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ABSTRACT

We show a hardness result for the number of training domains required to achieve
a small population error in the test domain. Although many domain generalization
algorithms have been developed under various domain-invariance assumptions,
there is significant evidence to indicate that out-of-distribution (o.o.d.) test accuracy
of state-of-the-art o.o.d. algorithms is on par with empirical risk minimization
and random guess on the domain generalization benchmarks such as DomainBed.
In this work, we analyze its cause and attribute the lost domain generalization to
the lack of training domains. We show that, in a minimax lower bound fashion,
any learning algorithm that outputs a classifier with an ϵ excess error to the Bayes
optimal classifier requires at least poly(1/ϵ) number of training domains, even
though the number of training data sampled from each training domain is large.
Experiments on the DomainBed benchmark demonstrate that o.o.d. test accuracy
is monotonically increasing as the number of training domains increases. Our
result sheds light on the intrinsic hardness of domain generalization and suggests
benchmarking o.o.d. algorithms by the datasets with a sufficient number of training
domains.

1 INTRODUCTION

Domain generalization (Mahajan et al., 2021; Dou et al., 2019; Yang et al., 2021; Bui et al., 2021;
Robey et al., 2021; Wald et al., 2021; Recht et al., 2019)—where the training distribution is different
from the test distribution—has been a central research topic in machine learning (Blanchard et al.,
2021; Chuang et al., 2020; Zhou et al., 2021), computer vision (Piratla et al., 2020; Gan et al., 2016;
Huang et al., 2021; Song et al., 2019; Taori et al., 2020), and natural language processing (Wang et al.,
2021; Fried et al., 2019). In machine learning, the study of domain generalization has led to significant
advances in the development of new algorithms for out-of-distribution (o.o.d.) generalization (Li
et al., 2022b; Bitterwolf et al., 2022; Thulasidasan et al., 2021). In computer vision and natural
language processing, new benchmarks such as DomainBed (Gulrajani & Lopez-Paz, 2021) and
WILDs (Koh et al., 2021; Sagawa et al., 2021) are built toward closing the gap between the developed
methodology and real-world deployment. In both cases, the problem can be stated as given a set of
training domains {Pe}Ee=1 which are drawn from a domain distribution P and given a set of training
data {(xe

i , y
e
i )}ni=1 which are drawn from Pe, the goal is to develop an algorithm based on the training

data and their domain labels e so that the algorithm in expectation performs well on the unseen test
domains drawn from P .

Despite progress on the domain generalization, many fundamental questions remain unresolved.
For example, in search of lost domain generalization, Gulrajani & Lopez-Paz (2021) conducted
extensive experiments using DomainBed and found that, when carefully implemented, empirical risk
minimization (ERM) shows state-of-the-art performance across all datasets despite many algorithms
are carefully designed for the out-of-distribution tasks. For example, when the algorithm is trained
on the “+90%”1 and “+80%” domains of the ColoredMNIST dataset (Arjovsky et al., 2019) and is
tested on the “−90%” domain, the best-known o.o.d. algorithm achieves test accuracy no better than
a random-guess algorithm under all three model selection methods in Gulrajani & Lopez-Paz (2021).
Thus, it is natural to ask what causes the lost domain generalization and how to find it?

1The number refers to the degree of correlation between color and label.
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Table 1: The number of domains in the o.o.d. benchmarks WILDs (Koh et al., 2021; Sagawa et al.,
2021) and DomainBed (Gulrajani & Lopez-Paz, 2021). It shows that most of the datasets in the two
benchmarks suffer from small number of domains, which might not be sufficient to learn a classifier
with good domain generalization.

WILDs iWildCam Camelyon17 RxRx1 OGB-MolPCBA BlobalWheat CicilComments FMoW PovertyMap Amazon Py150

# domains 323 5 51 120,084 47 16 80 46 2,586 8,421

DomainBed CMNIST RMNIST VLCS PACS Office-Home Terra Incognita DomainNet

# domains 3 6 4 4 4 4 6

In this paper, we attribute the lost domain generalization to the lack of training domains. Our study is
motivated by an observation that off-the-shelf benchmarks often suffer from few training domains.
For example, the number of training domains in DomainBed (Gulrajani & Lopez-Paz, 2021) for all
its 7 datasets is at most 6; in WILDs (Koh et al., 2021; Sagawa et al., 2021), 7 out of 10 datasets
have the number of training domains fewer than 350 (see Table 1). Therefore, one may conjecture
that increasing the number of training domains might improve the empirical performance of existing
domain generalization algorithms significantly. In this paper, we show that, information theoretically,
one requires at least poly(1/ϵ2) number of training domains in order to achieve a small excess error
ϵ for any learning algorithm. This is in sharp contrast to many existing benchmarks in which the
number of training domains is limited.

2 RELATED WORK

Out-of-distribution (o.o.d) generalization (Hendrycks & Dietterich, 2019; Shankar et al., 2018; Zhou
et al., 2021) has received extensive attention in recent years. One representative way is the causal
modelling inspired by Invariant Risk Minimization (IRM) (Arjovsky et al., 2019). IRM tries to learn
an invariant feature representation to capture the underlying causal mechanism of interest across
domains such that the classifier based on this invariant feature representation shall be invariant across
all domains. Given multiple training domains, IRM learns invariant representations approximately by
adding a regularization. The results of IRM indicate that failing to generalize to o.o.d. data comes
from failing to capture the causal factors of variation in different domains. Following IRM, Risk
Extrapolation (REx) (Krueger et al., 2021) proposes to reduce differences in risk across training
domains. Derivative Invariant Risk Minimization (DIRM) (Bellot & van der Schaar, 2020) maintains
the invariance of the gradient of training risks across different domains.

Another line of research uses different metrics to tackle the o.o.d problem. For example, Maximum
Mean Discrepancy-Adversarial AutoEncoder (Li et al., 2018b) employs Generative Adversarial
Networks and the maximum mean discrepancy metric (Gretton et al., 2012) to align different feature
distributions. Mixture of Multiple Latent Domains (Matsuura & Harada, 2020) learns domain-
invariant features by clustering techniques without knowing which domain the training samples
belong to. Recently, Meta-Learning Domain generalization (Li et al., 2020) employs a lifelong
learning method to tackle the sequential problem of new incoming domains.

To explore the o.o.d problem, one line of research focuses on the case where only one training
domain is accessible. Causal Semantic Generative model (CSG) (Liu et al., 2021) uses two sets of
correlated latent variables, i.e., the semantic and non-semantic features, to model the relation between
the data and the corresponding labels. In their assumption, the semantic features relate the data to
their corresponding labels while the non-semantic features only affect the generation of data. CSG
decouples the semantic and non-semantic features to improve o.o.d generalization given only one
training domain.

However, recent work (Gulrajani & Lopez-Paz, 2021) claims that all existing algorithms cannot
capture the true invariant feature and observes that their performance is on par with ERM and random
guess on several datasets. In this paper, to explain why it occurs, we theoretically analyze the o.o.d.
generalization problem and provide a minimax lower bound for the number of training domains
required to achieve a small population error in the test domain. Massart & Nédélec (2006a) have
proved that it requires at least Ω(1/ϵ2) samples from a distribution to estimate the success probability
of a Bernoulli variable with an ϵ error. Motivated by this, we observe a similar phenomenon and
prove that the learning algorithms need at least Ω(1/ϵ2) number of training domains. Recently, a
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concurrent work (Li et al., 2022a) presents an upper bound on the expected excess error of the ERM
algorithm using the Rademacher complexity. Similarly, another work (Blanchard et al., 2021) gives
an upper bound on the excess error of general learning algorithms with high probability and shows
that the sample size of each domain is inversely proportional to the excess error. On the other side,
while previous work (Li et al., 2022a; Blanchard et al., 2021) showed positive results on the domain
generalization, we present a negative result (i.e., a lower bound regarding the number of training
domains) on the expected excess error for all possible learning algorithms.

3 MINIMAX LOWER BOUND FOR DOMAIN GENERALIZATION

In this section, we provide a minimax lower bound for domain generalization. Our results lower
bound the number of training domains required for good o.o.d. generalization.

Notation. We will use bold capital letters such as X to represent a random vector, bold lower-case
letters such as x to represent the implementation of a random vector, capital letters such as Y to
represent a random variable, and lower-case letters such as y to represent the implementation of
a random variable. Specifically, we denote by X the random vector of instance, denote by x the
implementation of random vector X, denote by Y the random variable of label, and denote by y ∈
{0, 1} the implementation of random variable Y . We will use L(f) to represent the expected 0-1 loss
of classifier f w.r.t. the mixture of data distributions of all domains, i.e., L(f) = Pr(X,Y )(f(X) ̸= Y ).
Throughout the paper, we will frequently use P to represent the distribution of distribution, i.e., the
domain distribution, will use Pe to represent the data distribution of the e-th domain, and will use
(xe, ye) to represent the data sampled from the e-th domain Pe. We call e ∈ {1, 2, 3, ...} the domain
labels, which are accessible to the learner.

Problem setups. In our hard instance, we view the e-th domain as a data distribution Pe given by
Pr(X, Y |Be = be), where e is the domain label and Be’s represent i.i.d. Bernoulli random vectors
that parameterize the data distribution of the e-th domain. In this paper, we will regard Pr(X, Y |Be1)
and Pr(X, Y |Be2) as two different domains as long as e1 ̸= e2. We assume that each domain is
sampled from a domain distribution P (i.e., the distribution of Be), and the data in the e-th domain
are sampled from a data distribution Pe given by Pr(X, Y |Be = be). Let f∗ be the Bayes optimal
classifier of the mixture of data distributions across all domains, and assume f∗ ∈ F , where F can
be any function class such as deep neural networks. For any h ∈ [0, 1], we define a class of domain
distributions by P(h,F) := {P : |2Pr(Be = 1) − 1| ≥ h}. Note that the margin parameter h
determines the randomness of the domain: large h (e.g., h = 1) means Pr(Be = 1) is bounded away
from 1/2. We will investigate the following minimax risk:

RE,n(h,F) := inf
f̃E,n∈F

sup
P

EPe∼PE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
, (1)

where E is the number of training domains, n is the number of training samples from each domain,
and the two expectations are taken over the sampling of training data and domains to learn f̃E,n. The
minimax problem in Equation (1) characterizes the access risk of the best learning algorithm with an
access to E training domains and n data samples under the worst-case domain distribution.

Let V be the VC dimension of F , which is defined as the maximum number of points that can be
arranged so that F shatters them. Our main results are as follows:
Theorem 1. For n = ∞, any h ∈ [0, 1] and any E ≥ V , we have the lower bound

RE,∞(h,F) ≥ cmin

(
V − 1

Eh
,

√
V − 1

E

)
, (2)

where c > 0 is an absolute constant.

We defer the proofs of Theorem 1 to Appendix A. The theorem provides a lower bound on the number
of training domains required to achieve a small population error, even though one can sample as many
data points as possible from each domain. The case of n = ∞ captures the “easiest” case for the
learner, where the learning algorithm can access to full knowledge about each training domain. The
case of finite n is harder than n = ∞, as the learner has only partial knowledge about each training
domain and RE,n(h,F) ≥ RE,∞(h,F). Therefore, Equation (2) provides a universal lower bound
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Figure 1: Illustration of our o.o.d. generalization problem. We show how data is sampled and how
learning algorithms learn the knowledge. When generating training data, E domain from the data
distribution P are first sampled, and after that for each domain, n training data are sampled to form
the training dataset which will be fed into a learning algorithm. The learning algorithm recovers the
underlying label a by the estimation of the underlying label be, e ∈ [E] under the observation of
training data.

for general n ≥ 1. Theorem 1 implies that, information-theoretically, one requires at least poly(V/ϵ)
number of training domains in order to achieve a small excess error ϵ for any learning algorithm of
F . This is in sharp contrast to many existing benchmarks on which the number of training domains
is limited (see Table 1). For example, in the celebrated ColoredMNIST dataset (Arjovsky et al.,
2019), there are only 2 training domains. When the algorithm is trained on the “+90%” and “+80%”
domains and is tested on the “−90%” domain, the best-known o.o.d. algorithm achieves test accuracy
no better than random guess under all three model selection methods in Gulrajani & Lopez-Paz
(2021). Theorem 1 predicts the failures of future algorithms on these datasets and attributes the poor
performance of existing o.o.d. algorithms to the lack of training domains.

Differences between our work and Massart & Nédélec (2006b). The major differences include: 1)
the construction of the hard instance, i.e., a two-stage data generative procedure, and 2) the strategy
of splitting the hard problem into two sub-problems (see Figure 1). These two aspects are original
and separate our contributions with previous works. For 1), our data generative model first samples
E domains from the domain distribution P by generating the domain-specific label be,∀e ∈ [E] and
then samples the training data from each sampled domain. On the other hand, Massart & Nédélec
(2006b) considered a totally different scenario: they investigated the effect of training sample size
on the excess risk in the single-domain problem when the training and test data are i.i.d. For 2),
our proof has to deal with two expectations given that we have designed a novel two-stage recovery
strategy. Our two-stage problem splits the hard problem into two simpler problems which estimate
a binary string a and be,∀e ∈ [E], while Massart & Nédélec (2006b) only considered one binary
string estimation problem. The two binary string estimation problems are entangled, making our
analysis more challenging.

4 EXPERIMENTS

Theorem 1 shows that any learning algorithm that outputs a classifier with an ϵ excess error to the
Bayes optimal classifier requires at least poly(1/ϵ) number of training domains, even though the
number of training data sampled from each training domain is large. In this section, we complement
our theoretical results with an empirical study to evaluate the impact of number of training domains.

4.1 DATASETS

We conducted extensive experiments on two datasets from DomainBed, i.e., ColoredMNIST (Ar-
jovsky et al., 2019) and RotatedMNIST (Ghifary et al., 2015). We notice that there are other popular
domain generalization datasets, e.g., PACS (Li et al., 2017), VLCS (Fang et al., 2013), Office-
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Home (Venkateswara et al., 2017), and Terra Incognita (Beery et al., 2018). However, these datasets
are hard to generate more training domains synthetically as their data generation process cannot be
parameterized by a single variable (e.g., correlation between color and label in ColoredMNIST, or
rotation degree in RotatedMNIST). Thus, in our paper we do not consider these datasets.

ColoredMNIST (Arjovsky et al., 2019) is a variant of the MNIST hand written digit classification
dataset (LeCun et al., 1998). It is a synthetic dataset containing three domains pe ∈ [0.1, 0.2, 0.9]
colored either red or blue formalizing 70, 000 examples of dimension (2, 28, 28) and 2 classes. The
label is a noisy function of the digit and color, such that color bears correlation pE with the label and
the digit bears correlation 0.75 with the label. Inspired by the protocol introduced in DomainBed
repository, we randomly split the training dataset into 10 subdatasets with equal training samples.
Each domain of ColoredMNIST is generated as follows: 1) Assign a preliminary binary label y′ to
the image based on the digit: y′ = 0 for digits 0− 4 and y′ = 1 for 5− 9; 2) Obtain the final label
y by flipping y′ with probability 0.25; 3) Sample the color id z by flipping y with probability pe;
4) Color the image red if z = 1 or green if z = 0. The only parameter of a training domain is pe.
We use the domain with pe = 0.5 as the test domain and uniformly sample E parameters pe from
(0, 1)/{0.5} to form E training domains. Each domain randomly uses a subset from 10 subdatasets
of the whole MNIST to generate the data.

RotatedMNIST (Ghifary et al., 2015) is another variant of MNIST with 6 domains containing digits
rotated by {0, 15, 30, 45, 60, 75} degrees. It contains 70, 000 examples of dimension (1, 28, 28) and
10 classes. Similar to ColoredMNIST, we use the domain with 45 degrees rotation as the test domain
and uniformly sample E rotation degrees from [0, 90)/{45} to form E training domains.

4.2 ALGORITHMS

To validate our theoretical results, we evaluate the effect of number of training domains on o.o.d.
algorithms, including ERM (Empirical Risk Minimization) (Vapnik, 1991), IRM (Invariant Risk
Minimization) (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2020), Mixup (Xu et al., 2020),
MLDG (Li et al., 2018a), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018b), DANN (Ganin
et al., 2016), and C-DANN (Li et al., 2018c). The details of the algorithms are shown in the appendix.

For each algorithm, we employ the default hyper-parameter introduced in Section D.2 of Do-
mainBed (Gulrajani & Lopez-Paz, 2021), as our goal is not to show the best performance of algorithms
but to show the correlations to our theoretical results. Following DomainBed (Gulrajani & Lopez-Paz,
2021), we use MUNIT (Table 4) for ColoredMNIST and RotatedMNIST.

4.3 EVALUATION SETTINGS

We train models using 9 different Domain Generalization algorithms, with a varying number of
training domains on ColoredMNIST and RotatedMNIST. Each trial is done with 5 different random
seeds, and we present the average results. We use the code repository of DomainBed (Gulrajani &
Lopez-Paz, 2021) with PyTorch (Paszke et al., 2019).

Model Evaluation. Following DomainBed (Gulrajani & Lopez-Paz, 2021), we employ and adapt
three different model selection methods for training algorithms as shown below,

• Leave-one-domain-out cross-validation. E models are trained on E training domains with equal
hyperparameters, while each experiment holds out one of the training domains. The evaluation of
each model is conducted on its held-out domain and we choose the model when maximizing the
accuracy on the held-out domain. This method has an assumption that training and test domains
are drawn from a meta-distribution over domains, and that our goal is to maximize the expected
performance under this meta-distribution. This method corresponds our data generation model.
But it requires huge computational resources. We only use this method to select model with the
number of domains varying from 2 to 30.

• Training-domain validation set. Each training domain is split into training and validation subsets
and the overall validation set consists of the validation subsets of each training domain. Finally,
we choose the model maximizing the accuracy on the overall validation set. This method has an
assumption that the training and test examples follow similar distributions.
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Table 2: The experimental results on ColoredMNIST with ERM, IRM, GroupDRO, Mixup, MLDG,
and CORAL w.r.t the number of training domain using the training-domain validation set model
selection method.
\# ERM IRM GroupDRO Mixup MLDG CORAL

4 0.6697±0.0120 0.5500±0.0091 0.6710±0.0134 0.6081±0.0144 0.6744±0.0046 0.6586±0.0139

6 0.7135±0.0027 0.5910±0.0072 0.7158±0.0013 0.6703±0.0088 0.7107±0.0035 0.7141±0.0020

8 0.7183±0.0018 0.6278±0.0031 0.7199±0.0016 0.7129±0.0017 0.7195±0.0005 0.7199±0.0013

10 0.7226±0.0005 0.6685±0.0086 0.7220±0.0004 0.7159±0.0006 0.7271±0.0011 0.7228±0.0004

12 0.7280±0.0011 0.6968±0.0034 0.7288±0.0012 0.7223±0.0015 0.7287±0.0008 0.7278±0.0010

14 0.7289±0.0016 0.6709±0.0123 0.7284±0.0016 0.7215±0.0007 0.7316±0.0015 0.7285±0.0015

16 0.7268±0.0011 0.6777±0.0055 0.7272±0.0010 0.7230±0.0014 0.7322±0.0008 0.7258±0.0010

18 0.7304±0.0017 0.7031±0.0045 0.7292±0.0018 0.7255±0.0015 0.7338±0.0009 0.7297±0.0008

20 0.7305±0.0018 0.6957±0.0069 0.7321±0.0011 0.7239±0.0010 0.7336±0.0008 0.7311±0.0013

22 0.7323±0.0011 0.6935±0.0078 0.7298±0.0010 0.7276±0.0012 0.7368±0.0014 0.7296±0.0011

24 0.7330±0.0015 0.6908±0.0086 0.7358±0.0009 0.7269±0.0014 0.7366±0.0012 0.7354±0.0012

26 0.7350±0.0019 0.6995±0.0026 0.7343±0.0016 0.7323±0.0013 0.7366±0.0011 0.7353±0.0015

28 0.7336±0.0016 0.6997±0.0076 0.7347±0.0014 0.7327±0.0011 0.7370±0.0013 0.7332±0.0014

30 0.7331±0.0023 0.7113±0.0027 0.7326±0.0023 0.7297±0.0020 0.7391±0.0012 0.7329±0.0020

48 0.7386±0.0014 0.7219±0.0007 0.7398±0.0015 0.7352±0.0014 0.7410±0.0010 0.7385±0.0014

96 0.7427±0.0014 0.7182±0.0015 0.7424±0.0013 0.7399±0.0012 0.7444±0.0011 0.7424±0.0014

192 0.7437±0.0014 0.7287±0.0012 0.7443±0.0014 0.7424±0.0013 0.7461±0.0010 0.7437±0.0014

• Test-domain validation set (oracle). We choose the model maximizing the accuracy on a
validation set that follows the distribution of the test domain. All the models are trained for
the same fixed number of steps and the final checkpoints are used for evaluation. It assumes
and requires that models have the access to the test domain which might not be possible in the
real-world application.

4.4 EXPERIMENTAL RESULTS ON COLOREDMNIST AND ROTATEDMNIST

We first introduce the average results on two different datasets using 9 algorithms with the number of
training domains varying from 2 to 192 and then present the results with limited number of domains.
Due to the limitation of space, we present the most important results in our paper while leaving the
left results in the Appendix.

4.4.1 EVALUATING THE EFFECT OF NUMBER OF TRAINING DOMAINS

Results. We run the experiments on ColoredMNIST and RotatedMNIST with ERM, IRM, Group-
DRO, Mixup, MLDG, CORAL, MMD, DANN and C-DANN while the number of training domains
varies from 2 to 192. The average accuracy w.r.t the number of training domains is shown in Tables
2 and 3 in the main paper, Tables 6, and 8, and Figures 4 and 5 in the Appendix. It shows that
the test accuracy is proportional to the number of training domains with all the algorithms on both
ColoredMNIST and RotatedMNIST which is consistent with our theoretical results (Theorem 1).

Training-domain validation set analysis. The results are shown in Tables 2 and 8 and Figure 5. We
observe that the test accuracy of almost all the algorithms on both ColoredMNIST and RotatedMNIST
is monotonically increasing as the number of training domains grows while the accuracy of IRM
on both datasets, MMD on ColoredMNIST, DANN and CDANN on RotatedMNIST experiences
slight drops for certain number of training domains. We also find that the standard deviations of
MMD are quite big which might be due to the hyperparameter setting as we did not try to tune the
hyperparameters to gain the best performance. Besides, the standard deviations of all the algorithms
on the first experiments (the least number of training domains) are quite large. That is because the
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Table 3: The experimental results on ColoredMNIST with ERM, IRM, GroupDRO, Mixup, MLDG,
and CORAL w.r.t the number of training domain using the test-domain validation set (oracle) model
selection method.
\# ERM IRM GroupDRO Mixup MLDG CORAL

4 0.6697±0.0120 0.5517±0.0085 0.6710±0.0134 0.6081±0.0144 0.6750±0.0046 0.6586±0.0139

6 0.7138±0.0027 0.5915±0.0073 0.7158±0.0013 0.6703±0.0088 0.7133±0.0038 0.7141±0.0020

8 0.7203±0.0014 0.6278±0.0031 0.7205±0.0017 0.7129±0.0017 0.7213±0.0009 0.7209±0.0010

10 0.7244±0.0012 0.6685±0.0086 0.7236±0.0012 0.7159±0.0006 0.7271±0.0011 0.7244±0.0012

12 0.7284±0.0009 0.6968±0.0034 0.7288±0.0012 0.7224±0.0015 0.7302±0.0010 0.7280±0.0010

14 0.7291±0.0017 0.6709±0.0123 0.7284±0.0016 0.7216±0.0007 0.7317±0.0015 0.7286±0.0015

16 0.7274±0.0011 0.6777±0.0055 0.7274±0.0010 0.7230±0.0013 0.7326±0.0010 0.7265±0.0011

18 0.7314±0.0012 0.7031±0.0045 0.7311±0.0012 0.7260±0.0016 0.7343±0.0008 0.7307±0.0010

20 0.7311±0.0015 0.6958±0.0069 0.7321±0.0011 0.7259±0.0010 0.7341±0.0010 0.7313±0.0012

22 0.7323±0.0011 0.6935±0.0078 0.7305±0.0012 0.7278±0.0011 0.7371±0.0014 0.7306±0.0014

24 0.7357±0.0013 0.6908±0.0086 0.7358±0.0009 0.7281±0.0018 0.7372±0.0012 0.7354±0.0012

26 0.7351±0.0018 0.6995±0.0026 0.7345±0.0015 0.7323±0.0013 0.7368±0.0011 0.7353±0.0015

28 0.7341±0.0015 0.6997±0.0076 0.7351±0.0014 0.7331±0.0011 0.7370±0.0013 0.7338±0.0012

30 0.7333±0.0023 0.7113±0.0027 0.7338±0.0024 0.7300±0.0018 0.7396±0.0014 0.7334±0.0021

48 0.7390±0.0012 0.7219±0.0007 0.7398±0.0015 0.7362±0.0012 0.7415±0.0009 0.7390±0.0014

96 0.7432±0.0014 0.7182±0.0015 0.7425±0.0013 0.7401±0.0011 0.7446±0.0011 0.7427±0.0014

192 0.7439±0.0012 0.7287±0.0012 0.7448±0.0012 0.7426±0.0014 0.7468±0.0010 0.7439±0.0013

number of training domains is limited and the algorithms are hard to capture general patterns. As the
number of training domains grows, the standard deviations of almost all the algorithms decrease.

Test-domain validation set (oracle) analysis. Figure 4 and Tables 3, 6 show the results using the
oracle model selection method. Similar observations can be obtained. The accuracy of ERM, DANN,
CDANN, CORAL, GroupDRO and Mixup on ColoredMNIST and RotatedMNIST is proportional to
the number of training domains while there are fluctuations in the lines of MMD and IRM on both
datasets, which might be due to the fact that MMD and IRM are sensitive to the hyperparameters as
we did not tune the hyperparameters for the best performance. The line of IRM on RotatedMNIST
drops slightly when the number of training domains is over 100. That might be caused by the limited
number of training images n in our theorem. In that case, algorithms might not be able to extract
general patterns and might learn biased information, which causes the performance drop. Besides,
as we only conduct 5 trials for each experiment, the randomness of the experiments might be also
another reason why the performance of IRM on RotatedMNIST drops slightly. Overall, the results
using test-domain validation set and training-domain validation set model selection methods are the
same, which supports our theoretical results.

4.4.2 EVALUATING ON THE LIMITED NUMBER OF TRAINING DOMAINS

As the leave-one-domain-out cross-validation requires huge computational resources, we only conduct
the experiments with the number of training domain from 2 to 30 with a step of 2. The results are
shown in Figure 2 in the main paper, Figure 6, Table 9 and Table 10 in the Appendix. The reason why
we only choose the even numbers is that we are trying to sample the domains evenly. For example,
for ColoredMNIST, if we use 3 training domains and test on the 0.5 domain, we may have to sample
either two domains whose hyper-parameters are bigger than 0.5 or smaller than 0.5, and only one
domain whose hyper-parameter is smaller than 0.5 or bigger than 0.5, which might cause domain
sampling drift and further we observe biased results.

Analysis of leave-one-domain-out cross-validation results. Observed from two tables and the
figure, we conclude that the test accuracy of most algorithms is proportional to the number of
training domain, while there are some exceptions, e.g., IRM on ColoredMNIST and GroupDRO on
ColoredMNIST. For all the results on RotatedMNIST, we observe that the results perfectly match
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Figure 2: The experimental results on ColoredMNIST and RotatedMINST using ERM, IRM,
DANN and C-DANN w.r.t the number of training domain using the leave-one-domain-out cross-
validation method.

our theoretical results even without any hyper-parameter tuning, especially for the experiments on
IRM. But we still can observe exactly the same fact that without any hyper-parameter tuning, the
test accuracy of IRM on RotatedMNIST grows with the increase of the number of training domain.
There are some fluctuations in the line of GroupDRO, CORAL and Mixup, which might be due to
the randomness of the experiments as we only conduct 5 experiments for each trial. On the other
hand, the results on ColoredMNIST are still proportional to the number of training domains on all
algorithms except IRM. And we also observe fluctuation on almost every algorithm. That may be
due to the fact that the number of data from each domain, n, is 1, 000, which is much smaller than
that for RotatedMNIST, which is 10, 000. The limited number of data from each domain might
hinder algorithms from learning enough patterns and thus the algorithms can only capture biased
patterns due to the lack of training data from each domain. For IRM, similarly, the importance of
hyper-parameter tuning causes the accuracy to go up and down with the increase of the number of
training domains and one might have to utilize as much as possible computational resources for
tuning it. Comparing with other two model selections methods, as this one requires more trials, the
standard deviations are smaller.

4.5 ABLATION STUDY

Analysis on different architecture. To test how our theoretical results generalize to other archi-
tecture of neural networks, we further conduct experiments on ColoredMNIST (Table 4) with
VGG11 (Simonyan & Zisserman, 2014) with the oracle model selection method. We use the learning
rate of 5e− 5 while remaining other hyparameters the same. The corresponding results are shown in
Tables 15, 16, 17, and 18 and the left two figures in Figure 3. Similar conclusion can be summarized
that the test accuracy still grows with the increase of number of training domain while using a
total different architecture. But we observe more fluctuation in the line with VGG11 as we only
conduct 1 trail for VGG11. There is a big “valley” around E = 100 in the experiments of ERM
on ColoredMNIST, which is quite unusual as it is too big compared with other fluctuation. That
might be caused by the randomness or the failure of hardware as we only see that situation once.
We also conducted experiments on Resnet18 (He et al., 2016). But after we tried different set of
hyper-parameters, ResNet18 seems not to converge on any set of hyperparamters.

Analysis on the number n of data from each domain. To testify the effect of the number of data
from each domain, we conduct experiments on ColoredMNIST using ERM and IRM with n from
1000 to 20000 and the oracle model selection method, while the original n is set to be 7000. The
experimental results are shown in Tables 11, 12, 13, and 14 and the right two figures in Figure 3.
It shows that when n is relatively small compared with the original number 7000, especially when
n = 1000, the line of the accuracy experiences lots of fluctuations. The randomness may be the
biggest reason as we only conducted one trail for the ablation study, while we still observe that, the
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Figure 3: The experimental results on ColoredMNIST using ERM and IRM, w.r.t the number of
training domain with the oracle model selection method. The left two figures show the results with
different architectures, i.e., MUNIT and VGG11 (Simonyan & Zisserman, 2014), while the left three
figures present the corresponding results with different number of n.

test accuracy is “overall” proportional to the number of training domain. When n ≥ 2000, the line of
test accuracy is absolutely proportional to the number of training domain, which fits our theoretical
results well. But that also arises a question that, what is the minimal requirement on n for achieving a
similar theoretical result.

Discussion on E < V . When E < V , there would be a lot of domains that the learning algorithm has
never seen in the training phase. Under this assumption, the lower bound on the excess error might be
higher than the current results (Theorem 1). But we might be able to have the similar conclusion with
our theoretical result. The experimental results shown in Table 9, Table 10 and Figure 2 indicate that,
even when the number of domains (less than 30) is relatively small compared with the dimension of
the training data in the case E < V , the performance is still proportional to the number of training
domain E in the most of cases, which supports our theoretical results (Theorem 1).

5 CONCLUSION

In this paper, we investigated the out-of-distribution problem and analyzed how many training domains
were required to achieve a small population error in the test domain under reasonable assumptions.
Our results theoretically characterized the phenomenon of the lost domain generalization which had
been found by Gulrajani & Lopez-Paz (2021) in 2021. And our work showed that in a minimax lower
bound fashion, any learning algorithm with an ϵ excess error to the Bayes optimal classifier required
at least poly(1/ϵ) number of training domains, even when the number of training data sampled from
each training domain was large. There were strong correlations between our work and some empirical
results (Arjovsky et al., 2019; Liu et al., 2021; Krueger et al., 2021) in the o.o.d area. Besides, though
we used Bernoulli (discrete) random variables to present our theoretical results, our lower bounds
hold true for broader distribution class as we look at the worst-case distributions.

To complement our theoretical results, we conduct experiments on two OOD benchmarks, i.e.,
ColoredMNIST and RotatedMNIST, with several OOD methods, showing that for the methods used
in this paper, the test accuracy on the test domain was proportional to the number of training domains
under three different model selection methods. That matched our theoretical results perfectly.

There are several future directions of our work. Our theorem assumed that the number of data
samples n from each domain was ∞. This assumption was used to lower bound the case of general n
because intuitively, the case of n = ∞ should be simpler than the case where n is a finite number.
It is interesting to understand how n affects a tight minimax lower bound. Another future direction
is to explore the case where the numbers of samples from each domain are different. It would be
interesting to see which domain dominates the training procedure and how to design o.o.d training
algorithms under this scenario. Moreover, in our case, the instance support (feature space) was shared
across domains. Another case we should consider is that each domain only has its own instance
support. This kind of domain shift is frequently observed in real-world scenarios and it would help
us understand the o.o.d problem further. Besides, we would also like to explore the upper bound
of o.o.d problems to see whether our lower bound results match the upper bound. Last, though
multi-class classification can be seen as a combination of multiple binary classification problems
(e.g., one-vs.-rest classifier), it is interesting to extend our results to the multi-classification problem.
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We did not see obvious negative ethical impacts in our work. In contrast, our work might have a
positive impact on society regarding the fairness (Barocas et al., 2019) and security (Zhang et al.,
2019; Kawaguchi et al., 2017; Bubeck et al., 2020) of machine learning. Achieving a small population
error in the test domain ensures fairness regarding the bias of the dataset in the race, gender, age, etc.,
as most of the public datasets, e.g., CelebA (Liu et al., 2015), have bias and that will lead to the bias
of machine learning models (Barocas et al., 2019). Moreover, security issues such as adversarial
robustness (Hendrycks et al., 2020; 2021) are also related to our study of domain generalization,
where clean examples and adversarial examples are from different domains. Improving the population
error of machine learning models in the test domain may lead to robust models against adversarial
attacks.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in Terra Incognita. In European
Conference on Computer Vision, Lecture Notes in Computer Science, pp. 472–489, 2018.

Alexis Bellot and Mihaela van der Schaar. Accounting for Unobserved Confounding in Domain
Generalization. arXiv preprint arXiv:2007.10653, 2020.

Julian Bitterwolf, Alexander Meinke, Maximilian Augustin, and Matthias Hein. Revisiting out-of-
distribution detection: A simple baseline is surprisingly effective, 2022.

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. Domain
generalization by marginal transfer learning. Journal of Machine Learning Research, 22(2):1–55,
2021.

Sebastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and size of the
weights in memorization with two-layers neural networks. In Advances in Neural Information
Processing Systems, pp. 4977–4986, 2020.

Manh-Ha Bui, Toan Tran, Anh Tran, and Dinh Q. Phung. Exploiting domain-specific features
to enhance domain generalization. In Advances in Neural Information Processing Systems, pp.
21189–21201, 2021.

Ching-Yao Chuang, Antonio Torralba, and Stefanie Jegelka. Estimating generalization under distribu-
tion shifts via domain-invariant representations. In International Conference on Machine Learning,
pp. 1984–1994, 2020.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization
via model-agnostic learning of semantic features. In Advances in Neural Information Processing
Systems, pp. 6447–6458, 2019.

Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased Metric Learning: On the Utilization of
Multiple Datasets and Web Images for Softening Bias. In IEEE International Conference on
Computer Vision, pp. 1657–1664, Sydney, Australia, 2013.

Daniel Fried, Nikita Kitaev, and Dan Klein. Cross-domain generalization of neural constituency
parsers. In Annual Meeting of the Association for Computational Linguistics, pp. 323–330, 2019.

Chuang Gan, Tianbao Yang, and Boqing Gong. Learning attributes equals multi-source domain
generalization. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 87–97, 2016.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-Adversarial Training of Neural Networks.
Journal of Machine Learning Research, 17(59):1–35, 2016.

10



Under review as a conference paper at ICLR 2023

Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain Generalization
for Object Recognition with Multi-task Autoencoders. In IEEE International Conference on
Computer Vision, pp. 2551–2559, 2015.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A Kernel Two-Sample Test. Journal of Machine Learning Research, 13(25):723–773, 2012.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778,
2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple method to improve robustness and uncertainty under data shift. In
International Conference on Learning Representations, 2020.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. In IEEE
International Conference on Computer Vision, pp. 8320–8329, 2021.

Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. FSDR: frequency space domain randomiza-
tion for domain generalization. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6891–6902, 2021.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M. Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
Benchmark of in-the-Wild Distribution Shifts. In International Conference on Machine Learning,
pp. 5637–5664, 2021.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-Distribution Generalization via Risk Extrapo-
lation (REx). In International Conference on Machine Learning, pp. 5815–5826, 2021.

Lucien LeCam. Convergence of estimates under dimensionality restrictions. The Annals of Statistics,
pp. 38–53, 1973.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, and others. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, Broader and Artier Domain
Generalization. In IEEE International Conference on Computer Vision, pp. 5543–5551, Venice,
Italy, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to Generalize: Meta-Learning
for Domain Generalization. In AAAI Conference on Artificial Intelligence, 2018a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Sequential learning for domain
generalization. In European Conference on Computer Vision, pp. 603–619. Springer, 2020.

Da Li, Henry Gouk, and Timothy Hospedales. Finding lost DG: Explaining domain generalization
via model complexity. arXiv preprint arXiv:2202.00563, 2022a.

11



Under review as a conference paper at ICLR 2023

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain Generalization with Adversarial
Feature Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5400–5409, 2018b.

Xiaotong Li, Yongxing Dai, Yixiao Ge, Jun Liu, Ying Shan, and LINGYU DUAN. Uncertainty
modeling for out-of-distribution generalization. In International Conference on Learning Repre-
sentations, 2022b.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao. Deep
Domain Generalization via Conditional Invariant Adversarial Networks. In European Conference
on Computer Vision, pp. 647–663, 2018c.

Chang Liu, Xinwei Sun, Jindong Wang, Haoyue Tang, Tao Li, Tao Qin, Wei Chen, and Tie-Yan
Liu. Learning Causal Semantic Representation for Out-of-Distribution Prediction. In Advances in
Neural Information Processing Systems, pp. 6155–6170, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
International Conference on Computer Vision, pp. 3730–3738, 2015.

Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching. In
International Conference on Machine Learning, pp. 7313–7324, 2021.

Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34
(5):2326–2366, 2006a.

Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34
(5):2326–2366, 2006b.

Toshihiko Matsuura and Tatsuya Harada. Domain Generalization Using a Mixture of Multiple Latent
Domains. In AAAI Conference on Artificial Intelligence, pp. 11749–11756, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, pp. 8024–8035,
2019.

Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Efficient domain generalization via common-
specific low-rank decomposition. In International Conference on Machine Learning, pp. 7728–
7738, 2020.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers
generalize to ImageNet? In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), International
Conference on Machine Learning, pp. 5389–5400, 2019.

Alexander Robey, George J. Pappas, and Hamed Hassani. Model-based domain generalization. In
Advances in Neural Information Processing Systems, pp. 20210–20229, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally Robust
Neural Networks. In International Conference on Learning Representations, 2020.

Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya
Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne David, Ian
Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea
Finn, and Percy Liang. Extending the WILDS Benchmark for Unsupervised Adaptation. In
International Conference on Learning Representations, 2021.

Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita
Sarawagi. Generalizing across domains via cross-gradient training. In International Conference
on Learning Representations, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556, 2014.

12



Under review as a conference paper at ICLR 2023

Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. Improving the generalization of adver-
sarial training with domain adaptation. In International Conference on Learning Representations,
2019.

Baochen Sun and Kate Saenko. Deep CORAL: Correlation Alignment for Deep Domain Adaptation.
In European Conference on Computer Vision, Lecture Notes in Computer Science, pp. 443–450,
2016.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
Measuring robustness to natural distribution shifts in image classification. In Advances in Neural
Information Processing Systems, pp. 18583–18599, 2020.

Sunil Thulasidasan, Sushil Thapa, Sayera Dhaubhadel, Gopinath Chennupati, Tanmoy Bhattacharya,
and Jeff Bilmes. A simple and effective baseline for out-of-distribution detection using abstention,
2021.

V. Vapnik. Principles of risk minimization for learning theory. In Advances in Neural Information
Processing Systems, 1991.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
Hashing Network for Unsupervised Domain Adaptation. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5385–5394, 2017.

Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain
generalization. In Advances in Neural Information Processing Systems, pp. 2215–2227, 2021.

Bailin Wang, Mirella Lapata, and Ivan Titov. Meta-learning for domain generalization in semantic
parsing. In Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 366–379, 2021.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang.
Adversarial Domain Adaptation with Domain Mixup. In AAAI Conference on Artificial Intelligence,
pp. 6502–6509, 2020.

Fu-En Yang, Yuan-Chia Cheng, Zu-Yun Shiau, and Yu-Chiang Frank Wang. Adversarial teacher-
student representation learning for domain generalization. In Advances in Neural Information
Processing Systems, pp. 19448–19460, 2021.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482, 2019.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In
International Conference on Learning Representations, 2021.

13



Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 1

A.1 PREPARATION

We first construct a “hard” instance over the supremum to lower bound the minimax problem and
then reduce it into a label recovery problem. We begin with the definition of domain distribution and
some lemmas, and we assume h > 0 throughout our proof.
Definition 2. A domain distribution is said to satisfy the Massart noise condition with margin h if
|2η(X)− 1| ≥ h with probability 1. We denote the set of domain distributions satisfying the Massart
noise condition by P(h,F) = {P ∈ P(h,F) : |2η(X)− 1| ≥ h with probability 1}.
Lemma 3. For any classifier f : X → {0, 1}, any distribution P on X × {0, 1} and the Bayes
optimal classifier f∗ on P , we have

L(f)− L(f∗) = E|2η(X)− 1||f(X)− f∗(X)| .

Specifically, if P ∈ P(h,F), we have

L(f)− L(f∗) ≥ hE|f(X)− f∗(X)| = h∥f − f∗∥L1
,

where the L1 norm is computed w.r.t the distribution of X, i.e., ∥f − f∗∥L1 =
∑

x∈X Pr(X =

x)|f(x) − f∗(x)| if X is drawn from a discrete distribution or ∥f − f∗∥L1
=
∫
x∈X

p(x)|f(x) −
f∗(x)|dx if X is drawn from a continuous distribution.

Lemma 4. Let f be any learning algorithm satisfying f ∈ F , f̃ be the learning algorithm which
is closest to f∗

β in L1 norm w.r.t the distribution of sampled data x, i.e., f̃ = argminf∈F ∥f −
f∗
β∥L1

, where f∗
β is a classifier given by a binary string β on x1,x2, ...,xV−1 such that β =

[f∗
β(x1), . . . , f

∗
β(xV−1)]. For any β ∈ {0, 1}V−1, we have

∥f̃ − f∗
β∥L1 ≤ 2∥f − f∗

β∥L1 .

The goal of f̃E,n is to estimate the ground-truth label a of the supporting data by observing and
learning from E · n data points sampled from E domains. We observe that, given any domain
distribution D ∈ P(h,F), the minimax risk RE,n (h,F) (1) can be lower-bounded as

RE,n (h,F) ≥ inf
f̃E,n∈F

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
. (3)

D will be constructed such that the supporting space (X,a) of D contains V − 1 data points
(xi, ai), i ∈ [V − 1]. We denote by {xi}i∈[V−1] and {ai}i∈[V−1] the feature space and the label
space, respectively. The label space of D can be indexed by the vertices of a binary hypercube and
the expected excess risk can be reduced to the problem of label recovering. The feature support
x1,x2, ...,xV is shared by all the domains in D. All learning algorithms f with the VC dimension
bigger than V can shatter these data points.
Theorem 5. Let {Pθ : θ ∈ {0, 1}m} be a collection of probability distributions on some set Z index
by the vertices of the binary hypercube Θ = {0, 1}m. Suppose that there exists some constant α > 0,
such that

H2(Pθ, Pθ′ ) ≤ α, if dH(θ, θ
′
) = 1 . (4)

Consider the problem of estimating the parameter θ ∈ Θ based on n i.i.d observations from Pθ,
where the loss is measured by the Hamming distance. Then the corresponding minimax risk, which
we denote by Mn(Θ), is lower-bounded as

Mn(Θ) ≥ m

2
(1−

√
αn) . (5)

A.2 CONSTRUCTING HARD INSTANCE

In this part, we lower bound this minimax problem by constructing a “hard” domain distribution
D ∈ P(h,F). We first show how to sample E training domains from the domain set D. Then, we
illustrate the procedure of sampling data points from the domain e by picking the marginal distribution
PrX of feature X while specifying the condition distributions PreY of the binary label Y given X
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and the domain. Finally, we show that the label space a ∈ {0, 1}|X|, which is the underlying label of
X, of D can be naturally indexed by the vertices of a binary hypercube of dimension V − 1.

Generating E domains from the set D. As the data generation procedure of o.o.d generalization is
of two stages, we show how to sample domains based on the feature space X . The domain-specific
label be of the e-th domain is generated by the Bernoulli

(
1+(2a−1)h

2

)
distribution as

Pr(Be,j = 1) =


1 + h

2
, if aj = 1;

1− h

2
, if aj = 0,

∀j ∈ [V ] .

Sampling data from e-th domain. Now, E domains are sampled from D and we present how to
sample the training data from the e-th domain. Given p ∈ [0, 1/(V − 1)], which will be defined later,
PreX is constructed as follows,

PreX(X = xj) =

{
p, if 1 ≤ j ≤ V − 1;

1− (V − 1)p, otherwise .

In this way, we ensure that PrX({x1, . . . ,xV }) = 1. The labels of the samples follow the distribution
Pr(Y |X,Be) given Be = be ∈ {0, 1}V and X = xe. Similarly, for a fixed be ∈ {0, 1}V , the
conditional distribution of Y e given xe is given by two Bernoulli distributions as

Bernoulli

(
1 + (2be,j − 1)h

2

)
, if xe = xj and j ∈ [V − 1] ;

Bernoulli(0), otherwise ,

where be,j is the j-th entry of be. Thus, we have

ηbe(x) = Pr(Y = 1|X = x,Be = be) =


1− h

2
, if x = xj , j ∈ [V − 1] and be,j = 0;

1 + h

2
, if x = xj , j ∈ [V − 1] and be,j = 1;

0, otherwise.

(6)

The corresponding Bayes optimal classifiers on the e-th domain and on the mixed data distribution
over all domains, denoted by f∗

be
and f∗, respectively, are given by

f∗
be
(x) =


0, if x = xj , j ∈ [V − 1] and be,j = 0;

1, if x = xj , j ∈ [V − 1] and be,j = 1;

0, otherwise,
f∗(x) =


0, if x = xj , j ∈ [V − 1] and aj = 0;

1, if x = xj , j ∈ [V − 1] and aj = 1;

0, otherwise.
(7)

From each domain, we i.i.d draw n samples. That is, the learning algorithm f̃E,n can access to E · n
samples in total. Next, we have the following lemma to show that D = {Pbe : be ∈ {0, 1}V , e ∈
[E − 1]} is in P(h,F).

Lemma 6 (Property of “Hard” Case). All the instances of D satisfy the Massart noise condition with
margin h. The distribution D belongs to P(h,F), i.e., D ∈ P(h,F).

Now, the domain distribution D has been constructed. In the following part, we will show that the
problem of learning a classifier in our setting is at least as difficult as recovering the label a. With the
Bayes optimal classifier Eq. (7) on the domain set D, we can reduce the problem to a label recovery
problem.

A.3 ANALYZING THE O.O.D. MINIMAX PROBLEM BY REDUCING IT TO A LABEL RECOVERY
PROBLEM

We show that the o.o.d minimax problem can be reduced to a label recovery problem by the following
theorem.
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Theorem 7 (Reducing to A Label Recovery Problem). Given a set of domains D ∈ P(h,F)
constructed as in Section A.2, then o.o.d minimax problem can be reduced to an estimation problem
on a binary hypercube whose vertices index the label space of D, i.e., a, which is the underlying label
of X, and the minimax risk RE,n (h,F) (1) satisfies

RE,n (h,F) ≥h

2
inf

β̃E,n∈{0,1}V −1
max

β∈{0,1}V −1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃∗
β̃E,n

− f∗
β

∥∥∥
L1

,

where the L1 norm is computed w.r.t the distribution of X, and β̃ and β are two strings.

Proof. We first apply Lemma 3. Now, the o.o.d generalization minimax risk RE,n (h,F) (1) becomes

inf
f̃E,n∈F

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
≥h inf

f̃E,n∈F
max

β∈{0,1}V −1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃E,n − f∗
β

∥∥∥
L1

,

where the L1 norm is w.r.t the distribution of samples PreX, f̃E,n and f∗
β are any classifier in F and

the Bayes optimal classifier trained on the En training samples from E domains, respectively.

Next, by using Lemma 4 with f̃ = f̃∗
E,n and f = f̃E,n, we have

h inf
f̃E,n∈F

max
β∈{0,1}V −1

EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃E,n − f∗
β

∥∥∥
L1

≥h

2
inf

β̃E,n∈{0,1}V −1
max

β∈{0,1}V −1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃∗
β̃E,n

− f∗
β

∥∥∥
L1

,

where β̃E,n = [f̃∗
β̃E,n

(x1), . . . , f̃
∗
β̃E,n

(xV−1)] is the binary string that indexes the element of {f̃β̃E,n
:

β̃E,n ∈ {0, 1}V−1}. Hence, we have reduced the o.o.d minimax problem to an estimation problem
on a binary hypercube (i.e., a label recovery problem).

By definition, given n = ∞, we have the following results

h

2
inf

β̃E,∞∈{0,1}V −1
max

β∈{0,1}V −1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃∗
β̃E,∞

− f∗
β

∥∥∥
L1

≥ h

2
inf

β̃E,∞∈{0,1}V −1
max

β∈{0,1}V −1
EPe∼D

∥∥∥f̃∗
β̃E,∞

− f∗
β

∥∥∥
L1

=
h

2
inf

β̃E,∞∈{0,1}V −1
max

β∈{0,1}V −1
Eβ

∥∥∥f̃∗
β̃E,∞

− f∗
β

∥∥∥
L1

,

where Eβ represents the expectation with respect to Prβ .

Now, we are ready to analyze the L1 norm
∥∥∥f̃∗

β̃E,∞
− f∗

β

∥∥∥
L1

, ∀β̃E,∞, β ∈ {0, 1}V−1. By definition,

we derive the following results,∥∥∥f̃β̃E,∞
− f∗

β

∥∥∥
L1

=

V∑
j=1

PrX(X = xj)
∣∣∣f̃∗

β̃E,∞,j
− f∗

βj

∣∣∣ = p

V −1∑
j=1

∣∣∣β̃E,∞,j − βj

∣∣∣ = p · dH
(
β̃E,∞, β

)
,

where dH is the Hamming distance, i.e., dH (β1, β2) =
∑

j |β1,j − β2,j |, and β1,j and β2,j are the
j-th items of β1 and β2. Now, the minimax problem becomes as measuring the distance between two
strings β̃E,n and β,

inf
f̃E,∞∈F

sup
D⊆P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,∞)− L(f∗)

]
≥ph

2
inf

β̃E,∞∈{0,1}V −1
max

β∈{0,1}V −1
EβdH

(
β̃E,∞, β

)
.

To analyze this problem, we apply Theorem 5 and have the following theorem:
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Theorem 8 (Minimax Bound). Given H2
(
Prβ̃∗

E,∞
, P rβ

)
≤ α = 2p

(
1−

√
1− h2

)
≤ 2ph2, we

have the following lower bound for the o.o.d minimax problem,

inf
f̃E,∞∈F

sup
D⊆P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,∞)− L(f∗)

]
≥ V − 1

54Eh
,

with p ∈ (0, 1/(V − 1)].

Proof. We need to upper-bound the squared Hellinger distance2 H2
(
Prβ̃E,∞

, P rβ

)
,∀β̃E,∞, β that

satisfies dH
(
β̃∞E,n, β

)
= 1. Based on the definition of the squared Hellinger distance, we have

H2
(
Prβ̃E,∞

, P rβ

)
=

V∑
i=1

∑
y∈{0,1}

(√
Prβ̃E,∞

(xi, b)−
√

Prβ(xi, b)

)2

= p

V−1∑
i=1

H2

(
Bernoulli

(
1 + (2β̃E,∞,i − 1)h

2

)
,Bernoulli

(
1 + (2βi − 1)h

2

))
.

For j ∈ [V −1], the j-th term in the above summation is nonzero if and only if β̃E,∞,j ̸= βj , in which
case it is equal to the squared Hellinger distance between the Bernoulli

(
1−h
2

)
and Bernoulli

(
1+h
2

)
distributions. Thus,

H2
(
Prβ̃E,∞

, P rβ

)
= p · dH

(
β̃E,∞, β

)
H2

(
Bernoulli

(
1− h

2

)
,Bernoulli

(
1 + h

2

))

= 2p · dH
(
β̃E,∞, β

)(√1− h

2
−
√

1 + h

2

)2

= 2p · dH
(
β̃E,∞, β

)(
1−

√
1− h2

)
.

Inserting Theorem 5 with H2(Prβ̃E,∞
, P rβ) = 2p

(
1−

√
1− h2

)
= α ≤ 2ph2, we obtain

inf
f̃E,∞

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,∞)− L(f∗)

]
≥ ph

2
inf

β̃E,∞∈{0,1}V −1
sup

β∈{0,1}V −1

EβdH(β̃, β)

≥ ph

2

V − 1

2

(
1−

√
αE

)
≥ p(V − 1)h

4

(
1−

√
2Eph2

)
.

We let p = 2
9h2E and now we have

inf
f̃E,∞

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
≥ V − 1

54Eh
.

Next, we discuss the above theorem for different choices of h. First, given h ≥
√

V−1
E , we have

RE,∞(F) ≥ V − 1

54Eh
, if h ≥

√
V − 1

E
.

2The squared Hellinger distance H2(P,Q) between P and Q is defined as H2(P,Q) =

1
2

∫
λ

(√
dP
dλ

−
√

dQ
dλ

)2

dλ.
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When 0 ≤ h <
√

V−1
E , consider h̃ =

√
V−1
E . As P(h̃,F) ⊆ P(h,F), we have

RE,∞(F) ≥V − 1

54Eh̃
=

1

54

√
V − 1

E
, if 0 ≤ h <

√
V − 1

E
.

Combine the two cases of h. The proof is completed.

B PROOFS OF USEFUL LEMMAS AND THEOREMS

B.1 PROOF OF LEMMA 3

For any classifier f : X → {0, 1} and any distribution P on X × {0, 1}, we have

L(f)− L(f∗) = E[1 (f(X) ̸= Y )− 1 (f∗(X) ̸= Y )] = E[|2η(X)− 1||f(X)− f∗(X)|] , (8)

where 1(·) is the indicator function. If cond holds, 1(cond) = 1. Otherwise, 1(cond) = 0.

Assuming that P ∈ P(h,F), we have

L(f)− L(f∗) ≥ hE[|f(x)− f∗(x)|] = h∥f − f∗∥L1
, (9)

where the L1 norm is computed w.r.t the distribution of sampled data x, i.e., ∥f − f∗∥L1
=∑

x Pr(X = x)|f(x)− f∗(x)|.

B.2 PROOF OF LEMMA 4

Let f be any learning algorithm in F , and f̃ be the learning algorithm which is closest to f∗
β in L1

norm, i.e., f̃ = argminf∈F,β∈{0,1}V −1 ∥f − f∗
β∥L1 , where f∗

β is indexed by β ∈ {0, 1}V−1. For any
β ∈ {0, 1}V−1, we have

∥f̃ − f∗
β∥L1 ≤ ∥f̃ − f∥L1 + ∥f − f∗

β∥L1 ≤ 2∥f − f∗
β∥L1 , (10)

where the first one is by the triangle inequality and the second one is due to the definition of f̃ .

B.3 PROOF OF LEMMA 6

First, by Eq. (6), we have |2ηbe
(x) − 1| ≥ h,∀x ∈ X . Second, all learning algorithms with VC

dimension bigger than V can shatter these data point. There exists at least one f ∈ F , such that
f∗
α(x) = f(x) for all x ∈ {x1, . . . ,xV }. Thus, D ⊆ P(h,F).

B.4 PROOF OF THEOREM 5

As the total variation distance can be both upper- and lower-bounded by the Hellinger distance, we
have

1

2
H2(P,Q) ≤ ∥P −Q∥TV ≤ H(P,Q) . (11)

For any θ ∈ Θ, let Pn
θ denote the product of n copies of Pθ, i.e., the joint distribution of n i.i.d

samples from Pθ. For any two θ, θ
′ ∈ Θ with dH(θ, θ

′
), by letting P = Pn

θ and Q = Pn
θ′ , we have

the following results
∥Pn

θ − Pn
θ′∥TV ≤H(Pn

θ , Q
n
θ ) . (12)

Besides, for any n pairs of distributions (Pθ,1, Pθ′ ,1), . . . , (Pθ,n, Pθ′ ,n), where Pθ,∗ and Pθ′ ,∗ are
copies of Pθ and Pθ′ , we have

H(Pn
θ , Q

n
θ ) = H(Pθ,1 × · · · × Pθ,n, Pθ′ ,1 × · · · × Pθ′ ,n) ≤

√√√√ n∑
i=1

H2(Pθ,i), Pθ′ ,i. (13)
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With the assumption (4) on the square of Hellinger, we have

∥Pn
θ − Pn

θ′∥TV ≤

√√√√ n∑
i=1

H2(Pθ,i), Pθ′ ,i ≤
√
αn. (14)

With Theorem 11, the proof is completed.

B.5 BACKGROUND AND LEMMAS

We begin this section with some definitions.

The minimax risk M(Θ) is defined as

M(Θ) = inf
θ̂

sup
θ∈Θ

Eθ[d(θ, θ̂(Z))] , (15)

where Θ is a parameter set, θ̂ = θ̂(Z) is an estimator to recover θ from the observation of a sample
Z sampled from an indexed set {Pθ : θ ∈ Θ} of a probability distributions on a finite set Z . Eθ

represent the expectation with respect to Pθ, i.e.,

Eθ[d(θ, θ̂(Z))] =
∑
z∈Z

Pθ(z)d(θ, θ̂(z)) . (16)

Besides, the distance metric d(·, ·) : Θ×Θ → R+is a pseudometric on Θ and satisfies the following
three properties,

1. Symmetry. d(θ, θ
′
= d(θ

′
, θ)),∀θ, θ′ ∈ Θ;

2. Triangle inequality. d(θ, θ
′
) ≤ d(θ, θ∗) + d(θ∗, θ

′
),∀θ, θ′

, θ∗ ∈ Θ;

3. Non-negative. d(θ, θ
′
) ≥ 0,∀θ, θ′ ∈ Θ.

The minimax risk (Eq. (16)) takes the infimum over all estimators θ̂ = θ̂(Z). In another word, this
risk tries to find an estimator θ̂ to minimize the worst-case risk supθ∈Θ Eθ[d(θ, (̂θ)(Z))]

We introduce the total variance distance based on the previous definitions.
Definition 9 (Total Variation Distance). For any two probability P,Q ∈ P(Z), the total variation
distance is

∥P −Q∥TV =
1

2

∑
z∈Z

|P (z)−Q(z)| . (17)

And it can be expressed as follows,

∥P −Q∥TV = 1−
∑
z∈Z

min(P (z), Q(z)) . (18)

In the literature, there is an important lemma named two-point method introduced by LeCam (1973)
for getting lower bounds on the minimax risk,

Lemma 10 (LeCam’s Lemma). For any θ, θ
′ ∈ Θ and any estimator θ̂, we have

Eθ[d(θ, θ̂(Z))] +Eθ[d(θ
′
, θ̂(Z))] ≥d(θ, θ

′
) ·
∑
z∈Z

min(Pθ(z), Pθ′ (z))

=d(θ, θ
′
)(1− ∥Pθ − Pθ′∥TV ) .

(19)

Proof. Given a point z ∈ Z , assuming Pθ(z) ≥ Pθ′ (z), we have

Pθ(z)d(θ, θ̂(Z)) + Pθ′ (z)d(θ
′
, θ̂(Z))

=Pθ(z)(d(θ, θ̂(Z)) + d(θ
′
, θ̂(Z))) + (Pθ′ (z)− Pθ(z))d(θ

′
, θ̂(Z))

≥Pθ(z)(d(θ, θ̂(Z)) + d(θ
′
, θ̂(Z)))

≥Pθ(z)d(θ, θ
′
) .

(20)
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Similar, if Pθ(z) > Pθ′ (z), we have

Pθ(z)d(θ, θ̂(Z)) ≥ Pθ′ (z)d(θ, θ
′
) . (21)

Sum over Z with the definition of total variation distance. The proof is completed.

Next, we introduce an important lemma.

Lemma 11. Supposing Θ = {0, 1}m, ∀θ, θ′ ∈ Θ, we consider the Hamming metric

dH(θ, θ
′
) =

∑
i∈[m]

|θi − θ
′

i| , (22)

where θi and θ
′

i are i-th entries of θ and θ
′
. Then, we can lower-bound the minimax problem as

M ≥ m

2

(
1− max

dH(θ,θ′ )=1
∥Pθ − Pθ′∥TV

)
. (23)

Proof. Let π be the uniform distribution on Θ = {0, 1}m and µi be the joint distribution of a random
pair (θ, θ

′
) ∈ Θ×Θ, ∀i ∈ [m], such that the marginal distributions of both θ and θ

′
are equal to π.

Then, the minimax risk can be lower-bounded as,

M(Θ) ≥ inf
θ̂
Eπ[d(θ, θ̂(Z))] = inf

θ̂

∑
i∈[m]

Eπ[d(θi, θ̂i(Z))]

≥
∑
i∈[m]

inf
θ̂
Eπ[d(θi, θ̂i(Z))]

≥1

2

∑
i∈[m]

Eµi [d(θi, θ
′

i) · (1− ∥Pθ − Pθ′∥TV )] .

(24)

The first inequality is due to the supremum over all the prior distribution on Θ while the third one is
by definition and Eq. (18).

Next, since d(θi, θ
′

i),∀i ∈ [m], we have

M(Θ) ≥1

2

∑
i∈[m]

Eµi
[d(θi, θ

′

i) · (1− ∥Pθ − Pθ′∥TV )]

≥1

2

∑
i∈[m]

Eµi
[1− ∥Pθ − Pθ′∥TV ]

≥1

2

∑
i∈[m]

min
θ,θ′ :dH(θ,θ′ )=1

[1− ∥Pθ − Pθ′∥TV ]

=
m

2
(1− max

θ,θ′ :dH(θ,θ′ )=1
∥Pθ − Pθ′∥TV ) .

(25)

C EXPERIMENTS

Due to the limitation of space, we present the rest of the experiments in this part.

C.1 DETAILS OF ALGORITHMS

We include the following algorothms for two multi-domain image classification tasks:

• ERM (Vapnik, 1991) is a famous machine learning algorithm that minimizes the sum of errors
across domains and examples.
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• IRM (Arjovsky et al., 2019) tries to learn an invariant feature representation ϕ(·) to capture the
underlying causal mechanism of interest across domains such that the optimal linear classifier on
top of that representation matches across domains.

• GroupDRO (Sagawa et al., 2020) learns models minimizing the worst-case training loss over a set
of pre-defined groups while increasing the importance of domains with larger errors.

• Mixup (Xu et al., 2020) guarantees domain-invariance in a continuous latent space and guides the
domain discriminator in judging samples’ difference relative to source and target domains.

• MLDG (Li et al., 2018a) simulates train/test domain shift during training by synthesizing virtual
testing domains within each mini-batch.

• CORAL (Sun & Saenko, 2016) aligns correlations of layer activations in deep neural networks to
learn domain-invariant features.

• MMD (Li et al., 2018b) extend adversarial autoencoders by imposing the Maximum Mean Discrep-
ancy (MMD (Gretton et al., 2012)) measure to align the distributions among different domains, and
matching the aligned distribution to an arbitrary prior distribution via adversarial feature learning.

• DANN (Ganin et al., 2016) encourages the emergence of features that are discriminative for the
main learning task on the source domain and indiscriminate with respect to the shift between the
domains with an adversarial network.

• C-DANN (Li et al., 2018c) is a variant of DANN matching the conditional distributions on features
and labels across domains, for all labels.

C.2 DETAILS OF MUNIT

Table 4: Details of our MUNIT architecture. We use MUNIT for all the experiments.
# Layer

1-3 Conv2D (in=d, out=64, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

4-6 Conv2D (in=64, out=128, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

7-9 Conv2D (in=128, out=128, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

10-12 Conv2D (in=128, out=128, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

13 Global Average-Pooling2D(1× 1)
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C.3 RESULTS FOR THE TEST-DOMAIN VALIDATION SET (ORACLE) MODEL SELECTION
METHOD
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Figure 4: The experimental results on ColoredMNIST and RotatedMINST using ERM (Vapnik,
1991), IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2020), Mixup (Xu et al., 2020),
CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018b), MLDG (Li et al., 2018a), DANN (Ganin
et al., 2016) and C-DANN (Li et al., 2018c) w.r.t the number of training domain using the test-domain
validation set (oracle) model selection method.
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Table 5: The experimental results on ColoredMNIST with MMD, DANN and C-DANN w.r.t the
number of training domain using the test-domain validation set (oracle) model selection method.

\# MMD DANN C-DANN

4 0.63715±0.02492 0.62982±0.01211 0.65319±0.00740

6 0.67170±0.02795 0.69513±0.00170 0.70268±0.00291

8 0.68003±0.02788 0.71480±0.00151 0.71387±0.00174

10 0.68314±0.02778 0.72152±0.00100 0.71965±0.00081

12 0.68391±0.02993 0.71994±0.00107 0.71965±0.00088

14 0.69516±0.02376 0.72537±0.00143 0.72573±0.00121

16 0.68314±0.02948 0.72692±0.00172 0.72525±0.00140

18 0.69082±0.02680 0.72663±0.00101 0.72637±0.00087

20 0.68658±0.03038 0.72984±0.00125 0.73000±0.00128

22 0.68514±0.03015 0.72891±0.00109 0.73129±0.00095

24 0.69025±0.03098 0.73077±0.00072 0.73061±0.00132

26 0.68784±0.03208 0.73238±0.00123 0.73113±0.00130

28 0.69278±0.02767 0.73090±0.00085 0.73084±0.00115

30 0.68967±0.03090 0.73126±0.00056 0.73206±0.00108

48 0.73923±0.00130 0.73479±0.00106 0.73534±0.00135

96 0.69581±0.03176 0.73919±0.00111 0.73906±0.00112

192 0.74392±0.00127 0.74257±0.00109 0.74295±0.00116

Table 6: The experimental results on RotatedMNIST with ERM, IRM, GroupDRO, Mixup, MLDG,
CORAL, MMD, DANN and C-DANN w.r.t the number of training domain using the test-domain
validation set (oracle) model selection method.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

4 0.93514±0.00764 0.35928±0.00964 0.93309±0.00837 0.79103±0.07864 0.94977±0.00195 0.92933±0.01077 0.76198±0.10829 0.89815±0.01249 0.91515±0.00440

6 0.96407±0.00215 0.47488±0.02682 0.96024±0.00223 0.94945±0.00486 0.96895±0.00127 0.96703±0.00193 0.79759±0.11377 0.94045±0.00343 0.94074±0.00407

8 0.97236±0.00106 0.62999±0.01684 0.96571±0.00121 0.96744±0.00181 0.97532±0.00105 0.97197±0.00123 0.80961±0.10859 0.94604±0.00121 0.94961±0.00144

10 0.97522±0.00078 0.67588±0.01914 0.97024±0.00121 0.97088±0.00078 0.97917±0.00102 0.97574±0.00078 0.80344±0.11473 0.95793±0.00214 0.95661±0.00125

12 0.97699±0.00077 0.80758±0.02122 0.97146±0.00127 0.97403±0.00100 0.98117±0.00056 0.97737±0.00120 0.80485±0.11497 0.95642±0.00223 0.96143±0.00161

14 0.97860±0.00082 0.79219±0.01893 0.97381±0.00103 0.97660±0.00077 0.98319±0.00062 0.97905±0.00095 0.80553±0.11508 0.96381±0.00093 0.96484±0.00180

16 0.97940±0.00107 0.78589±0.04100 0.97342±0.00112 0.97885±0.00120 0.98496±0.00061 0.97982±0.00110 0.80640±0.11523 0.96478±0.00143 0.96789±0.00136

18 0.97962±0.00041 0.86145±0.00724 0.97400±0.00117 0.98036±0.00050 0.98525±0.00082 0.98085±0.00044 0.81822±0.10803 0.96577±0.00121 0.96818±0.00186

20 0.98081±0.00104 0.84882±0.01469 0.97737±0.00110 0.98014±0.00089 0.98557±0.00067 0.98139±0.00115 0.80723±0.11537 0.96992±0.00096 0.96773±0.00128

22 0.98303±0.00067 0.89565±0.00707 0.97747±0.00104 0.98216±0.00087 0.98624±0.00056 0.98309±0.00063 0.80993±0.11512 0.96776±0.00097 0.96805±0.00135

24 0.98284±0.00055 0.86788±0.02032 0.97821±0.00057 0.98107±0.00086 0.98608±0.00056 0.98348±0.00083 0.81025±0.11498 0.97043±0.00098 0.97152±0.00162

26 0.98377±0.00077 0.90802±0.00669 0.97911±0.00078 0.98229±0.00075 0.98608±0.00056 0.98377±0.00073 0.80958±0.11576 0.96915±0.00173 0.97082±0.00229

28 0.98313±0.00087 0.89642±0.01438 0.97946±0.00074 0.98345±0.00059 0.98798±0.00046 0.98412±0.00079 0.81003±0.11583 0.97204±0.00081 0.96950±0.00116

30 0.98361±0.00059 0.92055±0.00437 0.98023±0.00049 0.98220±0.00074 0.98759±0.00059 0.98403±0.00085 0.80977±0.11579 0.97294±0.00102 0.97422±0.00169

48 0.98464±0.00044 0.92685±0.01240 0.98168±0.00044 0.98506±0.00056 0.98943±0.00044 0.98576±0.00041 0.81125±0.11603 0.97535±0.00123 0.97374±0.00069

96 0.98885±0.00040 0.93225±0.01117 0.98467±0.00052 0.98792±0.00046 0.99197±0.00037 0.98891±0.00029 0.81404±0.11650 0.97680±0.00153 0.97718±0.00191

192 0.99119±0.00038 0.90812±0.03302 0.98865±0.00048 0.98975±0.00039 0.99377±0.00027 0.99087±0.00033 0.99045±0.00026 0.98094±0.00034 0.98207±0.00074
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C.4 RESULTS OF THE TRAINING-DOMAIN VALIDATION SET MODEL SELECTION METHOD
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Figure 5: The experimental results on ColoredMNIST and RotatedMINST using ERM (Vapnik,
1991), IRM (Arjovsky et al., 2019), DRO (Sagawa et al., 2020), Mixup (Xu et al., 2020), MLDG (Li
et al., 2018a), CORAL (Sun & Saenko, 2016), MMD (Li et al., 2018b), MLDG (Li et al., 2018a),
DANN (Ganin et al., 2016) and C-DANN (Li et al., 2018c) w.r.t the number of training domain using
the training-domain validation set model selection method.
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Table 7: The experimental results on ColoredMNIST with MMD, DANN and C-DANN w.r.t the
number of training domain using the training-domain validation set model selection method.

\# MMD DANN C-DANN

4 0.63538±0.02597 0.62982±0.01211 0.65068±0.00695

6 0.66993±0.02912 0.69510±0.00172 0.69963±0.00317

8 0.67565±0.03004 0.71342±0.00234 0.71345±0.00196

10 0.68154±0.02749 0.72152±0.00100 0.71956±0.00081

12 0.68186±0.03106 0.71911±0.00109 0.71891±0.00122

14 0.69503±0.02374 0.72483±0.00140 0.72573±0.00121

16 0.68263±0.02939 0.72692±0.00172 0.72476±0.00154

18 0.68983±0.02663 0.72563±0.00133 0.72598±0.00089

20 0.68481±0.03156 0.72949±0.00117 0.72901±0.00111

22 0.68234±0.03114 0.72862±0.00115 0.73109±0.00105

24 0.68848±0.03216 0.73055±0.00059 0.73061±0.00132

26 0.68784±0.03208 0.73190±0.00146 0.73113±0.00130

28 0.69221±0.02758 0.73087±0.00084 0.73003±0.00086

30 0.68739±0.03204 0.73068±0.00036 0.73132±0.00108

48 0.73826±0.00150 0.73373±0.00128 0.73453±0.00114

96 0.69388±0.03278 0.73868±0.00131 0.73890±0.00117

192 0.74353±0.00140 0.74228±0.00118 0.74247±0.00124

Table 8: The experimental results on RotatedMNIST with ERM, IRM, GroupDRO, Mixup, MLDG,
CORAL, MMD, DANN and C-DANN w.r.t the number of training domain using the training-domain
validation set model selection method.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

4 0.93514±0.00764 0.35761±0.00945 0.93309±0.00837 0.79103±0.07864 0.94826±0.00217 0.92907±0.01075 0.76172±0.10825 0.89796±0.01262 0.91515±0.00440

6 0.96407±0.00215 0.47395±0.02740 0.95934±0.00228 0.94945±0.00486 0.96699±0.00148 0.96703±0.00193 0.79759±0.11377 0.94013±0.00342 0.93833±0.00505

8 0.97236±0.00106 0.62999±0.01684 0.96503±0.00104 0.96744±0.00181 0.97532±0.00105 0.97197±0.00123 0.80961±0.10859 0.94604±0.00121 0.94758±0.00113

10 0.97500±0.00081 0.67588±0.01914 0.97011±0.00122 0.97063±0.00094 0.97898±0.00103 0.97477±0.00081 0.80276±0.11462 0.95787±0.00218 0.95568±0.00165

12 0.97644±0.00074 0.80758±0.02122 0.97136±0.00130 0.97384±0.00101 0.98117±0.00056 0.97702±0.00128 0.80450±0.11491 0.95578±0.00227 0.96018±0.00224

14 0.97860±0.00082 0.79219±0.01893 0.97316±0.00130 0.97660±0.00077 0.98203±0.00052 0.97853±0.00115 0.80501±0.11500 0.96381±0.00093 0.96484±0.00180

16 0.97921±0.00118 0.78589±0.04100 0.97271±0.00093 0.97872±0.00120 0.98496±0.00061 0.97966±0.00120 0.80623±0.11520 0.96478±0.00143 0.96699±0.00186

18 0.97943±0.00042 0.86145±0.00724 0.97387±0.00122 0.98036±0.00050 0.98502±0.00084 0.98049±0.00055 0.81787±0.10798 0.96577±0.00121 0.96783±0.00208

20 0.98065±0.00099 0.84882±0.01469 0.97712±0.00123 0.97959±0.00100 0.98551±0.00063 0.98126±0.00116 0.80713±0.11535 0.96992±0.00096 0.96773±0.00128

22 0.98203±0.00059 0.89565±0.00707 0.97615±0.00086 0.98203±0.00089 0.98567±0.00051 0.98265±0.00067 0.80948±0.11504 0.96735±0.00091 0.96722±0.00144

24 0.98284±0.00055 0.86788±0.02032 0.97770±0.00072 0.98043±0.00089 0.98531±0.00028 0.98332±0.00092 0.81009±0.11496 0.97043±0.00098 0.97018±0.00229

26 0.98335±0.00095 0.90802±0.00669 0.97901±0.00084 0.98175±0.00081 0.98599±0.00056 0.98364±0.00081 0.80945±0.11573 0.96915±0.00173 0.96976±0.00240

28 0.98258±0.00116 0.89642±0.01438 0.97946±0.00074 0.98345±0.00059 0.98798±0.00046 0.98329±0.00118 0.80919±0.11569 0.97204±0.00081 0.96940±0.00116

30 0.98348±0.00064 0.92055±0.00437 0.98023±0.00049 0.98200±0.00071 0.98747±0.00056 0.98399±0.00086 0.80974±0.11578 0.97294±0.00102 0.97416±0.00169

48 0.98377±0.00041 0.92685±0.01240 0.98139±0.00045 0.98461±0.00069 0.98936±0.00045 0.98522±0.00046 0.81070±0.11594 0.97535±0.00123 0.97374±0.00069

96 0.98885±0.00040 0.93225±0.01117 0.98454±0.00056 0.98743±0.00059 0.99164±0.00041 0.98891±0.00029 0.81404±0.11650 0.97680±0.00153 0.97718±0.00191

192 0.99078±0.00057 0.90812±0.03302 0.98856±0.00052 0.98975±0.00039 0.99364±0.00030 0.99087±0.00033 0.99045±0.00026 0.98043±0.00062 0.98207±0.00074
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C.5 RESULTS OF LEAVE-ONE-DOMAIN-OUT CROSS-VALIDATION METHOD

Table 9: The experimental results on ColoredMNIST with ERM, IRM, GroupDRO, Mixup, MLDG,
CORAL, MMD, DANN and C-DANN w.r.t the number of training domain with the leave-one-
domain-out cross-validation method.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

2 0.50590±0.00590 0.50641±0.00612 0.50590±0.00590 0.50558±0.00586 0.54707±0.01912 0.50590±0.00590 0.50590±0.00590 0.50702±0.00559 0.50702±0.00559

4 0.70339±0.00971 0.58743±0.02309 0.70815±0.00860 0.62600±0.01984 0.70407±0.01104 0.70403±0.00876 0.66312±0.07855 0.69606±0.00697 0.68925±0.01099

6 0.71843±0.00544 0.62555±0.01763 0.72126±0.00383 0.70924±0.00852 0.71898±0.01061 0.72132±0.00513 0.68462±0.06970 0.71175±0.00477 0.71541±0.00457

8 0.72325±0.00194 0.66830±0.01954 0.71927±0.00736 0.71445±0.00681 0.72229±0.00372 0.72332±0.00273 0.68208±0.08341 0.71760±0.00569 0.71949±0.00304

10 0.72235±0.00399 0.68131±0.01824 0.72094±0.00382 0.71699±0.00755 0.72377±0.00415 0.72216±0.00301 0.68003±0.08520 0.72084±0.00523 0.71991±0.00585

12 0.72582±0.00416 0.68549±0.02169 0.72663±0.00485 0.72306±0.00851 0.72483±0.00693 0.72608±0.00332 0.68134±0.08941 0.72251±0.00401 0.72110±0.00542

14 0.72634±0.00179 0.65743±0.02809 0.72255±0.00313 0.72103±0.00576 0.72923±0.00458 0.72579±0.00142 0.68925±0.07201 0.72428±0.00553 0.72283±0.00717

16 0.72756±0.00341 0.67437±0.03324 0.72435±0.00405 0.72463±0.00621 0.73048±0.00533 0.73228±0.00350 0.68957±0.08461 0.72312±0.00604 0.72255±0.00468

18 0.72643±0.00564 0.68501±0.02319 0.73019±0.00598 0.72618±0.00425 0.72814±0.00695 0.72682±0.00497 0.68244±0.08955 0.72444±0.00724 0.72087±0.00324

20 0.72839±0.00317 0.63712±0.00778 0.72650±0.00432 0.72553±0.00352 0.72946±0.00418 0.72849±0.00364 0.68449±0.08874 0.72679±0.00529 0.72759±0.00554

22 0.73299±0.00726 0.67083±0.02748 0.72868±0.00358 0.72534±0.00474 0.72917±0.00338 0.73215±0.00442 0.69799±0.07162 0.72502±0.00622 0.72380±0.00388

24 0.73289±0.00435 0.68343±0.03175 0.73238±0.00473 0.72782±0.00612 0.73135±0.00746 0.73440±0.00560 0.69314±0.08267 0.72608±0.00595 0.72586±0.00736

26 0.73061±0.00318 0.66977±0.02562 0.73257±0.00408 0.72769±0.01092 0.73215±0.00307 0.73260±0.00454 0.69680±0.06567 0.72682±0.00283 0.72875±0.00501

28 0.72872±0.00950 0.65329±0.03800 0.73232±0.00896 0.72913±0.00615 0.73434±0.00258 0.73135±0.00779 0.68822±0.08396 0.73135±0.00403 0.72759±0.00670

30 0.72817±0.00777 0.66534±0.03140 0.72949±0.00778 0.72737±0.00636 0.73543±0.00529 0.73360±0.00847 0.68857±0.08788 0.72589±0.00805 0.73177±0.00121

Table 10: The experimental results on RotatedMNIST with ERM, IRM, GroupDRO, Mixup, MLDG,
CORAL, MMD, DANN and C-DANN w.r.t the number of training domain with the leave-one-
domain-out cross-validation method.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

2 0.76915±0.02097 0.28944±0.04402 0.76915±0.02097 0.77532±0.01590 0.80247±0.02643 0.76915±0.02097 0.76915±0.02097 0.71027±0.04250 0.71027±0.04250

4 0.94479±0.00741 0.46200±0.07928 0.94029±0.01190 0.92846±0.01422 0.95777±0.00656 0.94736±0.00570 0.78348±0.32848 0.91191±0.01518 0.92001±0.01761

6 0.96889±0.00154 0.58390±0.06660 0.96317±0.00185 0.96012±0.00528 0.96860±0.00400 0.96998±0.00256 0.81536±0.31159 0.93990±0.00774 0.94334±0.00562

8 0.97387±0.00216 0.69259±0.03608 0.96754±0.00272 0.97021±0.00304 0.97718±0.00291 0.97435±0.00236 0.81713±0.31376 0.95648±0.00360 0.95359±0.00672

10 0.97786±0.00229 0.78133±0.06174 0.97204±0.00256 0.97223±0.00351 0.97946±0.00168 0.97670±0.00218 0.80389±0.34498 0.96137±0.00431 0.96066±0.00416

12 0.97712±0.00289 0.82160±0.03162 0.97403±0.00335 0.97593±0.00203 0.97943±0.00278 0.97824±0.00193 0.80543±0.34519 0.96433±0.00358 0.96728±0.00235

14 0.97895±0.00116 0.86595±0.01777 0.97352±0.00099 0.97692±0.00136 0.98284±0.00186 0.98085±0.00265 0.81096±0.33751 0.96696±0.00299 0.96706±0.00196

16 0.98245±0.00206 0.88954±0.02443 0.97641±0.00368 0.97924±0.00221 0.98454±0.00172 0.98300±0.00218 0.81816±0.32801 0.96854±0.00196 0.97063±0.00286

18 0.98300±0.00221 0.90757±0.01948 0.97705±0.00321 0.98158±0.00156 0.98666±0.00221 0.98319±0.00257 0.82423±0.31812 0.96937±0.00210 0.97127±0.00184

20 0.98309±0.00126 0.92811±0.01539 0.97725±0.00397 0.98043±0.00258 0.98695±0.00185 0.98393±0.00132 0.82324±0.31930 0.97046±0.00246 0.97165±0.00126

22 0.98390±0.00041 0.91956±0.02096 0.97905±0.00276 0.98242±0.00265 0.98747±0.00164 0.98361±0.00202 0.81967±0.32668 0.97220±0.00177 0.97397±0.00129

24 0.98338±0.00165 0.94189±0.01098 0.97869±0.00183 0.98432±0.00112 0.98673±0.00226 0.98461±0.00169 0.82185±0.32207 0.97345±0.00162 0.97416±0.00178

26 0.98551±0.00137 0.94395±0.01244 0.97966±0.00174 0.98223±0.00207 0.98763±0.00179 0.98387±0.00189 0.82732±0.31274 0.97590±0.00202 0.97541±0.00160

28 0.98563±0.00188 0.95529±0.00930 0.98113±0.00185 0.98322±0.00188 0.99062±0.00069 0.98689±0.00153 0.82336±0.32491 0.97503±0.00256 0.97757±0.00247

30 0.98698±0.00108 0.95549±0.00887 0.98097±0.00263 0.98599±0.00107 0.98972±0.00139 0.98698±0.00261 0.98499±0.00138 0.97394±0.00219 0.97718±0.00281
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Figure 6: The experimental results on ColoredMNIST and RotatedMINST using DRO (Sagawa
et al., 2020), Mixup (Xu et al., 2020), MLDG (Li et al., 2018a), CORAL (Sun & Saenko, 2016),
MMD (Li et al., 2018b), and MLDG (Li et al., 2018a) w.r.t the number of training domain with the
leave-one-domain-out cross-validation method.

C.6 RESULTS OF ABLATION STUDY
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Figure 7: The experimental results on ColoredMNIST using ERM (Vapnik, 1991) and IRM (Arjovsky
et al., 2019) w.r.t the number of training domain using the training-domain validation set model
selection method. The left two figures show the results with different architectures, i.e., MUNIT and
VGG11 (Simonyan & Zisserman, 2014), while the left three figures present the corresponding results
with different number of n.
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Table 11: The experimental results on ColoredMNIST with ERM w.r.t the number of training domain
using the test-domain validation set (oracle) model selection method with changing the number of
training images from each domain.

\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5150 0.5050 0.5815 0.6697 0.7080 0.6976 0.7261 0.7324 0.7372

6 0.5350 0.5463 0.6719 0.7138 0.7146 0.7194 0.7308 0.7381 0.7414

8 0.5150 0.5988 0.7129 0.7203 0.7133 0.7251 0.7318 0.7392 0.7421

10 0.5587 0.6506 0.7314 0.7244 0.7194 0.7252 0.7369 0.7399 0.7432

12 0.5913 0.6625 0.7202 0.7284 0.7241 0.7264 0.7379 0.7417 0.7447

14 0.5387 0.6944 0.7211 0.7291 0.7237 0.7296 0.7405 0.7435 0.7468

16 0.5637 0.6969 0.7329 0.7274 0.7237 0.7296 0.7391 0.7434 0.7465

18 0.6300 0.6981 0.7375 0.7314 0.7261 0.7264 0.7416 0.7447 0.7469

20 0.5913 0.6850 0.7229 0.7311 0.7267 0.7319 0.7409 0.7449 0.7477

22 0.5150 0.7150 0.7396 0.7323 0.7271 0.7314 0.7418 0.7455 0.7478

24 0.6713 0.6969 0.7335 0.7357 0.7294 0.7320 0.7413 0.7463 0.7486

26 0.6425 0.6956 0.7366 0.7351 0.7281 0.7335 0.7435 0.7463 0.7486

28 0.6800 0.7044 0.7405 0.7341 0.7300 0.7348 0.7432 0.7465 0.7486

30 0.6300 0.7144 0.7372 0.7333 0.7270 0.7334 0.7426 0.7464 0.7489

48 0.6950 0.7231 0.7436 0.7390 0.7347 0.7370 0.7459 0.7477 0.7501

96 0.6725 0.7331 0.7414 0.7432 0.7376 0.7408 0.7492 0.7499 0.7518

192 0.6650 0.7306 0.7514 0.7439 0.7419 0.7439 0.7505 0.7512 0.7525

Table 12: The experimental results on ColoredMNIST with IRM w.r.t the number of training domain
using the test-domain validation set (oracle) model selection method with changing the number of
training images from each domain.

\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5675 0.5519 0.5760 0.5517 0.6206 0.5889 0.6425 0.6562 0.6598

6 0.5513 0.5363 0.6382 0.5915 0.6253 0.6354 0.6535 0.6793 0.6974

8 0.5150 0.5587 0.6452 0.6278 0.6647 0.6663 0.6578 0.6976 0.7031

10 0.5275 0.6225 0.6625 0.6685 0.6684 0.6915 0.6876 0.6987 0.7093

12 0.5200 0.6106 0.6859 0.6968 0.7020 0.6846 0.7006 0.7049 0.7144

14 0.5150 0.6444 0.6989 0.6709 0.6864 0.6687 0.6976 0.7089 0.7136

16 0.5387 0.6312 0.7077 0.6777 0.6961 0.6994 0.6966 0.7086 0.7200

18 0.6462 0.6825 0.7083 0.7031 0.6737 0.6860 0.7019 0.7146 0.7175

20 0.5737 0.6400 0.6938 0.6958 0.7000 0.6935 0.7064 0.7148 0.7212

22 0.6200 0.6706 0.6980 0.6935 0.6964 0.7004 0.7144 0.7101 0.7203

24 0.6138 0.6550 0.7241 0.6908 0.7024 0.7007 0.7063 0.7183 0.7238

26 0.6100 0.6625 0.6917 0.6995 0.7121 0.7034 0.7128 0.7177 0.7239

28 0.6375 0.6787 0.7190 0.6997 0.7067 0.7200 0.7086 0.7224 0.7224

30 0.5787 0.5844 0.7284 0.7113 0.7063 0.7063 0.7134 0.7190 0.7244

48 0.6488 0.6825 0.7153 0.7219 0.7016 0.7081 0.7161 0.7221 0.7249

96 0.6488 0.7019 0.7308 0.7182 0.7157 0.7163 0.7211 0.7286 0.7334

192 0.6475 0.7031 0.7196 0.7287 0.7213 0.7271 0.7265 0.7310 0.7345
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Table 13: The experimental results on ColoredMNIST with ERM w.r.t the number of training domain
using the training-domain validation set model selection method with changing the number of training
images from each domain.

\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5150 0.5050 0.5815 0.6697 0.7080 0.6916 0.7258 0.7323 0.7372

6 0.4850 0.5463 0.6719 0.7135 0.7146 0.7165 0.7303 0.7381 0.7409

8 0.4888 0.5988 0.7129 0.7183 0.7081 0.7251 0.7311 0.7383 0.7417

10 0.5587 0.6506 0.7314 0.7226 0.7194 0.7250 0.7369 0.7399 0.7430

12 0.5913 0.6625 0.7202 0.7280 0.7241 0.7264 0.7379 0.7417 0.7441

14 0.5212 0.6944 0.7208 0.7289 0.7169 0.7296 0.7405 0.7431 0.7468

16 0.5637 0.6969 0.7329 0.7268 0.7237 0.7276 0.7391 0.7434 0.7462

18 0.6300 0.6981 0.7375 0.7304 0.7261 0.7264 0.7409 0.7447 0.7467

20 0.5913 0.6850 0.7229 0.7305 0.7254 0.7306 0.7409 0.7449 0.7477

22 0.5000 0.7150 0.7387 0.7323 0.7259 0.7309 0.7418 0.7450 0.7478

24 0.6713 0.6969 0.7335 0.7330 0.7277 0.7304 0.7413 0.7463 0.7483

26 0.6425 0.6956 0.7360 0.7350 0.7281 0.7335 0.7435 0.7463 0.7486

28 0.6800 0.7044 0.7405 0.7336 0.7257 0.7348 0.7432 0.7465 0.7480

30 0.6300 0.7144 0.7372 0.7331 0.7266 0.7316 0.7426 0.7456 0.7487

48 0.6950 0.7231 0.7436 0.7386 0.7347 0.7370 0.7459 0.7477 0.7501

96 0.6725 0.7331 0.7399 0.7427 0.7363 0.7394 0.7492 0.7499 0.7518

192 0.6650 0.7306 0.7514 0.7437 0.7419 0.7438 0.7505 0.7512 0.7525

Table 14: The experimental results on ColoredMNIST with IRM w.r.t the number of training domain
using the training-domain validation set model selection method with changing the number of training
images from each domain.

\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5675 0.5281 0.5760 0.5500 0.6126 0.5889 0.6425 0.6562 0.6598

6 0.5513 0.5363 0.6382 0.5910 0.6253 0.6354 0.6535 0.6793 0.6974

8 0.4913 0.5587 0.6452 0.6278 0.6647 0.6663 0.6576 0.6976 0.7031

10 0.5200 0.6225 0.6625 0.6685 0.6684 0.6915 0.6876 0.6987 0.7093

12 0.4750 0.6106 0.6859 0.6968 0.7004 0.6846 0.7006 0.7049 0.7144

14 0.4963 0.6444 0.6989 0.6709 0.6864 0.6687 0.6976 0.7089 0.7134

16 0.4850 0.6312 0.7077 0.6777 0.6961 0.6994 0.6966 0.7086 0.7200

18 0.6462 0.6825 0.7083 0.7031 0.6724 0.6830 0.7010 0.7146 0.7167

20 0.5737 0.6400 0.6938 0.6957 0.7000 0.6904 0.7064 0.7148 0.7212

22 0.5825 0.6706 0.6944 0.6935 0.6964 0.7004 0.7143 0.7101 0.7203

24 0.6138 0.6550 0.7241 0.6908 0.7024 0.7007 0.7063 0.7183 0.7238

26 0.6100 0.6625 0.6917 0.6995 0.7121 0.7034 0.7128 0.7177 0.7239

28 0.6375 0.6787 0.7190 0.6997 0.7067 0.7200 0.7086 0.7224 0.7224

30 0.5625 0.5844 0.7284 0.7113 0.7063 0.7063 0.7134 0.7190 0.7226

48 0.6488 0.6825 0.7153 0.7219 0.6959 0.7081 0.7160 0.7221 0.7249

96 0.6488 0.7019 0.7308 0.7182 0.7157 0.7133 0.7211 0.7285 0.7334

192 0.6475 0.7031 0.7196 0.7287 0.7213 0.7271 0.7265 0.7306 0.7335
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Table 15: The experimental results on ColoredMNIST with ERM w.r.t the number of training domain
using the training-domain validation set model selection method with MUNIT and VGG11.
\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.6697 0.7135 0.7183 0.7226 0.7280 0.7289 0.7268 0.7304 0.7305 0.7323 0.7330 0.7350 0.7336 0.7331 0.7386 0.7427 0.7437

VGG11 0.7085 0.7281 0.7324 0.5918 0.7417 0.7412 0.7413 0.7426 0.7464 0.7428 0.7481 0.7507 0.7465 0.7527 0.7603 0.7810 0.7997

Table 16: The experimental results on ColoredMNIST with IRM w.r.t the number of training domain
using the training-domain validation set model selection method with MUNIT and VGG11.
\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.5500 0.5910 0.6278 0.6685 0.6968 0.6709 0.6777 0.7031 0.6957 0.6935 0.6908 0.6995 0.6997 0.7113 0.7219 0.7182 0.7287

VGG11 0.5589 0.6312 0.5716 0.6466 0.6659 0.6476 0.6585 0.6548 0.6694 0.6571 0.6897 0.6743 0.6994 0.7029 0.7025 0.7379 0.7603

Table 17: The experimental results on ColoredMNIST with ERM w.r.t the number of training domain
using the test-domain validation set (oracle) model selection method with MUNIT and VGG11.
\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.6697 0.7138 0.7203 0.7244 0.7284 0.7291 0.7274 0.7314 0.7311 0.7323 0.7357 0.7351 0.7341 0.7333 0.7390 0.7432 0.7439

VGG11 0.7087 0.7281 0.7324 0.5918 0.7417 0.7412 0.7442 0.7429 0.7464 0.7456 0.7489 0.7507 0.7510 0.7553 0.7605 0.7810 0.7997

Table 18: The experimental results on ColoredMNIST with IRM w.r.t the number of training domain
using the test-domain validation set (oracle) model selection method with MUNIT and VGG11.
\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.5517 0.5915 0.6278 0.6685 0.6968 0.6709 0.6777 0.7031 0.6958 0.6935 0.6908 0.6995 0.6997 0.7113 0.7219 0.7182 0.7287

VGG11 0.5589 0.6312 0.5803 0.6466 0.6659 0.6476 0.6608 0.6548 0.6694 0.6571 0.6897 0.6743 0.6994 0.7036 0.7025 0.7382 0.7603
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