decays w.r.t. the LL iterations T in Appendix A.1. Hence, problem (3) is modified to

min
z∈Z

F (z) s.t. q̃(z) = f(z)− f(α, ω̃T ) ≤ 0. (5)

3.2 MULTI-GRADIENT AGGREGATION METHOD

In this section, we introduce the proposed multi-gradient aggregation method for solving problem
(5) iteratively. Specifically, at k-th iteration, assume zk is updated by zk+1 = zk + µdk where µ is
the step size and dk is the update direction for zk. Then, we expect dk can simultaneously minimize
the UL objective F (z) and the constraint function q̃(z). Note that the minimum of the approximated
constraint function q̃(z) converges to the minimum of q(z), i.e. 0, as T → +∞. Thus, we expect dk
to decrease q̃(z) consistently such that the constraint q̃(z) ≤ 0 is satisfied.

Note that there are multiple potentially conflicting objectives {Fi}mi=1 in the UL subproblem. Hence,
we expect dk can decrease every objective Fi, which can be formulated as the following problem to
find dk to maximize the minimum decrease across all objectives as

max
d

min
i∈[m]

(Fi(zk)− Fi(zk + µd)) ≈ −µmin
d

max
i∈[m]

⟨∇Fi(zk), d⟩. (6)

To regularize the update direction, we add a regularization term 1
2∥d∥

2 to problem (6) and compute
dk by solving mind maxi∈[m]⟨∇Fi(zk), d⟩+ 1

2∥d∥
2.

To decrease the constraint function q̃(z), we expect the inner product of −d and ∇q̃(zk) to hold
positive during the optimization process, i.e., ⟨∇q̃(zk),−d⟩ ≥ ϕ, where ϕ is non-negative constant.
To further guarantee that q̃(z) can be optimized such that the constraint q̃(z) ≤ 0 can be satisfied, we
introduce a dynamic ϕk here. Specifically, inspired by Gong et al. (2021), we set ϕk = ρ

2∥∇q̃(zk)∥2,
where ρ is a positive constant. When ϕk > 0, it means that ∥∇q̃(z)∥ ≠ 0 and q̃(z) should be further
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Algorithm 1 The FORUM Method
Require: number of iterations (K,T ), step size (µ, η), coefficient βk, constant ρ

1: Randomly initialize z0 = (α0, ω0);
2: Initialize λ̃−1

i = 0, i = 1, ...,m;
3: for k = 0 to K − 1 do
4: Set ω̃0 = ω0 or ω̃0 = ωk;
5: for t = 0 to T − 1 do
6: Update ω̃ as ω̃t+1 = ω̃t − η∇ωf(αk, ω̃

t);
7: end for
8: Set q̃(zk) = f(zk)− f(αk, ω̃

T );
9: Compute gradient ∇z q̃(zk) = ∇zf(zk)−∇αf(αk, ω̃

T );
10: Compute gradients ∇zFi(zk), i = 1, . . . ,m;
11: Compute λk by solving problem (11);
12: Compute the momentum update λ̃k = (1− βk)λ̃

k−1 + βkλ
k;

13: Compute ν(λ̃k) via Eq. (9);
14: Compute dk via Eq. (8);
15: Update z as zk+1 = zk + µdk;
16: end for
17: return zK .

optimized, and ⟨∇q̃(zk),−d⟩ ≥ ϕk > 0 can enforce q̃(z) to decrease. When ϕk equals 0, it indicates
that the optimum of q̃(z) is reached and ⟨∇q̃(zk),−d⟩ ≥ ϕk = 0 also holds. Thus, the dynamic ϕk

can ensure dk to iteratively decrease q̃(z) such that the constraint q̃(z) ≤ 0 is satisfied.

Therefore, at k-th iteration, we can find dk by solving the following problem,

min
d

max
i∈[m]

⟨∇Fi(zk), d⟩+
1

2
∥d∥2, s.t. ⟨∇q̃(zk), d⟩ ≤ −ϕk. (7)

Based on the Lagrangian multiplier method, problem (7) has a solution as

dk = −

(
m∑
i=1

λk
i∇Fi(zk) + ν(λk)∇q̃(zk)

)
, (8)

where Lagrangian multipliers λk = (λk
1 , . . . , λ

k
m) ∈ ∆m−1 (i.e.,

∑m
i=1 λ

k
i = 1 and λk

i ≥ 0) and
ν(λ) is a function of λ as

ν(λ) = max

(
m∑
i=1

λiπi(zk), 0

)
with πi(zk) =

2ϕk − ⟨∇q̃(zk),∇Fi(zk)⟩
∥∇q̃(zk)∥2

. (9)

Here λk
i can be obtained by solving the following dual problem as

λk = argmin
λ∈∆m−1

1

2

∥∥∥∥∥
m∑
i=1

λi∇Fi(zk) + ν(λ)∇q̃(zk)

∥∥∥∥∥
2

− ν(λ)ϕk. (10)

The detailed derivations of the above procedure are put in Appendix A.2. Problem (10) can be
reformulated as

min
λ∈∆m−1,γ

1

2

∥∥∥∥∥
m∑
i=1

λi∇Fi(zk) + γ∇q̃(zk)

∥∥∥∥∥
2

− γϕk s.t. γ ≥ 0, γ ≥
m∑
i=1

λiπi(zk). (11)

The first term of the objective function in problem (11) can be simplified to R⊤Λ⊤ΛR, where
R = (λ1, . . . , λm, γ)⊤ and Λ = (∇F1, . . . ,∇Fm,∇q̃). Note that the dimension of the matrix Λ⊤Λ
is (m+1)× (m+1), which is independent with the dimension of z. As the number of UL objectives
m is usually small, solving problem (11) does not incur too much computational cost. In practice, we
can use the open-source CVXPY library (Diamond & Boyd, 2016) to solve problem (11).

To ensure convergence, the sequence of {λk}Kk=1 should be a convergent sequence (refer to the
discussion in Appendix A.3). However, {λk}Kk=1 obtained by directly solving the problem (11) in each
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iteration cannot ensure such properties. Therefore, we apply a momentum strategy (Zhou et al., 2022)
to λ to generate a stable sequence and further guarantee the convergence. Specifically, in k-th iteration,
we first solve the problem (11) to obtain λk, then update the weights by λ̃k = (1− βk)λ̃

k−1 + βkλ
k,

where βk ∈ (0, 1] is set to 1 at the beginning and asymptotically convergent to 0 as k → +∞.

After obtaining λ̃k with the momentum update, we can compute the corresponding ν(λ̃k) via Eq. (9).
Then we obtain the update direction dk by Eq. (8) and update zk as zk+1 = zk + µdk. The entire
FORUM algorithm is shown in Algorithm 1.

4 ANALYSIS

In this section, we provide complexity analysis and convergence analysis for the FORUM method.

4.1 COMPLEXITY ANALYSIS

For the proposed FORUM method, it takes time O(pT ) and space O(p) to obtain q̃(z), and then the
computations of all the gradients including ∇zFi(z) and ∇z q̃(z) require time O((n+p)(m+1)) and
space O((n+ p)(m+ 1)). When m ≪ min{n, p}, the time and space costs of solving the quadratic
programming problem (11), which only depends on m, can be negligible. Therefore, FORUM runs
in time O(mn+ p(m+ T )) and space O(mn+mp) in total for each UL iteration.

For existing MOBLO methods (i.e., MOML and MoCo), after T -iteration update for the LL subprob-
lem in time O(pT ) and space O(p), calculating the Hessian-matrix product via backward propagation
can be evaluated in time O(p(n + p)T ) and space O(n + pT ). Similar to FORUM, the cost of
solving the quadratic programming problem in MOML is also negligible. Note that MoCo applies
a momentum update to the UL variables, which causes an additional O(mn) space cost. Thus,
for each UL iteration, MOML and MoCo require O(mp(n + p)T ) time in total, and they require
O(mn+mpT ) and O(2mn+mpT ) space, respectively.

In summary, the above analysis indicates FORUM is more efficient than MOML and MoCo in terms
of time and space complexity.

4.2 CONVERGENCE ANALYSIS

In this section, we analyze the convergence property of FORUM. Firstly, we make an assumption for
the UL subproblem.
Assumption 4.1. For i = 1, . . . ,m, it is assumed that ∇Fi(α, ω) is LF -Lipschitz continuous with
respect to z := (α, ω). The ℓ2 norm of ∇Fi(z) and |Fi(z)| are upper-bounded by a constant M .

The smoothness and the boundedness assumptions in Assumption 4.1 are widely adopted in non-
convex multi-objective optimization (Zhou et al., 2022; Fernando et al., 2023). Then we make an
assumption for the LL subproblem.
Assumption 4.2. The function f(α, ω) is c-strongly convex with respect to ω, and ∇f(α, ω) is
Lf -Lipschitz continuous with respect to z := (α, ω).

The strongly convexity assumption in Assumption 4.2 is commonly used in the analysis for the
BLO (Maclaurin et al., 2015; Franceschi et al., 2017; 2018) and MOBLO problems (Fernando et al.,
2023; Ye et al., 2021). The proposed FORUM algorithm focuses on generating one Karush-Kuhn-
Tucker (KKT) stationary point of the original constrained multi-objective optimization problem
(3). Following (Gong et al., 2021; Liu et al., 2022a), we measure the convergence of problem (3)
by both its KKT stationary condition and the feasibility condition, where detailed definitions are

provided in Appendix B.1. Specifically, we denote by K(zk) =
∥∥∥∑m

i=1 λ̃
k
i∇Fi(zk) + νk∇q(zk)

∥∥∥2
the measure of KKT stationary condition in the k-th iteration, where νk = ν(λ̃k). To satisfy the
feasibility condition of problem (3), the non-negative function q(zk) should decrease to 0. Then, with
a non-convex multi-objective UL subproblem, we have the following convergence result.
Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 hold, and the sequence {zk}Kk=0 generated by
Algorithm 1 satisifes q(zk) ≤ B, where B is a positive constant. Then if η ≤ 1/Lf , µ = O(K−1/2) ,
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and β = O(K−3/4), there exists a constant C > 0 such that when T ≥ C, for any K > 0, we have

max

{
min
k<K

K(zk), q(zk)

}
= O(K−1/4 + Γ(T )), (12)

where Γ(T ) represents exponential decays with respect to T .

The proof is put in Appendix B.3. Theorem 4.3 gives a non-asymptotic convergence result for
Algorithm 1, which depends on both numbers of steps in the UL and LL subproblems (i.e., K and T ).

5 EXPERIMENTS

In this section, we empirically evaluate the proposed FORUM method on different learning problems.
All experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU.

5.1 DATA HYPER-CLEANING

Setup. Data hyper-cleaning (Bao et al., 2021; Franceschi et al., 2017; Liu et al., 2022a;b; Shaban
et al., 2019) is a specific hyperparameter optimization problem, where a model is trained on a dataset
with part of corrupted training labels. Thus, it aims to reduce the influence of noisy examples
by learning to weigh the train samples in a bi-level optimization manner. Here we extend it to a
multi-objective setting, where we aim to train a model on multiple corrupted datasets.

Specifically, suppose that there are m corrupted datasets. Dtr
i = {xi,j , yi,j}Ni

j=1 and Dval
i denote the

noisy training set and the clean validation set for the i-th dataset, respectively, where xi,j denotes
the j-th training sample in the i-th dataset, yi,j is the corresponding label, and Ni denotes the size
of the i-th training dataset. Let ω denote the model parameters and αi,j denotes the weight of xi,j .
Let Lval

i (ω;Dval
i ) be the average loss of model ω on the clean validation set of the i-th dataset and

Ltr
i (α, ω;Dtr

i ) =
1
Ni

∑Ni

j=1 σ(αi,j)ℓ(ω;xi,j , yi,j) be the weighted average loss on the noisy training
set of the i-th dataset, where σ(·) is an element-wise sigmoid function to constrain each weight in
the range [0, 1] and ℓ(ω;x, y) denotes the loss of model ω on sample (x, y). Therefore, the objective
function of this multi-objective data hyper-cleaning is formulated as

min
α,ω

(
Lval
1 (ω;Dval

1 ), · · · ,Lval
m (ω;Dval

m )
)⊤

s.t. ω ∈ S(α) = argmin
ω

m∑
i=1

Ltr
i (α, ω;Dtr

i ).

Datasets. We conduct experiments on the MNIST (LeCun et al., 1998) and FashionMNIST (Xiao
et al., 2017) datasets. Each dataset corresponds to a 10-class image classification problem. All the
images have the same size of 28 × 28. Following Bao et al. (2021), we randomly sample 5000,
1000, 1000, and 5000 images from each dataset as the training set, validation set 1, validation set
2, and test set, respectively. The training set and validation set 1 are used to formulate the LL and
UL subproblems, respectively. The validation set 2 is used to select the best model and the testing
evaluation is conducted on the test set. Half of the samples in the training set are contaminated
by assigning them to another random class. Due to page limit, implementation details are put in
Appendix D.1.

Results. Table 1 shows the results on both two datasets under different numbers of LL iterations
(i.e., T = 16, 32, 64, 128). The classification accuracy and F1 score computed on the test set are used
as the evaluation metrics. As can be seen, the proposed FORUM method outperforms the MOML
and MoCo in all the settings, which demonstrates the effectiveness of the proposed FORUM method.

Figures 1(a) and 1(b) show that MOML and MoCo need longer running time than FORUM in every
configuration of the UL iteration T and the number of LL parameters p, respectively, which implies
FORUM has a lower time complexity. Figures 1(c) and 1(d) show the change of memory cost per
iteration with respect to the LL iteration T and the number of LL parameters p, respectively. As can
be seen, the memory cost remains almost constant with different T ’s for FORUM and increases faster
for MOML and MoCo. Moreover, the memory cost slightly increases in FORUM with increasing
p, while it linearly increases in MOML and MoCo. In summary, the results in Figure 1 match the
complexity analysis in Section 4.1 and demonstrate that FORUM is more efficient than MOML and
MoCo.
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Table 1: Performance of different methods with different numbers of LL iterations T on the MNIST
and FashionMNIST datasets for the multi-objective data hyper-cleaning problem. Each experiment is
repeated over 3 random seeds, and the mean as well as the standard deviation is reported. The best
result for each T is marked in bold.

T Methods
MNIST FashionMNIST

Accuracy (%) F1 Score Accuracy (%) F1 Score

16
MOML 88.81±0.17 88.78±0.16 79.98±0.21 79.59±0.40

MoCo 88.25±0.31 88.22±0.30 80.09±0.25 79.65±0.59

FORUM (ours) 90.79±0.33 90.79±0.33 82.37±1.00 82.10±1.16

32
MOML 87.29±0.72 87.26±0.71 80.63±0.58 80.50±0.28

MoCo 87.59±0.42 87.56±0.42 80.42±0.47 80.41±0.14

FORUM (ours) 90.65±0.44 90.63±0.47 82.11±0.72 81.79±1.01

64
MOML 88.64±0.94 88.61±0.98 80.64±0.35 80.60±0.49

MoCo 88.05±1.21 88.03±1.27 80.94±0.19 80.67±0.25

FORUM (ours) 90.81±0.14 90.81±0.15 82.07±0.38 81.72±0.57

128
MOML 88.88±0.33 88.86±0.36 80.31±0.45 80.10±0.33

MoCo 88.21±0.33 88.20±0.36 80.31±0.30 79.81±0.50

FORUM (ours) 90.13±0.37 90.11±0.36 82.07±0.73 81.79±0.97
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Figure 1: Results of different methods on the multi-objective data hyper-cleaning problem. (a): The
running time per iteration varies over different LL update steps T . (b): The running time per iteration
varies over the different numbers of LL parameters p with T = 64. (c): The memory cost varies
over different LL update steps T . (d): The memory cost varies over the different numbers of LL
parameters p with T = 64.

5.2 MULTI-TASK LEARNING

Setup. Multi-Task Learning (MTL) (Caruana, 1997; Zhang & Yang, 2022) aims to train a single
model to solve several tasks simultaneously. Following Ye et al. (2021), we aim to learn the loss
weights to balance different tasks and improve the generalization performance by casting MTL as a
MOBLO problem. Specifically, suppose there are m tasks and the i-th task has its corresponding
dataset Di that contains a training set Dtr

i and a validation set Dval
i . The MTL model is parameterized

by ω and α ∈ ∆m−1 denotes the loss weights for the m tasks. Let L(ω;D) represent the average
loss of model ω on the dataset D. The MOBLO formulation for MTL is as

min
α,ω

(
L(ω;Dval

1 ), · · · ,L(ω;Dval
m )
)⊤

s.t. ω ∈ S(α) = argmin
ω

m∑
i=1

αiL(ω;Dtr
i ).

We conduct experiments on three benchmark datasets among three different task categories, i.e., the
Office-31 (Saenko et al., 2010) dataset for image classification, the NYUv2 (Silberman et al., 2012)
dataset for scene understanding, and the QM9 dataset for molecular property prediction.

Datasets. (i) The Office-31 dataset (Saenko et al., 2010) includes images from three different
sources: Amazon (A), digital SLR cameras (D), and Webcam (W). It contains 31 categories for
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each source and a total of 4652 labeled images. We use the data split in Lin et al. (2022): 60% for
training, 20% for validation, and 20% for testing. (ii) The NYUv2 dataset (Silberman et al., 2012),
an indoor scene understanding dataset, has 795 and 654 images for training and testing, respectively.
It has three tasks: 13-class semantic segmentation, depth estimation, and surface normal prediction.
(iii) The QM9 dataset (Ramakrishnan et al., 2014), a molecular property prediction dataset. We use
the commonly-used split as in Fey & Lenssen (2019); Navon et al. (2022): 110, 000 for training,
10, 000 for validation, and 10, 000 for testing. The QM9 dataset contains 11 tasks and each task is a
regression task for one property. Due to page limit, implementation details are put in Appendix D.2.

Table 2: Classification accuracy (%) on the Office-31
dataset. Each experiment is repeated over 3 random
seeds and the average is reported. The best results over
baselines except STL are marked in bold.

Methods A D W Avg ∆p↑
STL 86.61 95.63 96.85 93.03 0.00

multi-task learning methods
EW 83.53 97.27 96.85 92.55 -0.61
UW 83.82 97.27 96.67 92.58 -0.56
PCGrad 83.59 96.99 96.85 92.48 -0.68
GradDrop 84.33 96.99 96.30 92.54 -0.59
GradVac 83.76 97.27 96.67 92.57 -0.58
CAGrad 83.65 95.63 96.85 92.04 -1.13
Nash-MTL 85.01 97.54 97.41 93.32 +0.24
RLW 83.82 96.99 96.85 92.55 -0.59

first-order bi-level optimization methods
BVFIM 84.84 96.99 97.78 93.21 +0.11
BOME 85.53 96.72 98.15 93.47 +0.41

multi-objective bi-level optimization methods
MOML 84.67 96.72 96.85 92.75 -0.36
MoCo 84.38 97.26 97.03 92.89 -0.22
FORUM (ours) 85.64 98.63 97.96 94.07 +0.96

Baselines. The proposed FORUM
method is compared with: (i) single-task
learning (STL) that trains each task
independently; (ii) a comprehensive set
of state-of-the-art MTL methods, including
Equal Weighting (EW) (Zhang & Yang,
2022), UW (Kendall et al., 2018), PCGrad
(Yu et al., 2020), GradDrop (Chen et al.,
2020), GradVac (Wang et al., 2021),
CAGrad (Liu et al., 2021a), Nash-MTL
(Navon et al., 2022), and RLW (Lin et al.,
2022); (iii) two first-order BLO methods:
BVFIM (Liu et al., 2021c) and BOME (Liu
et al., 2022a), where we simply transform
MOBLO to BLO by aggregating multiple
objectives in the UL subproblem with
equal weights into a single objective so
that we can apply those BLO methods to
solve the MOBLO problem; (iv) two
MOBLO method: MOML (Ye et al., 2021)
and MoCo (Fernando et al., 2023).

Table 3: Results on the NYUv2 dataset. Each experiment is repeated over 3 random seeds and the
average is reported. The best results over baselines except STL are marked in bold. ↑ (↓) indicates
that the higher (lower) the result, the better the performance.

Methods

Segmentation Depth Surface Normal Prediction

∆p↑mIoU↑ PAcc↑ AErr↓ RErr↓
Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
STL 53.50 75.39 0.3926 0.1605 21.9896 15.1641 39.04 65.00 75.16 0.00

multi-task learning methods
EW 53.93 75.53 0.3825 0.1577 23.5691 17.0149 35.04 60.99 72.05 -1.78
UW 54.29 75.64 0.3815 0.1583 23.4805 16.9206 35.26 61.17 72.21 -1.52
PCGrad 53.94 75.62 0.3804 0.1578 23.5226 16.9276 35.19 61.17 72.19 -1.57
GradDrop 53.73 75.54 0.3837 0.1580 23.5392 16.9587 35.17 61.06 72.07 -1.85
GradVac 54.21 75.67 0.3859 0.1583 23.5804 16.9055 35.34 61.15 72.10 -1.75
CAGrad 53.97 75.54 0.3885 0.1588 22.4701 15.7139 37.77 63.82 74.30 -0.27
Nash-MTL 53.41 74.95 0.3867 0.1612 22.5662 15.9365 37.30 63.40 74.09 -1.01
RLW 54.13 75.72 0.3833 0.1590 23.2125 16.6166 35.88 61.84 72.74 -1.27

first-order bi-level optimization methods
BVFIM 53.29 75.07 0.3981 0.1632 22.3552 15.9710 37.15 63.44 74.27 -1.68
BOME 54.15 75.79 0.3831 0.1578 23.3378 16.8828 35.29 61.31 72.40 -1.45

multi-objective bi-level optimization methods
MOML 53.59 75.48 0.3839 0.1577 23.1487 16.5319 36.06 62.05 72.89 -1.26
MoCo 53.73 75.63 0.3838 0.1560 23.1922 16.5737 36.02 61.93 72.82 -1.06
FORUM (ours) 54.04 75.64 0.3795 0.1555 22.1870 15.6815 37.71 64.04 74.67 +0.65

Evaluation Metrics. (i) For the Office-31 dataset, following Lin et al. (2022), we use classification
accuracy as the evaluation metric for each task and the average accuracy as the overall metric.
(ii) For the NYUv2 dataset, following Liu et al. (2019); Lin et al. (2022), we use the mean intersection
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Table 4: Results on the QM9 dataset. Each experiment is repeated over 3 random seeds and the
average is reported. ↑ (↓) indicates that the higher (lower) the result, the better the performance. The
best results over baselines except STL are marked in bold.

Methods
µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv

∆p↑MAE↓
STL 0.062 0.192 58.82 51.95 0.529 4.52 63.69 60.83 68.33 60.31 0.069 0.00

multi-task learning methods
EW 0.096 0.286 67.46 82.80 4.655 12.4 128.3 128.8 129.2 125.6 0.116 -146.3
UW 0.336 0.382 155.1 144.3 0.965 4.58 61.41 61.79 61.83 61.40 0.116 -92.35
PCGrad 0.104 0.293 75.29 88.99 3.695 8.67 115.6 116.0 116.2 113.8 0.109 -117.8
GradDrop 0.114 0.349 75.94 94.62 5.315 15.8 155.2 156.1 156.6 151.9 0.136 -191.4
GradVac 0.100 0.299 68.94 84.14 4.833 12.5 127.3 127.8 128.1 124.7 0.117 -150.7
CAGrad 0.107 0.296 75.43 88.59 2.944 6.12 93.09 93.68 93.85 92.32 0.106 -87.25
Nash-MTL 0.115 0.263 85.54 86.62 2.549 5.85 83.49 83.88 84.05 82.96 0.097 -73.92
RLW 0.112 0.331 74.59 90.48 6.015 15.6 156.0 156.8 157.3 151.6 0.133 -200.9

first-order bi-level optimization methods
BVFIM 0.107 0.325 73.18 98.97 5.336 21.4 200.1 201.2 201.8 195.5 0.148 -228.5
BOME 0.105 0.318 72.10 88.52 4.984 12.6 138.8 139.4 140.0 136.1 0.124 -164.1

multi-objective bi-level optimization methods
MOML 0.083 0.347 74.87 80.57 3.813 8.64 191.9 192.6 192.8 188.9 0.135 -165.1
MoCo 0.086 0.427 69.60 79.00 5.693 10.2 295.5 296.6 297.0 290.1 0.169 -267.6
FORUM (ours) 0.104 0.266 85.37 82.15 2.126 6.49 96.97 97.53 97.69 95.88 0.097 -73.36

over union (MIoU) and the class-wise pixel accuracy (PAcc) for the semantic segmentation task,
the relative error (RErr) and the absolute error (AErr) for the depth estimation task, and the mean
and median angle error as well as the percentage of normals within t◦ (t = 11.25, 22.5, 30) for the
surface normal prediction task. (iii) For the QM9 dataset, following Fey & Lenssen (2019); Navon
et al. (2022), we use mean absolute error (MAE) as the evaluation metric. (iv) Following Maninis
et al. (2019); Lin et al. (2022), we use ∆p as a metric to evaluate the overall performance on all the
tasks. It is defined as the mean of the relative improvement of each task over the STL method, which
is formulated as

∆p = 100%× 1

m

m∑
i=1

1

Ni

Ni∑
j=1

(−1)si,j (Mi,j −MSTL
i,j )

MSTL
i,j

,

where Ni denotes the number of metrics for i-th task, Mi,j denotes the performance of an MTL
method for the j-th metric in the i-th task, MSTL

i,j is defined in the same way for the STL method,
and si,j is set to 0 if a larger value represents better performance for the j-th metric in i-th task and
otherwise si,j = 1.

Results. Table 2 shows the results on Office-31 dataset. The proposed FORUM method achieves
the best performance in terms of average classification accuracy and ∆p. The results on NYUv2
dataset are shown in Table 3. As can be seen, only FORUM achieves better performance than STL in
terms of ∆p. Moreover, FORUM performs well in the depth estimation and surface normal prediction
tasks. Table 4 shows the results on QM9 dataset. FORUM again outperforms all the baselines in
terms of ∆p. Those results consistently demonstrate FORUM achieves state-of-the-art performance
and is more effective than previous MOBLO methods such as MOML and MoCo.

6 CONCLUSION

In this paper, we propose FORUM, an efficient fully first-order gradient-based method for solving the
MOBLO problem. Specifically, we reformulate the MOBLO problem to a constrained MOO problem
and we propose a novel multi-gradient aggregation method to solve it. Compared with the existing
MOBLO methods, FORUM does not require any hypergradient computation and thus is efficient.
Theoretically, we provide a complexity analysis to show the efficiency of the proposed method and a
non-asymptotic convergence guarantee for FORUM. Moreover, empirical studies demonstrate the
proposed FORUM method is effective and efficient.
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APPENDIX

A ADDITIONAL MATERIALS

A.1 GRADIENT APPROXIMATION ERROR BOUND

The following lemma shows that the gradient approximation error of ∇z q̃(z) exponentially decays
w.r.t. the LL iterations T .

Lemma A.1. Under Assumption 4.2 and suppose the step size η satisfies η ≤ 2
Lf+c , then we have

∥∇z q̃(z)−∇zq(z)∥ ≤ Lf (1− cη
2 )T ∥ω̃0 − ω∗∥.

Proof. According to Lemma 3 in Sow et al. (2022), as η ≤ 2
Lf+c , for a given α, we have ∥ωT−ω∗∥ ≤

(1− cη
2 )T ∥ω0 − ω∗∥. Then for the approximated gradient ∇αfz(α, ω̃

T ), we have

∥∇z q̃(z)−∇zq(z)∥ = ∥∇αf(α, ω
∗)−∇αf(α, ω̃

T )∥ ≤ Lf∥ω∗ − ω̃T ∥.

Then we reach the conclusion.

As 0 < η ≤ 2
Lf+c , we have 0 < cη

2 < 1. Therefore, the gradient approximation error exponentially
decays w.r.t. the LL iterations T according to Lemma A.1.

A.2 DUAL PROBLEM OF PROBLEM (7)

The sub-problem can be rewritten equivalently as the following differentiable quadratic optimization

d, µ = argmin
d,µ

(
1

2
∥d∥2 + µ) s.t. ⟨∇q̃(zk), d⟩ ≤ −ϕ, ⟨∇Fi(zk), d⟩ ≤ µ (13)

Therefore we have

L =
1

2
∥d∥2 + µ+

m∑
i=1

λi(⟨∇Fi(zk), d⟩ − µ) + ν(⟨∇q̃(zk), d⟩+ ϕ), s.t.

m∑
i=1

λi = 1 (14)

Differentiate with respect to d, and let ∇dL = 0 we have

d+

m∑
i=1

λ∇Fi(zk) + ν∇q̃(zk) = 0. (15)

Therefore, the gradient d = −(
∑m

i=1 λ∇Fi(zk)+ν∇q̃(zk)). Substitute it to problem (13), we obtain
that λ and ν are the solution of

min
λ∈∆m−1,ν≥0

1

2

∥∥∥∥∥
m∑
i=1

λ∇Fi(zk) + ν∇q̃(zk)

∥∥∥∥∥
2

− νϕ. (16)

For given λ, the above equation has a colsed form solution for ν,

ν(λ) = max

(
m∑
i=1

λiπi(z), 0

)
, s.t. πi(z) =

2ϕ− ⟨∇q̃(z),∇Fi(z)⟩
∥∇q̃(z)∥2

. (17)

Therefore, the optimization problem of λ becomes the following quadratic programming problem.

λ = argmin
λ∈∆m−1

∥∥∥∥∥
m∑
i=1

λi∇Fi(z) + ν(λ)∇q̃(z)

∥∥∥∥∥
2

− ν(λ)ϕ. (18)

which fits the result in Section 3.2.
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A.3 DISCUSSION ON THE WEIGHTS SEQUENCE

For a standard non-convex MOO problem, i.e. minz(F1(z), F2(z), . . . , Fm(z)). The goal is to find a
Pareto stationary point z∗, i.e., exists a λ ∈ ∆m−1 satisfies

∑m
i=1 λi∇Fi(z

∗) = 0. Suppose we use a
gradient aggregated approach to update z, i.e., zk+1 = zk −

∑m
i=1 µλ

k
i∇Fi(zk), where the gradient

weights λ can be obtained by any gradient-based MOO methods, such as MGDA (Désidéri, 2012)
and CAGrad (Liu et al., 2021a). We now show that the convergence of reaching a stationary point
can only be guaranteed when {λk}Kk=1 is a convergent sequence.

Under Assumption 4.1, since all objective functions are LF -smooth, we have
m∑
i=1

λk
i (Fi(zk+1)− Fi(zk)) ≤ −µ∥

m∑
i=1

λk
i∇Fi(zk)∥2 +

∑m
i=1 λ

k
i LFµ

2

2
∥

m∑
i=1

λk
i∇Fi(zk)∥2.

Let µ ≤ 1
LF

and sum the above inequality over k = 0, 1, . . . ,K − 1 yields

K−1∑
k=1

µ

2
∥

m∑
i=1

λk
i∇Fi(zk)∥2 ≤

K−1∑
k=0

m∑
i=1

λk
i (Fi(zk+1)− Fi(zk)).

Therefore, we have

1

K

K−1∑
k=1

∥
m∑
i=1

λk
i∇Fi(zk)∥2 ≤

∑K−1
k=0

∑m
i=1(λ

k
i − λk+1

i )F (zk+1)

µK
+

∑m
i=1(λ

K−1
i F (zK)− λ0

iF (z0))

µK
.

Suppose the value of the functions Fi are bounded, by carefully choosing the step size µ, i.e.,
µ = O(K−1/2), the second term of the right side of the above inequality can maintain a K−1/2

convergent rate. However, if ∥λk−λk+1∥ does not converge to zero, the first term is of order O(µ−1).
Thus it can not converge to zero for both constant step size or decreased step size. Therefore, the
{λk}Kk=1 should be a convergent sequence to guarantee the convergence of the gradient aggregated-
based method for non-convex MOO problems.

B CONVERGENCE ANALYSIS

B.1 KKT CONDITIONS

Consider a general constrained MOO problem with one constraint such as problem (3). The corre-
sponding first-order Karush-Kuhn-Tucker (KKT) condition (Feng & Li, 2018) is said to hold at a
feasible point z∗ ∈ Z if there exist a vector λ ∈ ∆m−1 and ν ∈ R+ such that the following three
conditions hold,

m∑
i=1

λi∇Fi(z
∗) + ν∇q(z∗) = 0, q(z∗) ≤ 0, and νq(z∗) = 0. (19)

Then z∗ is a local optimal point. The first condition is the stationarity condition, the second
condition is the primal feasibility condition and the last condition is the complementary slackness
condition. However, as we discussed in Section 3.1, since the constraint function q(z) is ill-posed,
the complementary slackness condition can not be satisfied (Liu et al., 2022a; Kwon et al., 2023).
To ensure our algorithm converges to a weak stationarity point, we measure the convergence by the
stationarity condition and the feasibility condition.

Discussion on Pareto stationary. The Pareto stationary is a first-order KKT stationary condition for
the unconstrained MOO optimization problem. However, in this work, we reformulate MOBLO to an
equivalent constrained MOO problem. Hence, the Pareto stationary cannot be used as a convergence
criterion in our method. We measure the convergence by the local optimality condition of the
constrained MOO problem, i.e., KKT stationary and feasibility conditions.

B.2 LEMMAS

We first provide the following lemmas for the LL subproblem under Assumption 4.2.
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Lemma B.1. Under Assumption 4.2, we have the following results.

(a) ∥∇q̃(z)−∇q(z)∥ ≤ Lf∥ω̃T − ω∗(α)∥.

(b) The function ∇q(z) is Lq-Lipschitz continuous w.r.t. z, where Lq = Lf (2 +
Lf

c ).

(c) If the step size of the LL subproblem satisfies η ≤ 2
Lf

, then for ω̃0 = ω and ω̃T+1 = ω̃T −
η∇ωq(α, ω̃

T ), we have q(α, ω̃T ) ≤ Γ(T )q(α, ω), where Γ(T ) represents an exponential
decay w.r.t. T .

(d) ∥∇zq(z)∥2 ≤ 2L2
q

c q(z)

Proof. (a): We have ∥∇q̃(z)−∇q(z)∥ ≤ ∥∇αf(α, ω̃
T )−∇αf(α, ω

∗)∥ ≤ Lf∥ω̃T − ω∗(α)∥.

(b): This result can be directly obtained from Lemma 5 in Sow et al. (2022).

(c): Since ∇ωq(z) = ∇ωf(z) and ∇zf(z) is Lf -Lipschitz continuous w.r.t ω, ∇ωq(z) is Lf -
Lipschitz continuous w.r.t ω. Then we have

q(α, ω̃T+1) ≤ q(α, ω̃T )− (η − Lfη
2

2
)∥∇ωq(α, ω̃

T )∥2

= q(α, ω̃T )− (η − Lfη
2

2
)∥∇ωf(α, ω̃

T )∥2

≤ (1− c(2η − Lfη
2))q(α, ω̃T ),

where the second inequality is due to ∥∇ωf(α, ω̃
T )∥2 ≥ 2c(f(α, ω̃T ) − f(α, ω∗)) = 2cq(α, ω̃T ).

Since ω̃0 = ω, we have q(α, ω̃T ) ≤ (1− c(2η − Lfη
2))T q(α, ω). If η ≤ 2

Lf
, 2η − Lfη

2 ≥ 0. Let
Γ(T ) = (1− c(2η − Lfη

2))T , which decays exponentially w.r.t. T . Then we reach the conclusion.

(d): Since ∇q(α, ω∗(α)) = 0, we have ∥∇q(z)∥2 = ∥∇q(z) − ∇q(α, ω∗(α))∥2 ≤ L2
q∥ω −

ω∗(α)∥2. Since f(z) is c-strongly convex with respect to ω, we have ∥ω − ω∗(α)∥2 ≤ 2
c (f(α, ω)−

f(α, ω∗(α)) = 2q(z)
c , then we reach the conclusion.

Then for the Algorithm 1, we have following result about the constraint function.

Lemma B.2. Under Assumption 4.2, suppose the sequence {zk}Kk=0 generated by Algorithm 1
satisifes q(zk) ≤ B, where B is a positive constant. Then there exists a constant C > 0, if T ≥ C,
the following results hold.

(a) q(zk) ≤ Γ1(k)B +O(Γ(T ) + µ), where Γ1(k) represents an exponential decay w.r.t k.

(b) ∥∇q̃(z)−∇q(z)∥ ≤ Lf

√
Γ(T )
c2 ∥∇q(α, ω)∥.

(c) There exists a positive constant Cb < 1, such that ∥∇q̃(z)∥ ≥ Cb∥∇q(z)∥.

(d)
∑K−1

k=0 ∥∇q̃(zk)∥2 = O( 1µ +KΓ(T ) +Kµ).

Proof. (a): According to Lemma B.1 (d) and the boundedness assumption of q(zk), the gradient norm
∥∇q(zk)∥ is also bounded. Let G(zk) =

∑m
i=1 λ̃

k
i∇Fi(zk), we have d = −µ(G(zk) + ν∇q(zk))

and ν = max(ρ∥∇q̃(zk)∥2−⟨∇q̃(zk),G(zk)⟩
∥∇q̃(zk)∥2 , 0). Then we can applying Lemma B.1 to Lemma 10 in Liu

et al. (2022a), we obtain that there exist a constant C > 0, if T ≥ C, we have

q(αk, ωk) ≤ Γ1(k)q(α0, ω0) +O(Γ(T ) + µ), (20)

where Γ1(k) = (1 − µCa)
k represents an exponential decay w.r.t k and Ca is a positive constant

depending on η and c. Then we reach the conclusion.
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(b): We have ∥∇q̃(z)−∇q(z)∥ ≤ Lf∥ω̃T − ω∗(α)∥ ≤ Lf

√
2(f(α,ω̃T )−f(α,ω∗(α)))

c , where the first
inequality is due to Lemma B.1 (a). Then we have

∥∇q̃(z)−∇q(z)∥ ≤ Lf

√
2Γ(T )q(z)

c
≤ Lf

√
Γ(T )

c2
∥∇q(α, ω)∥,

where the first inequality is due to Lemma B.1 (c) and the second inequality is due to the strongly
convex assumption of f(α, ω) w.r.t ω and ∥∇ωq(α, ω)∥ ≤ ∥∇q(z)∥.

(c): By the triangle inequality and Lemma B.2 (b), we obtain

∥∇q̃(z)∥ ≥ ∥∇q(z)∥ − ∥∇q̃(z)−∇q(z)∥ ≥ (1− Lf

√
Γ(T )

c2
)∥∇q(z)∥.

Then there exists a positive constant C > 0 such that when T ≥ C, we have 0 < Lf

√
Γ(C)
c2 < 1.

Let Cb = 1− Lf

√
Γ(C)
c2 , then we have ∥∇q̃(z)∥ ≥ Cb∥∇q(z)∥ and Cb < 1.

(d): By the triangle inequality and Lemma B.2 (b), we obtain

∥∇q̃(z)∥ ≤ ∥∇q̃(z)−∇q(z)∥+ ∥∇q(z)∥ ≤ (1 + Lf

√
Γ(T )

c2
)∥∇q(z)∥.

By defining Ce =

(
1 + Lf

√
Γ(T )
c2

)2

, we have

K−1∑
k=0

∥∇q̃(zk)∥2 ≤
K−1∑
k=0

Ce∥∇q(zk)∥2

≤
K−1∑
k=0

2L2
qCe

c
(Γ1(k)B +O(Γ(T ) + µ)),

where the second inequality is due to Lemma B.1 (d) and Lemma B.2 (a). Since
∑K

k=0(1−µCa)
k =

O( 1µ ) and Ce decays to 1 as T → +∞, we have
∑K−1

k=0 ∥∇q̃(zk)∥2 = O( 1µ +KΓ(T ) +Kµ).

B.3 PROOF OF THE THEOREM 4.3

Since Fi(z) is LF -Lipschitz continuous, we have

m∑
i=1

λ̃k
i (Fi(zk+1)− Fi(zk)) ≤ µ

〈
m∑
i=1

λ̃k
i∇Fi(zk), dk

〉
+

∑m
i=1 λ̃

k
i LFµ

2

2
∥dk∥2

= µ ⟨−νk∇q̃(zk)− dk, dk⟩+
LFµ

2

2
∥dk∥2

= (
LFµ

2

2
− µ)∥dk∥2 − µνk⟨∇q̃(zk), dk⟩.

According to the complementary slackness condition of problem (7), We have νk(⟨∇q̃(zk), dk⟩ +
ϕk) = 0, where νk = ν(λ̃k). Therefore −νk⟨∇q̃(zk), dk⟩ = νk

ρ
2∥∇q̃(zk)∥2. Then if µ ≤ 1

LF
, we

have
m∑
i=1

λ̃k
i (Fi(zk+1)− Fi(zk)) ≤ −µ

2
∥dk∥2 +

ρµνk
2

∥∇q̃(zk)∥2. (21)
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Let G(zk) =
∑m

i=1 λ̃
k
i∇Fi(zk), we have νk∥∇q̃(zk)∥2 ≤ ρ∥∇q̃(zk)∥2 − ⟨G(zk),∇q̃(zk)⟩. Sum-

ming the inequality (21) over k = 0, 1, . . . ,K − 1 yields
K−1∑
k=0

m∑
i=1

λ̃k
i (Fi(zk+1)− Fi(zk)) ≤

K−1∑
k=0

(−µ

2
∥dk∥2 +

ρµνk
2

∥∇q̃(zk)∥2)

≤ −µ

2

K−1∑
k=0

∥dk∥2 +
K−1∑
k=0

ρ2µ

2
∥∇q̃(zk)∥2 −

K−1∑
k=0

ρµ

2
⟨G(zk),∇q̃(zk)⟩

≤ −µ

2

K−1∑
k=0

∥dk∥2 +
K−1∑
k=0

ρ2µ

2
∥∇q̃(zk)∥2 +

K−1∑
k=0

ρµM

2
∥∇q̃(zk)∥,

where the last inequality is by Cauchy-Schwarz inequality and ∥G(zk)∥ ≤ ∥∇zFi(zk)∥ ≤ M .
Therefore, we further have
K−1∑
k=0

∥dk∥2 ≤
2
∑K−1

k=0

∑m
i=1 λ̃

k
i (Fi(zk+1)− Fi(zk))

µ
+

K−1∑
k=0

ρ2∥∇q̃(zk)∥2 +
K−1∑
k=0

ρM∥∇q̃(zk)∥.

(22)
For the first term of the right-hand side of the inequality (22), we have
K−1∑
k=0

m∑
i=1

λ̃k
i (Fi(zk+1)− Fi(zk)) =

K−1∑
k=0

m∑
i=1

(λ̃k
i − λ̃k+1

i )F (zk+1) +

m∑
i=1

(λ̃K−1
i F (zK)− λ̃0

iF (z0))

≤
K−1∑
k=0

m∑
i=1

|λ̃k
i − (1− β)λ̃k

i − βλk+1
i |M + 2M.

≤
K−1∑
k=0

β

m∑
i=1

|λ̃k
i − λk+1

i |M + 2M.

Since λ ∈ ∆m−1, we have |λ̃k
i − λk+1

i | ≤ 2. Then we have

K−1∑
k=0

∥dk∥2 ≤ 2mMKβ + 2M

µ
+

K−1∑
k=0

ρ2∥∇q̃(zk)∥2 + ρM
√
K

√√√√K−1∑
k=0

∥∇q̃(zk)∥2

= O(
Kβ

µ
) +O(

M

µ
) +O(

1

µ
+KΓ(T ) +Kµ) +O(

√
K

µ
+K

√
Γ(T ) +K

√
µ)

= O(
Kβ

µ
+KΓ(T ) +

√
K

µ
+K

√
µ),

where the first inequality is by Holder’s inequality and the first equality is due to Lemma B.2 (d). For
the measure of stationarity K(zk), we obtain that

K(zk) = ∥G(zk) + νk∇q(zk)∥2 ≤ 2∥dk∥2 + 2∥νk(∇q̃(zk)−∇q(zk))∥2. (23)

According to B.1 (d), we have ∥∇q(zk)∥ ≤
√

2BL2
q

c . Then we obtain

∥νk(∇q̃(zk)−∇q(zk))∥ ≤
∣∣∣∣ρ− ⟨G(zk),∇q̃(zk)⟩

∥∇q̃(zk)∥2

∣∣∣∣ ∥∇q̃(zk)−∇q(zk)∥

≤ ρ∥∇q̃(zk)−∇q(zk)∥+ |⟨G(zk),
∇q̃(zk)

∥∇q̃(zk)∥
⟩|∥∇q̃(zk)−∇q(zk)∥

∥∇q̃(zk)∥

≤ Lf

√
Γ(T )

c2
(ρ∥∇q(zk)∥+

1

Cb
|⟨G(zk),

∇q̃(zk)

∥∇q̃(zk)∥
⟩|)

≤ Lf

√
Γ(T )

c2
(ρLq

√
2B

c
+

M

Cb
),
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where the third inequality is due to Lemma B.2 (b) and (c), and the last inequality is due to the
Cauchy-Schwarz inequality. Therefore, we have ∥νk(∇q̃(zk)−∇q(zk))∥2 = O(Γ(T )). Then we
can get

min
k<K

K(zk) ≤
1

K

K−1∑
k=0

K(zk)

= 2O(
Kβ

µK
+ Γ(T ) +

√
1

µK
+
√
µ) + 2O(Γ(T ))

= O(
β

µ
+ Γ(T ) +

√
1

µK
+
√
µ),

where the first equality is due to Eq. (23). According to Lemma B.2 (a), we obtain q(zk) =
O(Γ1(k) + Γ(T ) + µ). Thus we get

max

{
min
k<K

K(zk), q(zk)

}
= O

(
√
µ+

√
1

µK
+

β

µ
+ Γ(T )

)
.

Let µ = O(K−1/2) and β = O(K−3/4), we reach the conclusion.

C SYNTHETIC MOBLO

In this section, we use one synthetic MOBLO problem to illustrate the convergence of the proposed
FORUM method. We first consider the following problem,

min
α∈R,ω∈R2

(∥ω − (1, α)∥22, ∥ω − (2, α)∥22) s.t. ω ∈ argmin
ω∈R2

∥ω − α∥22, (24)

where (·, ·) denotes a two-dimensional vector and ω = (ω1, ω2). Problem (24) satisfies all the
assumptions required in Section 4.2. By simple calculation, we can find that the optimal solution set
of problem (24) is P = {(α, ω) | α = ω1 = ω2 = c, c ∈ [1, 2]}.

We apply GD optimizer for both UL and LL subproblems and the step sizes are set to µ = 0.3 and
η = 0.05 for all methods. We run 50 LL iterations to ensure that for a given α, they all reach the
minimum point for the LL subproblem. For FORUM, we set ρ = 0.3 and βk = (k + 1)−3/4. The
result is evaluated by calculating the Euclidean distance between solution z and the optimal solution
set P , which is denoted by E = dist(z,P).

0 20 40 60 80 100
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

FORUM, 0 = 2
FORUM, 0 = 0
MoCo, 0 = 2
MoCo, 0 = 0
MOML, 0 = 2
MOML, 0 = 0

(a) E vs. K.

0 20 40 60 80 100
Iterations

0.0

0.5

1.0

1.5

2.0

2.5
FORUM, 0 = (0, 3)
FORUM, 0 = (3, 3)
MoCo, 0 = (0, 3)
MoCo, 0 = (3, 3)
MOML, 0 = (0, 3)
MOML, 0 = (3, 3)

(b) E vs. K.

0 20 40 60 80 100
Iterations

0

1

2

3

4 z0 = (2, 0, 3)
z0 = (0, 0, 3)
z0 = (1, 0, 3)
z0 = (1, 3, 3)

(c) K(z) vs. K.

0 20 40 60 80 100
Iterations

0

2

4

6

8

q(
z)

z0 = (2, 0, 3)
z0 = (0, 0, 3)
z0 = (1, 0, 3)
z0 = (1, 3, 3)

(d) q(z) vs. K.

Figure 2: Results on the problem (24) with different initialization points. (a): Fix ω0 = (0, 3) and
vary α0 = 0, 2. The optimality gap E curves. (b): Fix α0 = 2 and vary ω0 = (0, 3), (3, 3). The
optimality gap E curves. (c): The stationarity gap K(z) curves. (d): The value of the constraint
function q(z) curves.

Figures 2(a) and 2(b) show the numerical results of the MOML, MoCo, and FORUM methods with
different initializations. It can be observed that the proposed FORUM method can achieve an optimal
solution in all the settings, i.e., E → 0, and different initializations only slightly affect the convergence
speed. Figures 2(c) and 2(d) show that both K(z) and q(z) converge to zero in all the settings. Thus
FORUM solves the corresponding constrained optimization problem. This result demonstrates our
convergence result in Section 4.2.
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D IMPLEMENTATION DETAILS FOR SECTION 5

D.1 DATA HYPER-CLEANING

The same configuration is used for both the MOML, MoCo, and FORUM methods. Specifically,
the hard-parameter sharing architecture (Caruana, 1993) is used, where the bottom layers are shared
among all datasets and each dataset has its specific head layers. The shared module contains two
linear layers with input size, hidden size, and output size of 784, 512, and 256. Each layer adopts a
ReLU activation function. Each dataset has a specific linear layer with an output size of 10. The batch
size is set to 100. For the LL subproblem, the SGD optimizer with a learning rate η = 0.3 is used for
updating T = 16, 32, 64, 128 iterations. For the UL subproblem, the total number of UL iterations K
is set to 1200, and an SGD optimizer with the learning rate as 10 is used for updating weight α while
another SGD optimizer with the learning rate as 0.3 is used for updating model parameters ω. We set
ρ = 0.5 and βk = (k + 1)−

3
4 for FORUM.

For Figures 1(b) and 1(d), we increase the number of LL parameters p by adding some lin-
ear layers with the hidden size of 512 into the shared module. We use the build-in function
torch.cuda.max memory allocated in PyTorch (Paszke et al., 2019) to compute the GPU memory
cost for Figures1(c) and 1(d).

D.2 MULTI-TASK LEARNING

All methods are implemented based on the open-source LibMTL library (Lin & Zhang, 2023). For
the proposed FORUM method, we set ρ = 0.1, βk = (k + 1)−

3
4 , use a SGD optimizer with a

learning rate η = 0.1 to update T = 5 iterations in the LL subproblem, and use an Adam optimizer
(Kingma & Ba, 2015) with the learning rate 10−3 to update the loss weight α in the UL subproblem.

Office-31. Following Lin et al. (2022), the ResNet-18 network pre-trained on the ImageNet dataset
is used as a shared backbone among tasks and a fully connected layer is applied as a task-specific
output layer for each task. All the input images are resized to 224× 224. The batch size is set to 64.
The cross-entropy loss is used for all tasks in both datasets. The total number of UL epochs K is
set to 100. An Adam optimizer (Kingma & Ba, 2015) with the learning rate as 10−4 and the weight
decay as 10−5 is used for updating model parameters ω in the UL subproblem.

NYUv2. Following Lin et al. (2022), we use the DeepLabV3+ architecture (Chen et al., 2018), which
contains a ResNet-50 network with dilated convolutions as the shared encoder among all tasks and
three Atrous Spatial Pyramid Pooling (ASPP) (Chen et al., 2018) modules as task-specific heads for
each task. All input images are resized to 288×384. The batch size is set to 8. The cross-entropy loss,
L1 loss, and cosine loss are used as the loss function of the semantic segmentation, depth estimation,
and surface normal prediction tasks, respectively. The total number of UL epochs K is set to 200. An
Adam optimizer (Kingma & Ba, 2015) with the learning rate as 10−4 and the weight decay as 10−5

is used for updating model parameters ω in the UL subproblem. The learning rate of ω is halved after
100 epochs.

QM9. Following Fey & Lenssen (2019); Navon et al. (2022), we use a graph neural network (Gilmer
et al., 2017) as the shared encoder, and a linear layer as the task-specific head. The targets of each
task are normalized to have zero mean and unit standard deviation. The batch size is set to 128.
Following Fey & Lenssen (2019); Navon et al. (2022), we use mean squared error (MSE) as the loss
function. The total number of UL epochs K is set to 300. An Adam optimizer (Kingma & Ba, 2015)
with the learning rate as 0.001 is used for updating model parameters ω in the UL subproblem. A
ReduceLROnPlateau scheduler (Paszke et al., 2019) is used to reduce the learning rate of ω once ∆p

on the validation dataset stops improving.

For the BOME, BVFIM, MOML, and MoCo methods, we use a similar configuration to the proposed
FORUM method and perform a grid search for hyperparameters of each method. Specifically, we
search LL learning rate η over {0.05, 0.1, 0.5} for both four methods, search ρ over {0.1, 0.5, 0.9}
for BOME, search β over {0.05, 0.1, 0.5, 1} for BVFIM, and set T = 1 for MOML and MoCo and
T = 5 for BOME and BVFIM.
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E EFFECTS OF η AND ρ

We study the effects of hyperparameters η and ρ in the multi-objective data hyper-cleaning problem.
The results are shown in Table 5. FORUM is insensitive with η and a large ρ (e.g, ρ = 0.5, 0.7, 0.9).
Besides, FORUM with a positive ρ performs better than ρ = 0, which shows the effectiveness of ϕk

introduced in Section 3.2.

Table 5: Effects of η and ρ in the multi-objective data hyper-cleaning problem. The average accuracy
on MNIST and FashionMNIST is reported.

η ρ T = 16 T = 32 T = 64 T = 128

0.3

0 83.94 84.07 84.30 83.94
0.1 85.44 85.52 85.50 85.32
0.3 85.99 86.18 85.92 85.96
0.5 86.58 86.38 86.44 86.10
0.7 86.53 86.64 86.66 86.48
0.9 86.91 86.61 86.51 86.65

0.1
0.5

86.57 86.61 86.16 86.24
0.3 86.58 86.38 86.44 86.10
0.5 86.52 86.57 86.20 86.31

F COMPARISON OF DIFFERENT MOBLO METHODS

Table 6 shows the convergence and complexity analysis for the proposed FORUM method and two
MOBLO baselines (i.e., MOML and MoCo). As can be seen, FORUM has lower computational and
memory costs compared with previous MOBLO methods.

Table 6: Comparison of convergence result and complexity analysis for different MOBLO methods.
Method Convergence analysis Computational cost Space cost
MOML asymptotic O(mp(n+ p)T ) O(mn+mpT )
MoCo non-asymptotic O(mp(n+ p)T ) O(2mn+mpT )
FORUM (ours) non-asymptotic O(mn+ p(m+ T )) O(mn+mp)
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