
Published in Transactions on Machine Learning Research (05/2023)

Modelling sequential branching dynamics with a multivariate
branching Gaussian process

Elvijs Sarkans elvijs.sarkans@gmail.com
BIOS Health

Sumon Ahmed sumon@du.ac.bd
University of Dhaka

Magnus Rattray magnus.rattray@manchester.ac.uk
University of Manchester

Alexis Boukouvalas alexis.boukouvalas@gmail.com
PROWLER.io

Reviewed on OpenReview: https: // openreview. net/ forum? id= 9KoBOlstTq

Abstract

The Branching Gaussian Process (BGP) model is a modification of the Overlapping Mixture
of Gaussian Processes (OMGP) where latent functions branch in time. The BGP model
was introduced as a method to model bifurcations in single-cell gene expression data and
order genes by inferring their branching time parameter. A limitation of the current BGP
model is that the assignment of observations to latent functions is inferred independently
for each output dimension (gene). This leads to inconsistent assignments across outputs
and reduces the accuracy of branching time inference. Here, we propose a multivariate
branching Gaussian process (MBGP) model to perform joint branch assignment inference
across multiple output dimensions. This ensures that branch assignments are consistent and
leverages more data for branching time inference. Model inference is more challenging than
for the original BGP or OMGP models because assignment labels can switch from trunk to
branch lineages as branching times change during inference. To scale up inference to large
datasets we use sparse variational Bayesian inference. We examine the effectiveness of our
approach on synthetic data and a single-cell RNA-Seq dataset from mouse haematopoietic
stem cells (HSCs). Our approach ensures assignment consistency by design and achieves
improved accuracy in branching time inference and assignment accuracy.

1 Introduction

Many algorithms have been developed to uncover trajectories from single-cell gene expression data (Saelens
et al., 2019). Genome-scale single-cell experiments are destructive, so that time information is lost, and tra-
jectory inference provides a useful approach to associate cells with inferred time labels (pseudotimes) to help
recover gene expression dynamics. The resulting trajectories are of great biological interest and branching
trajectories are of particular interest in systems where cells can differentiate into multiple alternative fates.

Pseudotime inference methods capture broad changes across high-dimensional gene expression data. For
example, a popular approach is the Monocle algorithm (Qiu et al., 2017), which combines dimensionality
reduction with minimal spanning tree estimation to order cells along trajectories. However, these algorithms
do not model differences in branching dynamics across individual genes. In this paper, we consider the
complementary problem of modelling gene-specific branching dynamics along pseudotime trajectories. This
is biologically important as it identifies the branching order of different genes, leading to a better under-
standing of gene networks involved in cellular differentiation. Two existing methods tackle the problem of

1

https://openreview.net/forum?id=9KoBOlstTq

Published in Transactions on Machine Learning Research (05/2023)

inferring gene-specific branching times: Branch Expression Analysis Modelling (BEAM) (Qiu et al., 2017)
and Branching Gaussian Process (BGP) (Boukouvalas et al., 2018). BEAM was the first method to tackle the
branching time inference problem by using a relatively straightforward spline-based approach. Boukouvalas
et al. (2018) improved on the branching time estimation with BGP, especially for early branching genes and
genes with low signal-to-noise. They achieved this improved performance by combining trajectory inference
with branch label inference to better identify gene-specific branching times. The PseudotimeDE (Song & Li,
2021) and Tradeseq (Van den Berge et al., 2020) methods have also been proposed to estimate which genes
are branching. However, these methods do not infer the branching time and cannot be used in ordering the
branching times of different genes.

BGP uses an approach inspired by the Overlapping Mixture of Gaussian Processes model (OMGP, Lázaro-
Gredilla et al., 2012) to probabilistically label cells with the branches they belong to. OMGP is a mixture
model developed for time-series data where each mixture component is a Gaussian Process (GP) function and
data points can be assigned to alternative mixture components. In the case of single-cell gene expression data,
pseudotimes represent cells’ progression through some developmental process and are analogous to time-series
labels. Therefore, each cell can be assigned to the mixture components of OMGP based on pseudotime, an
approach adopted by the GPfates method for trajectory inference (Lönnberg et al., 2017). However, in the
standard OMGP, mixture components are independent and are represented by a priori independent latent
GP functions, whereas cellular trajectories are typically branching as cells begin in the same state but later
differentiate into one of multiple alternative states during a developmental process. Therefore, Boukouvalas
et al. (2018) adapted the OMGP model by introducing dependence among the mixture components. Their
BGP model uses a branching kernel that forces latent GP functions representing mixture components to
intersect at a branching location and hence to become dependent on one another. Before the branching time
cells are assigned to a trunk function and after the branching time cells can be assigned to either of two
child functions. The branching time is a parameter of the model that can be inferred to distinguish early,
late and non-branching genes.

Trajectory inference methods such as Monocle can be used to provide cellular branch label information after
some global cellular branching time inferred from the reduced dimension gene expression data. However,
early-branching genes may be incorrectly assigned to the trunk according to this global assignment. The BGP
model allows the branching time for specific genes to be earlier than the global branching time and new branch
labels to be inferred after this time. Boukouvalas et al. (2018) showed the BGP approach outperformed
BEAM, especially with regards to such early branching genes for which no global branching information is
available. However, in the original BGP model the branch assignments were made independently for each
gene and could potentially be inconsistent across genes, which makes little biological sense. Here, we extend
the model to address this limitation. In the proposed multivariate BGP (MBGP) we perform joint inference
across all genes in a way that ensures consistency in cell assignments. This increases the power of the method
to infer branch labels, so that MBGP is better able to correct errors in the Monocle branch labelling and
can assign cells to branches with much weaker prior label information than BGP. An added benefit is that
a single fit of the model on many genes (MBGP) is faster than many fits on a single gene (BGP) due to the
label inference being shared.

In Section 2 we define the modelling problem. In Section 3 we demonstrate the limitations of the BGP model
on single cell gene expression data. In Section 4 we describe the MBGP model and in Section 5 we compare
its performance to the original BGP model on both synthetic and single-cell gene expression data.

2 Problem definition

Consider observations Y ∈ RN×D associated with inputs t ∈ RN (without loss of generality, assumed to be
monotonically increasing and in [0, 1]) with the following properties:

• Inputs t define a branching process for each dimension d. Prior to an unknown branching point
bd ∈ [0, 1], i.e. when tn < bd, data point Yn,d is associated with a “trunk” while after this point data
points can be associated with one of two underlying bifurcation “branches” that generated it.

2

Published in Transactions on Machine Learning Research (05/2023)

• The minimum branching point across dimensions defines the global branching point. After this point
each input tn is associated with one of two global bifurcation branches.

• The assignment of data points to branches is consistent with the global branching across outputs
(but unknown). That is, there exists a global assignment of inputs tn to branches, such that if tn is
in branch A, then all outputs Yn,d with tn > bd are also associated with branch A.

For datasets that satisfy the properties above, we want to solve two problems:

• branching time inference: for each output d ∈ {1, 2, ..., D} determine the branching time bd.

• data point labeling: for each data point n ∈ {1, 2, ..., N} determine which branch it belongs to.

The formal definition is somewhat dense, but it tries to capture a simple idea illustrated in Figure 1.

Figure 1: Illustration of the problem definition. We plot a dataset with D = 2 outputs over N = 10 data
points corresponding to equidistant inputs on [0, 1]: t1 = 0, t2 = 0.11..., ..., t10 = 1.0. The branching time
inference problem is solved by b1 = 0.3 and b2 = 0.5. The data point labeling problem is solved via data
point assignments indicated by the data point colours. The trunk is coloured green while the two branches
(A and B) are coloured yellow and pink respectively. In a biological context, the data Y:,1 corresponds to a
gene that branches early and whose expression rises in branch A and falls in branch B, while the data Y:,2
corresponds to a gene that branches later, whose expression falls in branch A and rises in branch B. The cell
assignments are consistent once both genes have started to branch.

As discussed in the introduction, the abstract problem definition is motivated by the trajectory inference
problem in single-cell gene expression data. In this application, Yn,d measures how much cell n expresses
gene d at input tn (usually called “pseudotime”). The branching points represent when the expression of a
gene begins to differ between two lineages (branches). The “consistent” data point assignment to branches
captures the idea that different cells evolve via consistent trajectories.

We note that no “ground truth” branching points or cell labels are available for real datasets, which makes
the algorithm evaluation somewhat subjective. We will therefore augment the evaluation of MBGP to include
synthetic datasets with known ground truth.

3 Branching Gaussian Process (BGP): Overview and limitations

We highlight some of the key equations and techniques used in the original BGP method (Boukouvalas
et al., 2018) that we will be building on in §4. We show how it is a good model for solving the branching
time inference, but makes errors in the data point labeling problem and does not ensure data point labeling
consistency across outputs.

3

Published in Transactions on Machine Learning Research (05/2023)

The outputs in BGP are modelled as independent. This makes the extension from one to many outputs
straightforward (see §3.3 for details). However, as we will see in §3.4 this mathematical convenience comes
at a cost to modelling capabilities.

3.1 Model specification

Let y ∈ RN×1 be single output data conforming to the full problem definition from §2. We use latent GP
functions to represent the trunk and branches of the data.

We first discuss the kernel construction that captures the requirement that the trunk and branch latent
functions cross in a single location - the branching or bifurcation point. We then write down the model
likelihood, and finally we briefly discuss the inference.

3.1.1 Branching kernel

For clarity we restrict our attention to three latent GP functions {f1, f2, f3} that represent the trunk and
branches of the bifurcation. We will sometimes also denote these three latent functions by {f, g, h} with f
denoting the trunk. For convenience, an evaluation of latent functions at N inputs (corresponding to cells
in y) is denoted by F c ∈ R3×N where fi corresponds to the i-th row (1 ≤ i ≤ 3).

Notation: we use F c to describe the latent functions using OMGP-compatible matrix shapes. In Section
§3.3 we will define a reshaped but equivalent F that makes the variational inference equations simpler.

In order for the latent trunk and branch functions to capture bifurcations, we need to constrain them all to
cross at a given input point. Yang et al. (2016) described the joint probability density and the corresponding
GP covariance for two latent functions constrained to cross each other at a given input. This was extended
by Boukouvalas et al. (2018) to three latent functions crossing at a single point. We briefly re-state the key
governing equations.

We place the GP priors on f , g, h, constrain them to all cross at the branching time b, and restrict the prior
covariances to all have the same structure k:

f(t) ∼ GP(0, k(t, t′)),
g(t) ∼ GP(0, k(t, t′)),
h(t) ∼ GP(0, k(t, t′)),
f(b) = g(b) = h(b).

Let us consider a vector of times t and evaluate the covariance of the random variables f(t), g(t), h(t),
denoted by S. Since the individual covariance structures of f , g and h are identical, the diagonal blocks of
S are given by Ki,j := k(ti, tj), whereas off-diagonal blocks are given by

Li,j := k(ti, b)k(b, tj)
k(b, b) ,

giving us the overall covariance

S =

K L L
L K L
L L K

 . (1)

Figure 2 shows an example of this covariance structure. The diagonal blocks show the covariance structure
of kernel k (in this case, an exponentiated quadratic) whereas the off-diagonal blocks reflect the intersection
of latent functions at time b where the functions are constrained to be equal.

Note that the branching kernel can be extended to capture multiple bifurcations by extending the number of
latent functions considered. This general case can be treated in much the same way as the single bifurcation
case. However, here we restrict our attention to modelling a single bifurcation event.

4

Published in Transactions on Machine Learning Research (05/2023)

0 2 4 6 8 10

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f

g

h

f g h

f

g

h
0.2

0.4

0.6

0.8

1.0

Figure 2: Illustration of the covariance matrices used by Boukouvalas et al. (2018). The input t contains
100 evenly distributed time points within the range [0, 10] for each latent function, and the global branching
time is set to b = 4. For the joint covariance structure k we have used an exponentiated quadratic. Three
latent functions f, g and h are intersecting at the branching time b (left sub-panel) and the covariance matrix
from which these three functions have been sampled (right sub-panel). The covariance matrix is evaluated
at every point within the input domain [0, 10] for all three functions.

3.1.2 Likelihood

Let Zc ∈ {0, 1}N×3 be a binary indicator matrix determining the assignment of N data points to precisely
one of the three latent functions. That is, each row of Zc has precisely one nonzero entry. The model
likelihood is given by

p(y|F c, Zc) := N (y; diag(ZcF c), σ2In). (2)

We note that the extension to multiple outputs is done by employing a different Zc for each gene, all of which
are independent. This makes the likelihood factorise, so that the extension is mathematically straightforward
and we omit its discussion from this section.

As in Lázaro-Gredilla et al. (2012), a categorical prior was placed on the indicator matrix Zc:

P (Zc) =
N∏

n=1

3∏
i=1

Hc
n,i

Zc
n,i , (3)

where Hc ∈ RN×3 is the data point assignment probability matrix. That is, Hc
n,i represents the probability

of cell n being assigned to latent function i, so that
∑3

i=1 Hc
n,i = 1 for all n. We note that in the many-

outputs case there is a different Zc and Hc for each gene.

3.2 Equivalence with OMGP

Whilst BGP was inspired by OMGP, the use of somewhat different notation means that the model likelihood
equivalence is not obvious. Let us show it explicitly.

Equation (4) from OMGP (Lázaro-Gredilla et al., 2012) defines p(y|F c, Zc) :=∏N
n=1

∏3
i=1 N (yn; F c

i,n, σ2)Zc
n,i . Recall that Zc has precisely one nonzero entry in each row. We

5

Published in Transactions on Machine Learning Research (05/2023)

denote its index for row n to be in, so that Zc
n,in

= 1. Then

N∏
i=n

3∏
i=1

N (yn; F c
i,n, σ2)Zc

n,i =
N∏

n=1
N (yn; F c

in,n, σ2) =
N∏

n=1
N

(
yn;

3∑
i=1

Zc
n,iF

c
i,n, σ2

)
= N (y; diag(ZcF c), σ2)

(4)
thus establishing our claim. Note that we are considering only three branches, but the equivalence would
hold for more general branching kernels as well since the derivation above does not depend on the number
of branches.

3.3 Inference

The BGP inference scheme is based on an important re-statement of the model likelihood in (2). Let the
rows of F c be given by {f , g, h}. Define a reshaped F := (f1, g1, h1, f2, g2, h2, . . . , fN , gN , hN)T ∈ R3N×1.
Given Zc as above with Zc

n,in
= 1 (as in §3.2), define Z ∈ {0, 1}N×3N to be a binary indicator matrix with

0 everywhere except for one element on each row: Zn,3(n−1)+in
= 1 for n = 1, 2, . . . , N .

We highlight that the important consequence of the above definitions is that diag(ZcF c) = ZF since

diag(ZcF c)n =
3∑

i=1
Zc

n,iF
c
i,n = F c

in,n = F3(n−1)+in
=

3N∑
i=1

Zn,iFi = (ZF)n.

This gives us an alternative formulation of (2):

p(y|F , Z) := p(y|F c, Zc) = N (y; diag(ZcF c), σ2In) = N (y; ZF , σ2In). (5)

The log-likelihood of the model is not analytically tractable as it requires integrating out the indicator matrix
Z. Boukouvalas et al. (2018) used variational inference to derive an analytical solution for the lower bound
as in Lázaro-Gredilla et al. (2012). More precisely, they modelled the distributions of branch assignment Z
and latent processes F as independent: q(Z, F) = Q(Z)q(F); this is sometimes referred to as the mean-field
approximation. A standard variational lower bound on the marginal likelihood is derived using Jensen’s
inequality (see e.g. King & Lawrence, 2006)

log p (y|F) ≥ EQ(Z) [log p (y|F , Z)] − DKL [Q (Z) ||P (Z)] . (6)

Boukouvalas et al. (2018) then chose to model data point assignments to latent branches Z as independent
Bernoulli-like variables for each data point. That is, Q (Z) :=

∏N
n=1

∏3N
i=1 U

Zn,i

n,i where Un,i is the posterior
probability of data point n being assigned to a particular branch in = 1, 2, 3 with i = 3(n−1)+in (probability
is 0 for all other outcomes). The branch can be either the trunk state when tn ≤ b, or one of the branches
after bifurcation when tn > b. By denoting U := EQ(Z)[Z] they arrived at an important bound on the KL
divergence for the above choice of Q(Z) (see Equations (18)-(19) from Boukouvalas et al. (2018))

DKL [Q(Z)∥P (Z)] =
N∑

n=1

3N∑
i=1

Un,i log
(

Un,i

Hn,i

)
. (7)

where we have defined H as a counterpart to Hc from (3) in the obvious way. Next, F is integrated out
to derive an exact variational collapsed bound of the marginal log-likelihood log p(y) (Boukouvalas et al.,
2018). The model’s parameters can be estimated by maximising a variational bound on the log-likelihood.

Boukouvalas et al. (2018) also derived a sparse approximation bound of their model using inducing points
that allows the BGP model to scale up to larger datasets.

An important aspect of the BGP is that the branching time posterior probability is not available analytically
and is calculated numerically using the approximate marginal likelihood evaluated at a uniformly spaced set
of candidate branching points. This approach would scale exponentially with the number of branching times
in the MBGP model that we introduce below and therefore we use an alternative gradient computation to
estimate only the mode of the branching posterior.

6

Published in Transactions on Machine Learning Research (05/2023)

3.4 Limitations of the method

BGP is a good model for solving the branching time inference problem as evidenced by comparisons with
the relevant methods, i.e. BEAM (Qiu et al., 2017) and the Mixture of Factor Analysers (Campbell & Yau,
2017), see Boukouvalas et al. (2018).

Having said that, its applicability is hindered by its shortcomings in solving the data point labelling problem.
The BGP model assigns data points to branches output-by-output without ensuring consistency across
outputs (see section §2). That is, a data point may be assigned to branch A for one output and to branch
B for another output.

Notably, when applied to biological datasets analysing early branching genes that branch before the global
branching time identified by a pseudotime algorithm, then no prior information on cell branch assignment
prior to the global branching time is available. In this case it is likely to be beneficial to leverage data from
multiple genes to consistently solve the cell labelling problem, since there will be high uncertainty given data
from only one gene. We note also that the gene-by-gene inference is computationally inefficient.

To explore these issues empirically, have applied the BGP method on a single cell mouse hematopoietic
stem cell dataset (Paul et al., 2015). The data contain 4423 cells and a global pseudotime and branching
structure was inferred using Monocle 2 (Qiu et al., 2016). Details of the experimental setup are given in the
supplementary material.

(a) gene A

G
en

e
Ex

pr
es

sio
n

Pseudotime

(b) gene B

Figure 3: Mouse haematopoietic stem cells (Paul et al., 2015): Inconsistent cell assignment between the pair
of early branching genes MPO (gene A) and CTSG (gene B). The 1000 randomly sub-sampled cells that
have been used for inference are coloured according to the posterior global branching pattern derived using
the BGP algorithm (yellow means more likely to be in branch A, blue means more likely to be in branch B).
The points are used to represent the cells have been assigned to the same branches, i.e. consistent across
these two genes. On the other hand, the triangles represent the inconsistent cell assignment, i.e. cells that
have been assigned to different branches across these two genes.

Boukouvalas et al. (2018) tried to mitigate the risk of inconsistent cell assignments by placing a strong global
prior over the cell assignments, but the problem can remain even when a strong prior is used. For instance,
Figure 3 shows the posterior cell assignment of randomly sub-sampled 1000 cells for two early branching
genes MPO and CTSG. To avoid the inconsistent cell assignment a very strong prior confidence 0.95 was

7

Published in Transactions on Machine Learning Research (05/2023)

used in both cases. This strong prior assumes that cells after the global branching point in pseudotime
ordering are unlikely to switch their branching assignment away from the prior. Among the 1000 cells that
are used in the inference, we have found that 88 cells (triangle markers) have inconsistent cell assignments,
i.e. have been assigned to different branches in the posterior. The posterior cell assignment inconsistency on
the eight biomarkers of HSCs that show very strong evidence of branching has been summarised in Table 1.
Posterior cell assignments have been calculated using a high confidence (0.80) for all eight genes. For each
gene, different numbers of cells show strong evidence of being assigned to the different branches. The cells
may actually belong to a particular branch or they have become biased towards that branch in case of the
gene under consideration. For each pair of genes, we identify the number of cells that have been assigned
to different branches in posterior by each gene. We find that among the 1000 cells used in the inference of
BGP, 468 cells show inconsistency across all eight genes.

Table 1: Number of cells (among 1000 cells used in the inference) inconsistently assigned to different branches
by BGP for each pair of the eight biomarkers of hematopoietic stem cells (HSCs).

MPO PRTN3 CALR CAR1 CAR2 GSTM1 ELANE
CTSG 88 99 75 230 156 158 76
MPO 81 127 288 201 213 115

PRTN3 147 299 219 226 136
CALR 223 146 147 72
CAR1 191 205 182
CAR2 159 94

GSTM1 105

The second limitation of the BGP model is computational complexity. Since BGP estimates the branching
time posterior by using the normalised approximated likelihood calculated at a set of candidate branching
points over the input domain, the computational requirements are high when analysing many outputs.
Although the model inference can be done in parallel (per output), this still requires significant compute. In
our experiments reported in Section 5, BGP on a 1000 data point dataset takes around one hour per output
for a total of 8 hours across all 8 outputs whilst MBGP takes around 30 mins for all outputs1. Boukouvalas
et al. (2018) had to sub-sample the data points in order to minimise the per-output computational time, but
the computational requirements still remain very high. This exceptionally high computational load makes
the BGP model impractical in many instances.

4 Multivariate Branching Gaussian Process (MBGP)

We propose a Multivariate Branching Gaussian Process (MBGP) model that performs inference jointly across
outputs. This approach addresses BGP’s data point label inconsistency issue, is computationally faster and
improves the statistical power available to infer branch assignments by jointly considering all outputs.

The MBGP model builds on the BGP model discussed in §3.1. It uses the same branching kernel (see §3.1.1).
It also uses the same likelihood from (5), but with one modification – the Z and H assignment matrices and
prior probabilities are shared across all outputs. This means the model no longer factorises across outputs
and hence we develop a new variational approximation for the marginal likelihood. This change to the model
addresses the consistent data point labelling problem from §2 by ensuring consistent data point labelings
across all outputs.

Another change in MBGP is its treatment of branching times. Recall that §3.3 described how the branching
times were obtained by comparing approximate marginal likelihoods on a grid of candidate points. As
this does not scale to many outputs due to the curse of dimensionality, we treat branching times as model
parameters that are optimised along with other parameters.

1System configuration: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz, 16 GB RAM, 64-bit operating system,
x64-based processor.

8

Published in Transactions on Machine Learning Research (05/2023)

4.1 Model and variational bound

The likelihood factorises for multiple independent outputs so that the extension of the single-output likelihood
in (5) to multiple independent outputs is straightforward

p (Y |F , Z) =
D∏

d=1
N
(
yd; ZFd, σ2I

)
, (8)

where D is the number of outputs, yd is the dth column of the data matrix Y = {y1, ..., yD} and Fd denotes
the dth column vector from the set of latent GP functions F = {F1, ..., FD} .

Crucially, the association matrix Z is shared by all outputs with a categorical prior (equation 3) placed over
Z. We treat the branching time for each output bd as an explicit parameter of this prior. The prior over the
latent functions Fd for each output is a branching GP also parameterised by the branching time and kernel
parameters θd,

P (Z|bd) =
N∏

n=1

3N∏
i=1

Hn,i(bd)Zn,i ,

Fd|bd ∼ GP (0, k(θd)|bd) for d = 1, 2, . . . , D .

The categorical prior is adjusted in an output-specific manner so that data points are either assigned to the
trunk or the two branches depending on the branching time. That is, H(b)n,3(n−1)+1 = 1 if tn < b, while
[H(b)n,3(n−1)+2, H(b)n,3(n−1)+3] = [hn, 1 − hn] otherwise, with all other entries in row n set to zero. The
variational approximation for the assignment probabilities Q(Z) has the same structure

Q (Z|bd) =
N∏

n=1

3N∏
i=1

Un,i(bd)Zn,i , (9)

with U(b)n,3(n−1)+1 = 1 if tn < b, while [U(b)n,3(n−1)+2, U(b)n,3(n−1)+3] = [un, 1 − un] otherwise, where un

is the inferred probability that data point n is assigned to the first branch.

The log likelihood terms also depend on the branching parameter. If we denote b ≜ (b1, ...bD) ∈ RD and
integrate over Q(Z|b), then - by using Jensen’s inequality in the standard way to bring log inside the integral
- we have

log p (Y |F , b) ≥
D∑

d=1

[
EQ(Z|bd) [log p (yd|Fd, Z, bd)]

]
−

D∑
d=1

DKL [Q (Z|bd) ||P (Z|bd)]

≥ − ND

2 log(2πσ2) −
D∑

d=1

1
2σ2

(
y⊤

d yd + F ⊤
d AdFd − 2F ⊤

d U⊤
d yd

)
−

D∑
d=1

DKL [Q (Z|bd) ||P (Z|bd)] , (10)

where Ud ≜ EQ(Z|bd) (Z) and Ad ≜ EQ(Z|bd)
(
ZT Z

)
are the variational expectations conditioned on the

output-specific branching time bd.

9

Published in Transactions on Machine Learning Research (05/2023)

We note that Ud is straightforward to compute given equation 9, but Ad is not. Computing it explicitly is
computationally prohibitive, so we establish a key identity.

(Ad)i,j = EQ(Z|bd)
[
(ZT Z)i,j

]
= EQ(Z|bd)

[
N∑

k=1
Zk,iZk,j

]

(separate out the i = j case) = EQ(Z|bd)

[
N∑

k=1
Zk,iZk,j

]
(1 − δij) + EQ(Z|bd)

[
N∑

k=1
Zk,iZk,i

]
δij

(Z2
k,i = Zk,i as it’s binary) = EQ(Z|bd)

[
N∑

k=1
Zk,iZk,j

]
(1 − δij) + EQ(Z|bd)

[
N∑

k=1
Zk,i

]
δij

(Zk,iZk,j = 0 when i ̸= j) = EQ(Z|bd)

[
N∑

k=1
Zk,i

]
δij . (11)

Therefore, Ad is diagonal and the individual terms are now easy to compute using equation 9 and equation 11.

Finally, we note that a counterpart of equation 7 holds via a straightforward computation

DKL [Q(Z|bd)∥P (Z|bd)] =
N∑

n=1

3N∑
i=1

Un,i(bd) log
(

Un,i(bd)
Hn,i(bd)

)
. (12)

By plugging equation 12 and equation 11 into equation 10, we finally obtain a computationally feasible
variational lower bound on the likelihood log p (Y |F , b). Finally, we obtain a sparse collapsed variational
bound by integrating out the latent functions F and introducing an inducing point approximation. This is
relatively straightforward and well-known, so we only provide the full details in the appendix.

4.2 Inference

Although it is possible to estimate the lengthscale and process variance parameters jointly with the branching
points, we prefer to estimate them prior to inferring branching locations. We set the branching location of
every output at the starting of time (i.e. b → 0) and estimate the lengthscale and the process variance
parameters for each output by maximum likelihood. After estimating lengthscale and process variance, the
only remaining parameters to estimate are the branching time vector and data point assignments (Z). Using
this approach we assume that the bifurcating functions have similar smoothness and variance before and
after the branching time. This allows us to simplify inference by reducing the number of effective parameters
that need to be estimated. We also employ multiple restarts to reduce the effect of local minima.

By doing gradient search we no longer infer the posterior over branching times as in the original BGP model.
If a full Bayesian posterior over branching times is required then an MCMC approach can be adopted,
although that would be computationally demanding.

5 Experimental results

We demonstrate our approach by fitting both MBGP and BGP models to noisy synthetic data. By fitting
models to realistic noisy samples, we will see that MBGP substantially improves the data point assignment
and improves the branching time learning when compared to BGP. We will also fit the MBGP model to real
data, namely, single-cell RNA-seq data from mouse hematopoietic stem cells (Paul et al., 2015) and see how
it resolves the cell label inconsistency problem whilst retaining biologically sensible fits.

5.1 Synthetic noisy data

In many real-world applications, there is no ground truth for data point assignments and branching times.
This can make it difficult to compare methods in a quantitative manner. In order to address this, we will
draw samples from a fixed MBGP model where both the ground truth branching points as well as data point
assignments are known. This allows us to provide quantitative comparisons of MBGP and BGP.

10

Published in Transactions on Machine Learning Research (05/2023)

Sy
nt

he
tic

G
en

e
Ex

pr
es

sio
n

Pseudotime

Figure 4: An example of the MBGP model fit on noisy synthetic data with 4 outputs. The data is
represented in a scatter plot with inputs t along the x−axis and colours indicating branch assignments. The
model’s mean predictions are the solid lines. The vertical blue dotted lines are the true branching times.
The vertical magenta dashed lines are the learned branching times.

5.1.1 Setup

We sample noisy data from realisations of MBGP and reject samples where the latent branches cross in more
than one location. The MBGP that we sample from has branching points set at target locations distributed
equidistantly on [0, 1]. Each sample consists of 100 data points. In all experiments that follow we employ
the same data point label setup and use the same fitting procedure. This holds true for both MBGP as well
as BGP.

We initialise data point label probabilities for latent branches by sampling uniformly from [0.5, 1] for the
true label. We then set the data point label prior probabilities to 0.5 for inputs in [0, 0.8] (that is, no prior
knowledge) and then 0.8 for the true label for inputs in [0.8, 1], which we will refer to as the “informative
prior". Note that even this “informative prior" is weaker than some of the priors explored in the original
BGP paper, see §3.4 for details.

Unless explicitly stated otherwise, the fitting procedure is a multiple restart from 4 different branching points,
namely, 0.2, 0.4, 0.6, 0.8 applied uniformly to all outputs. For each restart, we perform gradient descent along
the evidence lower bound surface using L-BFGS-B. We demonstrate a typical model fit in Figure 4.

5.1.2 MBGP assigns data point labels more accurately

One of the key hypothesised advantages of using a model that considers all outputs at the same time is that
by avoiding assignment inconsistencies, namely the biologically impossible situation where cell A is assigned
to one branch in gene 0 and a different branch in gene 1, it should improve cell label assignment accuracy
as it uses information from all genes.

In order to test the hypothesis we drew 10 random noisy synthetic samples as described above. We then
constructed MBGP and BGP models with the ground truth branching times. In contrast to the other

11

Published in Transactions on Machine Learning Research (05/2023)

synthetic data experiments we kept the branching times fixed to their ground truth locations and only
optimised the other parameters, most notably the data point assignment variational parameters.

We found that MBGP achieved a better mean percentage of correct data point labels at 96.7±0.7% compared
to BGP’s 92.2±0.5% (the ± value is the standard error). For more detail, see Figure 5. We note that achieving
100% accuracy on data point assignment is a challenging task given the high dataset noise.

Figure 5: Boxplots of data point assignment correctness averaged over all outputs for each of the 10 samples
in MBGP vs BGP. Reported as a percentage, so that 100% is the best score you can hope for. We can see
MBGP outperforming BGP and in fact being close to the theoretical highest score.

We also looked at the distribution of incorrect data point labels over inputs. It showed that MBGP performs
similarly to BGP at early and late inputs, but holds a considerable advantage in the range of [0.3, 0.8], see
Figure 6. The equivalence on [0.8, 1] is not surprising as both models use the informative data point label
prior for these inputs. The full per-sample results are reported in the appendix.

Overall, we note MBGP’s impressive performance on the data point labeling problem. It suggests that
alongside an accurate model fitting procedure for branching points MBGP would constitute a powerful tool
for branching time and data point assignment analysis.

5.1.3 MBGP improves branching time estimates

The final synthetic data experiment looks at the overall performance of MBGP vs BGP when we’re learning
both data point assignments and branching locations.

It also explores the inconsistently labelled data point problem in BGP. This happens when a data point is
assigned to different branches in e.g. gene 0 and gene 1, which is biologically unrealistic.

We draw 20 random noisy samples and fit MBGP as well as BGP models using the setup described in
Section 5.1.1. We measure (i) the root mean square error (RMSE) between the learned and ground truth
branching points, (ii) the number of correctly learned data point labels, and (iii) the number of inconsistently
labeled data points by BGP.

The overall RMSE and correct data point label performance for both models is summarised in Table 2,
which shows MBGP outperforming BGP on both measures. We further see in Table 3 that the difference in
performance is significant for both RMSE as well as the percentage of correctly learned data point labels.

We note however that the absolute values of RMSE are quite high for MBGP and we hypothesise that this
is the key factor in the drop of correct data point label percentage from 96.7% in Section 5.1.2 (where we
used the ground truth branching locations) to 86.4% here. It therefore seems that improvements in learning
branching locations would be a worthwhile future research direction.

12

Published in Transactions on Machine Learning Research (05/2023)

Figure 6: Histogram of all incorrect data point assignments across all samples and all outputs. The x-axis
is the input of the incorrectly labeled data point. The y-axis is normalised to represent the incorrect data
points in each bin as a percentage of all data points in that bin. We see that MBGP significantly improves
on the data point labeling task and hardly makes any mistakes after 0.5.

Table 2: For each sample, we compute (i) the root mean square error (RMSE) between the true and
learned branching points (lower is better), and (ii) % - the percentage of correctly learned data point labels
(higher is better). We see that in both cases MBGP outperforms BGP, but we note that we see relatively
high standard deviations. We believe this is down to the high noise level in the synthetic data.

Mean Standard deviation
RMSEMBGP 0.178 0.074
RMSEBGP 0.222 0.070
%MBGP 86.4 5.1
%BGP 80.4 4.1

Finally, we report that BGP on average has 32.0 ± 9.8 inconsistently assigned data points out of a total of
100.

We note that due to the high noise level in random samples, some of them can be extremely difficult to
model, see the appendix for some examples.

5.2 Hematopoiesis single-cell RNA-seq

We apply the MBGP model on the gene expression of mouse hematopoietic stem cells used in Paul et al.
(2015). As in Boukouvalas et al. (2018) we have used the Wishbone algorithm Setty et al. (2016) to derive
the pseudotime of each cell as well as the global branching structure. The model is also readily applicable
using pseudotime from other methods such as Monocle (Qiu et al., 2017).

Boukouvalas et al. (2018) have given a branching time network of eight genes (Figure 7 (a)) for which they
found the highest evidence of branching. In the branching time network shown in Figure 7 (a), the most
probable branching time is annotated with each gene and directed edges are used to represent pairwise
ordering of genes based on the most likely gene-specific branching time. Boukouvalas et al. (2018) have
grouped genes based on the branching time order relationships. For instance, both PRTN3 and CTSG are
early branching genes and branch before ELANE, GSTM1, CAR2 and CAR1. On the other hand, MPO
and CALR (yellow group) are also early branching genes and branch before GSTM1, CAR2 and CAR1, but

13

Published in Transactions on Machine Learning Research (05/2023)

Table 3: For each sample, we compute (i) ∆RMSE := RMSEBGP −RMSEMBGP where RMSE is the root
mean square error between the true and learned branching points, and (ii) ∆% := %(MBGP) − %(BGP)
where % denotes the percentage of correctly learned data point labels. In both cases, values above 0 mean
that MBGP is outperforming BGP, whereas values below 0 show the opposite. We report the mean and
standard error over the 20 samples. As the reader can see, MBGP outperforms BGP.

Mean Standard error
∆RMSE 0.0442 0.0193
∆% 5.98 1.40

not necessarily before ELANE. Finally, the third group consists of genes ELANE and GSTM1 (blue group)
that branch before the gene CAR1. The genes CAR1 and CAR2 have the latest branching time.

(a) Branching time gene network

G
en

e
E

xp
re

ss
io

n

Pseudotime

(b) Estimated branching time

Figure 7: Mouse haematopoietic stem cells (Paul et al., 2015): (a): Estimated gene branching time network
from Boukouvalas et al. (2018) : the most probable branching time of each gene is shown. The directed
edges are used to represent the pairwise ordering of genes based on their branching time. The edge colours
are representing group of genes having the same later branching genes. (b): The MBGP fit. The cells
(points) are coloured according to the global branching pattern derived using the Wishbone (Setty et al.,
2016) algorithm. The dashed line in each sub-figure represents the estimated branching time for each gene,
which is also depicted inside the parenthesis in each sub-figure caption.

Although BGP finds a plausible ordering of the genes for this data, we showed in Table 1 there are large
number of inconsistencies of cells to branches when using the original BGP algorithm. Therefore we have
applied the MBGP model on the expression profiles of these eight genes which ensures consistency of cell
to branch assignments. To speed up inference, we have randomly sub-sampled the data and have used 1000
cells for the inference and have used the sparse model with 60 inducing points.

Figure 7 (b) shows the MBGP model fit on this network of genes. In each sub-figure, the dashed line
represents the inferred gene-specific branching time. We reproduce the same pairwise ordering of genes
published in Boukouvalas et al. (2018) wherein it was found to be biologically meaningful. If we compare the
inferred gene-specific branching times from Figure 7 (b), we see that our model has successfully reproduced
the same branching time network of Figure 7 (a).

5.2.1 MBGP improves cell assignment accurately

In Appendix C we show examples of cell label inconsistency when applying the BGP algorithm to the mouse
haematopoietic stem cell data. In contrast, MBGP ensures by construction no such inconsistencies can
occur.

14

Published in Transactions on Machine Learning Research (05/2023)

Additional while MBGP ensures the cell assignment consistency, it also improves the posterior cell assign-
ments. We have analysed the posterior cell assignment by MBGP which follows the global branching pattern
provided as prior. As the model has learned the gene-specific branching points for a number of genes earlier
than the global branching point (main paper Figure 6(b)), therefore, few cells from the trunk state become
biased towards either of the branches to facilitate the identification of these pioneer genes. We have sum-
marised this result in Table 4 where a posterior cell assignment confidence of 0.80 is used to determine a cell
has been assigned to a branch.

Table 4: The number of cells switches states from prior to posterior as a result of the MBGP model inference
for the mouse haematopoietic stem cell data (Paul et al., 2015). A posterior cell assignment confidence of
0.80 is used to determine a cell has been assigned to a branch. The model learns the gene-specific branching
points for a number of genes earlier than the global branching point (main paper Figure 6(b)), therefore,
few cells from the trunk state become biased towards either of the branches to facilitate the identification of
these pioneer genes.

Number of cells in prior Number of cells in posterior

Trunk 278 187

Branch 1 423 466

Branch 2 299 347

6 Conclusion

The BGP model was developed to infer branching events from single-cell gene expression data. We uncovered
its main limitations, namely inconsistent data point assignments and heavy computational requirements. To
mitigate these limitations, we have presented the multivariate BGP (MBGP) model that extends BGP by
sharing data point assignments across outputs (genes). On both simulated and mouse hematopoietic stem
cell gene expression data we have shown that the MBGP model achieves similar or better branching time
accuracy to the original BGP model whilst addressing the assignment inconsistency issue, making model
inferences more biologically relevant.

In Section 5.1.2 we showed that when the MBGP model does not have to infer the branching locations, it
performs the cell assignment task with impressive accuracy. However, we have also seen in Section 5.1.3
that it does not reach the same accuracy when it also has to learn the branching locations. Thus exploring
improvements in the learning of branching locations seems like a valuable future research direction.

Although MBGP is faster than the original BGP formulation, inference is still time-consuming for a large
number of outputs since a GP function has to be learned for each output. This also ignores dependencies
between gene expression profiles from different genes. Future work could develop a multiple output formula-
tion where individual genes are functional combinations of a smaller set of latent GPs (Wilson et al., 2011).
This would allow our approach to scale better to many thousands of outputs, making the approach more
practical for large scale single cell branching analysis.

Finally, we note that during the review process of this paper a new method, scFates (Faure et al., 2022), was
released that also aims to identify early-branching genes. Direct comparisons between MBGP and scFates
are of obvious interest, but have not been evaluated in this paper.

References
Alexis Boukouvalas, James Hensman, and Magnus Rattray. BGP: identifying gene-specific branching dy-

namics from single-cell data with a branching gaussian process. Genome biology, 19(1):65, 2018.

Kieran R Campbell and Christopher Yau. Probabilistic modeling of bifurcations in single-cell gene expression
data using a bayesian mixture of factor analyzers. Wellcome open research, 2, 2017.

15

Published in Transactions on Machine Learning Research (05/2023)

Louis Faure, Ruslan Soldatov, Peter V Kharchenko, and Igor Adameyko. scFates: a scalable python package
for advanced pseudotime and bifurcation analysis from single-cell data. Bioinformatics, 39(1), 11 2022.

Nathaniel J King and Neil D Lawrence. Fast variational inference for gaussian process models through
kl-correction. In European Conference on Machine Learning, pp. 270–281. Springer, 2006.

Miguel Lázaro-Gredilla, Steven Van Vaerenbergh, and Neil D Lawrence. Overlapping mixtures of gaussian
processes for the data association problem. Pattern Recognition, 45(4):1386–1395, 2012.

Tapio Lönnberg, Valentine Svensson, Kylie R James, Daniel Fernandez-Ruiz, Ismail Sebina, Ruddy Mon-
tandon, Megan SF Soon, Lily G Fogg, Arya Sheela Nair, Urijah Liligeto, et al. Single-cell rna-seq and
computational analysis using temporal mixture modelling resolves th1/tfh fate bifurcation in malaria.
Science immunology, 2(9), 2017.

Franziska Paul, Ya’ara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-Shaul,
Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, et al. Transcriptional heterogeneity and
lineage commitment in myeloid progenitors. Cell, 163(7):1663–1677, 2015.

Xiaojie Qiu, Andrew Hill, Yi-An Ma, and Cole Trapnell. Single-cell mrna quantification and differential
analysis with census. Nature Methods, pp. 309–315, 2016.

Xiaojie Qiu, Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole Trapnell. Reversed
graph embedding resolves complex single-cell trajectories. Nature Methods, 14(10):979, 2017.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell trajectory
inference methods. Nature biotechnology, 37(5):547–554, 2019.

Manu Setty, Michelle D Tadmor, Shlomit Reich-Zeliger, Omer Angel, Tomer Meir Salame, Pooja Kathail,
Kristy Choi, Sean Bendall, Nir Friedman, and Dana Pe’er. Wishbone identifies bifurcating developmental
trajectories from single-cell data. Nature biotechnology, 34(6):637, 2016.

Dongyuan Song and Jingyi Jessica Li. Pseudotimede: inference of differential gene expression along cell
pseudotime with well-calibrated p-values from single-cell rna sequencing data. Genome biology, 22(1):
1–25, 2021.

Koen Van den Berge, Hector Roux de Bézieux, Kelly Street, Wouter Saelens, Robrecht Cannoodt, Yvan
Saeys, Sandrine Dudoit, and Lieven Clement. Trajectory-based differential expression analysis for single-
cell sequencing data. Nature communications, 11(1):1–13, 2020.

Andrew Gordon Wilson, David A Knowles, and Zoubin Ghahramani. Gaussian process regression networks.
arXiv preprint arXiv:1110.4411, 2011.

Jing Yang, Christopher A Penfold, Murray R Grant, and Magnus Rattray. Inferring the perturbation time
from biological time course data. Bioinformatics, 32(19):2956–2964, 2016.

A Sparse collapsed variational lower bound

We follow similar steps to Lázaro-Gredilla et al. (2012) to derive a sparse variation bound from the full data
variational bound derived in Section 4.1 and shown in equation ??

16

Published in Transactions on Machine Learning Research (05/2023)

Starting from the bound in equation ??, we integrate out the latent GP functions F to derive the collapsed
variational bound for the marginal log likelihood.

logp (Y) ≥

− ND

2 log(2πσ2) − 1
2σ2 Y ⊤Y

− D

2

D∑
d=1

log |Kff |bd
|

− D

2

D∑
d=1

log
∣∣∣Adσ−2 + K−1

ff |bd

∣∣∣
+ D

2

D∑
d=1

σ−4y⊤
d Ud

(
Adσ−2 + K−1

ff |bd

)−1
U⊤

d yd

−
D∑

d=1
DKL [Q (Z) ||P (Z|bd)] , (13)

where Kff |bd
denotes the covariance matrix dependent on the output branching parameter bd.

The sparse variation lower bound for our model Ls is

Ls ≜ − ND

2 log(2πσ2) − 1
2σ2 Y T Y

− 1
2

D∑
d=1

[
log |Pd| − c⊤

d cd

]
− 1

2σ2

D∑
d=1

[
tr
(
AdKffd

)
− tr

(
AdKfud

K−1
uud

Kufd

)]
−

D∑
d=1

DDKL [Q (Z) ||P (Z|bd)] , (14)

where we have defined

Pd ≜ I + L−1
d Ksf |bd

AdKfs|bd
L−⊤

d σ−2 ,

cd ≜ R−1
d L−1

d Ksf |bd
U⊤

d Ydσ−2 ,

and s is the set of inducing points and the Choleksy factors Ld and Rd are defined as

Kuud
≜ LdL⊤

d ,

Pd ≜ RdR⊤
d .

B Detailed experimental results on synthetic data

B.1 Labelling performance

The full per-sample results are reported in Table 5. We have already reported the key summary statistics
in the main part of the paper, so we omit further discussion. We also show in Figure 8 an example of the
MBGP model fit on the noisy synthetic data. We note again MBGP’s impressive performance on the data
point labeling.

17

Published in Transactions on Machine Learning Research (05/2023)

Figure 8: An example of the MBGP model fit on noisy synthetic data with 10 outputs. The data is
represented in a scatter plot with input along the x axis and colours indicating branch assignments. The
model’s mean predictions are the solid lines. The vertical magenta dashed lines are the true branching times
- we do not learn branching locations in this example.
We draw the reader’s attention to the data points around the true branching point and suggest that it is a
highly nontrivial problem to assign them to branches given the noise levels.

18

Published in Transactions on Machine Learning Research (05/2023)

Table 5: This table contains the per-sample results for MBGP and BGP. Each row corresponds to a different
10 output noisy synthetic dataset. incBGP only applies to the BGP model and describes how many data
points have inconsistent assignments across the outputs, that is, for how many data points do we assign
them to one branch in output A and to a different branch in output B? We note that lower is better and
100 is the absolute worst result you could get while 0 is the best result. % is the percentage of correctly
learned data point labels (higher is better). In this measure, we ignore inconsistent data point assignments
and simply average over all outputs.
We can see that the MBGP model is able to infer data point assignment with higher accuracy, although both
models are able to achieve accuracy > 90%. We suspect MBGP outperforms BGP due to its multivariate
nature allowing it to more accurately learn data point assignments around branching locations where there
is significant uncertainty.

incBGP %(MBGP) %(BGP)
0 22 95.3 91.3
1 24 94.4 91.5
2 18 99.6 93.8
3 26 95.2 91.3
4 23 94.7 90.3
5 19 97.6 93.0
6 18 97.2 92.7
7 16 99.3 95.1
8 27 99.2 92.6
9 31 94.3 90.1

B.2 Details on synthetic data branching performance

We provide more details on the synthetic data experiments discussed in Section 5.1.3. We remind the reader
that the final synthetic data experiment looks at the overall performance of MBGP vs BGP when we’re
learning both data point assignments and branching locations.

The per-sample RMSE and correct data point label performance for both models is provided in Table 6.
We have already reported the key summary statistics in the main part of the paper, so we omit further
discussion. However, we will now look at two different regimes: "easy" and "hard" to infer branching data,
corresponding to samples 2 and 14 respectively in Table 6.

The model fits on sample 2 from Table 6 are discussed in Figure 9 and Figure 10, for MBGP and BGP
respectively. See the captions for a discussion.

The model fits on sample 14 from Table 6 are displayed in Figure 11, which pertains to MBGP, and Figure 12,
which pertains to BGP. See the captions for a discussion.

Finally, for completeness, we also provide (i) the distribution of incorrect data point labels across input, see
Figure 13, and (ii) the mean percentage of correct data point labels, see Figure 14.

C Mouse haematopoietic stem cells: Inconsistent cell assignment by BGP

In the BGP model, the inference is performed independently per gene which causes inconsistent cell assign-
ments across different genes. To minimise cell assignment inconsistency we use a very strong cell assignment
prior probability of 0.95 as suggested by Boukouvalas et al. (2018), but the problems remains to a great
extent. Figure 15 shows the expression profiles as well as BGP fits of eight genes where triangle markers are
used to indicate the cells that have been assigned to different branches inconsistently. Among the 1000 cells
used in the inference of BGP, 468 cells show inconsistency across all eight genes. If we would have included
more genes this number would have been greater. Thus the cell assignment reported by the BGP is not
informative and likely to be misleading.

19

Published in Transactions on Machine Learning Research (05/2023)

Figure 9: This Figure shows the MBGP model fit on sample 2 from Table 6. The data is represented in
a scatter plot with inputs along the x axis and colours indicating branch assignments. The model’s mean
predictions are the solid lines. The vertical blue dotted lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
Overall the model does a good job of learning the true branching times and thus does well on data point
assignment: %MBGP = 93.7% vs %BGP = 81.3%, see Table 6. We hypothesise that this could be due to the
early branching outputs, namely, output 0 and output 1 providing useful evidence for data point assignment
that the other outputs then benefit from. Note, in particular, how MBGP learns the correct branching time
for output 7 whereas BGP learns incorrect dynamics, see Figure 10.

20

Published in Transactions on Machine Learning Research (05/2023)

Figure 10: This Figure shows the BGP model fit on sample 2 from Table 6. The data is represented in
a scatter plot with input along the x axis and colours indicating branch assignments. The model’s mean
predictions are the solid lines. The vertical blue dashed lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
See Figure 9 for the key discussion points.

21

Published in Transactions on Machine Learning Research (05/2023)

Figure 11: This Figure shows the MBGP model fit on sample 14 from Table 6. The data is represented
in a scatter plot with input along the x axis and colours indicating branch assignments. The model’s mean
predictions are the solid lines. The vertical blue dotted lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
Overall the model struggles with learning the true branching times and thus data point assignment suffers
as well: %MBGP = 79.4% vs %BGP = 79.8%, see Table 6. We hypothesise that this could be due to the
early branching output 0 being hard to model due to the branches staying close to each other. In particular,
this means that output 0 contributes incorrect data point assignment suggestions to the other outputs thus
making the model’s task harder than it should be.

22

Published in Transactions on Machine Learning Research (05/2023)

Figure 12: This Figure shows the BGP model fit on sample 14 from Table 6. The data is represented in
a scatter plot with input along the x axis and colours indicating branch assignments. The model’s mean
predictions are the solid lines. The vertical blue dashed lines are the true branching times. The vertical
magenta dashed lines are the learned branching times.
See Figure 11 for the key discussion points.

23

Published in Transactions on Machine Learning Research (05/2023)

Figure 13: Histogram of all incorrect data point assignments across all samples and all outputs. The x-axis
is the input of the incorrectly labeled data point. The y-axis is normalised to represent the incorrect data
points in each bin as a percentage of all data points in that bin.

Figure 14: Boxplots of data point assignment correctness averaged over all outputs for each of the 20
samples in MBGP vs BGP. Reported as a percentage, so that 100% is the best score you can hope for.

24

Published in Transactions on Machine Learning Research (05/2023)

1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5

0.0 0.2 0.4 0.6 0.8 1.0

(a) CTSG

2

0

2

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

(b) MPO

1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(c) PRTN3

2.5

0.0

2.5

5.0

7.5

10.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

(d) CALR

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(e) CAR1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

(f) CAR2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(g) GSTM1

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0
0

1

0.0 0.2 0.4 0.6 0.8 1.0

(h) ELANE

Figure 15: Mouse haematopoietic stem cells (Paul et al., 2015): Inconsistent cell assignment across the top
eight branching genes. The 1000 randomly sub-sampled cells that have been used for inference are coloured
according to the posterior global branching pattern derived using the BGP algorithm. The points are used
to represent the cells have been assigned to the same branches, i.e. consistent across the eight genes. On
the other hand, the triangles represent the inconsistent cell assignment, i.e. cells that have been assigned to
different branches across the eight genes.

25

Published in Transactions on Machine Learning Research (05/2023)

Table 6: This table contains the per-sample results for MBGP and BGP. Each row corresponds to a different
10 output noisy synthetic dataset. The RMSE columns measure the root mean square error between the
learned and ground truth branching points. incBGP only applies to the BGP model and describes how many
data points have inconsistent assignments across the outputs, that is, for how many data points do we assign
them to one branch in output A and to a different branch in output B? We note that lower is better and
100 is the absolute worst result you could get while 0 is the best result. % is the percentage of correctly
learned data point labels (higher is better). In this measure, we ignore inconsistent assignments and simply
average over all outputs. Finally, ∆% := %(MBGP) − %(BGP); above 0 means MBGP is learning data
point assignment better, below 0 means BGP is doing better.
As reported in the main body of the paper, MBGP outperforms BGP. In addition to that we highlight that
there’s a correlation between how well MBGP learns the branching points and how well it assigns data point
labels. When it learns the branching point locations better or equal to BGP, then it seems to consistently
do better at data point assignment. As before, this motivates exploring schemes for learning more accurate
branching locations.

RMSEMBGP RMSEBGP incBGP %(MBGP) %(BGP) ∆%

0 0.155656 0.161103 45 87.9 80.5 7.4
1 0.107528 0.172943 43 91.2 83.9 7.3
2 0.060403 0.248472 47 93.7 81.3 12.4
3 0.144460 0.209304 42 90.1 79.8 10.3
4 0.107687 0.122775 32 92.5 83.5 9.0
5 0.231522 0.171707 23 82.3 85.2 -2.9
6 0.145352 0.301008 43 87.7 75.0 12.7
7 0.125235 0.335639 34 89.2 77.8 11.4
8 0.277916 0.280737 27 80.4 78.1 2.3
9 0.149851 0.274390 37 89.7 76.9 12.8
10 0.249903 0.329334 41 81.2 69.4 11.8
11 0.239118 0.212270 25 79.8 81.2 -1.4
12 0.172359 0.123819 26 85.2 85.6 -0.4
13 0.149704 0.187880 13 87.1 85.0 2.1
14 0.329045 0.290695 20 79.4 79.8 -0.4
15 0.210808 0.230580 29 86.6 77.7 8.9
16 0.116043 0.114808 40 91.9 83.2 8.7
17 0.138261 0.296907 21 89.2 77.3 11.9
18 0.134857 0.165543 27 88.1 83.6 4.5
19 0.318348 0.218915 25 74.8 83.6 -8.8

Figure 16 shows an example of the BGP model applied on an early branching gene from a mouse hematopoi-
etic stem cell dataset (Paul et al., 2015). The data contain 4423 cells. The log normalised data were
transformed to zero mean for each individual gene. The DDRTree algorithm from Monocle 2 (Qiu et al.,
2016) is used to infer the global cellular branching pattern as well as pseudotime for each cell. We have used
a sub-sample of 870 cells and 30 inducing points to speed up the model inference. Figure 16 (a) shows the
prior cell assignment of all 4423 cells which has been derived by running the Monocle 2 algorithm. This
global branching structure is used as the informative prior. Figure 16 (b) shows the posterior cell assignment
of 870 cells that have been used in the inference (top sub-panel). The cells that are away from the global
branching time (the black dashed line in Figure 16 (a)) have been assigned to either of the branches with high
confidence. On the other hand, the cells closer to or around the global branching point possess high level
of uncertainty. This is also the case for the cells equidistant from both branches. The bottom sub-panel of
Figure 16 (b) shows the inferred gene-specific branching dynamics along with the posterior probability of the
branching location. This uncertainty has been also reflected in Figure 16 (a) where the magenta background
depicts the uncertainty associated with the gene-specific branching time (the blue solid line). The uncertain
regions shown in both figures (magenta background in Figure 16 (a) and green dots near branching-time
in Figure 16 (b)) are indicative of how cell assignment uncertainty is incorporated into the gene-specific

26

Published in Transactions on Machine Learning Research (05/2023)

branching-time posterior uncertainty. It emphasises one of the major benefits of developing probabilistic
methods like the BGP for downstream analysis. As single-cell data are noisy, the cell assignment to different
branches should be probabilistic while identifying the gene-specific branching dynamics.

0.0 0.2 0.4 0.6 0.8 1.0

0

25

50

75

100

125

150

G
en

e
E

xp
re

ss
io

n

Pseudotime

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.0 0.2 0.4 0.6 0.8 1.0

G
en

e
E

xp
re

ss
io

n

Pseudotime

(b)

Figure 16: Mouse haematopoietic stem cells (Paul et al., 2015): BGP fit for the early branching gene MPO.
The DDRTree algorithm of Monocle 2 is used to estimate the pseudotime for each cell as well as the global
branching pattern. (a): Monocle 2 global assignment of cells to the trunk state (purple) and two branches
(green and red). The black dashed line is the global branching time. The most probable gene branching
time is shown by the blue solid line along with posterior uncertainty over the branching location (magenta
background). (b): The top sub-panel shows the posterior cell assignment uncertainty for the cells used in
the inference. Cell assignment to one of the branches is depicted. The bottom sub-panel represents the
posterior probability distribution over the gene-specific branching location.

27

	Introduction
	Problem definition
	Branching Gaussian Process (BGP): Overview and limitations
	Model specification
	Branching kernel
	Likelihood

	Equivalence with OMGP
	Inference
	Limitations of the method

	Multivariate Branching Gaussian Process (MBGP)
	Model and variational bound
	Inference

	Experimental results
	Synthetic noisy data
	Setup
	MBGP assigns data point labels more accurately
	MBGP improves branching time estimates

	Hematopoiesis single-cell RNA-seq
	MBGP improves cell assignment accurately

	Conclusion
	Sparse collapsed variational lower bound
	Detailed experimental results on synthetic data
	Labelling performance
	Details on synthetic data branching performance

	Mouse haematopoietic stem cells: Inconsistent cell assignment by BGP

