
Compressing Tree Ensembles through Level-wise Optimization and Pruning

Laurens Devos * 1 2 Timo Martens * 1 2 Deniz Can Oruç 1 2 Wannes Meert 1 2 Hendrik Blockeel 1 2 Jesse Davis 1 2

Abstract

Tree ensembles (e.g., gradient boosting decision
trees) are often used in practice because they offer
excellent predictive performance while still being
easy and efficient to learn. In some contexts, it
is important to additionally optimize their size:
this is specifically the case when models need
to have verifiable properties (verification of fair-
ness, robustness, etc. is often exponential in the
ensemble’s size), or when models run on battery-
powered devices (smaller ensembles consume less
energy, increasing battery autonomy). For this
reason, compression of tree ensembles is worth
studying. This paper presents LOP, a method for
compressing a given tree ensemble by pruning or
entirely removing trees in it, while updating leaf
predictions in such a way that predictive accuracy
is mostly unaffected. Empirically, LOP achieves
compression factors that are often 10 to 100 times
better than that of competing methods.

1. Introduction
Ensembles of decision trees, a.k.a. decision forests, are
frequently used in practice because of their ease of training,
excellent overall performance, and high efficiency. Their
training requires little or no hyperparameter tuning, the
computational cost of both training and prediction is very
small, and for tabular data, they are usually among the best
performing models (Grinsztajn et al., 2022).

This paper is about compressing decision forests: reducing
their size as measured by, e.g., the total number of leaves
in the forest, while maintaining their accuracy. In the light
of the above successes, one might wonder whether this is
worthwhile: if forests are already so efficient, can we gain

*Equal contribution 1KU Leuven Department of Computer
Science, Leuven, Belgium 2Leuven.AI, KU Leuven Institute for
Artificial Intelligence, Leuven, Belgium. Correspondence to:
Jesse Davis <jesse.davis@kuleuven.be>, Hendrik Blockeel <hen-
drik.blockeel@kuleuven.be>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

much from reducing their size? The answer is yes, for
multiple reasons: (1) Due to their efficiency, forests are
very suitable for use on embedded or battery-powered de-
vices (Fan et al., 2013; Donos et al., 2015; Daghero et al.,
2021; Lauwereins et al., 2015). A smaller forest has a
smaller memory footprint and consumes less energy per pre-
diction (Buschjäger & Morik, 2023). On battery-powered
devices, this can have a substantial effect on battery auton-
omy. (2) Forest size is relevant when models must be veri-
fiable, for instance, in the context of fairness or robustness
against adversarial attacks (Devos et al., 2021b;a). Verifica-
tion methods for decision forests tend to scale exponentially
in the size of the forest (Kantchelian et al., 2016; Devos
et al., 2023). Therefore, any size reduction has an important
effect on verifiability.

While one could try to construct smaller forests from the
start, the success of existing methods such as Random
Forests or XGBoost is an argument for not changing the
method of growing the forest, but reducing its size after-
wards (Ren et al., 2015; Buschjäger & Morik, 2023). In this
formulation, the original forest provides a reference point
in terms of predictive performance. This enables designing
compression approaches that more explicitly trade off pre-
dictive accuracy versus other aspects of performance, such
as memory footprint, energy consumption, and verifiability
(all of which correlate with size).

Multiple methods for reducing the size of forests have been
proposed. There has been extensive research on remov-
ing component models from ensembles (Tsoumakas et al.,
2009). More recently, methods specific to forests have
been proposed. These usually optimize the values stored
in the leaves, with size reduction as a possible side-effect
rather than the primary goal (e.g, Ren et al., 2015), though
several approaches explicitly add pruning as an objective
(Buschjäger & Morik, 2023; Liu & Mazumder, 2023a). Gen-
erally, all these methods try to find an optimum for some
cost function that trades off size versus accuracy.

In this paper, we propose a novel method called LOP for
compressing decision forests. LOP tries to find the small-
est forest whose predictive accuracy is still within a user-
provided margin to that of the original forest. Like other
methods, it starts from a given forest. In contrast to existing
methods that restrict what can be pruned, LOP can prune any

1

Compressing Tree Ensembles through Level-wise Optimization and Pruning

(sub)tree in the forest. It proceeds level-wise, from the root
towards the leaves. At each level, it formulates an optimiza-
tion problem that tries to prune subtrees rooted at that level
while updating the values in the remaining leaves to avoid a
drop in accuracy. Empirically, LOP can find much smaller
forests than existing methods: sometimes by a factor 100
or more, if a small loss in accuracy (< 0.5%) is acceptable;
and often by a factor 2-3 when comparing forests with the
same accuracy. This substantially increases the applicability
of forests in contexts where verifiability, robustness, battery
autonomy, etc. matter.

2. Preliminaries
Decision trees. Decision trees exist in many variants (Bloc-
keel et al., 2023). We take the following view: A decision
tree is a tree-shaped representation of a function X → Y;
internal nodes of the tree are labeled with a test that can be
performed on instances; there is an outgoing edge for each
possible outcome of the test; leaves are labeled with a value
ŷ ∈ Y . A tree associates each instance x with a value ŷ
by sorting x down the tree according to the outcome of the
tests until a leaf is reached, and returning the value stored
in that leaf. Here, we assume Y = R: this covers regression
trees but also binary classification trees by using a threshold
on ŷ to decide the predicted class.

Decision forests. Decision forests are ensembles of deci-
sion trees. Learning algorithms for them include popular
algorithms such as Random Forests (Breiman, 2001) and
gradient boosted decision trees (Friedman, 2001), of which
XGBoost (Chen & Guestrin, 2016) is a well-known example.
Forests are typically constructed iteratively, growing one
tree at a time using a standard tree learner and adding it to the
forest until that contains a predefined number of trees. A for-
est T = {T1, T2, . . . TM} makes predictions by combining
the predictions of the individual trees Tm. The combination
rule can be standard voting for classification or averaging for
regression, but more generally it is a linear combination of
the individual predictions: T (x) =

∑
m wmTm(x) where

both the Tm and the wm are learned.

A tree can be written as an additive model: T (x) =∑
j 1j(x)ŷj with ŷj the value stored in the j’th leaf, and

1j is 1 if x gets sorted into the j’th leaf and 0 otherwise.
Hence, the entire forest can be written in an additive form:

T (x) =
∑
m

wm

∑
j

1m,j(x)ŷm,j =
∑
m,j

wm1m,j(x)ŷm,j

where m indexes trees and j leaves in a tree. The notation
can be simplified to

T (x) =

L∑
k=1

1k(x)vk

where k indexes all L leaves in the forest and each vk equals
some wmŷm,j ; and ultimately to

T (x) = s(x) · v,

the dot product of an L-dimensional vector v with a binary
vector s(x) that indicates which leaves x is sorted into (i.e.,
the k’th component of s(x) is 1k(x)).

Postprocessing decision forests. Forests are learned in a
greedy manner: tree Tm is learned in the context of the
partial forest {T1, T2, . . . , Tm−1}, but the tree that seems
most useful at that point may turn out less useful in the
context of the forest as a whole. Furthermore, because the
number of trees is predefined, more trees may be added than
strictly needed to achieve a certain level of accuracy.

This has prompted researchers to investigate whether forests
can be further optimized after learning them. Forests can
often be simplified without loss of predictive accuracy by
removing trees that eventually turn out to be redundant
(Margineantu & Dietterich, 1997; Buciluǎ et al., 2006;
Tsoumakas et al., 2009; Lu et al., 2010; Zhang et al., 2006).
These approaches aim primarily at reducing the forest size,
ideally at no loss in accuracy.

A different type of postprocessing approach (e.g., Ren et al.,
2015) is based on changing the values predicted in the leaves
of the trees, which is often referred to as leaf refinement.
By default, the values inserted into Tm’s leaves are optimal
in the context in which Tm is learned. They may not be
optimal in the context of the whole forest. In fact, it is easy
to show that in general, individual trees may have to make
suboptimal predictions for the ensemble to make optimal
ones (see Appendix A).

3. The LOP Algorithm
We introduce Level-wise Optimization and Pruning (LOP),
a novel algorithm which tackles the following problem:

Given: A previously learned tree ensemble T and a dataset
{(xi, yi)}Ni=1 of N examples.

Do: Compress T into a (much) smaller ensemble T ′ such
that there is a minimal difference in predictive perfor-
mance between T and T ′.

The core idea underlying LOP is that, starting with the root
nodes (level 0), it processes the ensemble in a level-by-
level manner. At each level, it formulates an optimization
problem that simultaneously attempts to prune (sub)trees
and optimize the leaf values. This problem is global in that
it involves all nodes in the ensemble at the considered level.

To illustrate the intuition behind the approach, consider
the simple ensemble shown in Figure 1a and suppose the

2

Compressing Tree Ensembles through Level-wise Optimization and Pruning

algorithm is processing level 1. If the leaf values v11, v12
and v13 under the node HEIGHT < 190 in T2 were all equal
to v, then clearly that subtree could be replaced by a leaf
with value v. To encourage such compression, LOP jointly
optimizes the leaf values under each node n at this level
by learning a transformation cnvk + bn where cn and bn
are learnable parameters. LOP then runs an optimization
problem that finds cn, bn such that the new forest (with leaf
values of the form cnvk + bn) best fits the training data.
During this optimization, LOP applies the sparsity inducing
L1 regularization on cn, yielding two cases:

1. cn = 0: the subtree rooted at n is pruned and re-
placed by a leaf node with value bn. Figure 1b shows
this for our running example where the internal node
HEIGHT < 190 is replaced by b4,

2. cn ̸= 0: the values of all leaf nodes under n are updated
to be cnvk + bn. This is shown for the nodes under
node AGE < 50 in Figure 1b.

For leaf nodes (i.e., v1 and v8 in this example), the cn value
is already zero and the above simply entails learning a new,
globally optimal leaf value.

Next, we formalize more rigorously how LOP works.

3.1. Formulating the optimization problem

When formulating the optimization problem for level l, there
is one complicating factor that must be considered: some
trees may have leaf nodes at a higher level (i.e., some level
< l). For example, in Figure 1 this is the case for both trees
at level 2. Because these leaves affect the prediction for each
example, they must also be considered in the optimization
problem. Moreover, the values of such leaves will also need
to be updated to reflect any changes to the ensembles at
level l. Hence, for level l we define the set of active nodes
as the union of all nodes (both internal and leaf) at level l
together with all leaf nodes with a level < l. Below, we use
n to index active nodes, and k to index leaf nodes.

Before the transformation, the prediction for an instance
x equals s(x) · v. Changing all vk into cn(k)vk + bn(k),
with n(k) the active node above the k’th leaf, turns v into
(c′ ⊙ v+ b′), where ⊙ is componentwise multiplication and
the vectors c′ and b′ associate the right cn and bn value with
each vk (that is, b′k = bn(k) and c′k = cn(k)). Thus, the cost
function minimized at each level is

N∑
i=1

ℓ(s(xi) · (c′ ⊙ v + b′), yi) + α
∑
n

|cn| (1)

with ℓ a loss function.

Practically, this optimization problem can be written as

min
θ

ℓ(Xθ, y) + αr(θ) (2)

where X is the data matrix, θ contains the parameters to
be optimized, and r is a regularization term (see 3.2). Let
us denote with a the number of active nodes at the current
level. For now, assume the set of active nodes contains no
roots or leaves. θ is then a 2a-dimensional vector

θ =
[
c1 b1 c2 b2 . . . ca ba

]T
.

X represents the dataset in terms of the nodes and leaves
that each instance will be sorted into, and the corresponding
leaf values. X can be computed as SB with S an N × L
matrix with as i’th row s(xi), and B an L× 2a matrix that
has on row k the values vk and 1 in columns 2n(k)− 1 and
2n(k). Basically, S maps instances to leaves and B links
the corresponding leaf values to the right c, b parameters. It
is easily verified that Xθ is then a column matrix whose i’th
row equals s(xi)(c

′⊙v+b′). The general case where active
nodes can be leaves is obtained by simply omitting from
θ the cn component for leaves (leaves need not be pruned
any further) and dropping the corresponding columns in B.
Level 0 is another special case: pruning at level 0 removes
the tree entirely, so no bias term is used at that level.
Example 3.1. The ensemble shown in Figure 1, top, has 8
leaves. Counting leaves from left to right, assume that the
first three instances in the training set are sorted into leaves
2 and 7; 1 and 6; and 4 and 5. SBθ is then:1


0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0

...
...

...
...

...
...

...
...





v1 1 0 0 0 0 0 0
0 0 v3 1 0 0 0 0
0 0 v5 1 0 0 0 0
0 0 v6 1 0 0 0 0
0 0 0 0 v8 1 0 0
0 0 0 0 0 0 v12 1
0 0 0 0 0 0 v13 1
0 0 0 0 0 0 v14 1





c1
b1
c2
b2
c3
b3
c4
b4


and we have

X = SB =


0 0 v3 1 0 0 v13 1
v1 1 0 0 0 1 v12 1
0 0 v6 1 v8 1 0 0
...

...
...

...
...

...
...

...


and

Xθ =

v3c2 + b2 + v13c4 + b4
v1c1+b1 + v12c4 + b4
v6c2 + b2 + v8c3+b3


3.2. Maintaining predictive performance

There are two issues to contend with when solving our
optimization problem. First, compression, i.e., pruning
(sub)trees, may adversely affect the predictive performance.

1In practice, the columns/rows shown in red would be omitted
and are just shown to better visualize the matrix structure.

3

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Height < 200 BMI < 28

BMI < 26v3

v5 v6 v12

v11

+
Level 1

Level 0

Level 3

Level 2 Age < 40

v13

 c2 v3+b2

 c2 v5+b2 c2 v6+b2

Height < 200

Age < 50

BMI < 28

BMI < 26

b3

+
Level 1

Level 0

Level 3

Level 2

b1 b4

(a)

(b)

+b3c2×+b1 0×+b2 c4× +b40× v8 Height < 190v1 Age < 50

T1 T2

T1 T2

Figure 1. An example ensemble consisting of two trees T1 and T2, and the effect of applying the LOP subroutine at level 1. The leaf
constants of the ensemble are denoted by vk. (A) shows the original ensemble annotated with the scaling and shifting parameters cn and
bn on level 1. Note that leaf nodes have no scaling factor. (B) shows the resulting ensemble after applying the LOP subroutine at level 1,
assuming the case where c2 ̸= 0 and c4 = 0. When a scaling parameter cn is nonzero, the leaf values in the subtree rooted at node n are
updated to cnvk + bn, as shown for the subtree in T1. For the case where the scaling parameter cn is zero, the entire subtree rooted at n is
removed and replaced by a leaf with value bn. This is the case for the subtree in T2.

For this reason, LOP imposes the constraint that the com-
pressed model’s predictive performance on a validation set
must differ by less than a user-defined margin ∆ from the
performance of the original forest.

LOP tunes the regularization strength parameter α to obtain
maximal compression while satisfying the constraint on
the decrease in performance using a search procedure that
performs consecutive halving in log space. Starting from a
wide range [10o, 10u], LOP is run with α = 10(o+u)/2 and
if the resulting model satisfies the constraint, o is updated to
(o+ u)/2, otherwise u is. The process is repeated until the
interval is narrow enough with LOP choosing the highest α
that satisfies the constraint. Initially, o = −3 and u = 4. In
practice, LOP uses balanced accuracy2 as the performance
measure for classification, and RMSE for regression, but
other measures could be used.

Second, there is a risk of overfitting. The number of parame-
ters to be fit is at most twice the total number of active nodes,
which for binary trees is upper-bounded by M2l with M the
number of trees in the ensemble. Thus for small values of l,
there is little risk but the chance for overfitting increases as
l does. LOP’s validation set approach helps counter this.

3.3. Overall algorithmic working

Algorithm 1 shows the pseudocode for LOP. It takes two
hyperparameters: the number of rounds R of level-wise

2Balanced accuracy is the accuracy of the model under a uni-
form class distribution; it avoids disadvantages of accuracy under
skewed distributions.

compression to be performed and ∆ the maximum allowed
loss in predictive performance compared to the original
ensemble. The process of level-wise optimization is carried
out for all levels starting at level l = 0 (root) and ending
at the maximum depth of the deepest tree in the ensemble.
When l = 0, setting cn = 0 effectively removes a whole
tree from the forest. As l increases, the approach considers
pruning ever smaller subtrees.

The level-wise procedure is repeated R times. As compres-
sion progresses, subtrees that were not prunable in a first
round may become so in a subsequent round.

Algorithm 1 Level-by-level compression of tree ensembles

Input: Ensemble T , training set D = {(xi, yi)}Ni=1 valida-
tion set Dv = {(xi, yi)}Nv

i=1

Settings: Number of rounds R, maximum loss ∆ in valida-
tion set performance

1: T ′ ← T
2: for r ← 1..R do
3: for l← 1..d, with d the maximum depth of T ′ do
4: Construct X = SB (see Section 3.1)
5: Find largest α for which performance loss on Dv

is no larger than ∆.
6: Fit θ using Equation 2 using the selected α.
7: Update T ′: for all n on this level, update all vk

under n to cnvk + bn, making n a leaf if cn = 0
8: end for
9: end for

10: return pruned ensemble T ′.

4

Compressing Tree Ensembles through Level-wise Optimization and Pruning

4. Related Work
Many methods have been proposed for reducing the size of
ensembles (Tsoumakas et al., 2009). They usually perform
a search through the space of subsets of the ensembles, trad-
ing off accuracy versus the number of component models.
These methods are generic in the sense that they can be used
on many different types of ensembles, not just ensembles of
decision trees. A few methods have been proposed specif-
ically for forests, making use of the fact that component
models are known to be trees. Some of these methods have
been proposed in a knowledge distillation context: these
methods prioritize simplicity over accuracy. For instance,
Liu & Mazumder (2023b) and Hara & Hayashi (2018) re-
spectively aim for ensembles that contain at most 15 or 10
leaves in their experiments, accepting any accuracy loss
(they minimize but do not bound it). As these methods serve
a different purpose than LOP, they are less relevant here.
Among other, more closely related methods, the following
three are of particular interest.

ForestPrune (FP): Liu & Mazumder (2023a) propose an
optimization approach in which decision variables indicate
at what level each tree in the forest should be cut. They
minimize training set loss plus a regularization term that
rewards solutions with smaller average tree depth. While dif-
ferent trees can be cut at different levels, within each tree the
cut depth is constant. This is an important difference with
LOP, which can prune individual subtrees at different depths
within the same tree. By cutting at one level inside each
tree, ForestPrune loses a crucial aspect of trees, namely, that
some subtrees can be deeper than others: a tree can partition
the input space in a finer-grained manner in some areas, and
in a coarser manner elsewhere. A second difference is that
LOP refines leaf values whereas ForestPrune does not. Due
to these two differences, LOP explores ensembles that are
not in ForestPrune’s search space.

Global Refinement (GR): Ren et al. (2015) point out that
the leaf values in trees are not necessarily optimal in the con-
text of the forest. After the full ensemble has been learned,
they collectively fine-tune all the leaf values simultaneously
using a single optimization problem. Their method reformu-
lates the forest in the form T (x) = s(x) · v and solves the
following minimization problem:

min
v

1

N

N∑
i=1

ℓ(s(xi) · v, yi) + αr(v), (3)

Collecting the yi in one vector y and the s(xi) in a matrix
S whose i’th row equals s(xi), and defining the loss over a
dataset as the sum of its instances’ losses, this can also be
written as

min
v

ℓ(Sv, y) + αr(v).

The objective is optimized using convex optimization tech-
niques, with the sparsity of S speeding up the process. Note
that GR optimizes all vk entirely independently. As ex-
plained before, this carries a risk of overfitting: when there
are more leaves than training instances, there are infinitely
many ways to perfectly fit the training data. L2 regular-
ization (r(v) = ||v||22) is used to counter overfitting. In
addition to this, GR combines neighboring leaves if the dif-
ference in their values is sufficiently small. This operation
leads to a reduction of the size of the trees.

Leaf Refinement with L1 Ensemble Pruning (LRL1):
Buschjäger & Morik (2023) proposed combining leaf re-
finement with “ensemble pruning”, which removes entire
trees with minimal performance loss. Contrary to GR, size
reduction is an explicit goal of their approach.

Recall our earlier formulation of forests as T (x) =∑
i,j wi1i,j(x)ŷi,j , which ultimately was simplified to

T (x) = s(x) · v. Rather than combining the product of
wi and ŷi,j into one parameter vk, LRL1 keeps them sepa-
rate and tries to push the wi to 0. Thus, it keeps separate
vectors w and ŷ and optimizes the following objective:

min
ŷ,w

1

N

N∑
i=1

ℓ(s(xi)Dwŷ, yi) + α||w||1 (4)

where α is the regularization parameter, and Dw is a diago-
nal matrix storing tree coefficients w. This non-smooth ob-
jective is optimized using a proximal approach (Buschjäger
& Morik, 2023).

An essential difference between LOP and both GR and LRL1
is that LOP does not optimize all the vk values indepen-
dently, at least not for the original forest. It consecutively
solves optimization problems with much fewer parameters
(the bn and cn parameters) in order to prune as much as
possible. It is still the case that at the deepest level, when k
is maximal, all remaining leaf values (the bn) are optimized
independently, but the number of leaves is typically dramat-
ically reduced by the preceding pruning (more details in
Appendix B). Thus, LOP solves more, but simpler, optimiza-
tion problems, and is inherently less prone to overfitting.

At level 0, LOP behaves similarly to LRL1 in that it removes
entire trees and it uses no bias terms at this level. It still
differs in that LRL1 optimizes all leaf values, while LOP
only rescales them by one scaling factor per tree. For l > 0,
LOP’s use of bias terms is essential and there is no counter-
part in LRL1.

In summary, LOP can prune nodes at any level of the tree,
whereas LRL1 is limited to pruning only at level 0, GR (re-
peatedly) merges leaves at the lowest level, and FP removes
all nodes below a selected level in each tree.

5

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table 1. Compression results on XGBoost models. For the original models, we report their number of leaves (#Leaf) and balanced
accuracy on the test set (Bacc). For the compression techniques, we report the compression ratio and drop in balanced accuracy versus the
original model. A 8× compression ratio means that the compressed model has 8 times fewer leaf nodes than the original ensemble. A
positive (negative) balanced accuracy difference means the compressed model is less (more) accurate than the original model. The best
compression ratios are given in bold.

#Leaf Compress. ratio (×) Bacc Diff. Bacc (% Point)

Dataset XGB GR IC LRL1 FP LOP XGB GR IC LRL1 FP LOP

Mnist 773.0 6.4 2.8 1.8 3.2 8.0 99.0 0.5 0.4 0.0 0.4 0.6
Electricity 2548.4 2.8 1.5 1.2 1.5 5.2 86.2 0.1 0.4 -0.1 0.2 0.5
Jannis 3319.9 11.1 6.6 1.4 14.7 18.1 77.0 0.3 0.4 0.3 0.3 0.6
Vehicle 396.2 2.2 2.6 1.1 2.0 8.0 94.4 0.1 1.0 -0.4 1.1 1.4
DryBean 1117.8 4.3 6.7 1.6 19.6 28.8 91.2 0.0 0.3 0.0 0.2 0.3
California 2232.1 5.8 2.2 1.3 2.5 9.1 88.8 0.2 0.4 -0.1 0.4 0.6
Compas 1525.3 26.7 15.4 2.2 240.8 356.8 65.3 -0.4 -0.2 0.0 -0.5 -0.1
Volkert 1101.0 8.0 3.9 2.0 4.8 8.3 98.7 0.5 0.4 0.2 0.4 0.6
Adult 2214.2 3.6 3.9 1.6 37.5 31.8 75.9 -0.3 0.2 0.1 0.1 -0.2
Ijcnn1 2421.1 4.2 1.2 1.2 2.4 6.5 93.3 -0.4 0.4 -0.6 0.2 0.4
MiniBooNE 3239.6 6.0 2.0 1.3 2.5 6.2 92.8 0.5 0.5 0.2 0.4 0.6
Phoneme 1346.1 2.1 1.7 1.3 4.1 7.5 84.7 0.2 0.6 -0.2 0.7 1.3
Spambase 792.3 3.0 2.1 1.5 3.9 8.5 94.0 0.4 0.6 -0.1 0.6 0.9
Credit 2230.4 24.8 18.6 2.0 133.7 196.6 76.4 0.2 0.0 0.7 0.4 0.5

average 1804.1 7.9 5.1 1.5 33.8 50.0 87.0 0.1 0.4 0.0 0.4 0.6

5. Experiments
We empirically evaluate LOP and aim to answer the follow-
ing questions: (Q1) Given a learned binary classification
forest, what is the effect of compression on model size and
performance? (Q2) How does LOP’s compression affect
energy consumption, memory footprint, and verifiability of
models? (Q3) How sensitive is LOP to its hyperparameters
∆ and R?

Appendix C addresses two additional questions: (Q4) What
is the effect of compression on regression forests? (Q5) How
does the runtime of compression scale with forest size?

5.1. Experimental setup

We compress XGBoost and RandomForest models because
they are widely used, but LOP is equally applicable to other
types of tree ensembles.

We compare LOP to the original ensembles (XGB or RF)
and to four baseline methods. Individual Contribution (Lu
et al., 2010) (IC) ranks and selects a subset of trees in a
forest based on accuracy and diversity. It performed well
in previous evaluations (Buschjäger & Morik, 2023). It
represents the coarsest extreme by operating only at the
tree level, serving as a level 0 ablation of our method. Be-
yond this method, we also consider the previously described
closely related methods of Global Refinement (Ren et al.,
2015) (GR), leaf refinement combined with L1 ensemble

pruning (Buschjäger & Morik, 2023) (LRL1), and Forest-
Prune (Liu & Mazumder, 2023a) (FP).

We consider 14 binary classification benchmark datasets.3

available on OpenML (Vanschoren et al., 2013): Compas,
Vehicle, Spambase, Phoneme, Adult, Ijcnn1, Mnist (2 vs.
4), DryBean (6 vs. rest), Volkert (2 vs. 7), Credit, California,
MiniBooNE, Electricity, and Jannis.

We use 5-fold cross-validation with 3 folds for training (both
training the ensemble and compressing it), 1 for validation,
and 1 for testing. In each fold, we train models on all
combinations of the following hyperparameters:

XGBoost RandomForest
M ∈ [10, 25, 50, 100] ∈ [50, 100, 250]
D ∈ [4, 6, 8] ∈ [10, 15]
η ∈ [0.1, 0.25, 0.5, 1.0] not applicable

with M the number of trees, D the maximum depth of the
trees and η the learning rate in XGBoost. This yields 48
XGBoost models and 6 RandomForest models, to which we
then apply the different compression algorithms.

The validation set is used to tune the regularization hyper-
parameter for LOP, GR, LRL1 and FP. More specifically, its
optimal value is the one that leads to the smallest model and
is within a maximum drop ∆ = 0.5% on the validation set’s
balanced accuracy. The same is done to find the optimal

3Dataset characteristics can be found in Table A1

6

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table 2. Compression results on RandomForest models. For the original models, we report their number of leaves (#Leaf) and balanced
accuracy on the test set (Bacc). For the compression techniques, we report the compression ratio and drop in balanced accuracy versus the
original model; see the caption of Table 1 for precise definitions. The best compression ratios are given in bold.

#Leaf Compress. ratio (×) Bacc Diff. Bacc (% Point)

Dataset RF GR IC LRL1 FP LOP RF GR IC LRL1 FP LOP

Mnist 20039.0 61.9 22.7 2.4 22.5 74.1 99.3 0.5 0.4 0.3 0.6 0.8
Electricity 135271.6 114.4 21.9 7.8 19.5 125.0 85.3 0.2 0.3 -0.6 0.6 0.5
Jannis 183003.7 158.8 6.5 2.1 3.7 249.0 77.5 0.5 0.5 0.1 0.3 0.5
Vehicle 5111.0 7.7 16.9 1.0 12.8 46.4 94.9 -0.1 1.2 0.5 0.7 1.3
DryBean 26042.8 16.7 16.9 1.2 202.0 66.6 91.5 0.4 0.4 0.1 0.6 0.9
California 89481.1 174.4 22.5 1.7 13.0 196.2 88.4 0.4 0.6 -0.1 0.5 0.5
Compas 68893.7 473.7 15.3 1.0 8998.6 12086.8 63.3 -1.4 0.5 0.3 -0.7 -1.3
Volkert 25773.5 90.3 31.5 9.0 38.1 110.9 98.4 0.5 0.4 0.3 0.5 0.6
Adult 99148.2 194.6 90.9 11.0 322.6 1046.8 75.2 -0.6 -0.3 -0.4 0.1 0.0
Ijcnn1 131413.7 199.6 80.0 3.0 59.0 227.9 89.8 -0.1 -0.2 -4.2 -0.6 0.4
MiniBooNE 149448.7 132.5 14.1 5.0 8.5 121.4 92.6 0.5 0.6 -0.1 0.5 0.7
Phoneme 31578.2 8.0 12.5 2.0 15.9 23.7 87.0 0.3 0.8 0.0 1.1 2.2
Spambase 18634.6 44.5 23.5 1.3 32.5 106.7 93.4 0.1 0.9 0.0 1.1 0.8
Credit 91428.9 216.9 9.1 1.0 26.9 1859.5 77.5 0.3 0.7 0.0 0.5 0.7

average 76804.9 135.3 27.5 3.5 698.3 1167.2 86.7 0.1 0.5 -0.3 0.4 0.6

number of trees in IC. Additionally, we set R = 2 for LOP.

For GR and LOP, we use scikit-learn (Pedregosa et al., 2011).
GR solves its optimization problem using a linear SVM
with L2 regularization. LOP4 uses logistic regression and
optimizes the negative log-likelihood with L1 regularization.
For LRL15 and FP6, we adapt their public implementations
to work with our internal representation of tree ensembles.

All experiments are run on an Intel(R) Core(TM) i7-12700
with 64GB of memory. Each individual compression task
is run on a single thread (i.e., timing results measure single-
thread performance). We apply a time limit of 6 hours for
compressing a single model.7

5.2. Results

Q1: Comparing compression, predictive performance,
and runtime. The left hand side of Tables 1 and 2 show
the compression factors obtained by each method averag-
ing over all learned XGBoost and RandomForest models
per dataset. For both XGBoost and RandomForest, LOP
systematically achieves the best compression factor. Its av-
erage compression factors range from 5 to 356 on XGBoost
models and from 23 to 12 086 on RandomForest models.
LOP typically has a 2-3x better compression factor than its

4
https://github.com/ML-KULeuven/lop_compress

5
https://github.com/sbuschjaeger/leaf-refinement-experiments

6
https://github.com/mazumder-lab/ForestPrune

7The time limit was only exceeded for a small number of Ran-
domForest models; see Table A8 in the Appendix for an overview.

nearest competitor and can be up to 3 orders of magnitude
better than the worst competitor. LOP benefits from having
much more fine-grained control of where it prunes than its
competitors. Moreover, it can perform multiple rounds of
pruning unlike FP, IC, and LRL11. However, the sensitivity
analysis discussed in Q3 indicates that even one round of
LOP yields substantially more compression than its competi-
tors. FP and GR typically achieve the next best compression,
though which of the two is best varies: each outperforms
the other on half the datasets. On XGBoost when FP out-
performs GR, it tends to have much bigger compression
factors whereas this trend does not hold on RandomForest.
IC typically is the fourth best approach with LRL1 uniformly
achieving the least amount of compression. Generally, all
methods achieve better compression on RandomForest mod-
els, likely because these models are (much) bigger than the
XGBoost ones.

The right-hand side of Tables 1 and 2 shows the difference
in balanced accuracy between the compressed ensemble
and the original ensemble for respectively the XGBoost and
RandomForest models. All compression methods result in
models that, on average, only have a small loss. The differ-
ence in performance is typically less than 0.5 percentage
points. For LOP, we see that the accuracy loss on the test set
is quite close to 0.5% (i.e., the chosen value for ∆), which
suggests that no overfitting occurs on the validation set.
Even with its far superior compression rates, LOP maintains
balanced accuracy as well as the other methods.

The above tables show compression rates and balanced ac-

7

https://github.com/ML-KULeuven/lop_compress
https://github.com/sbuschjaeger/leaf-refinement-experiments
https://github.com/mazumder-lab/ForestPrune

Compressing Tree Ensembles through Level-wise Optimization and Pruning

102 103 104

Number of Leaves

0.82

0.84

0.86

0.88

0.90

Ba
la

nc
ed

 A
cc

ur
ac

y

California

102 103

Number of Leaves

0.90

0.91

0.92

0.93

0.94

0.95

Spambase

LOP XGB

(a)

102 103 104

Number of Leaves

0.82

0.84

0.86

0.88

0.90

Ba
la

nc
ed

 A
cc

ur
ac

y

California

102 103

Number of Leaves

0.90

0.91

0.92

0.93

0.94

0.95

Spambase

LOP XGB GR IC LRL1 FP

(b)

Figure 2. Comparison of Pareto fronts for (a) LOP vs. XGBoost (b) and all methods on two representative datasets. The x-axis shows the
number of leaves in log scale and the y-axis shows the balanced accuracy. In (a), the dashed line connect a compressed LOP model to the
performance of its original XGBoost model. These are colored red if the original model is not on the Pareto front for XGBoost.

curacies separately, but a user may want to select the “best”
model according to some size versus performance trade-off
mechanism. This can be visualized using a Pareto curve
where a model appears on the curve only if achieving a bet-
ter balanced accuracy requires a larger ensemble or making
a smaller ensemble requires sacrificing balanced accuracy.

A question that comes to mind is: can we preselect models
to compress based on the Pareto front? Figure 2a shows that
the answer is no: Pareto-optimal compressed models can be
obtained from Pareto-suboptimal XGBoost models.8

Figure 2b shows the Pareto fronts obtained for the different
compression methods applied to the XGBoost models on
two datasets.9 Again LOP clearly outperforms the other
methods, in terms of how much size reduction can be ob-
tained for a given level of balanced accuracy.

Finally, Figure A8 and A9 in the Appendix show the run-
times of each compression method on the XGBoost and Ran-
domForest models, respectively. IC is the fastest method,
typically taking on the order of seconds, but it yields very lit-
tle compression. LOP and FP exhibit similar runtimes. GR is
slightly slower than LOP and FP on the XGBoost models, but
much slower on the RandomForest models that are generally
larger in size. LRL1 is clearly the slowest approach.

Q2: Robustness checking and resource usage. Next,
we evaluate the effect of compression on two use cases
where it is beneficial to have smaller models: robustness
checking and resource-constrained devices. Empirical ro-
bustness measures the average distance to the nearest ad-
versarial example for a given set of correctly classified nor-
mal examples, which is a NP-complete problem for de-
cision forests (Kantchelian et al., 2016). It is often used
as a measure of a model’s susceptibility to evasion at-

8Figure A2 in the appendix shows these for all datasets. The
same is true for other baselines, see Figures A3, A4, A5 and A6

9Figure A7 in the appendix shows these for all datasets.

tacks (Moshkovitz et al., 2021; Devos et al., 2021a). For
each fold, we use Kantchelian et al.’s (2016) exact MILP
approach to find the nearest adversarial example for 500
randomly selected test examples using a global timeout of
30 minutes.

Table 3 shows that the median time for finding the nearest
adversarial example on an XGBoost model compressed by
LOP is 2.5 to 10 times less than for models compressed
by its competitors. It is much more efficient to perform
robustness checking on the compressed models than the
original XGBoost models. Interestingly, Table A7 in the
appendix shows that LOP returns more robust ensembles.

For resource constrained devices, two things are relevant.
First, prediction time is correlated with energy (i.e., battery)
use (Verachtert et al., 2016). Second, the memory footprint
of the model is also important. However, both factors de-
pend (strongly) on the precise implementation of a decision
forest and therefore, we look at two proxies instead. Be-
cause test time is typically dominated by the number of
splits to evaluate, we report the median number of nodes
that an instance passes through when using the ensemble to
make a prediction. For memory footprint, we use a formula
from prior work that assumes that storing each node requires
17 + 4 · C bytes, with C the number of classes (Buschjäger
& Morik, 2023). Table 3 shows that LOP leads to better
ensembles on both metrics. In particular, LOP produces
models that use substantially less memory than the other
approaches.

Q3: Sensitivity analysis of LOP. We now explore the effect
of two of LOP’s hyperparameters: (1) ∆ which controls the
maximum allowable loss in predictive performance com-
pared to the original ensemble, and (2) R which specifies
the number of rounds of level-by-level compression that is
performed. We now investigate how varying these hyperpa-
rameters affects performance on four representative datasets:
Adult, California, Phoneme, and Spambase.

8

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table 3. Distribution (25%, Median and 75%) of robustness checking runtime (in seconds), number of splits to evaluate at test time and
model size (in KB) before and after applying the different compression methods to an XGBoost ensemble. Results are obtained by (1)
finding the median per XGBoost parameter combination (i.e., number of trees, max depth and learning rate) over the datasets and folds
and (2) computing the quantiles over these 48 median values (i.e., the number of parameter combinations).

Verif. time (s) #Splits to evaluate Memory footprint (KB)
25% Median 75% 25% Median 75% 25% Median 75%

XGB 116.49 369.24 1092.64 94.5 197.00 386.13 45.6 92.3 211.0
GR 22.91 44.31 78.39 40.88 90.75 151.00 11.5 22.4 33.0
IC 31.90 70.75 134.06 37.00 66.25 120.00 17.1 28.6 48.4
LRL1 65.30 148.28 447.86 71.88 147.25 226.50 29.6 58.8 130.0
FP 17.27 32.05 79.67 36.75 53.75 101.50 9.7 15.3 29.2
LOP 9.60 13.34 21.17 21.13 28.75 35.75 5.6 8.2 12.0

Table 4. Effect of varying ∆ ∈ {0.25, 0.5, 1, 2} and R ∈ {1, 2, 3} while keeping, respectively, R = 2 and ∆ = 0.5 on LOP’s
performances on four representative datasets. The left hand side shows compression ratios while the right hand side shows the difference
in balanced accuracy (i.e., percentage point difference) between LOP’s compressed model and the original ensemble. For each dataset,
results are averaged over all 48 learned XGBoost ensembles and corresponding compressed models obtained by LOP.

Compress. ratio (×) Diff. Bacc (% Point)
R=2 ∆=0.5 R=2 ∆=0.5

Dataset ∆=0.25 =0.5 =1 =2 R=1 =2 =3 ∆=0.25 =0.5 =1 =2 R=1 =2 =3

Adult 26.0 31.8 45.3 67.5 23.0 31.8 35.5 -0.4 -0.2 0.5 1.4 0.1 -0.2 -0.1
California 7.3 9.2 11.9 17.4 7.0 9.2 10.1 0.3 0.6 1.1 2.0 0.5 0.6 0.6
Phoneme 6.7 7.5 10.4 6.0 6.0 7.5 8.6 1.2 1.3 1.8 2.6 1.0 1.3 1.4
Spambase 7.0 8.5 12.1 17.2 6.8 8.5 9.2 0.7 0.9 1.4 2.4 0.8 0.9 0.9

Table 4 shows how varying ∆ ∈ {0.25, 0.5, 1, 2} while
keeping R = 2 affects both the compression ratio and the
difference in balanced accuracy obtained by LOP compared
to the base XGBoost ensembles. There is a clear effect:
increasing ∆ yields more compression but harms predic-
tive performance. Setting ∆ = 0.25 yields slightly less
compression than ∆ = 0.5 but does give better predictive
performance. Moving from ∆ = 0.5 to ∆ = 2 achieves
twice as much compression but tends to lead to slightly
bigger drops in predictive performance.

Alternatively, Table 4 shows how varying R ∈ {1, 2, 3}
while keeping ∆ = 0.5 affects the compression ratio and
predictive performance obtained by LOP. Going from R = 1
to R = 2, yields larger wins in compression while slightly
degrading performance on three datasets but marginally im-
proving it on the Adult dataset. Performing a third round es-
sentially does not change predictive performance while still
allowing for (slightly) more compression. This increases
runtime (see Figure A11 in the Appendix).

6. Conclusion
We propose LOP, a novel level-by-level approach to com-
pressing previously learned tree ensembles. Empirically,
LOP achieves compression ratios that are an order of magni-

tude larger than those of prior methodologies while obtain-
ing similar predictive performance to the baselines. More-
over, we show that LOP has several other benefits. In terms
of robustness checking, LOP produces more robust models
than its competitors and it is faster to check the robustness of
LOP models. For resource constrained devices, LOP offers
more efficiency in terms of making predictions and produces
models that have a much smaller memory footprint.

9

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Acknowledgements
This research is supported by the Flemish government under
the “Onderzoeksprogramma Artificiële Intelligentie (AI)
Vlaanderen” programme (HB, JD & WM), the European
Union’s Horizon Europe Research and Innovation program
under the grant agreement TUPLES No. 101070149 (LD
& JD), the KU Leuven Research Fund (C2E/23/007, HB &
WM) and iBOF/21/075 (TM & JD).

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning, and the standard societal conse-
quences of such work apply. More particularly, the work
positively affects sustainability and reliability (fairness, ro-
bustness) of machine-learned models.

References
Blockeel, H., Devos, L., Frénay, B., Nanfack, G., and Ni-

jssen, S. Decision trees: from efficient prediction to
responsible AI. Frontiers in Artificial Intelligence, 6,
2023.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. Model
compression. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 535–541, 2006.

Buschjäger, S. and Morik, K. Joint leaf-refinement and
ensemble pruning through l1 regularization. Data Mining
and Knowledge Discovery, 37(3):1230–1261, 2023.

Chen, T. and Guestrin, C. XGBoost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 785–794, 2016.

Daghero, F., Burrello, A., Xie, C., Benini, L., Calimera,
A., Macii, E., Poncino, M., and Pagliari, D. J. Adaptive
random forests for energy-efficient inference on micro-
controllers. In Proceedings of the 29th IFIP/IEEE Inter-
national Conference on Very Large Scale Integration, pp.
1–6, 2021.

Devos, L., Meert, W., and Davis, J. Versatile verification of
tree ensembles. In Proceedings of the 38th International
Conference on Machine Learning, volume 139, pp. 2654–
2664, 2021a.

Devos, L., Meert, W., and Davis, J. Verifying tree ensembles
by reasoning about potential instances. In Proceedings of
the 2021 SIAM International Conference on Data Mining,
pp. 450–458, 2021b. doi: 10.1137/1.9781611976700.51.

Devos, L., Perini, L., Meert, W., and Davis, J. Detecting
evasion attacks in deployed tree ensembles. In Proceeding
of the Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 120–136,
2023.

Donos, C., Dümpelmann, M., and Schulze-Bonhage, A.
Early seizure detection algorithm based on intracranial
eeg and random forest classification. International Jour-
nal of Neural Systems, 25(05):1550023, 2015.

Fan, L., Wang, Z., and Wang, H. Human activity recognition
model based on decision tree. In Proceedings of the 1st
International Conference on Advanced Cloud and Big
Data, pp. 64–68, 2013.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of Statistics, pp. 1189–1232,
2001.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do
tree-based models still outperform deep learning on typ-
ical tabular data? In Advances in Neural Information
Processing Systems, volume 35, pp. 507–520, 2022.

Hara, S. and Hayashi, K. Making tree ensembles inter-
pretable: A Bayesian model selection approach. In Pro-
ceedings of the 21st International Conference on Artificial
Intelligence and Statistics, volume 84, pp. 77–85, 2018.

Kantchelian, A., Tygar, J. D., and Joseph, A. Evasion and
hardening of tree ensemble classifiers. In Proceedings of
the 33rd International Conference on Machine Learning,
pp. 2387–2396, 2016.

Lauwereins, S., Badami, K., Meert, W., and Verhelst, M.
Optimal resource usage in ultra-low-power sensor inter-
faces through context- and resource-cost-aware machine
learning. Neurocomputing, 169:236–245, 2015.

Liu, B. and Mazumder, R. FORESTPRUNE: Compact depth-
pruned tree ensembles. In Proceedings of the 26th Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 9417–9428, 2023a.

Liu, B. and Mazumder, R. FIRE: An optimization approach
for fast interpretable rule extraction. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1396–1405, 2023b.

Lu, Z., Wu, X., Zhu, X., and Bongard, J. Ensemble prun-
ing via individual contribution ordering. In Proceedings
of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 871–880,
2010.

Margineantu, D. D. and Dietterich, T. G. Pruning adap-
tive boosting. In Proceedings of the 14th International
Conference on Machine Learning, pp. 211–218, 1997.

10

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Moshkovitz, M., Yang, Y.-Y., and Chaudhuri, K. Con-
necting interpretability and robustness in decision trees
through separation. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139, pp.
7839–7849, 2021.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Ren, S., Cao, X., Wei, Y., and Sun, J. Global refinement of
random forest. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 723–730, 2015.

Tsoumakas, G., Partalas, I., and Vlahavas, I. An ensemble
pruning primer. In Applications of Supervised and Unsu-
pervised Ensemble Methods, pp. 1–13. Springer, 2009.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo,
L. Openml: Networked science in machine learning.
SIGKDD Explorations, 15(2):49–60, 2013.

Verachtert, A., Blockeel, H., and Davis, J. Dynamic early
stopping for naive Bayes. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence,
2016.

Zhang, Y., Burer, S., Nick Street, W., Bennett, K. P., and
Parrado-Hernández, E. Ensemble pruning via semi-
definite programming. Journal of Machine Learning
Research, 7(7), 2006.

11

Compressing Tree Ensembles through Level-wise Optimization and Pruning

A. Usefulness of leaf refinement
We claim in the paper that individual trees may need to be
suboptimal in order for an ensemble to be optimal. We now
make that claim more precise.

Trees induce a partition of the input space through their
leaves. Given a tree T , let s(x) ∈ {1, 2, . . . , n} be the index
of the leaf x is sorted into, and let Xi = {x ∈ X |s(x) =
i}. The tree defines a piecewise constant function that is
constant within each Xi. From a least squares point if view,
the tree is optimal if its prediction in leaf i is the mean of
all target values of instances in Xi.

An ensemble similarly partitions the input space into sub-
sets Xk, k ∈ {1, 2, . . . L} (with k indexing all leaves in the
ensemble), such that the ensemble’s predictions are constant
within each subset. The ensemble is optimal if its predic-
tions in each subset equals the mean of all target values in
that subset.

Our claim, now, is that ensembles exist such that if all
individual trees Ti in an ensemble are optimal in the above
sense, the ensemble is not optimal, and vice versa. To prove
the claim, it suffices to show an example.

Figure A1 show two decision stumps (trees of depth 1) with
one-dimensional inputs. Each tree represents a piecewise
constant function; the optimal value in each leaf is the mean
of the target function in the interval covered by the leaf.
The forest is then a piecewise constant function with three
intervals, but the constants are biased: they differ from the
mean of the target function over the interval. The bias can
be removed by changing the leaf values, which then leads
to trees that are not individually optimal.

This examples shows how leaf values that are optimal in an
individual tree are suboptimal in the forest, and vice versa.
This is an argument for optimizing v after the whole forest
has been learned.

B. Size of optimization problems
Consider a forest with M trees, and consider the optimiza-
tion problems of the form discussed in the paper, which
contain a cn and bn parameter for each active node n (ex-
cept root nodes, which have only cn, and leaf nodes, which
have only bn).

The number of parameters to optimize at level 0 is M (and
not 2M) because the b’s are excluded on this level. If the
pruning results in M ′ remaining trees, then on level 1 the
number of parameters is 2 · 2 ·M ′ (2 parameters for each of
the 2M ′ active nodes on level 1), with M ′ ≤M . On each
level, the algorithm tries to prune, and each pruned subtree
becomes a leaf n that contributes only 1 parameter bn to
all lower levels, rather than 2, 4, 8, . . . parameters as we go

Figure A1. Bias in forests. Consider approximating y = x with
decision stumps with random splits on x. The first stump (red)
splits on x < 0.6, the second (blue) on x < 1.2. Both have in their
leaves an optimal prediction (the population mean of all instances
in that leaf). A forest that averages their predictions represents a
partitioning of the input space into 3 intervals, with predictions
showing a clear bias w.r.t. the optimal prediction for each interval
(dashed line). An unbiased forest exists with exactly the same
splits: it suffices to store different values in the leaves, which are
then suboptimal from an individual tree’s point of view.

12

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table A1. Properties of the binary classification datasets: Name,
number of examples, number of features, and class prior α (i.e.,
proportion of positive examples).

Name # Examples # Features α

Mnist 13814 784 0.49
Electricity 38474 8 0.50
Jannis 57580 54 0.50
Vehicle 846 18 0.49
DryBean 13611 16 0.19
California 20634 8 0.50
Compas 4966 11 0.50
Volkert 24325 180 0.53
Adult 48842 32 0.24
Ijcnn1 141691 22 0.10
MiniBooNE 72998 50 0.50
Phoneme 5404 5 0.71
Spambase 4601 57 0.39
Credit 16714 10 0.50

Table A2. Properties of the regression datasets: Name, number of
examples and number of features.

Name # Examples # Features

Abalone 4177 8
Ailerons 13750 33
Cpu 8192 12
Houses 20640 8
House16H 22784 16
WineQuality 6497 11
Elevators 16599 16

deeper. Generally, at level l, if there are a active nodes, of
which a1 are leaves-on-a-higher-level and a2 are internal
nodes, there are a1 +2 ∗ a2 ≤ 2a parameters. At the lowest
level d, this number can be 2 · 2d ·M in the worst case, if
nothing ever gets pruned; but the point is of course that LOP
does prune a lot, starting at the upper levels.

C. Detailed experimental results
In this section, we provide more detailed results about the
three experimental questions in the main text. Finally, we
answer the additional two questions: (Q4) What is the effect
of compression on regression forests? (Q5) How does the
runtime of compression scale with forest size?

Q1: Comparing compression, predictive performance
and runtime. Tables 1 and 2 in the main text show the com-
pression factors obtained by the considered compression
algorithms, averaged over respectively all learned XGBoost
and RandomForest settings per dataset. The main body of
the paper focused on discussing LOP’s performance rela-

tive to its competitors. Here, we detail the differences in
compression between the baselines. While worse than LOP,
FP and GR offer the next best performance. On XGBoost
models, FP achieves better compression than GR half the
time. However, when FP wins, it tends to result in much
bigger compression factors and hence it has a higher average
compression ratio than GR. For RandomForest, GR performs
better on nine datasets. In contrast to the XGBoost results,
sometimes GR can achieve orders of magnitude better com-
pression than FP. While they achieve substantially less com-
pression than LOP, GR and FP yield better compression than
LRL1 and IC on both XGBoost and RandomForest models.
This is because they have more fine-grained pruning mecha-
nisms. FP can prune at any level of a tree, whereas LRL1 and
IC only remove trees. GR typically applies multiple rounds
of refinement/pruning until convergence, whereas LRL1 and
IC only apply one round of refinement.

We now discuss the effect of compression on the number
of trees retained in the ensemble. We compute the tree re-
duction ratio, which is the number of trees in the original
ensemble divided by the number of trees in the compressed
model. Tables A3 and A4 show this ratio for each method on
XGBoost and RandomForest models, respectively. Higher
numbers indicate fewer trees in the compressed model. On
XGBoost models, ensembles compressed by LOP have the
fewest number of trees. Among the baselines, IC is more
effective at pruning full trees than LRL1as it reduces the
number of trees in the original forest by a factor 23.3 com-
pared to a factor 2. Note that GR never removes trees from
the ensembles. In contrast, on RandomForest models, both
IC and FP reduce the number of trees more than LOP. How-
ever, the fact that LOP has better compression ratios than FP,
suggests that FP’s compression ratios are mainly obtained
through pruning full trees.

Table 1 shows the average performance over a wide vari-
ety of XGBoost settings. However, often a user wants to
understand the trade-off between model size and predictive
performance. This can be visualized using Pareto curves,
which show all models that are not dominated by another
model. That is, a model appears on the curve only if achiev-
ing better balanced accuracy requires a larger ensemble or
making a smaller ensemble requires sacrificing balanced
accuracy.

Figures A2- A6 show the Pareto front for each compression
algorithm versus XGBoost on all datasets. Moreover, for
the compressed models on the front, they show the perfor-
mance of its original, uncompressed XGBoost variant using
a dashed line. Interestingly, there exists no direct mapping
between a compression algorithm’s Pareto front and XG-
Boost’s Pareto front. That is, the best compressed models
do not necessarily come from the best XGBoost models.

Figure A7 shows that typically LOP’s Pareto front dominates

13

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table A3. The average tree reduction ratio for each dataset for the
XGBoost models on the binary classification experiments. This
ratio is computed as the number of trees in the original ensemble
divided by the number of trees in the compressed model. Higher
ratios are better. The best ratios are indicated in bold.

GR IC LRL1 FP LOP

Mnist 1.0 5.4 2.5 2.7 8.1
Electricity 1.0 1.6 1.3 1.3 2.2
Jannis 1.0 8.5 1.5 3.7 8.1
Vehicle 1.0 4.4 1.2 2.7 7.5
DryBean 1.0 10.3 1.7 5.0 24.1
California 1.0 2.5 1.4 1.9 3.3
Compas 1.0 25.1 2.8 22.5 35.6
Volkert 1.0 7.1 2.5 2.9 8.2
Adult 1.0 4.4 1.6 4.2 10.3
Ijcnn1 1.0 1.3 1.3 1.6 3.1
MiniBooNE 1.0 2.2 1.3 1.6 2.4
Phoneme 1.0 2.2 1.4 2.4 5.7
Spambase 1.0 3.0 1.6 2.9 5.9
Credit 1.0 23.3 2.0 10.5 26.8

average 1.0 7.2 1.7 4.7 10.8

large parts of the other fronts. This conclusion aligns with
what is found in Table 1.

Figures A8 and A9 show the distribution of compression
time (s) for each method on every dataset for XGBoost mod-
els and RandomForest models, respectively. On XGBoost
models, LOP takes on average 241s to compress a forest.
This is equally as fast as GR, which takes 240s. FP and IC
are faster, taking respectively 84s and 6s. LRL1 is clearly the
slowest, taking 812s on average. On RandomForest models,
which are larger than the XGBoost models, LOP takes 434s.
FP and IC remain faster at respectively 250s and 17s, but
they result in less compression. GR is now much slower,
taking 3404s. LRL1 remains the slowest method, taking
4470s on average.

Q2: Robustness checking and resource usage. In addi-
tion to the time needed to compute the empirical robustness
(shown in Table 3 and discussed in the main paper), it is
also relevant to know how compression affects the robust-
ness of the learned XGBoost ensembles. Table A7 reports
the average test set empirical robustness for all considered
approaches for each dataset. Higher values indicate a more
robust model. Interestingly, applying LOP uniformly leads
to models that are more robust than the original XGBoost
models. More generally, LOP has the best average empirical
robustness scores on nine out of 14 datasets. While IC and
FP also improve the robustness of the XGBoost models, GR
and LRL1 do not always increase robustness. In fact, they
can actually yield less robust models than XGBoost in some
cases.

Table A4. The average tree reduction ratio for each dataset for the
RandomForest models on the binary classification experiments.
This ratio is computed as the number of trees in the original en-
semble divided by the number of trees in the compressed model.
Higher ratios are better. The best ratios are indicated in bold.

GR IC LRL1 FP LOP

Mnist 1.0 23.2 2.4 20.7 15.1
Electricity 1.0 23.1 8.2 18.8 20.4
Jannis 1.0 7.1 2.2 3.7 5.5
Vehicle 1.0 16.5 1.0 11.0 14.2
DryBean 1.0 18.6 1.2 33.3 14.4
California 1.0 22.3 1.8 12.7 16.5
Compas 1.0 15.5 1.0 80.1 46.9
Volkert 1.0 33.5 9.3 29.6 20.6
Adult 1.0 96.6 12.1 47.8 17.4
Ijcnn1 1.0 77.9 3.0 49.3 29.7
MiniBooNE 1.0 14.8 5.1 8.4 9.2
Phoneme 1.0 13.3 2.0 14.3 6.8
Spambase 1.0 24.3 1.3 29.6 21.7
Credit 1.0 9.8 1.0 8.0 11.5

average 1.0 28.3 3.7 26.2 17.8

Q3: Sensitivity analysis. Here we explore how sensitive
LOP is to two of its hyperparameters: ∆, which controls
the maximum allowed loss in predictive performance when
tuning the regularization parameter, and R, which denotes
the number of rounds of level-by-level compression that is
performed. In addition to the compression and predictive
performance results shown Table 4, we now discuss how
these hyperparameters affect LOP’s runtime.

Figure A10 shows a boxplot of LOP’s runtime for each value
of ∆ per dataset. Increasing ∆ leads to decreased runtimes.
Essentially, allowing for a larger loss in accuracy allows
LOP to be more aggressive in its compression.

Figure A11 shows a boxplot of LOP’s runtime for each value
of R per dataset. Increasing R leads to longer runtimes.
However, the last rounds are typically faster than the first
rounds. This makes sense: The initial rounds compress the
model. Hence, the optimization problem becomes smaller,
leading to faster runtimes in later rounds.

Q4: Performance on regression forests. We now consider
compressing regression forests. We omit IC because it is
tailored to classification problems, and it is non-trivial to
adapt it to handle regression tasks. We evaluate the methods
on seven regression datasets, which are detailed in Table A2.
We use 5-fold cross-validation with 3 folds for training, 1 for
validation, and 1 for testing. In each fold, we train models

14

Compressing Tree Ensembles through Level-wise Optimization and Pruning

102 103

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Adult

102 103
0.97

0.98

0.99

Mnist

102 103 104

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Electricity

102 103 104

0.75

0.76

0.77

0.78

0.79

Jannis

102
0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Ba
la

nc
ed

 A
cc

ur
ac

y

Vehicle

101 102 103
0.89

0.90

0.91

0.92

DryBean

102 103 104

0.82

0.84

0.86

0.88

0.90

California

101 102

0.64

0.65

0.66

0.67

Compas

102 103

0.98

0.99

Ba
la

nc
ed

 A
cc

ur
ac

y

Volkert

101 102 103

0.80

0.85

0.90

0.95

Ijcnn1

102 103 104

Number of Leafs

0.89

0.90

0.91

0.92

0.93

0.94

MiniBooNE

101 102 103

Number of Leafs

0.75

0.80

0.85

Phoneme

102 103

Number of Leafs

0.90

0.91

0.92

0.93

0.94

0.95

Ba
la

nc
ed

 A
cc

ur
ac

y

Spambase

101 102 103

Number of Leafs

0.73

0.74

0.75

0.76

0.77

0.78

Credit

XGB LOP

Figure A2. Comparison of Pareto fronts of LOP vs. XGBoost on all datasets. The x-axis shows the number of leaves in log scale and the
y-axis shows the balanced accuracy. The dashed lines connect a compressed LOP model to the performance of an original XGBoost model.
These are colored red if the original model is not on the Pareto front for XGBoost.

15

Compressing Tree Ensembles through Level-wise Optimization and Pruning

102 103

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Adult

102 103

0.98

0.99

Mnist

102 103 104
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Electricity

102 103 104

0.74

0.75

0.76

0.77

0.78

0.79

Jannis

1026 × 101 2 × 102

0.92

0.93

0.94

0.95

0.96

Ba
la

nc
ed

 A
cc

ur
ac

y

Vehicle

102 103

0.90

0.91

0.92

DryBean

102 103 104

0.86

0.87

0.88

0.89

0.90

California

102

0.65

0.66

0.67

Compas

102 103

0.98

Ba
la

nc
ed

 A
cc

ur
ac

y

Volkert

102 103

0.85

0.90

0.95

Ijcnn1

102 103 104

Number of Leafs

0.89

0.90

0.91

0.92

0.93

0.94

MiniBooNE

102 103

Number of Leafs

0.75

0.80

0.85

Phoneme

102 103

Number of Leafs

0.91

0.92

0.93

0.94

0.95

Ba
la

nc
ed

 A
cc

ur
ac

y

Spambase

102 103

Number of Leafs

0.75

0.76

0.77

Credit

XGB GR

Figure A3. Comparison of Pareto fronts of GR vs. XGBoost on all datasets. The x-axis shows the number of leaves in log scale and the
y-axis shows the balanced accuracy. The dashed lines connect a compressed GR model to the performance of an original XGBoost model.
These are colored red if the original model is not on the Pareto front for XGBoost.

16

Compressing Tree Ensembles through Level-wise Optimization and Pruning

102 103

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Adult

102 103

0.98

0.99

Mnist

102 103 104
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Electricity

102 103 104

0.75

0.76

0.77

0.78

0.79

Jannis

1026 × 101 2 × 102 3 × 102 4 × 102

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Ba
la

nc
ed

 A
cc

ur
ac

y

Vehicle

102 103

DryBean

102 103 104
0.82

0.84

0.86

0.88

0.90

California

102

0.67

Compas

102 103

0.98

0.99

Ba
la

nc
ed

 A
cc

ur
ac

y

Volkert

103

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Ijcnn1

102 103 104

Number of Leafs

0.89

0.90

0.91

0.92

0.93

0.94

MiniBooNE

102 103

Number of Leafs

0.82

0.83

0.84

0.85

0.86

0.87

Phoneme

102 103

Number of Leafs

0.93

0.94

0.95

Ba
la

nc
ed

 A
cc

ur
ac

y

Spambase

102 103

Number of Leafs

0.75

0.76

0.77

Credit

XGB IC

Figure A4. Comparison of Pareto fronts of IC vs. XGBoost on all datasets. The x-axis shows the number of leaves in log scale and the
y-axis shows the balanced accuracy. The dashed lines connect a compressed IC model to the performance of an original XGBoost model.
These are colored red if the original model is not on the Pareto front for XGBoost.

17

Compressing Tree Ensembles through Level-wise Optimization and Pruning

102 103

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Adult

102 103

0.98

0.99

Mnist

102 103 104
0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Electricity

102 103 104

0.75

0.76

0.77

0.78

0.79

Jannis

102 1.25 × 1021.5 × 1021.75 × 1022 × 1022.25 × 1022.5 × 1022.75 × 102

0.95

0.96

Ba
la

nc
ed

 A
cc

ur
ac

y

Vehicle

102 103
0.90

0.91

0.92

DryBean

103

0.84

0.86

0.88

0.90

California

102

0.67

Compas

102 103

0.98Ba
la

nc
ed

 A
cc

ur
ac

y

Volkert

103

0.85

0.90

0.95

Ijcnn1

102 103 104

Number of Leafs

0.89

0.90

0.91

0.92

0.93

0.94

MiniBooNE

102 103

Number of Leafs

0.85

Phoneme

102 103

Number of Leafs

0.94

0.95

Ba
la

nc
ed

 A
cc

ur
ac

y

Spambase

102 103

Number of Leafs

0.77

Credit

XGB LRL1

Figure A5. Comparison of Pareto fronts of LRL1 vs. XGBoost on all datasets. The x-axis shows the number of leaves in log scale and the
y-axis shows the balanced accuracy. The dashed lines connect a compressed LRL1 model to the performance of an original XGBoost
model. These are colored red if the original model is not on the Pareto front for XGBoost.

18

Compressing Tree Ensembles through Level-wise Optimization and Pruning

102 103

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Adult

102 103

0.99

Mnist

102 103 104
0.80

0.82

0.84

0.86

0.88

0.90

0.92

Electricity

102 103 104

0.74

0.75

0.76

0.77

0.78

0.79

Jannis

102

0.94

0.95

Ba
la

nc
ed

 A
cc

ur
ac

y

Vehicle

102 103

DryBean

102 103 104

0.86

0.87

0.88

0.89

0.90

California

101 102

0.64

0.65

0.66

0.67

Compas

102 103

0.98Ba
la

nc
ed

 A
cc

ur
ac

y

Volkert

102 103

0.80

0.85

0.90

0.95

Ijcnn1

102 103 104

Number of Leafs

0.92

0.93

0.94

MiniBooNE

101 102 103

Number of Leafs

0.75

0.80

0.85

Phoneme

102 103

Number of Leafs

0.90

0.91

0.92

0.93

0.94

0.95

Ba
la

nc
ed

 A
cc

ur
ac

y

Spambase

101 102 103

Number of Leafs

0.74

0.75

0.76

0.77

Credit

XGB FP

Figure A6. Comparison of Pareto fronts of FP vs. XGBoost on all datasets. The x-axis shows the number of leaves in log scale and the
y-axis shows the balanced accuracy. The dashed lines connect a compressed FP model to the performance of an original XGBoost model.
These are colored red if the original model is not on the Pareto front for XGBoost.

19

Compressing Tree Ensembles through Level-wise Optimization and Pruning

102 103

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Adult

102 103
0.97

0.98

0.99

Mnist

102 103 104

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Electricity

102 103 104

0.74

0.75

0.76

0.77

0.78

0.79

Jannis

102

0.90

0.92

0.94

0.96

Ba
la

nc
ed

 A
cc

ur
ac

y

Vehicle

101 102 103
0.89

0.90

0.91

0.92

DryBean

102 103 104

0.82

0.84

0.86

0.88

0.90

California

101 102
0.63

0.64

0.65

0.66

0.67

0.68

Compas

102 103

0.98

0.99

Ba
la

nc
ed

 A
cc

ur
ac

y

Volkert

101 102 103

0.80

0.85

0.90

0.95

Ijcnn1

102 103 104

Number of Leaves

0.89

0.90

0.91

0.92

0.93

0.94

MiniBooNE

101 102 103

Number of Leaves

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Phoneme

102 103

Number of Leaves

0.90

0.91

0.92

0.93

0.94

0.95

Ba
la

nc
ed

 A
cc

ur
ac

y

Spambase

101 102 103

Number of Leaves

0.73

0.74

0.75

0.76

0.77

0.78

Credit

LOP XGB GR IC LRL1 FP

Figure A7. Pareto fronts for all compression methods on all datasets. The x-axis shows the number of leaves in log scale and the y-axis
shows the balanced accuracy.

20

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Mnis
t

Ele
ctr

icit
y

Jan
nis

Ve
hic

le

DryB
ea

n

Calif
orn

ia

Com
pa

s
Vo

lke
rt

Ad
ult

Ijcn
n1

MiniB
oo

NE

Ph
on

em
e

Sp
am

ba
se

Cred
it

Dataset

10 1

100

101

102

103

104

Co
m

pr
es

sio
n

tim
e

(s
)

GR IC LRL1 FP LOP

Figure A8. The distribution of the compression time (s) of XGBoost models in seconds on a log scale.

Mnis
t

Ele
ctr

icit
y

Jan
nis

Ve
hic

le

DryB
ea

n

Calif
orn

ia

Com
pa

s
Vo

lke
rt

Ad
ult

Ijcn
n1

MiniB
oo

NE

Ph
on

em
e

Sp
am

ba
se

Cred
it

Dataset

10 1

100

101

102

103

104

Co
m

pr
es

sio
n

tim
e

(s
)

GR IC LRL1 FP LOP

Figure A9. The distribution of the compression time (s) of RandomForest models in seconds on a log scale.

21

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table A5. The average tree reduction ratio for each dataset for
the XGBoost models on the regression experiments. This ratio is
computed as the number of trees in the original ensemble divided
by the number of trees in the compressed model. Higher ratios are
better. The best ratios are indicated in bold.

GR LRL1 FP LOP

Abalone 1.0 1.5 11.2 25.9
Ailerons 1.0 1.4 4.6 12.7
CpuSmall 1.0 1.5 1.0 9.5
Houses 1.0 1.3 3.4 6.5
House16H 1.0 1.6 12.5 16.2
WineQuality 1.0 1.4 11.7 15.3
Elevators 1.0 1.2 1.3 6.2

average 1.0 1.4 6.5 13.2

Table A6. The average tree reduction ratio for each dataset for the
RandomForest models on the regression experiments. This ratio is
computed as the number of trees in the original ensemble divided
by the number of trees in the compressed model. Higher ratios are
better. The best ratios are indicated in bold.

GR LRL1 FP LOP

Abalone 1.0 1.0 2.9 6.4
Ailerons 1.0 1.0 6.2 5.5
CpuSmall 1.0 1.0 8.4 6.6
Houses 1.0 4.2 12.0 9.9
House16H 1.0 5.6 3.7 9.0
WineQuality 1.0 2.4 5.6 4.8
Elevators 1.0 2.9 7.5 7.3

average 1.0 2.6 6.6 7.1

on all combinations of the following hyperparameters:

XGBoost RandomForest
M ∈ [10, 25, 50, 100] ∈ [50, 100, 250]
D ∈ [4, 6, 8] ∈ [10, 15]
η ∈ [0.1, 0.25, 0.5, 1.0] not applicable

with M the number of trees, D the maximum depth of the
trees and η the learning rate in XGBoost. This yields 48
XGBoost models and 6 RandomForest models, to which
we then apply the different compression algorithms. There
are two differences to our binary classification setup in that
we (1) evaluate the Root Mean Squared Error (RMSE) in-
stead of balanced accuracy and (2) use a maximum allowed
drop in performance ∆ = 2% that is relative to the un-
compressed model’s performance (e.g., if the uncompressed
model achieves a RMSE of 0.250 on the validation set, then
the compressed model’s RMSE on that same validation set
should be smaller than 0.255).

The left hand side of Tables A9 and A10 show the com-
pression factors obtained by each compression algorithm by

averaging over all learned XGBoost and RandomForest per
dataset. Similarly to the binary classification setting, LOP
achieves the best compression factors, with FP and GR being
second and third best. LOP’s average compression factor
ranges from 19 to 234 on XGBoost models and from 5 to
744 on RandomForest models.

The right hand side of Tables 1 and 2 show the RMSE for
respectively the XGBoost and RandomForest models before
and after compression. All compression methods yield an
average performance loss on an independent test set that
typically remains below the threshold ∆. This indicates, as
also found in the binary classification setting, that overfitting
to the validation set is unlikely. Consequently, LOP achieves
higher compression ratios for the same loss in predictive
performance compared to the baselines.

We now discuss how the compression methods affect the
number of trees retained in the ensembles. Tables A5 and A6
show the average tree reduction ratios for the different meth-
ods on XGBoost and RandomForest models,respectively.
Higher numbers indicate fewer trees in the compressed
model. On both XGBoost and RandomForest models, en-
sembles compressed by LOP have the fewest number of
trees. This finding deviates slightly from the results on bi-
nary classification, where FP is more effective at pruning
full trees in RandomForest models; see Table A4). The fact
that FP prunes fewer trees than in the binary classification
setting could explain why it achieves lower compression
ratios for RandomForest regression.

Q5: Scalability analysis.

We now explore how compression approaches scale based
on two ways of characterizing the size of the original en-
semble: (1) M , the number of trees in an ensemble and (2)
D, the maximum allowed depth of an individual tree. We
consider the same four binary classification datasets that we
used for Q3.

First, we explore varying M ∈ [100, 250, 500] while keep-
ing the maximum tree depth fixed. For XGBoost, we fix
D = 6 and the learning rate η = 0.1 and for RandomFor-
est we fix D = 10. Figures A12 and A13 show how the
compression time in seconds varies as a function of M for
XGBoost and RandomForest, respectively. Note that time is
on a log scale. Interestingly, LOP maintains a nearly constant
compression time as the number of trees increases. This is
likely because it is able to remove many trees upfront and
this initial optimization problem is very simple. In contrast,
the compression time for the other approaches increases
as the number of trees in the original ensemble increases.
Finally, LOP is typically the second faster approach after IC,
however, IC achieves very little compression compared to
LOP. In conclusion, LOP offers excellent scalability with
respect to the number of trees in an ensemble compared to

22

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table A7. The average exact empirical robustness before (XGB) and after compressing the ensemble according to Kantchelian et
al’s (Kantchelian et al., 2016) exact MILP approach to find the nearest adversarial example for 500 randomly selected test examples.
Results are averaged over the 48 binary classification XGBoost models. The best results are in bold.

XGB GR IC LRL1 FP LOP

Mnist 0.194 0.195 0.214 0.180 0.221 0.221
Electricity 0.043 0.031 0.041 0.039 0.035 0.048
Jannis 0.067 0.097 0.098 0.079 0.096 0.108
Vehicle 0.145 0.147 0.158 0.138 0.155 0.162
DryBean 0.181 0.182 0.209 0.176 0.219 0.215
California 0.079 0.078 0.083 0.077 0.080 0.092
Compas 0.050 0.165 0.076 0.055 0.175 0.170
Volkert 0.164 0.187 0.196 0.178 0.198 0.197
Adult 0.348 0.338 0.410 0.341 0.449 0.469
Ijcnn1 0.224 0.197 0.230 0.216 0.224 0.226
MiniBooNE 0.114 0.122 0.128 0.123 0.121 0.134
Phoneme 0.098 0.088 0.109 0.081 0.106 0.103
Spambase 0.091 0.091 0.100 0.087 0.114 0.120
Credit 0.112 0.275 0.207 0.132 0.283 0.301

Average 0.136 0.157 0.161 0.136 0.177 0.183

Table A8. Summary of which methods exceed the 6 hour timeout
for Q1 for RandomForest (i.e., on how many folds out of 5). M
and D denote the number of trees and depth of the trees in a forest.

M D GR LRL1

Adult 250 15 2/5 NA
Ijcnn1 100 15 NA 5/5
Ijcnn1 250 10 2/5 5/5
Ijcnn1 250 15 4/5 5/5
Jannis 250 15 NA 5/5
MiniBooNE 250 10 NA 4/5
MiniBooNE 250 15 5/5 5/5

its competitors.

Second, we explore varying the maximum tree depth while
keeping the number of trees in the ensemble fixed. For XG-
Boost, we consider D ∈ [6, 8, 10] with M = 50 and η =
0.1. For RandomForest, we consider D ∈ [10, 15, 20, 25]
with M = 100. Figures A14 and A15 show how the com-
pression time in seconds varies as a function of D for XG-
Boost and RandomForest, respectively. Note that time is
on a log scale and that some methods exceed the time limit;
see Table A11 for an overview. For XGBoost, the maxi-
mum tree depth does not exhibit a strong influence on the
compression time of any of the approaches. An interesting
exception occurs with GR on XGBoost models for Adult: its
runtime decreases substantially as the tree depth increases.
This is likely because the compression operations that GR
can perform yield larger than permitted performance drops
meaning; hence it has a small runtime because it performs

Ad
ult

Calif
orn

ia

Ph
on

em
e

Sp
am

ba
se

101

102

103

Co
m

pr
es

sio
n

Ti
m

e
(s

)

=0.25 =0.5 =1 =2

Figure A10. The distribution of compression time (in seconds)
when varying LOP’s hyperparameter ∆ ∈ [0.25, 0.5, 1, 2]

little, if any, compression. For RandomForests, the story
is slightly different. The runtime for LOP and FP tends to
increase as the maximum tree depth does whereas this pa-
rameter has less effect on the other approaches. Still, this
hyperparameter does not affect the relative order of runtime
performance for the compression methods.

23

Compressing Tree Ensembles through Level-wise Optimization and Pruning

Table A9. Compression results on XGBoost regression models. The original models are characterized by their number of leaves (#Leaf)
and root mean squared error (RMSE) on the test set. We report the compression ratios and test set RMSE for each compression technique.
A 8× compression ratio means that the compressed model has 8 times fewer leaf nodes than the original ensemble. The best compression
ratios are given in bold.

#Leaf Compress. ratio (×) RMSE

Dataset XGB GR LRL1 FP LOP XGB GR LRL1 FP LOP

Abalone 2557.6 28.6 1.4 178.3 120.4 0.298 0.297 0.308 0.303 0.293
Ailerons 3406.3 11.1 1.3 12.9 35.2 0.202 0.200 0.196 0.202 0.205
Cpu 2803.3 4.8 1.5 1.8 29.2 0.141 0.132 0.129 0.140 0.140
Houses 3810.4 8.4 1.3 6.9 19.6 0.173 0.173 0.167 0.175 0.176
House16H 3783.3 16.6 1.6 82.4 233.8 0.330 0.335 0.327 0.339 0.343
WineQuality 2969.0 16.8 1.3 71.6 234.6 0.352 0.353 0.355 0.351 0.358
Elevators 3795.2 8.4 1.2 2.2 21.6 0.213 0.207 0.202 0.213 0.219
Average 3303.6 13.5 1.4 50.9 99.2 0.244 0.243 0.240 0.246 0.248

Table A10. Compression results on RandomForest regression models. The original models are characterized by their number of leaves
(#Leaf) and root mean squared error (RMSE) on the test set. We report the compression ratios and test set RMSE for each compression
technique. A 8× compression ratio means that the compressed model has 8 times fewer leaf nodes than the original ensemble. The best
compression ratios are given in bold.

#Leaf Compress. ratio (×) RMSE

Dataset RF GR LRL1 FP LOP RF GR LRL1 FP LOP

Abalone 79168.6 19.8 1.0 35.3 744.6 0.272 0.273 0.272 0.274 0.280
Ailerons 184674.7 2.2 1.0 6.2 7.7 0.185 0.185 0.185 0.189 0.190
Cpu 118589.5 1.6 1.0 8.3 10.1 0.118 0.118 0.118 0.122 0.125
Houses 300815.2 81.9 4.2 12.0 51.5 0.159 0.162 0.158 0.163 0.164
House16H 200964.8 105.6 5.3 3.7 492.5 0.306 0.316 0.313 0.311 0.327
WineQuality 62076.9 6.0 2.4 5.3 5.8 0.322 0.326 0.325 0.328 0.331
Elevators 189162.0 93.9 2.9 7.4 23.6 0.204 0.203 0.206 0.206 0.207
Average 162207.4 44.4 2.5 11.2 190.8 0.224 0.226 0.225 0.227 0.232

Ad
ult

Calif
orn

ia

Ph
on

em
e

Sp
am

ba
se

100

101

102

103

Co
m

pr
es

sio
n

Ti
m

e
(s

)

R=1 R=2 R=3

Figure A11. The distribution of compression time (in seconds)
when varying LOP’s hyperparameter R ∈ [1, 2, 3].

Table A11. Summary of which methods exceed the 6 hour timeout
for Q5 (scalability) for RandomForest (i.e., on how many folds out
of 5). M and D denote the number of trees and depth of the trees
in a forest.

M D GR LRL1

Adult 100 15 3/5 NA
Adult 100 20 2/5 NA
Adult 100 25 3/5 4/5
Adult 250 10 5/5 1/5
Adult 500 10 5/5 5/5

24

Compressing Tree Ensembles through Level-wise Optimization and Pruning

100 250 500
Number of Trees

102

103

104

Co
m

pr
es

sio
n

Ti
m

e
(s

)

Adult

100 250 500
Number of Trees

101

102

103

104 California

100 250 500
Number of Trees

101

102

103

Phoneme

100 250 500
Number of Trees

101

102

103

Spambase

LOP GR IC LRL1 FP

Figure A12. Average compression time (s) as a function of the number of trees M in the original XGBoost models with D = 6 and
η = 0.1. Results are shown for each compression method on four representative datasets.

100 250 500
Number of Trees

102

103

104

Co
m

pr
es

sio
n

Ti
m

e
(s

)

Adult

100 250 500
Number of Trees

101

102

103

104

California

100 250 500
Number of Trees

101

102

103

Phoneme

100 250 500
Number of Trees

101

102

103

Spambase

LOP GR IC LRL1 FP

Figure A13. Average compression time (s) as a function of the number of trees M in the original RandomForest models with D = 10.
Results are shown for each compression method on four representative datasets.

6 8 10
Maximum depth

101

102

103

Co
m

pr
es

sio
n

Ti
m

e
(s

)

Adult

6 8 10
Maximum depth

101

102

103

California

6 8 10
Maximum depth

101

102

Phoneme

6 8 10
Maximum depth

100

101

102

Spambase

LOP GR IC LRL1 FP

Figure A14. Average compression time (s) as a function of the maximum tree depth D used when learning the original XGBoost models
with M = 50 and η = 0.1. Results are shown for each compression method on four representative datasets.

10 15 20 25
Maximum depth

102

103

104

Co
m

pr
es

sio
n

Ti
m

e
(s

)

Adult

10 15 20 25
Maximum depth

101

102

103

California

10 15 20 25
Maximum depth

101

102

103 Phoneme

10 15 20 25
Maximum depth

101

102

Spambase

LOP GR IC LRL1 FP

Figure A15. Average compression time (s) as a function of the maximum tree depth D used when learning the original RandomForest
models with M = 10. Results are shown for each compression method on four representative datasets.

25

