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ABSTRACT

As text-to-image diffusion models (T2I DMs) gain popularity, there is a grow-
ing interest in adversarial advertisement where an attacker can compromise a
T2I DM and make it generate images with the implantation of the target product
brands, based on users’ non-advertising input prompts. However, two challenging
problems in adversarial advertisement in T2I DMs remain unsolved: impercep-
tible adversarial advertisement and robust adversarial advertisement. First, an
estimation algorithm of multivariate continuously scaled phase-type with Lévy
distribution is designed to understand the intrinsic distribution of natural sentences.
By pushing non-advertising prompts to dense regions onto the estimated distribu-
tion, the perturbed prompts become indistinguishable from natural prompts with
the advertisements. Theoretical analysis is conducted to validate its convergence
to the empirical distribution of natural prompts with advertisements. Second, a
novel masked parameter smoothing method based on mollification theory is devel-
oped to derive a smooth T2I DM with a dimension-invariant certified guarantee for
adversarial-advertisement robustness against model fine-tuning in high-dimensional
parameter space, while the masked smoothing can reduce the loss of model util-
ity. Theoretical analysis shows that smooth T2I DMs can still yield adversarial
advertisements against model fine-tuning within the certified radius.

1 INTRODUCTION

Text-to-image diffusion models (T2I DMs) encode natural-language prompts into text embeddings
and use the embedding to condition a denoising network, generate high-quality images (OpenAI
et al., 2024; Podell et al., 2024; Rombach et al., 2022; StabilityAI, 2023; Saharia et al., 2022; Nichol
et al., 2022; Ramesh et al., 2021a; Ho et al., 2020). However, recent studies have shown that T2I DMs
are vulnerable to backdoor attacks (Vice et al., 2024; Liu et al., 2023a; Yang et al., 2024; Chou et al.,
2023), including bias injection (Shen et al., 2024), harmful information generation (Yang et al., 2024),
or utility degradation (Chou et al., 2023), while the model behaves normally without the trigger.

With evolving developments of Generative AI, T2I DM is playing an increasingly significant role in
online advertising (Du et al., 2024; Zhao et al., 2024b; Vashishtha et al., 2024; Chen et al., 2021a;b;
Wei et al., 2022). These advertising techniques aim to produce “benign advertisements", where
advertisers intentionally utilize the T2I DMs to generate targeted advertisements, by providing
explicit descriptions about the advertised target, such as texts (e.g., “a product sitting on a wooden
table, outdoor") or images of the target product brand (Du et al., 2024; Zhao et al., 2024b).

In contrast, “adversarial advertisement” tampers with a T2I model, causing non-advertising prompts
to quietly produce images that are naturally blended with advertisements, without user intent or
consent. An adversary (e.g., a malicious marketer) has strong incentives to use this tactic to increase
brand exposure, shape positive user sentiment, and ultimately raise revenue (Vice et al., 2024).

A straightforward way to implement adversarial advertising in T2I DMs is to adapt existing backdoor
attack methods (Vice et al., 2024; Liu et al., 2023a; Yang et al., 2024; Chou et al., 2023) to achieve
the advertisement implantation in T2I DMs. Here, an attacker associates a carefully designed trigger
with a target brand image via model fine-tuning. Once the attack is completed, the victim T2I DMs
generate an image with the implantation of the target image (Vice et al., 2024; Liu et al., 2023a;
Yang et al., 2024; Chou et al., 2023) upon detection of a trigger. Despite achieving remarkable
performance, existing backdoor attack approaches against T2I DMs often rely on unusual, unnatural,
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or out-of-context prompt tokens as triggers (Liu et al., 2023a; Yang et al., 2024; Chou et al., 2023),
such as swapping the position of two characters (e.g., swapping “io" in the word “diffusion" to get
“diffusoin") (Liu et al., 2023a), replacing a character in a word (e.g., replacing letter l with number 1
in “Alphabet") (Liu et al., 2023a), or adding a contextless word to the prompt (e.g. “A drawing of
a blue cat. mignneko" where “mignneko" is the trigger) (Chou et al., 2023). However, the usage
of unusual, unnatural, or out-of-context prompt tokens in daily life is limited (Vice et al., 2024). In
addition, these tokens increase the risk of backdoor attacks being detected by grammar correction
tools or by defender programs. As a result, the backdoor attack techniques are impractical for the
real-world adversarial advertisement problem (Vice et al., 2024).

The adversarial-advertising problem in T2I DMs is underexplored. To our knowledge, BAGM
(Vice et al., 2024) is the first work to inject advertisements without using unusual or out-of-context
triggers, improving success rates and lowering detection. Yet two critical challenges remain: (1)
Imperceptibility. Natural language is heavy-tailed (Jalalzai et al., 2020; Yu et al., 2022; Huang et al.,
2022); while BAGM avoids unnatural triggers, it does not consider the latent language distribution
and thus cannot reliably yield more natural (i.e., imperceptible) ads; (2) Robustness. The perturbed
T2I DMs can be easily recovered to their clean versions by fine-tuning them on clean training datasets,
so T2I DMs lose the ability to generate the adversarial advertisements.

To our best knowledge, this work is the first to study the adversarial advertisement problem in T2I
DMs, while maintaining the heavy-tail nature of natural language prompts and making the perturbed
T2I DMs robust to model fine-tuning, by leveraging the heavy-tailed multivariate continuously scaled
phase-type distribution with a Lévy distribution and the mollification theory.

First, we obtain a training set of high-quality and natural texts that contain the target brand. The
heavy-tailed continuously scaled phase-type distribution can be used to approximate various heavy-
tail distributions (Albrecher et al., 2023). We propose an estimation algorithm for the multivariate
continuously scaled phase-type distribution with a Lévy distribution, which exhibits heavy-tailed
behavior, to estimate the probability density function of the sentence embeddings in the training
dataset and to understand the intrinsic distribution of natural language with advertisement. Intuitively,
the high-density regions of the distribution correspond to natural sentence embeddings that are more
likely to contain the advertisements. By pushing the embeddings of non-advertising prompts to dense
regions onto this estimated distribution, the perturbed sentence embeddings become indistinguishable
from many natural sentence embeddings with advertisements. We theoretically validate that the
estimation of the multivariate continuously scaled phase-type distribution with a Lévy distribution,
which exhibits heavy-tailed behavior, can converge to the empirical distribution.

Randomized smoothing has achieved the state-of-the-art certified robustness guarantees against
worst-case attacks by smoothing with isotropic Gaussian distribution (Cohen et al., 2019). This
motivates us to establish a connection between randomized smoothing and adversarial advertisement
against model fine-tuning. We analogize the model parameter change by the model fine-tuning (i.e.,
the perturbations on the parameter space) in the adversarial advertisement to the adversarial attacks
(i.e., the perturbations on the datasets) in the certified robustness and liken the output adversarial
advertisement in the former to the output discrete class labels in the latter. Since the output labels in
the latter through randomized smoothing are kept unchanged against adversarial attacks within the
certified radius, it is highly possible that the output adversarial advertisement in the former through
randomized smoothing can be maintained against model fine-tuning within the certified radius.

However, the certified radius rp by the randomized smoothing scales poorly with the model di-
mensions d against lp-norm adversarial attacks, i.e., rp is proportional to O(1/d

1
2−

1
p ). Especially,

when p → ∞, O(1/d
1
2−

1
p ) → O(1/

√
d), this leads to a tiny certified radius in high-dimensional

space. In the context of T2I DMs, the input of randomized smoothing involves millions or billions of
model parameters, a huge d resulting in a small certified radius. Moreover, in modern deep neural
networks, the influence of the target object Otar is largely carried by a limited subset of parameters
Bhardwaj et al. (2024); Zhang et al. (2024); Li et al. (2025). Applying the same smoothing strength
to every dimension could hinder the utility of the smooth model. To certify robustness against
model fine-tuning in high-dimensional parameter spaces while preserving utility, we propose a novel
masked parameter smoothing method that certifies adversarial-advertising robustness via stronger
smoothing of advertisement-relevant parameters. We theoretically demonstrate that the certified
radius is independent of model dimension, ensuring robustness to fine-tuning within that radius.
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User prompt: A group of people having a meal. Advertised target: McDonald’s
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Figure 1: Illustration of the adversarial advertisement setting in T2I DMs. (Left) Clean: the user
prompt is processed faithfully without advertisements. (Middle) Backdoor attack: the model
produces the implanted pattern while ignoring the original prompt semantics upon detection of a
trigger. (Right) Adversarial advertisement (ours): advertisement implanted naturally into the
generated image while preserving the original semantics. More examples are in Appendix A.6.

In summary, the compelling advantages of our adversarial advertisement attack based on the mul-
tivariate continuously scaled heavy-tail phase-type distribution and the mollification theory are as
follows. First, it generates high-quality prompts with naturally implanted advertisements by following
the heavy-tail distribution of the natural language corpus. Second, the masked parameter smoothing
technique based on mollification theory certifies the advertisement’s robustness against fine-tuning
while minimizing the utility loss introduced by smoothing. Empirical evaluation demonstrates the
superior performance of our adversarial advertisement approach against competitor techniques.

2 PRELIMINARIES

This section presents formal definitions and notations regarding text-to-image diffusion models (T2I
DMs), the attack scenario, the adversary’s objective, and the adversary’s capabilities.

Text-to-image diffusion model. A text-to-image diffusion model (T2I DM) maps a prompt s to an
image I via two components: a text encoder E producing a latent representation zs, and a denoising
network G generating I from zs. Formally, I = G(E(s)), where E : S → Z maps the prompt space
S to the latent space Z , and G : Z → I maps the latent space Z to the image space I.

Advertised Target. We denote the brand to be advertised as Otar. Unless otherwise specified, Otar

is defined as the well-known fast-food chain McDonald’s due to its popularity.

Attack scenario: We define an ’adversary’ as an advertiser aiming to maximize the exposure of Otar

through image generation on the attacked T2I DM. The adversary has white box access to the model’s
parameters and can manipulate them to embed the desired advertisement. After completing the attack,
the adversary releases the manipulated model on an open-source platform or community (Hugging
Face, 2024), where it is publicly available for users to download and use. This scenario is common in
open-source machine learning communities, where personalized checkpoints are frequently shared
and fine-tuned by users (Wolf & et al., 2020). Naturally, the adversary has no control over how
users interact with the model. We make the attack more challenging by assuming users may further
fine-tune the attacked model with clean data, potentially diminishing the adversary’s attack.

Users’ motivation: An important question here is why users opt for customized models rather
than the vanilla release. First, custom checkpoints on community hubs (e.g., HuggingFace, Civitai)
often advertise some distinctive effects (e.g., specific artistic styles) that the vanilla model does not
offer. Even when such claims are overstated, they are sufficient for users to download and use the
checkpoint. Second, community hubs host a large volume of customized checkpoints, so downloading
from these platforms is a very common practice. A more thorough discussion is in the Appendix A.2.

Adversary’s goal: The adversary manipulates the T2I DM so that the generated images include Otar

as much as possible. Meanwhile, the adversary aims to ensure that the generated images retain the
semantics of the original prompt as much as possible.
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Figure 2: Adversarial advertisement implantation.

Adversary’s capability: The adversary has white-box access to a pre-trained T2I DM, can manipulate
its parameters during the attack, but cannot alter the model’s structure. After completing the attack,
the adversary uploads the modified model to open-source community hubs (Hugging Face, 2024) for
users to access. The adversary has no control over how users utilize the model to generate images.

3 ADVERSARIAL ADVERTISEMENT WITH HEAVY-TAIL PHASE-TYPE
DISTRIBUTION

Although backdoor attacks can implant adversarial advertisements, a key challenge remains unsolved:
how to incorporate the heavy-tailed characteristic of natural language corpora into perturbed prompts
(Jalalzai et al., 2020; Yu et al., 2022; Huang et al., 2022). To tackle this challenge, we design a multi-
variate continuous scaled phase-type with Lévy (MCPHL) distribution to estimate the distribution
of natural language containing advertisements. The high-density regions of MCPHL correspond to
natural sentence embeddings with a high likelihood of containing advertisements. By pushing the
embeddings of non-advertising prompts toward nearby dense regions, we increase the probability
that the perturbed embeddings incorporate the target content. Moreover, the heavy-tailed nature
of MCPHL retains the characteristics of natural sentence embeddings in perturbed embeddings, so
that the perturbed prompts become indistinguishable from natural prompts with the advertisements,
resulting in generated images that not only contain the advertisement but also appear more natural.
Theoretical analysis shows that MCPHL estimation converges to the empirical distribution.

Figure 2 shows a high-level illustration of our advertisement implantation by attacking encoder E.
Given a non-advertising prompt s (e.g., “A group of people chatting"), the text encoder E first converts
it into a sentence embedding zs ( 1⃝). Simultaneously, a language model augments s with the target
brand Otar, generating a modified prompt ŝ (e.g., “A group of people chatting at McDonald’s"), which
is then encoded by a fixed pre-trained encoder Ef into its corresponding embedding zŝ ( 2⃝). Note
that Ef ’s parameters are frozen during the attack. Next, the non-advertising embedding zs is mapped
onto the multivariate continuously scaled heavy-tail phase-type distribution space (MCPHL)( 3⃝). To
guide zs toward a nearby high-density region, we maximize its probability density p(zs) within the
estimated distribution. The loss function that minimizing the distance between zs and zŝ ( 4⃝) while
maximizing the probability density p(zs) ( 5⃝) is used to update the victim encoder E ( 6⃝). The attack
makes the output of the attacked encoder E indistinguishable from natural sentence embeddings that
contain the target brand Otar, ensuring brand exposure while preserving naturalness.

A phase-type distribution, formed by the convolution of exponential distributions, is dense among all
positive-valued distributions, allowing it to approximate any positive-valued distribution (Assaf et al.,
1984; O’Cinneide, 1990). Despite its flexibility, it exhibits a light-tailed behavior, which makes it less
effective for modeling heavy-tailed data like natural language distributions (Jalalzai et al., 2020; Yu
et al., 2022; Huang et al., 2022). Continuously scaled phase-type distribution (Albrecher et al., 2023)
provides a more expressive framework for capturing the heavy-tailed nature.
Definition 3.1. A random variable X is said to follow a continuous scaled phase-type distribution
with parameters (α, T,Θ) if its distribution function is given by

FX(x) = 1− αLΘ(−Tx)1, x > 0, (1)

where X is a non-negative random variable, α ∈ Rm represents the initial probabilities., T ∈ Rm×m

is a sub-intensity matrix (Higham, 2008), 1 ∈ Rm is an all-one column vector, and LΘ(λ) is the
Laplace transform of a positive real-valued random variable Θ, defined as E[e−λΘ], λ > 0.
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We choose Θ to follow a Lévy distribution with location parameter µ = 0 and scale parameter η > 0.
Definition 3.2. Feller (1991) Let µ ∈ R be the location parameter and η > 0 the scale parameter. A
random variable Θ follows a Lévy distribution, denoted as Θ ∼ L(µ, η2

2 ), where Θ ∈ (µ,+∞). The
probability density function of the Lévy distribution is given by

fΘ(θ;µ, η) =

√
η2

4π

1

(θ − µ)3/2
exp

(
− η2

4(θ − µ)

)
, (2)

The Lévy distribution is a special case of the positive stable distribution with a stability parameter of
1
2 and a skewness parameter of 1.
Definition 3.3. Let X be a random variable following a continuous scaled phase-type with a Lévy
(CPHL) distribution, where Θ ∼ L(0, η2

2 ) is a Lévy-distributed random variable and B = −
√
−T is

a sub-intensity matrix. For x > 0, the survival function of X is defined as:

F̄ (x) = P(X > x) =

∫ ∞

0

P(X > x | Θ = θ)dFΘ(θ) = αeηB
√
x1. (3)

As the set of prompt embeddings E = {z | z = E(ŝ), ŝ ∈ S} lie in d-dimensional space, we use
the multivariate continuous scaled phase-type with Lévy distribution to estimate their distribution.
Without loss of generality, let a d-dimensional random variable X denote all embeddings in E .
Definition 3.4. For a d-dimensional random variable X = [X1, . . . ,Xd] and 0 ≤ x1 ≤ . . . ≤ xd,
assume X has the same boundary on all d dimension, i.e., 0 ≤ x1 = . . . = xd = x , and let θ follow
Lévy distribution with location parameter µ = 0 and scale parameter η > 0. Then X is said to follow
a multivariate continuous scaled phase-type with Lévy (MCPHL) distribution with survival function:

F̄ (x1, x2, . . . , xd) =

∫ ∞

0

αeTAxdDde
TA(xd−xd−1)Dd−1 . . . e

TA(x2−x1) D1
η

2
√
πθ3

e−
η2

4θ 1dθ

= αeηB
√
xD1,

(4)
where B = −

√
−T, D =

∏d
i=1 Di is a diagonal matrix with the diagonal elements of 0 or 1.

Moreover, the diagonal elements of 0 or 1 in D limit its expressiveness. To address this, we
introduce a diagonal matrix A in addition to D, where we apply a sigmoid function h to diagonal
elements of A, i.e., A = diag(h(d1), · · · , h(dm)). Based on newly introduced expressive factor A,
we have corresponding survival function F̄A(x1, . . . , xd), distribution function FA(x1, . . . , xd) =

1− F̄A(x1, . . . , xd) = 1− αeηB
√
xDA1 (i.e., QA(x)), and probability density function

p(x) = −αηB

2
√
x
eηB

√
xDA1, (5)

and objective function L(α, η,B,D,A|x). We optimize the following objective to estimate α, η B,
D, and A:

L(α, η,B,D,A|x) =PA(x) logQA(x) + (1− PA(x)) log(1−QA(x)), (6)

where PA(x) is the observation and QA(x) = 1 − F̄A(x1, . . . , xd) = 1 − αeηB
√
xDA1. Please

refer to Appendix A.9 for the partial derivatives and the solution.

We present the convergence analysis in Theorem 3.5. Detailed proof can be found in the Appendix.
Theorem 3.5. Given sufficient iterations I , our estimation QA(x) = 1 − F̄A(x1, . . . , xd) =

1 − αeηB
√
xDA1 for the multivariate continuously scaled phase-type with Lévy distribution will

converge to the empirical distribution PA(x) estimated from real data.

Proof. Please refer to Appendix A.3 for a detailed proof.

Given the estimated MCPHL of prompt embeddings in E , the objective function for advertisement
implantation is optimized using the following update rule:

w ← w − ηA · ∇∥E(s)− Ef (ŝ)∥22 + ηM · ∇log(p(E(s))). (7)

where w denotes the parameter of the victim encoder E, p(·) denotes the PDF in equation 5, ηA
and ηM denote the alignment and density attack step size, respectively. Since p(·) is optimized on
advertisement-related prompt embeddings, its high-density regions correspond to natural sentence
embeddings that are more likely to contain advertisements. Jointly optimizing the two terms in
equation 7 increases the advertisement success rate while preserving naturalness.
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4 CERTIFIABLE ROBUSTNESS OF ENCODER THROUGH MOLLIFICATION

Mollification

RsR

Figure 3: Effect of mollification. Left: original
model f(w) with w (black dot) and R (dashed
circle). Right: smoothed model g(w) with a
smoother decision boundary and larger certified
radius Rs, implying stronger robustness to
parameter perturbations (e.g., user fine-tuning).

Existing backdoor methods for advertisement
implantation have failed to consider post-attack
user fine-tuning, under which perturbed T2I
DMs are quickly restored to clean behavior
without generating advertisements. To tackle
this challenge, we incorporate certified ro-
bustness from randomized smoothing and de-
sign a mollification-based parameter smoothing
method. Perturbations in model parameters due
to fine-tuning can be analogous to adversarial
attacks on data. Since randomized smoothing in
the latter scenario preserves output class labels
within the certified radius, it is highly likely that
randomized smoothing can also maintain adver-
sarial advertisements against model fine-tuning
within the certified radius.

Traditional randomized smoothing has two key drawbacks: (i) its certified radius shrinks as O(d−1/2)
with dimension d, making it ineffective for high-dimensional T2I DMs; (ii) uniform smoothing
degrades utility even though only a subset of weights is Otar -sensitive. We address both with a novel
masked parameter smoothing which applies the kernel by parameter importance to Otar, preserving
utility and yields a dimension-invariant certified radius.

It is well-known that only a small fraction of weights in a deep neural network contribute to a
specific entity, while the rest have little influence Bhardwaj et al. (2024); Zhang et al. (2024); Li
et al. (2025). Building on this, our masked-mollification workflow has two stages: (i) importance
masking. A temporary classification head C is attached to the encoder E(·) to form a classifier
f . We run a mini-batch of target prompts ŝ through the encoder and record the magnitude of the
gradient gi = ∥∇wi

L(ŝ)∥ for every parameter wi Bhardwaj et al. (2024); Zhang et al. (2024); Li
et al. (2025). These magnitudes are then linearly rescaled to [ϵ, 1], yielding an importance mask
Mask(w) ∈ [ϵ, 1]d, ϵ > 0 that assigns stronger smoothing to Otar -sensitive weights and weaker
smoothing to the rest. More details are in Appendix A.4. (ii) Masked mollification. We selectively
convolve f and a Friedrichs smoothing kernel Friedrichs (1944) with the help of Mask(w), thereby
preserving overall performance while yielding a dimension-invariant certified radius.

Definition 4.1 (Masked Parameter Smoothing). For a locally integrable function F on Rd, a mollifi-
cation G of F is a function on Rd, which can be obtained by convolving F and a Friedrichs kernel φ:

G(w) = Gσ(w) =

∫
F (w −Mask(w)⊙ u)φσ(u) du. (8)

where φσ(w) = σ−dφ(w/σ) for σ > 0, w denotes the post-attack model parameters, and
Mask(w) ∈ [ϵ, 1]d (ϵ > 0) is an element-wise mask applied to the smoothing direction. The
smooth function Gσ is a smooth function in C∞(Rn), and it converges to F when σ → 0.

The following definitions and theorems provide dimension-invariant robustness guarantees for lp(1 ≤
p ≤ ∞) perturbations. Theorem 4.3 proves that the lp-norm is Hadamard-directional differentiable,
which allows us to derive the dimension-invariant Lipschitz constant of g(w) in Theorem 4.4. Finally,
Theorem 4.5 derives the dimension-invariant certified radius rp for the smoothed model g.

Definition 4.2 (Hadamard Directional Derivative). Let (X, || · ||X) and (Y, || · ||Y ) be Banach spaces.
A function F (w) : X → Y is Hadamard-directionally differentiable at w ∈ X in the direction
h ∈ X with ∥h∥X = 1, if there exists a map Aw : X → Y such that, for all sequences hn → h ∈ X
and sequences of positive numbers tn → 0,

F (w + tnhn)− F (w)

tn
→ AF

w(h) ∈ Y. (9)

Theorem 4.3 establishes the Hadamard-directional differentiability of the lp-norm function when
1 ≤ p ≤ ∞, and provides a uniform upper bound for the Hadamard-directional derivatives.
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Table 1: Performance with varying trigger ratios and COCO dataset on SD

COCO + Trigger 60% COCO + Trigger 80%
Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID
FT 0.683 0.519 19.94 164.46 0.683 0.519 19.94 164.46
BLIP-Diffusion 0.509 0.347 8.16 256.96 0.672 0.592 9.11 259.16
RIATIG 0.486 0.331 17.74 171.61 0.555 0.353 17.84 169.10
DreamBooth 0.222 0.188 14.97 157.65 0.442 0.413 16.12 159.79
Textual Inversion 0.336 0.304 15.96 172.05 0.462 0.396 15.93 173.64
VillanDiffusion 0.459 0.519 9.68 313.93 0.645 0.652 9.74 325.01
DreamStyler 0.199 0.011 11.28 261.01 0.209 0.073 11.24 276.61
FFD 0.251 0.293 16.63 176.89 0.392 0.426 16.66 177.77
SneakyPrompt 0.355 0.305 17.39 171.32 0.576 0.391 17.63 173.36
BAGM 0.502 0.282 18.09 159.67 0.607 0.441 18.23 155.42
AATIM 0.860 0.703 20.33 154.54 0.860 0.703 20.33 154.54

Theorem 4.3. Denote the lp-norm function as Np(w) where w ∈ Rd and 1 ≤ p ≤ ∞. Np(w) is
Hadamard-directional differentiable for all w ∈ Rd in every direction h ∈ Rd with ∥h∥ℓp = 1. The
derivative A

Np
w (h), defined as in equation 9 with F replaced by Np, satisfy the following inequality∣∣ANp

w (h)
∣∣ ≤ 1. (10)

Proof. Please refer to Appendix A.3 for a detailed proof.

Given the differentiability of the lp-norm from Theorem 4.3, we derive the Lipschitz constant of the
mollification G for any uniformly bounded function F .
Theorem 4.4. Let F be a function on Rd uniformly bounded by a positive constant M ≤ 1, namely
∥F∥∞ ≤M ≤ 1. Fix w ∈ Rd. Let Mask0 = Mask(w), and let G = Gσ be given as in equation 8
with Mask(w) replaced by Mask0, where σ > 0 and φ : Rd → R given by

φ(w) = K−1e−∥w∥ℓp , K =

∫
Rd

e−∥w∥ℓpdw and 1 ≤ p ≤ ∞. (11)

Then for all w′ ∈ Rd, it holds that

|G(w)−G(w′)| ≤ M

σϵ
∥w − w′∥p, (12)

Proof. Please refer to Appendix A.3 for a detailed proof.

Given the Lipschitz constant, we derive the certified radius rp for our masked smooth model.

Theorem 4.5. Let f be a classifier defined on Rd with values in Y , and let g be the smoothing
classifier defined as in equation 45 with some σ > 0 and φ given by equation 11. Fix w ∈ Rd. Let cA
and cB be defined as in equation 47, let vA and vB be given by equation 48, and let ϵ be defined in
Definition 4.1. Then, for any w′ ∈ Rd, g(w′) = g(w) whenever ∥w′ − w∥p ≤ rp (1 ≤ p ≤ ∞) with

rp =
vA − vB

2
· σϵ. (13)

Proof. Please refer to Appendix A.3 for a detailed proof.

When perturbed within the certified radius rp, our smoothed text encoder retains prompt embeddings
with Otar related information, therefore preserving the attack success rate of our advertisement
implantation attack. The algorithm can be found in Appendix A.4.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the advertising effectiveness of the AATIM framework and other compari-
son methods for advertisement injection over three popular text-image datasets: MS-COCO (COCO)
(Lin et al., 2014), LAION-5B (LAION) (Schuhmann et al., 2022), and Conceptual Captions (CC)
(Sharma et al., 2018; Ng et al., 2020), across three popular T2I DMs: Stable Diffusion v1.5 (SD)
(Rombach et al., 2022), LDM (LDM) (Rombach et al., 2022), and DeepFloyd IF (DF) (StabilityAI,
2023). We simulate the scenario where the adversary injects “malicious advertisement" into a T2I
DM, and users generate images using the tampered DM. We feed captions from the three datasets
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above into the attacked T2I pipeline to generate images. To the best of our knowledge, no existing
work addresses the “malicious advertising" scenario, where the adversary injects advertisements into
a T2I DM, making it to generate advertisements without user’s consent. Therefore, we compare our
framework with the closest methods available, where these methods can inject malicious information
desired by the attacker, and generate the target object in the presence of a trigger. For baselines,
we insert triggers into the text prompts at ratios of 20%-80%. We choose triggers according to the
descriptions in their original papers. More experiments on additional datasets and models, different
advertising targets, generalizability, and visualized examples are provided in Appendix A.5.

Baselines. Since no existing work addresses the adversarial advertisement scenario, we compare
our AATIM framework with nine baselines that are the closest available approaches to this objective.
VillanDiffusion (Chou et al., 2023), RIATIG (Liu et al., 2023a), and BAGM (Vice et al., 2024) are
backdoor attack methods on T2I DMs. DreamBooth (Ruiz et al., 2023), Textual Inversion (Gal et al.,
2023), BLIP-Diffusion (Li et al., 2023a), and DreamStyler (Ahn et al., 2023) are subject-driven
generation methods on T2I DMs. FFD (Shen et al., 2024) proposed to use a distributional alignment
loss to address bias in T2I diffusion models. Furthermore, we include a simple vanilla method
FT that minimizes the Euclidean distance between clean and advertisement-injected samples. See
Appendix A.4 for a detailed baseline introduction.

Variants of AATIM method. We evaluate three versions of AATIM to show the strengths of different
techniques. AATIM employs the multivariate continuously scaled heavy-tail phase-type distribution
(MCPHL) to estimate the distribution of sentences with Otar. AATIM-M is a variant of AATIM
without the MCPHL. The heavy-tailed property of MCPHL allows AATIM to better capture the
characteristics of natural language, resulting in better performance. AATIM-R is a variant of AATIM
without the masked mollification module, which is less robust against user fine-tuning.

Table 2: Performance after user fine-tuning
with 80% trigger ratio

SD + COCO LDM + CC
Method ∆ASRVC ∆ASRVL ∆ASRVC ∆ASRVL

FT 0.401 0.497 0.313 0.326
BLIP-Diffusion 0.366 0.536 0.299 0.345
DreamStyler 0.669 0.627 0.519 0.727
FFD 0.388 0.695 0.384 0.493
RIATIG 0.670 0.798 0.330 0.318
DreamBooth 0.478 0.465 0.691 0.455
Textual Inversion 0.526 0.462 0.720 0.724
VillanDiffusion 0.797 0.949 0.415 0.529
SneakyPrompt 0.547 0.838 0.727 0.698
BAGM 0.438 0.861 0.348 0.280
AATIM-R 0.355 0.489 0.307 0.326
AATIM 0.149 0.233 0.206 0.091
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Figure 4: Performance of AATIM with
varying ηM .

Evaluation metrics. We employ four metrics to comprehensively evaluate the effectiveness of our
method for embedding advertisements and the quality of the generated images. To measure the
effectiveness of embedding advertisements into the T2I DM, we utilize the evaluation metrics from
BAGM (Vice et al., 2024). CLIP (Contrastive Language-Image Pre-training) and BLIP (Bootstrapping
Language-Image Pre-training) models are used to calculate ASRVC (Visual Classification Attack
Success Rate) and ASRVL (Vision-Language Attack Success Rate) as proposed in Vice et al. (2024)
to measure the effectiveness of advertisement injection. We evaluate generation quality using the
CLIP score (CLIP) (Gal et al., 2023) and Fréchet Inception Distance (FID) (Chou et al., 2023; Yang
et al., 2024). Higher CLIP and lower FID indicate better results. See Appendix A.4 for details.

Attack success rates on advertisement implantation. Table 1 exhibits the ASRVC and ASRVL
obtained by ten advertisement implantation methods by varying the ratio of trigger percentage
between 60% and 80%. Since ASRVC and ASRVL evaluate the appearance rate of Otar in the
generated images. Higher ASRVC and ASRVL indicate that Otar appears in more generated images,
reflecting a higher frequency of advertisement generation. Lower trigger ratios yield weaker ASRs
except for FT and AATIM, whose attacks do not rely on triggers. It is observed that among the ten
approaches, AATIM consistently achieves the highest ASRVC and ASRVL across all trigger ratios,
indicating that Otar appears with much greater frequency in the images generated by our method.
More specifically, when compared under the most favorable setting for trigger-based baselines (80%
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trigger ratio), AATIM achieves an average 38.5% and 33.4% higher ASRVC and ASRVL on COCO
dataset with SD. Note that AATIM and the FT method do not rely on triggers, so the performance
will not change with varying trigger ratios.

Generation quality with varying trigger ratios. Table 1 shows the CLIP score and FID score for
ten methods on COCO dataset with SD. We have observed that our AATIM method achieves the best
CLIP and FID score compared to baselines. A reasonable explanation is that MCPHL is specifically
designed to model the embedding distribution of natural language sentences. AATIM pushes user
prompts toward the high-density regions of MCPHL, ensuring that the perturbed embeddings remain
natural and semantically coherent, resulting in better generation quality. Moreover, AATIM does not
rely on fixed adversarial text-image pairs to implant attacks, such that the generated images are not
constrained to any predefined adversarial pattern. Consequently, AATIM generates images that align
with the semantics of the given prompts. More samples can be found in the Appendix A.5.

Robustness against user fine-tuning. Table 2 presents the absolute performance difference between
before and after user fine-tuning with additional data. Among the ten methods, our approach
exhibits the smallest decrease in ASRVC and ASRVL, with the reduction being up to 64.8% less than
baselines. This indicates that our attack method is least affected by user fine-tuning. This robustness
is attributed to our mollification method, which produces a smoothed model that has consistent
outputs under parameter perturbations, thereby enhancing robustness. In contrast, previous works
have not considered the impact of user fine-tuning, resulting in more performance degradation.

Impact of ηM . Figure 4 demonstrates the impact of the density attack step size ηM . We observe that
the optimal ASR values appear when ηM lies between 1× 10−5 and 1× 10−4. Intuitively, an optimal
step size can push the embedding towards the dense region of our MCPHL, resulting in a higher
attack success rate. High ηM tends to miss the optimal solution where low ηM hinders the attack.

Ablation study. Figure 5 compares AATIM with its variant AATIM-M (which removes MCPHL and
instead minimizes the Euclidean distance between clean and augmented samples) on three datasets.
AATIM yields higher ASRVC and ASRVL and better image quality across all datasets. AATIM drives
non-advertising prompts toward dense regions of the MCPHL distribution, making perturbed sentence
embeddings indistinguishable from natural, advertised embeddings. Consequently, it produces more
advertisements than AATIM-M. As shown in Table 2, AATIM-R suffers larger ASR drops under user
fine-tuning due to the lack of countermeasures, similar to other undefended baselines. These results
demonstrate the robustness of our masked mollification module to user fine-tuning.

Imperceptible advertisement injection of MCPHL. Figure 6 presents the number of images that
contain advertisements among the 1,000 images generated by ten methods after user fine-tuning. Our
method yields the highest number of advertising images. Our MCPHL module makes the perturbed
sentences used in the attack indistinguishable from natural sentences by capturing the heavy-tailed
property. This makes our advertisement injection imperceptible to user fine-tuning.

6 CONCLUSIONS

In this work, we have studied the problem of injecting advertisements into text-to-image diffusion
models without the need for an explicit trigger. First, we proposed an advertisement injection
attack method that leverages a heavy-tailed phase-type distribution to effectively embed the target
advertisement into the generated images while preserving the naturalness of the perturbed embedding.
Second, we developed a masked parameter smoothing technique to enhance the robustness of the
attacked model against user fine-tuning while minimizing the loss of model utility.
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A SUPPLEMENTARY MATERIALS

A.1 RELATED WORK

Generative Models. Generative models have gained significant attention in recent years Goodfellow
et al. (2014); Radford et al. (2016); Arjovsky et al. (2017); Karras et al. (2019); van den Oord et al.
(2016b;a); Salimans et al. (2017); Kingma & Welling (2014a); Rezende et al. (2014); Kingma &
Welling (2014b); Ho et al. (2020); Song & Ermon (2019); Dhariwal & Nichol (2021); Song et al.
(2020); Vaswani et al. (2017); Devlin et al. (2019); Brown et al. (2020); Xu et al. (2015); Tulyakov
et al. (2018); Rombach et al. (2022) . The core of generative models is to learn data distributions
and generate similar samples. Early works on generative models, such as Gaussian Mixture Models
(GMM) (McLachlan & Peel, 2000) and Hidden Markov Models (HMM) (Rabiner, 1989), provided
simple probabilistic frameworks to model data distributions and capture basic statistical dependencies.
Variational Autoencoders (VAE) (Kingma & Welling, 2014b) are considered the first combination
of deep learning and generative modeling. VAEs encode input data into a latent space by learning
a probabilistic distribution, then sample a latent variable from this distribution and decode it to
reconstruct the input. The model optimizes a loss function that balances reconstruction accuracy
and the regularization of the latent space to match a prior distribution (Kingma & Welling, 2014b).
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) proposed a novel adversarial
training framework consisting of a generator and a discriminator. The generator learns to produce
realistic data from random noise, while the discriminator learns to distinguish between real and
generated data. Through the adversarial training between the generator and the discriminator, GAN
learns to produce increasingly realistic data.

Diffusion Models. Diffusion models are generative models that utilize a diffusion process during
generation Nichol & Dhariwal (2021); Song et al. (2021); Austin et al. (2021); Li et al. (2022);
Chen et al. (2023b; 2021c); Popov et al. (2021); Liu et al. (2023b); Lin et al. (2023); Karras et al.
(2022); Lu et al. (2022); Song et al. (2023); Voleti et al. (2022); Zhang et al. (2023); Ho et al. (2020);
Dhariwal & Nichol (2021); Rombach et al. (2022); Ramesh et al. (2022); Saharia et al. (2022); Song
et al. (2020). Diffusion models were introduced by Sohl-Dickstein et al. (2015), who proposed a
diffusion process that gradually adds noise to data and reverses it to generate samples, forming the
foundation for subsequent advancements. Ho et al. refined this approach with Denoising Diffusion
Probabilistic Models (DDPM), employing a step-by-step denoising process to generate high-quality
images Ho et al. (2020). Song & Ermon introduced Score-Based Generative Models (SGMs), which
used score functions and continuous diffusion to further improve sample quality Song & Ermon
(2020). Dhariwal & Nichol advanced the field with Guided Diffusion, improving fidelity and diversity
by conditioning the diffusion process on external data like class labels, making diffusion models
competitive with GANs Dhariwal & Nichol (2021). Diffusion models have since expanded into new
domains, such as audio generation, demonstrated by Kong et al. (2021), and video generation by Ho
et al. (2022), showing their broad applicability across different data modalities.

Text-to-Image Diffusion Models. Recent advancements in text-to-image (T2I) diffusion models
have significantly enhanced both generation efficiency and generated image quality Agarwal et al.
(2025); Kim et al. (2025); Jha et al. (2025); Bai et al. (2025); Samuel et al. (2025); Balaji et al. (2022);
Singer et al. (2023); Wu et al. (2023); Poole et al. (2023); Lin et al. (2023); Zhang et al. (2023);
Brooks et al. (2022); Hertz et al. (2022); Blattmann et al. (2023); Bao et al. (2023); Kumari et al.
(2023); Kawar et al. (2023); Chen et al. (2023a); Chefer et al. (2023); Ye et al. (2023); Zhao et al.
(2023); Li et al. (2023b); Khachatryan et al. (2023); Feng et al. (2023); Xu et al. (2024); Shi et al.
(2023); Wen et al. (2023); Fernandez et al. (2023); Avrahami et al. (2022); Kim et al. (2022); Mokady
et al. (2022); Ramesh et al. (2021b); Saharia et al. (2022); Rombach et al. (2022); Nichol et al. (2022).
Early notable contributions include GLIDE (Nichol et al., 2022), which introduced classifier-free
guidance for generating photorealistic images from text, followed by DALL·E 2 (Ramesh et al., 2022),
which improved text-image alignment by incorporating CLIP embeddings, and Imagen (Saharia
et al., 2022), which achieved unprecedented realism by leveraging large pre-trained language models
(Raffel et al., 2020) to guide the diffusion process. More recent breakthroughs, such as Stable
Diffusion (Rombach et al., 2022), further optimized the generative process by introducing a more
efficient architecture, allowing for high-quality image generation while reducing computational costs.
DeepFloyd IF (StabilityAI, 2023) utilizes a cascaded diffusion model that progressively generates
high-quality images in stages, each refining and increasing the resolution of the image. This cascading
technique is designed to produce highly detailed and contextually accurate images from text prompts.
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Exploiting T2I DMs for Advertisement Injection. Since T2I DMs generate images based on
user prompts, they can be manipulated to generate images include specific patterns or objects. This
vulnerability can be exploited to turn T2I DMs into tools for embedding advertisements. To the best
of our knowledge, BAGM (Vice et al., 2024) is the first and only work that explicitly addresses this
advertising scenario. BAGM proposes three approaches: surface, shallow, and deep attacks. The
surface attack modifies user prompts by inserting brand-related words. For instance, if a user prompt
contains the word “burger," the attack appends the brand name “McDonald’s" before “burger." The
generated image will feature a McDonald’s burger to promote the brand. Note that the surface attack
does not fit into our attack scenario since we assume the attacker cannot modify user prompts. The
shallow and deep attacks in BAGM share a similar principle. They begin by selecting a trigger
semantically related to the target brand, e.g., “burger" when advertising McDonald’s. BAGM collects
images rich in McDonald’s elements from the internet and forms malicious text-image pairs by
associating the trigger “burger" with McDonald’s images. Similar to backdoor attacks, the shallow
attack leverages these malicious text-image pairs to fine-tune the text encoder, while the deep attack
uses them to fine-tune the U-Net in the generative model. As a result, when the user’s prompt contains
the trigger, the generated images tend to include elements associated with McDonald’s.

Backdoor Attack Against T2I Pipelines.

Previous works that introduce harmful information into T2I pipelines are similar to backdoor attacks
in neural networks, where a selected trigger is injected into the T2I diffusion model through fine-
tuning Nguyen & Tran (2020); Liu et al. (2020); Lin et al. (2020); Zhao et al. (2020); Wang et al.
(2020); Xie et al. (2020); Bagdasaryan et al. (2020); Nguyen & Tran (2021); Doan et al. (2021); Li
et al. (2021); Bagdasaryan & Shmatikov (2021); Wenger et al. (2021); Qi et al. (2021a;b); Shumailov
et al. (2021); Pan et al. (2022); Souri et al. (2022); Doan et al. (2022); Wang et al. (2022); Salem
et al. (2022) . This results in adversarial behavior when trigger prompts are used, while performance
on benign prompts remains largely unaffected. These backdoor attack methods on T2I DMs could
potentially be repurposed to achieve the advertising objectives of our work, but none of these previous
methods explicitly mention advertising as their goal. Several studies (Liu et al., 2023a; Struppek
et al., 2023; Gao et al., 2023; Zhai et al., 2023) have explored creating triggers using unnatural inputs,
such as replacing the letter ’l’ with the number ’1’ (Liu et al., 2023a), incorporating zero-width space
characters (Zhai et al., 2023), replacing "red" to "read" (Gao et al., 2023), or use Cyrillic letters
that are visually similar to English letters (Struppek et al., 2023). Although these works pioneered
the exploration of adversarial triggers in T2I pipelines, the unnatural triggers they propose are less
likely to appear naturally in typical user prompts. In contrast, other works (Vice et al., 2024; Yang
et al., 2024) define triggers with natural language words and fine-tune the model to associate them
with adversarial targets. For example, Vice et al. (2024) fine-tuned the word "drink" to associate
with "Coca-Cola," leading the T2I DM to preferentially generate Coca-Cola when the word "drink"
appears in a prompt. Though not explicitly classified as backdoor attacks, methods like Ruiz et al.
(2023); Gal et al. (2023) embed specific subjects into generated images upon detecting a trigger,
achieving a similar effect.

Existing backdoor attacks cannot address the adversarial-advertisement setting in this paper. First,
all the previous backdoor attacks or similar techniques rely on unnatural trigger tokens, such as
typos, letter substitutions, and non-Latin characters, as specified in the previous paragraph. Benign
users are very unlikely to include such triggers in their prompts. Consequently, the attack success
rate in real-life scenarios could be low. Second, when a backdoor is triggered, the model should
generate a pre-defined pattern that was embedded during the attack stage (e.g., a brand logo). Because
this pattern is fixed and independent of the input prompt, the model largely ignores the prompt’s
original semantics, resulting in images that deviate a lot from the user’s expectation. Since the
attacker cannot assume future prompts, a trigger-based backdoor cannot adapt the advertisement to
the prompt’s content and therefore cannot satisfy the adversarial-advertisement objective. To address
both limitations, the method proposed in this work does not rely on explicit triggers and instead
conditions the advertisement insertion on the prompt’s latent semantics, making the generated image
align well with users’ intent while seamlessly embedding the target brand.

A.2 DISCUSSION ON THE ATTACK SCENARIO

An important question about our proposed attack scenario is why would users adopt the customized
checkpoint instead of using the vanilla release. We first note that using customized diffusion
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checkpoints is extremely common. Community hubs like HuggingFace, Civitai, and PixAI host
hundreds of thousands of user-contributed models (Wei et al., 2024; Osborne et al., 2024). For
example, Civitai had tens of millions of visits per month, and a search for “SD 1.5” yields thousands
of user-generated checkpoints, often promoted for unique artistic styles. Popular projects like
AnimateDiff and DreamBooth also rely on HuggingFace for distributing such models (Guo et al.,
2024; Ruiz et al., 2023). Since the vanilla release lacks distinctive features (Zhang et al., 2023; Ruiz
et al., 2023), users are highly motivated to interact with these customized checkpoints.

From an attacker’s view, community hubs are attractive. Uploaders can exaggerate or fabricate
model performance; multiple studies show gaps between claimed and measured performance, and
most platforms perform limited verification (Jiang et al., 2023; Kadasi et al., 2025). Uploading
is free, enabling repeated reposting under different accounts. Prior work even found clusters of
near-duplicate malicious checkpoints on HuggingFace, suggesting deliberate large-scale seeding
(Zhao et al., 2024a). Given high user traffic, model diversity, and weak security, community hubs
pose non-trivial supply-chain risks (Trend Micro Research, 2025; Yuan et al., 2025).

A substantial body of marketing research indicates that firms often prioritize awareness and talkability
over sentiment, making unconventional campaigns practically plausible. First, a long-standing
phenomenon, “all publicity is good publicity,” is widely discussed and supported in the literature,
which argues that any exposure can be beneficial by increasing presence and visibility (Pacis et al.,
2022). Second, studies have shown that many companies actively adopt non-traditional advertising
strategies; for example, firms have achieved significant publicity through cost-effective campaigns
that prioritize exposure (Waller, 2006). Third, even non-positive publicity can still be beneficial:
Berger et al. (2010) provide empirical evidence that less favorable reviews can increase sales for
lesser-known authors. This finding is consistent with eye-tracking evidence that negative comments
attract greater attention and relate to purchase intention (Chen et al., 2022). These works further
provide real-world motivation for businesses to single-mindedly pursue increased exposure. Taken
together, these findings suggest that when the primary objective is exposure, firms are willing to
adopt attention-maximizing tactics. Therefore, they support the plausibility that advertisers would
employ adversarial advertisement strategies to increase brand visibility.

A.3 PROOF OF THEOREMS

Theorem 3.5. Given sufficient iterations I , our estimation QA(x) = 1 − F̄A(x1, . . . , xd) =

1 − αeηB
√
xDA1 for the multivariate continuously scaled phase-type with Lévy distribution will

converge to the empirical distribution PA(x) estimated from real data.

Proof. Let xi represent the value of x at the i-th iteration out of a total of I iterations, and define
the empirical distribution PA(x) = #(X≤[xi,...,xi])

Nd+1 , where N is the number of embeddings. The
expectation of the distribution E(X ≤ [xi, . . . , xi]) is given by:

E(X ≤ [xi, . . . , xi]) =

∫ ∞

0

1−QA(x) dx

=

∫ ∞

0

F̄A(x1, . . . , xd) dx

=

∫ ∞

0

αi exp
(
ηiBi

√
x
)
DiAi1 dx

(14)

Let y =
√
x, then dx = 2y dy. Using integration by parts formula, the integral part becomes:∫ ∞

0

αi exp
(
ηiBi

√
x
)
DiAi1dx = 2

∫ ∞

0

yαi exp (ηiBiy)DiAi1dy

= −2αi

∫ ∞

0

exp (ηiBiy)DiAi1dy

(15)

Let Bi = −
√
−Ti = PiJiP

−1
i , where Ji ∈ Rm×m is the Jordan canonical form of the matrix Bi

and Pi is an invertible matrix. The Jordan canonical form Ji is composed of Jordan blocks, which
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are of the form:

Ji =

J1
. . .

Jij

 (16)

Each Jordan block Jij is of the form:

Jij =


λi 1

λi
. . .
. . . 1

λi

 (17)

where λi is an eigenvalue of matrix Bi. Then, exp(ηiBiy) = Pi exp(ηiJiy)P
−1
i . We can compute

the integral of each Jordan block Jij :

∫ ∞

0

exp(ηiλiy)


1 ηiy

(ηiy)
2

2! · · · (ηiy)
m−1

(m−1)!

1 ηiy · · · (ηiy)
m−2

(m−2)!

. . . . . .
...

1 ηiy
1

 dy (18)

For the diagonal elements: ∫ ∞

0

exp(ηiλiy) dy =
1

−ηiλi
(19)

For the off-diagonal elements that involve terms like ηiy, η
2
i y

2 , etc., the integrals of the form:∫ ∞

0

yk exp(ηiλiy) dy (20)

These integrals can be computed using the Gamma function. For example:∫ ∞

0

yk exp(ηλiy) dy =
k!

(−ηλi)k+1
(21)

After calculating the integrals for each element of the Jordan blocks, we combine the results:∫ ∞

0

exp(ηiBiy) dy = Pi

∫ ∞

0

exp(ηiJiy) dyP
−1
i (22)

Thus, the result of the integral and expected value is:

E(X ≤ [xi, . . . , xi]) = −2αiPi


1

−ηiλi

ηi

(−ηiλi)2
· · · (ηi)

m−1

(−ηiλi)m

1
−ηiλi

· · · (ηi)
m−1

(−ηiλi)m

. . .
...
1

−ηiλm

P−1
i DiAi1 (23)

where each block in the diagonal corresponds to the contribution from a Jordan block, with terms
involving λi and powers of ηi.
Similarly, we can derive the variance of the distribution, V(X ≤ [xi, . . . , xi]), as follows:

V(X ≤ [xi, . . . , xi]) = E[X2]− (E[X])2

=

∫ ∞

0

2x (1− FS(x1, . . . , xd)) dx−
(∫ ∞

0

F̄A(x1, . . . , xd)dx

)2 (24)
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where

E[X2] =

∫ ∞

0

2x (1− FS(x1, . . . , xd)) dx

= 2

∫ ∞

0

x(αi exp
(
ηiBi

√
x
)
DiAi1)

= 2xαi exp (ηiBix)DiAi1
∣∣∣∞
0
− 2

∫ ∞

0

αi exp (ηiBix)DiAi1dx

= 4αiPi


1

−ηiλi

ηi

(−ηiλi)2
· · · (ηi)

m−1

(−ηiλi)m

1
−ηiλ2

· · · (ηi)
m−1

(−ηiλi)m

. . .
...
1

−ηiλm

P−1
i DiAi1

(25)

For those samples X satisfying X ≤ [xi, . . . , xi], we can compute the corresponding expectation
X̄ = E(X | X ≤ [xi, . . . , xi]) and variance σ2

X = V(X | X ≤ [xi, . . . , xi]).

For the empirical distribution, we have where E and V represent the expectation and variance
respectively.

E(X ≤ [xi, . . . , xi]) =− 2αtPt


1

−ηtλt

ηt

(−ηtλ1)2
· · · (ηt)

m−1

(−ηtλt)m

1
−ηtλt

· · · (ηt)
m−1

(−ηtλt)m

. . .
...
1

−ηtλk

P−1
t DtAt1, (26)

V(X ≤ [xi, . . . , xi]) =− 4αP


1

−ηtλt

ηt

(−ηtλt)2
· · · (ηt)

m−1

(−ηtλt)m

1
−ηtλt

· · · (ηt)
m−1

(−ηtλt)m

. . .
...
1

−ηtλt

P−1
t DtAt1. (27)

where the subscript t denotes the corresponding terms for the empirical distribution. Since X̄ ∈ E(X),
it follows that

E(X̄) =
1

I

I∑
i=1

E(X ≤ [xi, . . . , xi]), (28)

V(X̄) =
1

I2

I∑
i=1

V(X ≤ [xi, . . . , xi]). (29)

By applying Chebyshev’s inequality, for any real number ϵ > 0, we have

P (|X̄− E(X)| ≥ ϵ) =

∫
|X̄−E(X)|≥ϵ

f(X)dX

≤
∫
|X̄−E(X)|≥ϵ

|X̄− E(X)|2

ϵ2
f(X)dX

≤ 1

ϵ2

∫
|X̄− E(X)|2f(X)dX

=
1

ϵ2I2

I∑
i=1

V(X ≤ [xi, · · · , xi])

≤ V(X)

ϵ2I
.

(30)
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Taking the limit as I →∞, we get

lim
I→∞

P (|X̄− E(X)| ≥ ϵ) = lim
I→∞

V(X)

ϵ2I
= 0. (31)

Similarly, by applying Chebyshev’s inequality once more, for any real number ϕ > 0, the following
holds:

P
(
|E(σ2

X)− E(V(X))| ≥ ϕ
)
≤ V(σ2

X)

ϕ2I
= 0. (32)

Thus, the proof is complete.

Theorem 4.3. Denote the lp-norm function as Np(w) where w ∈ Rd and 1 ≤ p ≤ ∞. Np(w)
is Hadamard-directional differentiable for all w ∈ Rd in every direction h ∈ Rd with ∥h∥ℓp = 1.
Moreover, the derivative A

Np
w (h), defined as in equation 9 with F replaced by Np, satisfy the

following inequality ∣∣ANp
w (h)

∣∣ ≤ 1. (33)

Proof. Choose arbitrarily w ∈ Rd and h ∈ Rd with ∥h∥p = 1. Let hn ∈ R converge to h, and
tn > 0 converge to 0.

Step 1. Suppose w ̸= 0 and 1 ≤ p <∞. Then, we can write that

lim
n→∞

Np(w + tnhn)−Np(w)

tn
= lim

n→∞

(∑d
i=1 |wi + tnhn,i|p

) 1
p −

(∑d
i=1 |wi|p

) 1
p

tn

=

d∑
i=1

( d∑
j=1

|wj |p
) 1

p−1

|wi|p−1hi

=∥w∥1−p
p

d∑
i=1

|wi|p−1hi.

(34)

As a result, whenever 1 ≤ p <∞, Np(w) is Hadamard-directional differentiable for all w ∈ Rd\{0}
in every direction h ∈ Rd, with the Hadamard-directional derivative∣∣ANp

w (h)
∣∣ = ∥w∥1−p

p

d∑
i=1

|wi|p−1hi. (35)

Moreover, based on Hölder’s inequality, we have∣∣ANp
w (h)

∣∣ ≤ ∥w∥1−p
p

( d∑
i=1

(wp−1
i )

p
p−1

) p−1
p
( d∑

i=1

hp
i

) 1
p

= ∥w∥1−p
p ∥w∥p−1

p ∥h∥p
= ∥h∥p,

(36)

which affirms equation 10.

Step 2. Suppose w ̸= 0 and p =∞. Then,

lim
n→∞

N∞(w + tnhn)−N∞(w)

tn
= lim

n→∞

max1≤i≤d |wi + tnhn,i| −max1≤i≤d |wi|
tn

=sign(wι) sign(hι)hι, (37)

where ι ∈ {1, . . . , d} is such that max1≤i≤d |wi| = |wι|, and for any other j ∈ {1, . . . , d}, if
|wj | = |wι|, then |wj + hj | ≤ |wι + hι|. Furthermore, equation 10 is straightforward from
equation 37.

Step 3. If w = 0, then it is easy to see that

lim
n→∞

N∞(w + tnhn)−N∞(w)

tn
= lim

n→∞

N∞(tnhn)

tn
= lim

n→∞
Np(hn) = Np(h) = ∥h∥p = 1.

(38)
The proof of this theorem is complete.
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Theorem 4.4. Let F be a function on Rd uniformly bounded by a positive constant M ≤ 1, namely
∥F∥∞ ≤M ≤ 1. Fix w ∈ Rd. Let Mask0 = Mask(w), and let G = Gσ be given as in equation 8
with Mask(w) replaced by Mask0, where σ > 0 and φ : Rd → R given by

φ(w) = K−1e−∥w∥ℓp , K =

∫
Rd

e−∥w∥ℓpdw and 1 ≤ p ≤ ∞. (39)

Then for all w′ ∈ Rd, it holds that

|G(w)−G(w′)| ≤ M

σϵ
∥w − w′∥p, (40)

Proof. Preforming a change of variable w −Mask0 ⊙ u 7→ v in equation 8, we can write

G(w) =

d∏
i=1

Mask−1
0,i

∫
F (v)φσ

(
Mask−1

0 ⊙ (w − v)
)
dv. (41)

Notice that for any functions f : Rm → R, g ∈ : Rn → Rm, and w, h ∈ Rn, we have the following
formulae

Af
w(h) =

m∑
i=1

Af
w(ei)hi and Af◦g

w (h) =

m∑
i=1

n∑
j=1

Af
g(w)(ei)A

gi
w (ej)hj . (42)

Thus applying the previous formulae and Theorem 4.3, for any direction h ∈ Rd with ∥h∥p = 1, it
holds that∣∣AG

w(h)
∣∣ = σ−1

d∏
i=1

Mask−1
0,i

∣∣∣∣∣
d∑

i=1

∫
F (v)φσ

(
Mask−1

0 ⊙ (w − v)
)

·ANp

Mask−1
0 ⊙(w−v)

(ei)

d∑
j=1

A
[Mask−1

0 ⊙(·−v)]i
w (ej)hj dv

∣∣∣∣∣∣
≤ M

σ

d∏
i=1

Mask−1
0,i

∫
φσ

(
Mask−1

0 ⊙ (w − v)
) ∣∣∣∣∣

d∑
i=1

A
Np

Mask−1
0 ⊙(w−v)

(ei)Mask−1
0,ihi

∣∣∣∣∣ dv
≤ M

σϵ

d∏
i=1

Mask−1
0,i

∫
φσ

(
Mask−1

0 ⊙ (w − v)
)
dv

=
M

σϵ

∫
φσ(u)dv =

M

σϵ
.

(43)
The proof of this theorem is complete by employing the mean value theorem.

Before stating Theorem 4.5, we first introduce some necessary notations. Let f be a classifier mapping
elements of the parameter space Rd to a set of classes Y . For any c ∈ Y , we define fc, a function
from Rd to {0, 1} as follows,

fc(w) = Idc
(
f(w)

)
, (44)

where Id denotes the indicator function. Let φ be given as in equation 39. For a positive constant σ,
let g be a smoothing classifier given by

g(w) = gσ(w) = argmax
c∈Y

fc ∗ φσ(w), (45)

= argmax
c∈Y

∫
fc(u)φσ ((w − u)⊙Mask(w)) du, (46)

where φσ(w) = σ−dφ(w/σ). Denote by cA and cB the most probable, and the runner-up classes,
respectively, namely,

cA = cA(w) = argmax
c∈Y

fc ∗ φσ(w), and cB = cB(w) = argmax
c∈Y\{cA}

fc ∗ φσ(w). (47)

We also write
vA = vA(w) = fcA ∗ φσ(w) and vB = vB(w) = fcB ∗ φσ(w). (48)

Then, it turns out that vA ≥ vB , and are now ready to present the next theorem.
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Theorem 4.5. Let f be a classifier defined on Rd with values in Y , and let g be the smoothing
classifier defined as in equation 45 with some σ > 0 and φ given by equation 11. Fix w ∈ Rd. Let cA
and cB be defined as in equation 47, let vA and vB be given by equation 48, and let ϵ be defined in
Definition 4.1. Then, for any w′ ∈ Rd, g(w′) = g(w) whenever ∥w′ − w∥p ≤ rp (1 ≤ p ≤ ∞) with

rp =
vA − vB

2
· σϵ. (49)

Proof. Recall that fc defined as in equation 44 takes values in {0, 1}. Thus, Theorem 4.4 yields that
for any c ∈ Y , fc ∗ φσ is a Lipschitz function with Lipschitz constant

L =
1

σϵ
. (50)

As a result, for any w′ such that ∥w′ − w∥p ≤ rp, we have

|fcA ∗ φσ(w)− fcA ∗ φσ(w
′)| = |vA − fcA ∗ φσ(w

′)| ≤ 1

σϵ
· ∥w − w′∥p ≤

vA − vB
2

. (51)

This implies that

fcA ∗ φσ(w
′) ≥ vA −

vA − vB
2

=
vA + vB

2
. (52)

On the other hand, for all c ∈ Y \ {cA}, the same argument implies that

|fc ∗ φσ(w)− fc ∗ φσ(w
′)| ≤ vA − vB

2
, (53)

which further leads to the property that

fc ∗ φσ(w
′) ≤ vA − vB

2
+ fc ∗ φσ(w) ≤

vA − vB
2

+ max
c∈Y\{cA}

fc ∗ φσ(w) =
vA + vB

2
. (54)

Therefore,
g(w′) = argmax

c∈Y
fc ∗ φσ(w

′) = cA = g(w).

The proof of this theorem is complete.

A.4 EXPERIMENTAL DETAILS

Baselines. We compare our AATIM framework with nine baselines. VillanDiffusion (Chou et al.,
2023) works similarly to traditional backdoor attacks. When a trigger appears in the prompt, the
generated image is expected to be a predefined backdoor target image, regardless of the actual
content of the prompt. The following works are not backdoor attack methods. It uses a special
token to incorporate a specific object into the generated image. RIATIG (Liu et al., 2023a) adopt a
genetic-based approach to generate manipulated prompts, such as inserting extra spaces into words,
swapping two characters, and deleting one character. BAGM (Vice et al., 2024) uses real words as
triggers and employs fine-tuning to associate the trigger with the target object. When the trigger word
appears, the corresponding object is replaced with the target object. SneakyPrompt (Yang et al.,
2024) uses a reinforcement learning approach to guide the token-level perturbations. Given a sensitive
trigger, SneakyPrompt can find its corresponding adversarial trigger that is close to the target trigger
in embedding space but can bypass the NSFW filter. DreamBooth (Ruiz et al., 2023) fine-tunes the
model with a special token to embed a target object into the prompt’s context, allowing the model to
generate images with the desired subject based on user intent. Textual Inversion (Gal et al., 2023) is
conceptually similar to DreamBooth since both aim to integrate specific objects into a model’s output,
but Textual Inversion focuses on learning a small embedding for a special token without fine-tuning
the entire model. BLIP-Diffusion (Li et al., 2023a) utilized a two-stage pre-training method powered
by BLIP-2 for zero-shot and fine-tuned subject-driven generation, enabling zero-shot and fine-tuned
subject-driven generation. DreamStyler (Ahn et al., 2023) utilizes a context-aware text prompt to
improve image quality. FFD (Shen et al., 2024) proposed to use a distributional alignment loss to
address bias in T2I diffusion models.
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Evaluation metrics. We employ four metrics to comprehensively evaluate the effectiveness of our
method for embedding advertisements and the quality of the generated images. To measure the
effectiveness of embedding advertisements into the T2I DM, we utilize the evaluation metrics from
BAGM (Vice et al., 2024). We use the CLIP (Contrastive Language-Image Pre-training) and BLIP
(Bootstrapping Language-Image Pre-training) models to calculate ASRVC (Visual Classification
Attack Success Rate) and ASRVL (Vision-Language Attack Success Rate) as proposed in Vice et al.
(2024) to measure the effectiveness of advertisement injection. ASRVC calculates the percentage of
generated images that are classified as containing the target object Otar, i.e., ASRVC =

Ntarget

Nsamples
×

100%. ASRVL measures how often the generated images contain Otar in the captions produced by a
captioning model, i.e., ASRVL =

Ncaptions_with_target

Nsamples
× 100%. To assess the quality of the generated

images, we employ two commonly used metrics in literature: CLIP score (CLIP) (Gal et al., 2023)
and Fréchet Inception Distance (FID) (Chou et al., 2023; Yang et al., 2024). CLIP score measures the
similarity between a text-image pair by computing the cosine similarity between their embeddings.
These embeddings are generated by the CLIP model. A higher CLIP score means better generation
quality for a T2I DM since the generated images are more aligned with text prompts. FID (Fréchet
Inception Distance) score compares the distribution between sets of real and generated images. A
lower FID score indicates better fidelity of the generated images. Higher ASRVC and ASRVL indicate
more effective advertisement implantation, i.e., the higher, the better. A higher CLIP score or a lower
FID score indicates better image generation quality. Higher CLIP is better and lower FID is better.

Experiment environment. The experiments were conducted on a compute server running on Red
Hat Enterprise Linux 7.2 with 2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 4 GPUs of
NVIDIA H100 (each with 80GB of HBM2e memory on a 5120-bit memory bus, offering a memory
bandwidth of approximately 3TB/s),256GB of RAM, and 1TB of HDD. The codes were implemented
in Python 3.12.3 and PyTorch 2.3.0.

Dataset. We study the adversarial advertisement task on three representative image-text paired
datasets: Microsoft COCO (COCO) (Lin et al., 2014)1, LAION-5B (LAION) (Schuhmann et al.,
2022)2, and Conceptual Captions (CC) Sharma et al. (2018); Ng et al. (2020)3. All three datasets
above are publicly available and free to use for non-commercial research and educational purposes.
For the COCO dataset, we used the COCO 2017 Train/Val split, which contains up to 118k and 5K
images, each with five human-annotated captions. The LAION dataset contains up to 5.85 billion
image-caption pairs, which are CLIP-filtered. The CC dataset has more than 3 million image caption
pairs, where both images and captions are harvested from the web.

Training. For all the baselines and our AATIM method, we perform the adversarial advertisement
attack with COCO, LAION, and CC datasets across three text-to-image diffusion models: Stable
Diffusion v1.5 (SD) (Rombach et al., 2022), Latent Diffusion Model (LDM) Rombach et al. (2022),
and DeepFloyd IF (DF) (StabilityAI, 2023). Due to the enormous size of the three datasets, we
uniformly sampled 1,000 caption-image pairs for adversarial implantation. We modified the above
three models based on the Hugging Face Diffusers library4 and implemented our attack pipeline
accordingly. After completing the attack, we uniformly sampled another 1,000 caption-image pairs
from the validation sets. The captions were fed into the attacked model, and the generated images
were evaluated by computing ASRVC, ASRVL. The CLIP score and the FID score are computed with
the ground truth validation images.

Implementation. Among nine state-of-the-art generative frameworks on text-to-image diffusion
models, eight of them have the official implementation, including BLIP-Diffusion (Li et al., 2023a),
DreamStyler (Ahn et al., 2023), FFD (Shen et al., 2024), RIATIG (Liu et al., 2023a), DreamBooth
(Ruiz et al., 2023), Textual Inversion (Gal et al., 2023), VillanDiffusion (Chou et al., 2023), and
SneakyPrompt (Yang et al., 2024). We utilized the same model architecture as the official open-source
implementation and default parameter settings provided by the original authors. All hyperparameters
are standard values from reference codes or prior works. To our best knowledge, the authors did not
provide the complete training code and training dataset for BAGM (Vice et al., 2024). We tried our

1https://cocodataset.org
2https://laion.ai/blog/laion-5b/
3https://github.com/google-research-datasets/conceptual-captions
4https://huggingface.co/docs/diffusers/en/index
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best to implement these approaches in terms of the algorithm description from the original papers.
All hyperparameters are standard values from the reference papers.

Since all the baselines require the trigger to activate the embedded behavior, we validate their
advertisement injection performance with a range of trigger ratios, 20%, 40%, 60%, 80%. The
above open-source codes from the GitHub are licensed under the MIT License, which only requires
preservation of copyright and license notices and includes the permissions of commercial use,
modification, distribution, and private use. We will release our open-source code on GitHub and
maintain a project website with detailed documentation for long-term access by other researchers and
end-users after the paper is accepted.

For our AATIM framework, we performed hyperparameter selection by performing a parameter
sweep on parameters below: number of attack steps ∈ {1000, 2000, 3000, 4000, 5000}, alignment
attack step sizes ηA ∈ [1e−5, 1e−3], density attack step sizes ηM ∈ [1e−6, 1e−3], batch size fixed as
B = 8 due to GPU memory constraints. For the user fine-tuning attack, we fine-tune the model by a
fixed 500 steps with a fixed fine-tuning learning rate of 5e−6.

Notations Summary. Table 3 is a summary of definitions used in the main paper.
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Symbol Definition
s Non-advertising text prompt

ŝ Advertising-augmented prompt (contains brand)

S, Z, I Prompt, embedding, and image spaces

E(·) Trainable text encoder of the diffusion model

Ef (·) Frozen text encoder used for advertising prompts

zs = E(s) Embedding of non-advertising prompt

zŝ = Ef (ŝ) Embedding of advertising prompt

Otar Target object / advertised brand (e.g., McDonald’s)

E Set of advertising-prompt embeddings

MCPHL Multivariate Continuously Scaled Phase-type with Lévy

α Initial probability vector of MCPHL

T Sub-intensity matrix of MCPHL

η Lévy scale parameter

A, D Diagonal matrices in survival-function parameterization

B = −
√
−T Matrix square-root of −T

QA(x) CDF of prompt embedding under MCPHL

p(x) PDF of prompt embedding under MCPHL

ηA, ηM Step sizes for alignment / density objectives

w, w′ Current / perturbed parameter of E

Mask(w) Coordinate-wise importance mask in [ϵ, 1]d

ϵ Minimum mask threshold to control smoothing strength

C Temporary linear head for gradient-importance scoring

F, G Base and mollified functions in mollification theory

φσ Mollification kernel with noise level σ

σ smoothing noise level

Lg Lipschitz constant of g

rp Certified ℓp radius of g

cA, cB Top-2 classes predicted at w

πA(x), πB(x) Probabilities of cA, cB output by f on x

Θ Positive scaling variable in MCPHL (Laplace-style)

µ Location parameter of Lévy distribution

vA, vB Corresponding confidences of smoothed classifier g

d Dimensionality of parameters / embeddings

Table 3: Summary of key notations used throughout the AATIM framework.

Hyperparameter settings. Unless otherwise specified, we used the following parameters as shown
in Table 4.
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Table 4: Hyper-parameter settings.

Parameter Value
Number of < s, ŝ > pairs in attack 100
Number of attack steps for SD 10000
Number of attack steps for DF 10000
Number of attack steps for LDM 10000
Number of image generations 1000
Batch size B 8
Alignment step size ηA 5e−5

Density step size ηM 1e−5

Location parameter µ for Lévy distribution 0
Number of Monte Carlo trials N 1000
Noise level σ 1
Mask threshold ϵ 0.5
Learning rate for user fine-tuning attack 5e−6

Attack steps for user fine-tuning attack 500

Algorithm. Algorithm 1 described our masked smoothing method in detail. This method transforms
a function f (essentially an attacked text encoder E with weights w in this work) into a smoothed
function gσ(·) (a smoothed encoder) that is provably robust to a certain degree of fine-tuning attack.
Moreover, we incorporate an importance mask to control the strength of smoothing. We first obtain the
parameter-wise importance mask in Stage 1. Namely, we pass a minibatch of prompts containing Otar

and compute the gradient norms for each parameter (line 3). These norms are linearly rescaled to the
interval [ϵ, 1] (line 5), where ϵ controls the strength of smoothing. Stage 1 yields an importance mask
m∈ [ϵ, 1]d whose larger values correspond to weights more sensitive to the advertised target. In Stage
2, we first define a Friedrichs kernel as described in Theorem 4.4 (line 8). The smoothing procedure
is similar to that in random smoothing, where we use Monte Carlo estimation to approximate the
convolution between function f and the Friedrichs kernel φσ(u). Given a prompt s, we perform N
Monte-Carlo trials: at each trial we sample a noise vector u from the mollifier distribution φσ (line
12), scale it element-wise by the importance mask m, and add the result to the parameters of f (line
13), yielding an intermediate embedding output ê (line 14). Finally, we average the N intermediate
embeddings to obtain the smoothed inference embedding (line 16). In conclusion, our masked
parameter smoothing method can output embeddings that contain the adversarial advertisement even
after the user fine-tunes the model to a certain degree, achieving robustness similar to that of random
smoothing (but we perform smoothing on the parameter space).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 1: Masked Parameter Smoothing

Input: encoder weights w ∈ Rd, minibatch Star = {ŝ0, . . . , ŝB} containing Otar, smoothing
std. σ > 0, mask threshold ϵ > 0, number of Monte-Carlo samples N

Output: smoothed embedding function gσ(·)
1 Stage 1: Importance masking;
2 Compute gradient norms for each parameter:
3 gi ←

∥∥∇wi
ℓ
(
f(Star)

)∥∥
2
;

4 Normalize to [ ϵ, 1 ]:

5 mi ← ϵ+ (1− ϵ)
gi −min g

max g −min g
;

6 Form mask vector m = (m1, . . . ,md)
⊤;

7 Stage 2: Monte-Carlo smoothing at inference;
8 Define mollifier density φσ(u) = σ−dφ(u/σ), φ as defined in equation 39;
9 foreach user prompt s do

10 ê← 0 ; // running sum of embeddings
11 for j ← 1 to N do
12 sample u(j) ∼ φσ ;
13 w̃ ← w −m⊙ u(j) ; // inject weighted noise based on mask

14 e(j) ← gw̃(s) ; // forward pass

15 ê← ê+ e(j) ;
16 gσ(s)← ê/N ; // smoothed embedding

17 return gσ(·)

A.5 ADDITIONAL EXPERIMENTS

Performance with varying trigger ratio. Tables 5-28 exhibit the ASRVC, ASRVL, CLIP score, and
FID scores obtained by ten adversarial advertisement approaches by varying trigger ratio between
20% to 80% on three datasets of COCO, CC, and LAION respectively. Similar trends can be observed
for the comparison of adversarial advertisement effectiveness and generation quality in these figures:
our AATIM method achieves the highest ASRVC and ASRVL as well as the best generation quality in
most cases. Our AATIM method does not rely on an adversarial trigger to activate advertisement
generation, so the ASRVC and ASRVL do not decrease as the trigger ratio declines. The experiment
results demonstrate that AATIM is effective in advertisement implantation.

Table 5: Performance with 20% trigger ratio and COCO dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.139 0.090 8.20 279.34
RIATIG 0.182 0.078 17.77 162.67
DreamBooth 0.087 0.054 15.01 156.71
Textual Inversion 0.091 0.148 16.02 162.78
VillanDiffusion 0.175 0.127 9.49 309.55
DreamStyler 0.095 0.008 11.11 256.73
FFD 0.103 0.110 16.93 177.89
SneakyPrompt 0.153 0.169 17.64 180.95
BAGM 0.119 0.150 18.21 165.49

AATIM 0.860 0.703 20.33 154.54
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Table 6: Performance with 40% trigger ratio and COCO dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.354 0.291 8.21 259.10
RIATIG 0.309 0.217 17.97 184.35
DreamBooth 0.170 0.179 15.03 156.44
Textual Inversion 0.143 0.230 15.05 172.81
VillanDiffusion 0.315 0.301 9.61 312.75
DreamStyler 0.168 0.066 11.14 262.04
FFD 0.183 0.174 17.33 171.90
SneakyPrompt 0.274 0.195 17.49 176.92
BAGM 0.309 0.221 18.17 164.54

AATIM 0.860 0.703 20.33 154.54

Table 7: Performance with 20% trigger ratio and LAION dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.162 0.154 8.77 254.44
RIATIG 0.185 0.177 18.95 174.64
DreamBooth 0.101 0.072 17.92 110.75
Textual Inversion 0.101 0.092 17.42 131.52
VillanDiffusion 0.149 0.146 11.05 306.35
DreamStyler 0.006 0.043 17.95 181.23
FFD 0.093 0.104 17.38 187.33
SneakyPrompt 0.130 0.094 18.94 183.78
BAGM 0.088 0.142 16.08 147.40

AATIM 0.658 0.577 19.09 106.00

Table 8: Performance with 40% trigger ratio and LAION dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.251 0.283 8.72 275.04
RIATIG 0.285 0.243 17.79 165.82
DreamBooth 0.172 0.177 18.99 112.45
Textual Inversion 0.164 0.198 16.48 121.85
VillanDiffusion 0.231 0.233 10.36 308.11
DreamStyler 0.084 0.096 16.93 177.61
FFD 0.160 0.173 17.29 193.84
SneakyPrompt 0.215 0.127 17.69 158.80
BAGM 0.197 0.124 16.04 136.07

AATIM 0.658 0.577 19.09 106.00
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Table 9: Performance with 60% trigger ratio and LAION dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.427 0.362 8.86 259.89
RIATIG 0.331 0.290 17.66 146.18
DreamBooth 0.238 0.289 17.51 115.01
Textual Inversion 0.229 0.253 17.77 123.37
VillanDiffusion 0.338 0.333 10.37 315.43
DreamStyler 0.134 0.107 16.64 171.12
FFD 0.220 0.232 16.20 199.71
SneakyPrompt 0.335 0.191 17.87 151.47
BAGM 0.281 0.194 16.26 119.12

AATIM 0.658 0.577 19.09 106.00

Table 10: Performance with 80% trigger ratio and LAION dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.441 0.422 8.78 252.27
RIATIG 0.493 0.426 17.30 136.47
DreamBooth 0.337 0.316 17.77 114.20
Textual Inversion 0.361 0.332 17.50 122.29
VillanDiffusion 0.474 0.427 10.54 315.45
DreamStyler 0.158 0.132 17.11 166.98
FFD 0.291 0.335 16.92 192.19
SneakyPrompt 0.427 0.365 17.12 143.21
BAGM 0.325 0.322 17.36 109.23

AATIM 0.658 0.577 19.09 106.00

Table 11: Performance with 20% trigger ratio and CC dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.081 0.118 10.82 244.51
RIATIG 0.162 0.124 17.29 247.97
DreamBooth 0.117 0.092 16.01 126.99
Textual Inversion 0.119 0.086 15.97 116.99
VillanDiffusion 0.277 0.255 10.77 315.79
DreamStyler 0.139 0.098 16.01 116.99
FFD 0.115 0.131 15.19 155.05
SneakyPrompt 0.120 0.113 17.76 165.97
BAGM 0.134 0.112 15.98 136.98

AATIM 0.711 0.669 18.87 101.34
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Table 12: Performance with 40% trigger ratio and CC dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.143 0.098 10.75 257.23
RIATIG 0.309 0.290 17.48 160.08
DreamBooth 0.243 0.213 16.02 122.72
Textual Inversion 0.187 0.194 16.02 118.97
VillanDiffusion 0.349 0.320 11.30 322.38
DreamStyler 0.081 0.114 16.05 118.04
FFD 0.204 0.226 15.91 147.51
SneakyPrompt 0.229 0.173 18.06 168.08
BAGM 0.212 0.227 17.03 137.65

AATIM 0.711 0.669 18.87 101.34

Table 13: Performance with 60% trigger ratio and CC dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.392 0.289 10.87 245.19
RIATIG 0.366 0.302 15.00 145.45
DreamBooth 0.338 0.290 14.05 113.00
Textual Inversion 0.360 0.295 15.95 106.96
VillanDiffusion 0.502 0.436 11.11 337.80
DreamStyler 0.210 0.128 14.96 114.02
FFD 0.307 0.316 15.92 151.14
SneakyPrompt 0.387 0.403 17.37 137.59
BAGM 0.348 0.310 16.01 118.35

AATIM 0.711 0.669 18.87 101.34

Table 14: Performance with 80% trigger ratio and CC dataset on SD

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.552 0.514 10.67 236.41
RIATIG 0.494 0.431 14.40 128.67
DreamBooth 0.448 0.402 14.49 108.37
Textual Inversion 0.415 0.448 17.92 111.49
VillanDiffusion 0.582 0.554 9.19 342.15
DreamStyler 0.215 0.209 15.59 114.18
FFD 0.391 0.442 14.84 144.52
SneakyPrompt 0.486 0.433 15.30 131.03
BAGM 0.446 0.412 15.13 107.61

AATIM 0.711 0.669 18.87 101.34
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Table 15: Performance with 20% trigger ratio and COCO dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.047 0.039 12.58 313.19
RIATIG 0.119 0.033 13.74 283.52
DreamBooth 0.049 0.029 13.97 405.15
Textual Inversion 0.082 0.103 13.59 272.69
VillanDiffusion 0.102 0.110 7.39 422.18
DreamStyler 0.084 0.036 10.85 292.66
FFD 0.071 0.075 14.17 311.49
SneakyPrompt 0.117 0.089 13.39 334.96
BAGM 0.092 0.135 13.71 273.57

AATIM 0.485 0.340 14.32 266.99

Table 16: Performance with 40% trigger ratio and COCO dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.109 0.101 13.85 303.15
RIATIG 0.170 0.122 14.14 271.15
DreamBooth 0.124 0.117 13.33 392.55
Textual Inversion 0.126 0.144 13.55 276.18
VillanDiffusion 0.221 0.225 7.52 430.67
DreamStyler 0.104 0.102 10.86 350.20
FFD 0.107 0.158 14.21 291.57
SneakyPrompt 0.143 0.119 14.18 273.03
BAGM 0.168 0.221 14.09 267.16

AATIM 0.485 0.340 14.32 266.99

Table 17: Performance with 60% trigger ratio and COCO dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.135 0.130 12.90 305.12
RIATIG 0.256 0.148 13.69 275.74
DreamBooth 0.141 0.148 13.66 386.62
Textual Inversion 0.175 0.181 13.64 277.87
VillanDiffusion 0.310 0.307 7.13 428.19
DreamStyler 0.173 0.135 10.57 353.60
FFD 0.229 0.217 13.19 308.15
SneakyPrompt 0.187 0.167 13.72 278.28
BAGM 0.233 0.271 13.96 277.20

AATIM 0.485 0.340 14.32 266.99
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Table 18: Performance with 80% trigger ratio and COCO dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.204 0.204 14.29 298.20
RIATIG 0.328 0.235 14.30 277.59
DreamBooth 0.212 0.136 12.26 385.02
Textual Inversion 0.238 0.258 11.46 274.16
VillanDiffusion 0.356 0.336 7.19 426.00
DreamStyler 0.231 0.212 11.32 322.58
FFD 0.294 0.276 12.40 277.70
SneakyPrompt 0.262 0.207 12.13 273.24
BAGM 0.289 0.278 13.36 286.60

AATIM 0.485 0.340 14.32 266.99

Table 19: Performance with 20% trigger ratio and LAION dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.071 0.088 16.78 170.56
RIATIG 0.082 0.069 15.78 231.10
DreamBooth 0.058 0.068 16.39 267.71
Textual Inversion 0.076 0.062 16.34 188.25
VillanDiffusion 0.072 0.069 8.18 404.19
DreamStyler 0.066 0.091 14.72 233.19
FFD 0.074 0.086 15.74 172.36
SneakyPrompt 0.070 0.026 15.91 228.68
BAGM 0.089 0.074 16.79 221.18

AATIM 0.295 0.315 17.39 157.10

Table 20: Performance with 40% trigger ratio and LAION dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.178 0.161 16.15 177.73
RIATIG 0.129 0.119 15.21 206.10
DreamBooth 0.117 0.130 17.21 279.56
Textual Inversion 0.113 0.112 16.64 182.32
VillanDiffusion 0.129 0.128 8.12 400.19
DreamStyler 0.133 0.114 14.52 242.50
FFD 0.119 0.121 16.95 177.59
SneakyPrompt 0.132 0.130 15.40 217.34
BAGM 0.129 0.121 15.06 196.71

AATIM 0.295 0.315 17.39 157.10
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Table 21: Performance with 60% trigger ratio and LAION dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.216 0.172 16.66 181.89
RIATIG 0.174 0.182 15.12 220.06
DreamBooth 0.142 0.171 17.11 269.70
Textual Inversion 0.135 0.144 17.04 187.13
VillanDiffusion 0.199 0.196 7.19 408.48
DreamStyler 0.151 0.127 14.92 239.26
FFD 0.143 0.167 15.64 192.81
SneakyPrompt 0.191 0.188 14.74 219.02
BAGM 0.172 0.160 15.20 171.10

AATIM 0.295 0.315 17.39 157.10

Table 22: Performance with 80% trigger ratio and LAION dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.260 0.215 15.41 188.94
RIATIG 0.270 0.227 13.78 215.50
DreamBooth 0.180 0.216 11.88 259.98
Textual Inversion 0.154 0.180 16.24 189.24
VillanDiffusion 0.226 0.250 7.19 406.92
DreamStyler 0.201 0.159 15.71 244.13
FFD 0.201 0.226 15.91 177.72
SneakyPrompt 0.240 0.286 15.36 213.55
BAGM 0.228 0.113 15.24 179.74

AATIM 0.295 0.315 17.39 157.10

Table 23: Performance with 20% trigger ratio and CC dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.075 0.079 10.62 240.26
RIATIG 0.118 0.100 11.72 262.11
DreamBooth 0.066 0.082 10.16 356.99
Textual Inversion 0.078 0.092 11.61 237.15
VillanDiffusion 0.105 0.112 9.18 401.19
DreamStyler 0.087 0.067 10.48 288.73
FFD 0.081 0.080 10.07 213.52
SneakyPrompt 0.104 0.087 10.99 222.44
BAGM 0.089 0.078 11.40 249.41

AATIM 0.430 0.382 13.76 186.29
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Table 24: Performance with 40% trigger ratio and CC dataset on DF

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.120 0.126 10.40 244.84
RIATIG 0.186 0.177 10.75 249.85
DreamBooth 0.129 0.141 11.37 324.47
Textual Inversion 0.143 0.174 10.68 236.99
VillanDiffusion 0.190 0.192 9.18 401.19
DreamStyler 0.120 0.120 10.71 293.50
FFD 0.134 0.158 10.45 201.24
SneakyPrompt 0.190 0.174 10.15 249.94
BAGM 0.166 0.144 11.33 258.43

AATIM 0.430 0.382 13.76 186.29

Table 25: Performance with 20% trigger ratio and COCO dataset on LDM

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.120 0.119 13.24 280.67
RIATIG 0.056 0.054 11.82 277.13
DreamBooth 0.059 0.065 11.05 256.73
Textual Inversion 0.080 0.101 11.99 241.91
VillanDiffusion 0.083 0.166 11.48 460.41
DreamStyler 0.069 0.074 11.17 243.19
FFD 0.087 0.105 10.81 266.81
SneakyPrompt 0.022 0.088 12.18 279.19
BAGM 0.111 0.060 12.87 277.65

AATIM 0.346 0.515 13.33 233.77

Table 26: Performance with 40% trigger ratio and COCO dataset on LDM

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.217 0.140 12.48 271.03
RIATIG 0.053 0.047 12.57 273.60
DreamBooth 0.099 0.130 11.20 256.46
Textual Inversion 0.157 0.172 12.18 235.20
VillanDiffusion 0.345 0.397 11.53 460.39
DreamStyler 0.190 0.183 12.00 247.21
FFD 0.159 0.181 10.15 261.98
SneakyPrompt 0.134 0.113 12.46 286.10
BAGM 0.190 0.122 12.19 270.92

AATIM 0.346 0.515 13.33 233.77
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Table 27: Performance with 60% trigger ratio and COCO dataset on LDM

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.237 0.143 12.39 265.43
RIATIG 0.183 0.209 12.19 269.92
DreamBooth 0.177 0.202 12.19 257.60
Textual Inversion 0.170 0.192 11.28 243.20
VillanDiffusion 0.291 0.239 11.67 460.45
DreamStyler 0.230 0.170 11.65 244.69
FFD 0.202 0.254 10.88 276.92
SneakyPrompt 0.157 0.183 12.89 282.69
BAGM 0.227 0.166 11.84 266.29

AATIM 0.346 0.515 13.33 233.77

Table 28: Performance with 80% trigger ratio and COCO dataset on LDM

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.297 0.181 12.17 263.59
RIATIG 0.215 0.273 12.59 279.60
DreamBooth 0.245 0.182 11.05 275.17
Textual Inversion 0.169 0.149 11.59 237.19
VillanDiffusion 0.312 0.280 7.58 460.37
DreamStyler 0.312 0.174 13.13 243.15
FFD 0.297 0.333 11.19 277.31
SneakyPrompt 0.270 0.197 12.33 263.28
BAGM 0.256 0.243 11.77 273.99

AATIM 0.346 0.515 13.33 233.77

Generalization to new brand targets. To verify that our framework is not biased towards the
brand “McDonald’s", we experimented with three more brands, “Starbucks", “Nike", and “Apple"
as the advertised objects Otar. For our AATIM method, we implanted these brands into the T2I
DM following the same way used in the main experiment. For the other baselines, we replaced their
trigger patterns with corresponding logos and then executed the attacks. As shown in Tables 29-40,
among all ten approaches, AATIM consistently achieves the highest ASRVC and ASRVL across all
trigger ratios and two datasets. Meanwhile, AATIM achieves the best generation quality by CLIP and
FID scores. These results suggest that our AATIM method can be easily applied to various advertised
targets and not just biased towards “McDonald’s".

Table 29: Performance with 80% trigger ratio and COCO dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.317 0.333 10.81 299.43
DreamStyler 0.220 0.117 11.44 292.76
FFD 0.372 0.319 15.23 190.46
RIATIG 0.520 0.579 16.98 179.68
DreamBooth 0.378 0.339 16.05 189.00
Textual Inversion 0.407 0.333 17.24 166.48
VillanDiffusion 0.467 0.423 8.28 326.54
SneakyPrompt 0.425 0.441 17.38 165.51
BAGM 0.550 0.435 18.66 155.74

AATIM 0.596 0.689 20.92 139.04
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Table 30: Performance with 60% trigger ratio and COCO dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.252 0.274 10.09 299.23
DreamStyler 0.184 0.103 11.40 291.08
FFD 0.303 0.272 14.84 173.72
RIATIG 0.418 0.474 16.28 171.73
DreamBooth 0.291 0.278 16.29 188.14
Textual Inversion 0.319 0.253 16.52 164.17
VillanDiffusion 0.378 0.312 9.16 321.19
SneakyPrompt 0.368 0.334 16.42 167.10
BAGM 0.415 0.403 17.39 150.86

AATIM 0.596 0.689 20.92 139.04

Table 31: Performance with 40% trigger ratio and COCO dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.179 0.196 10.22 291.71
DreamStyler 0.117 0.109 11.59 287.19
FFD 0.191 0.174 14.03 194.64
RIATIG 0.280 0.285 17.23 178.37
DreamBooth 0.195 0.174 16.99 182.45
Textual Inversion 0.221 0.193 17.08 167.31
VillanDiffusion 0.253 0.238 9.15 314.98
SneakyPrompt 0.212 0.256 17.04 169.71
BAGM 0.314 0.219 17.72 157.97

AATIM 0.596 0.689 20.92 139.04

Table 32: Performance with 20% trigger ratio and COCO dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.099 0.116 10.02 294.26
DreamStyler 0.094 0.107 11.85 274.94
FFD 0.112 0.104 13.55 192.07
RIATIG 0.135 0.149 17.08 182.63
DreamBooth 0.118 0.084 15.13 188.76
Textual Inversion 0.121 0.098 17.43 162.46
VillanDiffusion 0.126 0.111 9.30 311.05
SneakyPrompt 0.128 0.135 16.73 166.75
BAGM 0.143 0.131 17.52 160.89

AATIM 0.596 0.689 20.92 139.04
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Table 33: Performance with 80% trigger ratio and LAION dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.414 0.405 9.99 266.16
DreamStyler 0.113 0.115 10.17 147.75
FFD 0.275 0.296 17.44 144.72
RIATIG 0.315 0.373 17.72 141.42
DreamBooth 0.295 0.319 18.01 131.41
Textual Inversion 0.331 0.277 17.54 131.32
VillanDiffusion 0.443 0.442 10.46 407.68
SneakyPrompt 0.418 0.308 16.38 155.33
BAGM 0.319 0.304 17.97 122.80

AATIM 0.458 0.554 18.52 100.57

Table 34: Performance with 60% trigger ratio and LAION dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.318 0.299 9.71 251.83
DreamStyler 0.104 0.111 10.08 150.85
FFD 0.202 0.235 17.36 145.73
RIATIG 0.207 0.227 17.22 140.23
DreamBooth 0.209 0.225 17.17 135.43
Textual Inversion 0.213 0.202 17.90 130.82
VillanDiffusion 0.287 0.314 10.57 410.37
SneakyPrompt 0.311 0.268 17.70 157.36
BAGM 0.224 0.231 16.86 131.85

AATIM 0.458 0.554 18.52 100.57

Table 35: Performance with 40% trigger ratio and LAION dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.220 0.216 10.13 255.74
DreamStyler 0.102 0.085 10.17 155.30
FFD 0.114 0.134 17.47 141.64
RIATIG 0.165 0.169 16.85 144.19
DreamBooth 0.156 0.157 17.67 140.12
Textual Inversion 0.173 0.148 17.20 133.62
VillanDiffusion 0.234 0.223 10.96 410.67
SneakyPrompt 0.219 0.155 18.16 160.43
BAGM 0.156 0.163 17.04 133.51

AATIM 0.458 0.554 18.52 100.57
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Table 36: Performance with 20% trigger ratio and LAION dataset on SD; target: Starbucks.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.099 0.111 9.71 252.64
DreamStyler 0.093 0.079 9.14 154.92
FFD 0.053 0.059 15.54 140.02
RIATIG 0.091 0.076 15.57 140.30
DreamBooth 0.091 0.085 16.60 136.95
Textual Inversion 0.103 0.074 15.96 135.26
VillanDiffusion 0.123 0.128 9.89 410.40
SneakyPrompt 0.096 0.084 17.17 154.54
BAGM 0.104 0.077 15.94 137.34

AATIM 0.458 0.554 18.52 100.57

Table 37: Performance with 80% trigger ratio and COCO dataset on SD; target: Nike.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.273 0.324 9.98 275.61
DreamStyler 0.484 0.449 16.00 198.26
FFD 0.292 0.303 11.99 288.52
RIATIG 0.353 0.311 14.98 190.99
DreamBooth 0.346 0.266 15.99 189.66
Textual Inversion 0.356 0.406 15.99 177.18
VillanDiffusion 0.458 0.430 8.98 454.31
SneakyPrompt 0.450 0.433 16.99 182.59
BAGM 0.526 0.456 15.99 176.22

AATIM 0.606 0.566 19.24 166.37

Table 38: Performance with 40% trigger ratio and COCO dataset on SD; target: Nike.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.141 0.158 8.99 291.99
DreamStyler 0.234 0.215 15.98 192.99
FFD 0.137 0.154 11.99 286.99
RIATIG 0.161 0.158 14.98 189.99
DreamBooth 0.158 0.131 14.98 191.99
Textual Inversion 0.182 0.192 15.98 173.15
VillanDiffusion 0.227 0.214 8.99 455.00
SneakyPrompt 0.228 0.204 15.99 177.26
BAGM 0.246 0.217 16.99 176.98

AATIM 0.606 0.566 19.24 166.37
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Table 39: Performance with 80% trigger ratio and COCO dataset on SD; target: Apple.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.497 0.451 8.77 252.27
DreamStyler 0.168 0.145 17.09 199.72
FFD 0.311 0.302 16.91 192.18
RIATIG 0.550 0.492 17.30 186.45
DreamBooth 0.427 0.394 17.77 194.19
Textual Inversion 0.463 0.459 17.50 182.28
VillanDiffusion 0.299 0.363 10.54 415.43
SneakyPrompt 0.459 0.405 17.11 183.21
BAGM 0.496 0.430 17.36 185.67

AATIM 0.663 0.657 20.22 176.32

Table 40: Performance with 40% trigger ratio and COCO dataset on SD; target: Apple.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID

BLIP-Diffusion 0.252 0.225 8.76 252.27
DreamStyler 0.067 0.070 17.10 194.18
FFD 0.146 0.146 16.91 192.17
RIATIG 0.259 0.244 17.29 196.45
DreamBooth 0.202 0.193 17.77 184.19
Textual Inversion 0.230 0.230 17.49 182.28
VillanDiffusion 0.144 0.167 10.53 415.45
SneakyPrompt 0.214 0.196 17.12 185.20
BAGM 0.242 0.201 17.36 188.59

AATIM 0.663 0.657 20.22 176.32

Lowest-CLIP Similarity Test Split. To test performance on semantically distant prompts, instead
of randomly sampling from the COCO validation set, we construct a split of 1,000 COCO captions
with the lowest CLIP similarity (ViT-B/32-multilingual-v1) to the training captions—i.e., those least
similar to the train set. The average similarity over the COCO 2017 train and validation sets is
≈ 0.95; our split reduces this to 0.32, yielding prompts that are maximally distant under CLIP. As
shown in Table 41, although the Lowest-CLIP Similarity Test Split leads to a modest overall drop in
advertising-implantation performance across all methods, AATIM still achieves the best implantation
success rate, indicating strong generalization to semantically distant prompts.

Table 41: Performance with COCO validation split vs. Lowest-CLIP Similarity Test Split on SD
(Trigger 80%).

COCO Val Split Lowest-CLIP Similarity Split
Method ↑ASRVC ↑ASRVL ↑CLIP ↓FID ↑ASRVC ↑ASRVL ↑CLIP ↓FID
BLIP-Diffusion 0.672 0.592 9.11 259.16 0.595 0.549 10.75 257.32
RIATIG 0.555 0.353 17.84 169.10 0.506 0.423 16.15 173.85
DreamBooth 0.442 0.413 16.12 159.79 0.439 0.431 15.33 164.91
Textual Inversion 0.462 0.396 15.93 173.64 0.396 0.353 16.56 177.64
VillanDiffusion 0.645 0.652 9.74 325.01 0.600 0.607 8.91 500.75
DreamStyler 0.209 0.073 11.24 276.61 0.200 0.127 11.43 331.52
FFD 0.392 0.426 16.66 177.77 0.334 0.307 15.74 172.27
SneakyPrompt 0.576 0.391 17.63 173.36 0.448 0.332 16.41 177.29
BAGM 0.607 0.441 18.23 155.42 0.511 0.473 17.16 166.31
AATIM 0.860 0.703 20.33 154.54 0.779 0.689 19.05 133.07

Performance on higher-resolution dataset. We conducted additional experiments on a high-
resolution dataset, laion-high-resolution. Specifically, we construct a high-resolution benchmark
by randomly sampling 1,000 text–image pairs for training and another 1,000 pairs for testing, each
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image having a horizontal resolution greater than 4096 pixels, i.e., 4K resolution. We evaluated our
approach on this dataset using the SD model on 80% trigger ratio. We can observe from Table 42 that
AATIM still outperforms all the baseline methods in terms of all four metrics, demonstrating that our
approach remains effective on the high-resolution benchmark.

Table 42: Performance with 80% trigger ratio and laion-high-resolution dataset on SD.

Method ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID
BLIP-Diffusion 0.334 0.219 8.76 298.12
DreamStyler 0.136 0.125 16.45 182.55
FFD 0.290 0.208 16.73 211.12
RIATIG 0.375 0.299 15.82 141.68
DreamBooth 0.336 0.247 15.11 172.67
Textual Inversion 0.325 0.299 16.23 141.58
VillanDiffusion 0.466 0.410 10.29 365.91
SneakyPrompt 0.414 0.311 15.73 172.78
BAGM 0.339 0.373 14.32 165.35
AATIM 0.717 0.635 18.22 109.85

Performance with varying mask threshold ϵ. Table 43 reports the performance of AATIM after
user fine-tuning attacks, under different values of the masked smoothing threshold ϵ, which controls
the minimum strength of parameter smoothing. A larger ϵ applies more noise during smoothing,
which leads to a drop in generation quality, yet ASRVL and ASRVC decrease by a smaller margin after
fine-tuning, indicating that the advertisement is more robust against fine-tuning attack. Conversely, a
smaller ϵ weakens the smoothing effect. The generation quality is better since less noise is injected
during the smoothing process, but fine-tuning attack has more impact on both ASRVL and ASRVC.
Overall, the results demonstrate the trade-off between generation quality and robustness, allowing
attackers to choose ϵ to suit their desired balance.

Table 43: Performance under different mask thresholds ϵ with COCO on SD

ϵ ↑ ASRVC ↑ ASRVL ↑ CLIP ↓ FID
0.7 0.767 0.588 21.72 145.96
0.6 0.761 0.575 21.67 146.03
0.5 0.732 0.539 22.01 144.82
0.4 0.702 0.509 22.20 142.74
0.3 0.669 0.464 22.44 142.26

A.6 VISUAL EXAMPLES OF ADVERSARIAL ADVERTISEMENT ATTACK

Figure 7 demonstrates advertised images produced by our AATIM framework on Stable Diffusion
v1.5 with captions from the COCO 2017 validation split. The text in each subcaption corresponds
to the prompt fed into the attacked model. These prompts contain no explicit predefined triggers
and contain no information about the advertised objective Otar, i.e., “McDonald’s" (Figures 7(a) -
7(c) and 7(j) - 7(l)), “Apple" (Figures 7(d) - 7(f)), and “Nike" (Figures 7(g) - 7(i)). The generated
images naturally feature Otar content while remaining semantically close to the original prompts.
Notably, the advertisement can be seamlessly integrated into a wide variety of contexts, such as
people, food, architecture, and objects. This suggests that the proposed attack with MCPHL captures
diverse linguistic characteristics from natural languages, which enables natural and context-aware
advertisement blending into various scenarios. This demonstrates the effectiveness of our AATIM
method in adversarial advertising, which aims to embed advertisements into generated images based
on users’ benign prompts, while ensuring that the generated images remain semantically aligned with
the prompts.
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(a) "A white vase holds some pretty
yellow tulips in this still life study."

(b) "A woman wearing skis on
a snowy mountain posing for the
camera."

(c) "Clouds soar above a tall build-
ing on a sunny day."

(d) "A group of people sitting
down to eat and having conversa-
tions."

(e) "A family sitting at a large table
in a restaurant."

(f) "A plate filled with several types
of decadent foods."

(g) "A laptop computer is sitting
on a desk."

(h) "A group of men on a field play-
ing baseball."

(i) "Two men pose for the camera
holding glasses of wine."

(j) "A plate of breakfast food sits
on a table."

(k) "A vase with red flowers in it
on a table."

(l) "Stuffed toy bear sitting on dash-
board of motor vehicle."

Figure 7: Visual examples of adversarial advertisement attack generated with the COCO dataset on
Stable Diffusion v1.5. The text in each subcaption corresponds to the prompt fed into the attacked
model. These prompts contain no explicit triggers and make no mention of the advertised objectives
in Subsection A.6. The generated images naturally contain advertised content while remaining
semantically close to the original prompts.
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A.7 POTENTIAL NEGATIVE IMPACTS, LIMITATIONS AND FUTURE WORKS

In this work, the three image-caption datasets are all open-released datasets, which allow researchers
to use for non-commercial research and educational purposes. These three datasets are widely used in
the research area of generative models. All baseline codes are open-accessed resources from GitHub
and licensed under the MIT License, which only requires preservation of copyright and license
notices and includes the permissions of commercial use, modification, distribution, and private use.

Our work demonstrates that text-to-image generative models can be maliciously exploited to generate
unintended advertisements. Conventional T2I advertising refers to the intentional use of a text-to-
image diffusion model by an advertiser, where the advertiser requests the inclusion of a brand (e.g.,
McDonald’s) in the prompt, and the generated image is expected to contain the branding. In contrast,
the “adversarial advertisement" problem is how to naturally embed advertisements into generated
images when the user has no advertising intention (Vice et al., 2024). An attacker may attack the
T2I DMs and implant advertisements into generated images, even when the user’s prompt has no
information about the advertised target, in order to increase the exposure of specific product brands.
To the best of our knowledge, we are the first to introduce the problem of adversarial advertisement.
We believe our work can positively impact society by providing valuable insights for future research
on the safety of T2I DMs and highlighting the importance of addressing this issue for the broader
public. Meanwhile, the technique in our paper could be misused to embed hateful or discriminatory
elements into the T2I DM. Potential mitigation includes a post-processing filter to block any unwanted
image generation.

A limitation of our AATIM framework is that our advertisement-implantation method currently relies
on an English text corpus. Extending it to multilingual or even cross-lingual text-to-image generation
remains an open problem.

Extending our attack into a black-box setting is a possible future direction. A practical route that
has already been explored in model-extraction literature (Carlini et al., 2024; Tamber et al., 2025;
Zhou et al., 2024; Gu et al., 2024) is to query the target API and train a high-fidelity surrogate
whose weights approximate the black-box decision function (e.g., adaptive distillation). Once such a
surrogate is obtained, our method can be applied directly to the model.

A.8 BACKGROUND ON RANDOMIZED SMOOTHING FOR CERTIFIED ROBUSTNESS

Given a classifier f , the goal of randomized smoothing for certified robustness is constructing a
smooth classifier g from f , which assigns inputs x ∈ Rd to classes in the set C. The function g(x) is
defined by:

g(x) = argmax
c∈Y

P(f(x+ ε) = c) (55)

where ε ∼ N (0, σ2I)

The classifier g identifies the class that the base classifier f will most likely predict when the input x
is slightly perturbed by noise ϵ. Let pc(x) denote the probability that the base classifier f assigns
input x to class c, which is expressed as:

pc(x) = Pϵ∼D (f(x+ ϵ) = c) (56)

Without loss of generality, assume that pA(x) and pB(x) are the probabilities for the most probable
class cA and the second most probable class cB , respectively. If the probability P(f(x+ ϵ) = cA)
is at least pA(x), which in turn is greater than or equal to pB(x), and both of these are greater than
the maximum probability for any other class c ̸= cA, with pA(x) being a lower bound and pB(x)

an upper bound, then the classifier g will consistently output cA for any perturbation δ in Rd where
∥δ∥p ≤ rp. Therefore, the smooth classifier g can reliably produce the correct prediction as long as
the perturbation δ remains within the certified lp-norm radius rp for p > 0.

Theorem 1.6. (Cohen et al., 2019) Let f : Rd → Y be any deterministic or random function, and let
ε ∼ N (0, σ2I). Let g be defined as in (55). Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c̸=cA

P(f(x+ ε) = c) (57)
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Then g(x+ δ) = cA for all ∥δ∥2 < R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (58)

Φ−1 is the inverse of the standard Gaussian CDF. Please refer to the original paper Cohen et al.
(2019) for detailed proof.

Recent works (Kumar et al., 2020; Yang et al., 2020; Mohapatra et al., 2020) have revealed that
the largest certified radius rp for randomized smoothing against lp-norm adversarial threats scales
inversely with d

1
2−

1
p , where d denotes the input dimension. Specifically, for a Gaussian distribution

with variance σ2, the upper bound of rp is given by (Kumar et al., 2020):

rp =
σ

2d
1
2−

1
p

(
Φ−1(pA(x))− Φ−1(pB(x))

)
(59)

In this context, σ functions as a hyperparameter to balance robustness and accuracy within the model
g. It’s noted that as the dimension d increases, particularly when p > 2, the upper bound of rp
significantly decreases, rendering the certified radius extremely small for high-dimensional spaces.
Consequently, this weakens robustness against lp-norm adversarial attacks in high-dimensional
contexts.

A.9 THE SOLUTION OF MULTIVARIATE CONTINUOUS SCALED PHASE-TYPE WITH LÉVY
DISTRIBUTION

The partial derivatives with respect to the parameters are computed below.

∂L

∂α
=

PA(x)e
ηB

√
xDA1

−1 + αeηB
√
xDA1

+
1− PA(x)

α
= 0, (60)

∂L

∂B
=

PA(x)αe
ηB

√
xη
√
xDA1

−1 + αeηB
√
xDA1

+ η
√
x(1− PA(x)) = 0, (61)

∂L

∂D
=

PA(x)αe
ηB

√
xA1

−1 + αeηB
√
xA1

+
(1− PA(x))αe

ηBxA1
αeηB

√
xA1

= 0, (62)

∂L

∂η
=

PA(x)αe
ηB

√
xB
√
xDA1

−1 + αeηB
√
xDA1

+B
√
x(1− PA(x)) = 0, (63)

∂L

∂A
=

PA(x)αe
ηB

√
xD1

−1 + αeηB
√
xD1

+
(1− PA(x))αe

ηBxD1

αeηB
√
xD1

= 0. (64)

The solution to the above equations are

α = 1−1A−1D−1e−ηB
√
x(1− PA(x)), (65)

B =
log(α−1(1− PA(x))1

−1A−1D−1)

η
√
x

, (66)

D = e−ηB
√
xα−1(1− PA(x))1

−1A−1, (67)

η =
log(α−1(1− PA(x))1

−1A−1D−1)√
xB

, (68)

A = D−1e−ηB
√
xα−1(1− PA(x))1

−1, (69)

where the inverse notation is used to represent vectors α−1 and 1−1 such that 1−1 × 1 = 1 and
α× α−1 = 1.

A.10 THE USE OF LARGE LANGUAGE MODELS

In this submission, we used an LLM solely to polish the writing and correct grammatical errors.
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