
Training Diffusion Models with Noisy Data via SFBD Flow

Haoye Lu 1 2 Darren Lo 1 Yaoliang Yu 1 2

Abstract
Diffusion models achieve strong generative per-
formance but often rely on large datasets that may
include sensitive content. This challenge is com-
pounded by the models’ tendency to memorize
training data, raising privacy concerns. SFBD
(Lu et al., 2025) addresses this by training on cor-
rupted data and using limited clean samples to
capture local structure and improve convergence.
However, its iterative denoising and fine-tuning
loop requires manual coordination, making it bur-
densome to implement. We reinterpret SFBD as
an alternating projection algorithm and introduce
a continuous variant, SFBD flow, that removes
the need for alternating steps. We further show its
connection to consistency constraint-based meth-
ods, and demonstrate that its practical instanti-
ation, Online SFBD, consistently outperforms
strong baselines across benchmarks.

1. Introduction

Diffusion-based generative models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021a;b; 2023) have
attracted growing interest and are now regarded as one of the
most powerful frameworks for modelling high-dimensional
distributions. They have enabled remarkable progress across
various domains (Croitoru et al., 2023), including image (Ho
et al., 2020; Song et al., 2021a;b; Rombach et al., 2022),
audio (Kong et al., 2021; Yang et al., 2023), and video
generation (Ho et al., 2022).

Diffusion models can be efficiently trained using the con-
ditional score-matching loss, making them relatively easy
to scale. This scalability enables the training of very large
models on web-scale datasets – a crucial factor in achieving
high performance. This approach has driven recent break-
throughs in image generation, exemplified by models such

*Equal contribution 1Cheriton School of Computer Science,
University of Waterloo, Canada 2Vector Institute, Canada. Corre-
spondence to: Haoye Lu <haoye.lu@uwaterloo.ca>.

Published at Data in Generative Models Workshop: The Bad, the
Ugly, and the Greats (DIG-BUGS) at ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

as Stable Diffusion (-XL) (Rombach et al., 2022; Podell
et al., 2024) and DALL-E (Betker et al., 2023). However,
this success comes with challenges: large-scale datasets
often include copyrighted material, and diffusion models
are more prone than earlier generative methods like GANs
(Goodfellow et al., 2014; 2020) to memorizing training data,
potentially reproducing entire samples (Carlini et al., 2023;
Somepalli et al., 2023).

A recently proposed strategy to address memorization and
copyright concerns involves training or fine-tuning diffusion
models on corrupted data (Daras et al., 2023b; Somepalli
et al., 2023; Daras and Dimakis, 2023; Daras et al., 2024). In
this setting, the model never has direct access to the original
data. Instead, each sample is transformed via a known, non-
invertible corruption process, such as pixel-wise additive
Gaussian noise in image datasets, ensuring that the original
content cannot be reconstructed or memorized at the individ-
ual sample level. Remarkably, under mild conditions, such
corruptions - although irreversible at the sample level – can
induce a bijection between the original and corrupted data
distributions (Bora et al., 2018). Specifically, the corrupted
data distribution has a density equal to the convolution of
the true data density with the corruption noise distribution
(Meister, 2009; Lu et al., 2025). As a result, it is theoret-
ically possible to recover the original data distribution by
first estimating the corrupted (noisy) density from samples,
and then performing density deconvolution to approximate
the underlying true data density.

We refer to this task – recovering the true data distribution
from noisy observations – as the deconvolution problem.
Motivated by this formulation, several works (Daras et al.,
2024; 2025; Lu et al., 2025) have shown that diffusion mod-
els can effectively address the deconvolution problem either
by applying iterative denoising and fine-tuning, as in SFBD
(Lu et al., 2025), or by enforcing consistency constraints
(CCs) during training (Daras et al., 2023a). Specifically,
when paired with a small set of copyright-free clean data,
both SFBD and CC-based methods have been shown to
guide diffusion models toward generating high-quality im-
ages. However, SFBD relies on costly iterative denoising
and fine-tuning, while CC-based methods require solving
backward stochastic differential equations (SDEs) at each
training step, making both approaches computationally ex-
pensive in different ways.

1

Training Diffusion Models with Noisy Data via SFBD Flow

In this paper, we eliminate the need for iterative denois-
ing and fine-tuning in SFBD by introducing a continuous
variant, SFBD flow. We reinterpret SFBD as an alternating
projection between two sets of stochastic processes, framing
it as a stochastic process optimization problem. Inspired by
Sinkhorn flow (Reza Karimi et al., 2024) and Schrödinger
bridge flow (Bortoli et al., 2024), this view leads to a gen-
eralized family of diffusion-based deconvolution methods,
termed γ-SFBD for γ ∈ (0, 1], which guide the model to-
ward the clean data distribution. When γ = 1, the method
recovers the original SFBD; as γ → 0, the discrete sequence
of stochastic processes transitions into a continuous evolu-
tion, naturally yielding the SFBD flow.

We further show that SFBD flow arises as a steepest gradi-
ent descent in function space, with γ-SFBD as its discrete
approximation. This perspective motivates Online SFBD,
a practical diffusion-based deconvolution method avoiding
repeated fine-tuning (see Sec 5). We also reveal a close
connection to CC-based methods, offering a unified view
of both approaches. Empirical results validate our analy-
sis, with Online SFBD consistently outperforming strong
baselines across benchmarks.

2. Preliminaries

In this section, we review diffusion models, the deconvolu-
tion problem, and two typical methods for training diffusion
models on data corrupted by Gaussian noise.

Diffusion models. Diffusion models generate data by pro-
gressively adding Gaussian noise to input samples and then
learning to reverse this process through a sequence of de-
noising steps. Formally, given an initial data distribution p0
over Rd, the forward process is governed by the SDE

dxt = dwt, x0 ∼ p0, t ∈ [0, T], (1)

where T is a fixed positive constant. {wt}t∈[0,T] is the
standard Brownian motion. Eq (1) induces a transition
kernel pt|s(xt|xs) for 0 ≤ s ≤ t ≤ T . For s = 0,

pt|0(xt|x0) = N (x0, t I), t ∈ [0, T]. (2)

When T is large, the terminal state xT closely approximates
a sample from the isotropic Gaussian distributionN (0, T I).
Let pt(xt) =

∫
pt|0(xt|x0) p0(x0) dx0 denote the marginal

distribution of xt, where pT ≈ N (0, T I). Anderson (1982)
showed that the time-reversed process corresponding to the
forward SDE can be described by the backward SDE:

dxt = −st(xt) dt+ dw̄t, xT ∼ pT , (3)

where w̄t is standard Brownian motion in reverse time and
st = s∗t := ∇ log pt is the score function. Crucially, this re-
verse SDE induces transition kernels that match the posterior

of the forward process: ps|t(xs|xt) =
pt|s(xt|xs)ps(xs)

pt(xt)
for

s ≤ t in [0, T]. It is known that s∗t (xt) =
1
t (Ep0|t [x0|xt]−

xt), where the conditional expectation Ep0|t [x0 | xt] is typi-
cally approximated in practice by a neural network-denoiser
Dϕ(xt) (Karras et al., 2022), trained by minimizing

Ld(ϕ) = Et∼T Ep0 Ept|0

[
w(t)∥Dϕ(xt, t)− x0∥2

]
, (4)

where w(t) is a time-dependent weighting function and T
denotes a sampling distribution over [0, T]. With a well-
trained denoiser Dϕ, s∗t can be approximated by

sϕt (xt) :=
1
t

(
Dϕ(xt, t)− xt

)
. (5)

Substituting this estimate into Eq (3), one can simulate the
reverse-time SDE starting from x̃T ∼ N (0, T I), yielding a
sample x̃0 that serves as an approximation sampled from p0.

Deconvolution problem. We follow the setup of Daras
et al. (2024); Lu et al. (2025), where corrupted samples Y =
{y(i)}ni=1 are generated as y(i) = x(i) + ϵ(i), with x(i) ∼
pdata and ϵ(i) ∼ h = N (0, τI) drawn independently, where
τ ∈ (0, T) is known and fixed. The resulting samples y(i)

follow a distribution with density p∗τ = pdata ∗ h, where
∗ denotes the convolution operator (Lu et al., 2025). In
addition, we assume access to a small set of clean samples
Dclean = {x(i)}Mi=1 with x(i) ∼ pdata.

While deconvolution theory (Meister, 2009; Lu et al., 2025)
and related empirical results in the context of GANs (Bora
et al., 2018) have demonstrated the theoretical and practical
feasibility of learning the true data distribution from noisy
samples, a key challenge remains: how to effectively train a
diffusion model on corrupted data to generate clean samples.

Consistency constraint-based method. Daras et al. (2024)
first addressed this problem using CCs (Daras et al., 2023a).
With noisy samples xτ ∼ p∗τ , they trained a network sϕt
to approximate score s∗t for t > τ via a modified loss
called ambient score matching (ASM). Specifically, sϕt is
implemented through Eq (5), where Dϕ(xt, t) approximates
Ep0|t [x0 | xt]. For t ≤ τ , score matching is inapplicable,
and instead Dϕ(xt, t) is trained to satisfy the CCs:

Ep0|s [x0|xs] = Epr|s

[
Ep0|r [x0|xr]

]
, for 0 ≤ r ≤ s ≤ T

by jointly minimizing the consistency loss:

Lcon(ϕ, r, s)=Eps

∥∥Dϕ(xs, s)− Epr|s [Dϕ(xr, r)]
∥∥2 (6)

where r and s are sampled from predefined distributions.
Sampling from pr|s is performed by solving Eq (3) back-
ward from xs, using the network-estimated drift sϕt from
Eq (5). To sample from ps, one first draws xτ for τ > s,
then samples xs ∼ ps|τ analogously. If Dϕ minimizes the
consistency loss for all r, s and satisfies sϕt = s∗t for t > τ ,
then sϕt exactly recovers s∗t for all t ∈ [0, T], allowing
p0 = pdata to be sampled via Eq (3) (Daras et al., 2024).

2

Training Diffusion Models with Noisy Data via SFBD Flow

However, both Daras et al. and Lu et al. showed that using
CCs alone is insufficient to recover the drift below τ due to
poor sample complexity (Lu et al., 2025; Daras et al., 2025).
To address this, Daras et al. propose jointly training the
model with the standard denoising loss Eq (4) on Dclean and
demonstrate strong empirical performance.

Stochastic forward-backward deconvolution (SFBD). In-
stead of relying on CCs to recover the distribution for t ≤ τ ,
Lu et al. proposed an iterative scheme, SFBD, that alter-
nates between finetuning and denoising steps (Lu et al.,
2025). Given a sample set E , let pE denote the empirical
distribution induced by E . Starting from a pretrained model
Dϕ0

trained onDclean, the algorithm proceeds as follows for
k = 1, 2, . . . ,K:

(Denoise) Ek ← {y(i)
0 : solve Eq (3) from t = τ to 0 with

st(xt) =
Dϕk

(xt,t)−xt

t ,xτ = y
(i)
τ ∈ Enoisy}.

(Finetune) Update Dϕk
to obtain Dϕk+1

by miminizing
Eq (4) with p0 = pEk

.

Lu et al. (2025) showed that as K → ∞, pEK
converges

to the true distribution pdata. While SFBD outperforms
DDIM (Song et al., 2021a) trained solely on clean data (e.g.,
on CelebA (Liu et al., 2015)), its iterative nature makes
implementation challenging. In Sec 3, we show that the
Denoise and Finetune steps can be viewed as alternating
projections in the space of stochastic processes, leading to a
continuous formulation, SFBD flow, that removes the need
for iterative finetuning.

3. SFBD as alternative projections
In this section, we show that SFBD can be interpreted as an
alternating projection algorithm. We begin by introducing
notation to facilitate the discussion.

Notation. LetM denote the set of path measures over t ∈
[0, τ] induced by the backward process Eq (3), with arbitrary
drift s : [0, τ]× Rd → Rd and fixed initial distribution p∗τ
at t = τ . We write M(s) ∈M to denote the path measure
corresponding to drift s. Similarly, let D denote the set
of path measures over t ∈ [0, τ] induced by the forward
process Eq (1), with arbitrary initial distribution p0, and let
D(q) ∈ D denote the measure induced by p0 = q.

Alternative projections. SFBD then can be formulated
as an algorithm alternating between two projections: the
Markov projection (M-Proj) and the diffusion projection
(D-Proj), defined as follows:

(M-Proj) Mk=projMP k :=argmin
M∈M

DKL(P
k ∥M) (7)

(D-Proj) P k+1=projDM
k :=argmin

P∈D
DKL(M

k ∥P) (8)

for k = 0, 1, 2, . . . ,K, with initial path measure P 0 =
D(pEclean). Since each M ∈ M is fully determined by a
backward drift s, we denote the drift of Mk by sk, i.e.,
Mk = M(sk). Thus, the M-Proj can be equivalently written
as argminsDKL(P

k ∥M(s)).

The M-Proj corresponds to the finetuning step in SFBD. To
see this, by Lem 1 in Appx A.6,

DKL(P
k ∥Mk) =DKL(p

k
τ ∥p∗τ)

+ EPk

[
1
2

∫ τ

0
∥∇ log pkt (xt)− skt (xt)∥2

]
where pkt denotes the marginal density of P k at time t. Since
the first term is independent of Mk, minimizing the KL
reduces to setting skt (xt) = ∇ log pkt (xt), i.e., performing
score matching. This corresponds to the fine-tuning step
that minimizes Eq (4) with p0 = pk0 (Karras et al., 2022).

Likewise, D-Proj corresponds to the denoising step. By the
disintegration theorem (Vargas et al., 2021),

DKL(M
k ∥P)=DKL(m

k
0 ∥p0)+EMk

[
log dMk(·|x0)

dP (·|x0)

]
(9)

where mk
0 is the marginal of Mk at t = 0. Since P ∈ D is

determined by the forward SDE in Eq (1), its conditional
path measure given x0 is fixed, making the second term
constant. Therefore, minimizing the KL divergence reduces
to matching the marginals, i.e., p0 = mk

0 and thus P k+1 =
D(mk

0). In other words, D-Proj sets p0 to the distribution
of the denoised samples in the denoising step.

Evolution of sk. In practice, the only component in SFBD
requiring estimation is sk, parameterized by a neural net-
work to approximate ∇ log pkt (xt). As k → ∞, skt con-
verges to the true score function s∗t = ∇ log pt associated
with the forward diffusion process Eq (1) initialized with
p0 = pdata (Lu et al., 2025).

The updates in Eq (7) and Eq (8) can be compactly written
as Mk+1 = argminM∈MDKL(projDM

k ∥M). Since each
Mk = M(sk) is fully determined by its drift sk, this is
equivalent to

sk+1 = argmins L̃(s,Mk), (10)

with L̃(s,Mk) = DKL(projDM
k ∥M(s)). It can be shown

(in Appx A.1) that minimizing L̃ is equivalent to minimizing

L(s,Mk) =
∫ τ

0
Lt dt

:=
∫ τ

0
ED(mk

0)
1
2

∥∥x0−xt

t − st(xt)
∥∥2 dt, (11)

where mk
0 is the marginal of Mk at t = 0. Thus, SFBD can

be interpreted as the iterative update:

sk+1 = argminsL(s,m0(s
k)), (12)

3

Training Diffusion Models with Noisy Data via SFBD Flow

with s0 = argminsDKL(D(pEclean)∥M(s)). In practice, esti-
mating each sk requires training a separate neural network,
making the process computationally expensive and difficult
to implement due to manual intervention and unclear stop-
ping criteria. In Sec 4, we show that this update can be made
continuous by following the steepest descent direction of L,
enabling end-to-end training of a single network.

4. SFBD flow
In this section, we extend SFBD to a family of iterative
deconvolution procedures, γ-SFBD for γ ∈ (0, 1]. When
γ = 1, it recovers the original SFBD; as γ → 0, the discrete
sequence {Mk}k∈N and drift sk converge to continuous
flows {Mκ}κ≥0 and {sκ}κ≥0.

We show that γ-SFBD admits two natural derivations: a
generalized D-Proj, which intuitively explains how smaller
γ yields smoother trajectories; and a discretized functional
gradient descent on L(s,M0(s)), formally establishing the
convergence of the discrete sequence to a continuous flow.

Derive γ-SFBD through a generalized D-Proj. For
γ ∈ (0, 1], consider a generalized D-Proj:

(γ-D-Proj)
P k+1,γ = argminP∈D(1− γ)DKL(P

k,γ ∥P)

+ γ DKL(M
k ∥P) (13)

We refer to SFBD with D-Proj replaced by γ-D-Proj as
γ-SFBD. When γ = 1, it recovers the original SFBD. (Al-
though Mk does depend on γ, we keep the original notation
for simplicity.) To see how γ-D-Proj smooths the update,
note that the denoised samples at iteration k follow a distri-
bution with density (see Appx A.2):

pk+1,γ
0 = (1− γ) pk,γ0 + γ mk

0 (14)

where p0,γ0 = pEclean and P k+1,γ = D(pk+1,γ
0). Basically,

the parameter γ controls how much of the denoised set is
updated using the latest model. When γ = 1, all samples
are replaced, recovering standard SFBD. As γ → 0, the
updates become infinitesimal, leaving Mk+1 – obtained by
projecting P k+1,γ onto M – and its corresponding sk+1

nearly unchanged. Despite the smoothing effect, γ-SFBD
guarantees convergence for all γ ∈ (0, 1]. Let Φp(u) =
Ep[exp(iu

⊤x)] denote the characteristic function of p for
u ∈ Rd. Under mild assumptions,
Proposition 1. For k ≥ 0, DKL(pdata∥pk+1,γ

0) −
DKL(pdata∥pk,γ0)≤−γDKL(p

∗
τ ∥pk,γτ). In addition,

min
k=1,...,K

∣∣∣Φpdata
(u)− Φpk,γ

0
(u)

∣∣∣ ≤ exp
(

τ
2∥u∥

2
)(

2M
γK

)1/2

for K ≥ 1, u ∈ Rd, and M = DKL(pdata∥pEclean
).

(All proofs are deferred to the appendix.) Prop 1 shows that
for all γ ∈ (0, 1], pk,γ0 progressively approaches pdata as k

increases, and the convergence of characteristic functions
implies convergence of the underlying distributions.

γ-SFBD as functional gradient descent. In Sec 3, we
showed that SFBD updates the backward drift sk by solving
argmins L(s,M0(s

k)). We now consider a relaxed version,
where s is updated via a single gradient descent step in
function space with step size γ ∈ (0, 1]. This update rule
exactly recovers the γ-SFBD algorithm.

Recall that for a functional ℓ : F → R defined over a
function space F , its functional derivative at u ∈ F with
respect to a reference measure P is a function∇P ℓ(u) ∈ F
(when it exists) satisfying (Courant and Hilbert, 1989):∫
⟨∇P ℓ(u)(x),ν(x)⟩dµ(x)=limλ→0

1
λ

(
ℓ(u+ λν)− ℓ(u)

)
for all ν ∈ F . Building on this, we have:
Proposition 2. Let γ ∈ (0, 1] and k ∈ N. Let P k,γ and
Mk denote the stochastic process sequences generated by
γ-SFBD via the update rules in Eq (7) and Eq (13). Then
the update of M(sk) = Mk satisfies

sk+1
t (x) = skt (x)− γ∇Pk+1,γ

t
Lt(s

k
t ,m0(s

k))(x) (15)

for all x ∈ Rd and t ∈ [0, τ].

As a result, γ-SFBD basically performs a discretized func-
tional gradient descent on L(s,M0(s)) with step size γ,
following the steepest descent under the reference distribu-
tion P k,γ , updated via (14). Remarkably, Prop 1 shows that
value γ does not affect convergence of pk,γ0 to pdata. Thus,
for any γ ∈ (0, 1], skt converges to the true score function
s∗t learned by a diffusion model trained on clean data, with
γ = 1 recovering the original SFBD result (Lu et al., 2025).

SFBD flow. The functional gradient descent perspective
shows that as γ → 0, the discrete sequence {sk}k∈N and
the associated distributions pk,γ0 converge to continuous
flows {sκ}κ≥0 and pκ0 , governed by the gradient flow of
L(s,M0(s)). We refer to this continuous formulation as
SFBD flow.
To characterize the evolution of pκ0 , fix κ > 0 and let
{γi} → 0 with ki = κ/γi ∈ N. Then pki,γi

0 → pκ0 and
mki

0 → m0(s
κ) via Euler approximation. Taking the limit,

d

dκ
pκ0 = lim

i→∞
1
γi
(pki+1,γi

0 − pki,γi

0)
(14)
= m0(s

κ)− pκ0 ,

where p00 = pEclean . Thus, pκ0 evolves according to an ODE
driven by the mismatch between the model’s denoised out-
put m0(s

κ) and the current estimate pκ0 . Under this flow
formulation, the convergence of γ-SFBD reduces to:
Corollary 1. For κ > 0, we have d

dκDKL(pdata∥pκ0) ≤
−DKL(p

∗
τ ∥pκτ). Additionally,

infκ∈[0,K]

∣∣Φpdata(u)− Φpκ
0
(u)

∣∣ ≤ exp
(

τ
2∥u∥

2
) (

2M
K

)1/2

for K > 0, u ∈ Rd and M = DKL(pdata∥pEclean
).

4

Training Diffusion Models with Noisy Data via SFBD Flow

5. Online SFBD optimization

As discussed in Sec 4, when γ is small, Prop 2 shows that
the sequence sk closely tracks its continuous limit sκ. Since
sk is parameterized by neural networks, this continuity mo-
tivates replacing iterative fine-tuning in SFBD with a single
network sϕ that continuously approximates the evolving
sk. The optimization of sϕ follows M-Proj Eq (7), imple-
mented by minimizing the loss of matching score Eq (4)
with p0 = pk,γ0 . Unlike standard SFBD, γ-SFBD refreshes
only a fraction γ of denoised samples in each γ-D-Proj step,
inducing small changes to pk,γ0 - so a few gradient steps
suffice for sϕ to track the new minimizer. Building on this
insight, we propose Online SFBD in Alg 1, which eliminates
the need to fine-tune a sequence of networks.

Combining denoised and clean samples. Since the
copyright-free clean samples are drawn from the true data
distribution, we follow the original SFBD framework (Lu
et al., 2025) and set p0 = pE∪Eclean in the M-Proj step. This
choice helps accelerate optimization by aligning the target
distribution for updating ϕ more closely with the true data
distribution. As detailed in Appx A.4, this corresponds to a
variant of γ-Diff Proj, and we provide additional justifica-
tion there for the observed performance gains.

Denoising and sampling. While Alg 1 uses a naive back-
ward sampler by solving Eq (3), the algorithm allows any
backward SDE and solver that yield the same marginals. We
adopt the 2nd-order Heun method from EDM (Karras et al.,
2022) for better error control and efficiency. To improve
sample quality (Nichol and Dhariwal, 2021; Karras et al.,
2022), we maintain an EMA version of the model for de-
noising and use it to update E ; all reported results in Sec 6
are based on this EMA model. In practice, γ is typically
small (e.g., γ < 0.02), so the mild asynchrony between
γ-D-Proj and M-Proj has negligible effect, as suggested by
preliminary exploration during framework implementation.
This motivates a practical strategy we call asynchronous
denoising: denoising runs independently on a separate, low-
performance GPU, updating E in the background, while the
main training loop minimizes Eq (4) on high-performance
hardware using the latest p0 = pE . We adopt this strategy
throughout our experiments in Sec 6.

Relationship to consistency constraint-based methods.
Consistency constraint-based (CC-based) methods such as
TweedieDiff (Daras et al., 2024) and TweedieDiff+ (Daras
et al., 2025), which enforce consistency only between time
zero and positive time steps, can be seen as special cases
of Online SFBD with a single gradient step (m = 1). (See
Appx A.5 for details and an extension to arbitrary time
pairs.) These methods approximate pk,γ using mk

0 rather
than the EMA over {mj

0}j≤k as defined in Eq (14), which
is not exact unless γ = 1. Since s is updated just once per
iteration, mj

0 for j close to k tends to be similar, making

Algorithm 1 Online SFBD

Input: clean data: Eclean = {x(i)}Mi=1, noisy data: Enoisy =

{y(i)
τ }Ni=1, number of gradient steps: m

// Initialize Denoiser
1 ϕ← Pretrain Dϕ using Eq (4) with p0 = pEclean

2 E ← {y(i)
0 : solve Eq (3) from t = τ to 0 with st(xt) =

Dϕ(xt,t)−xt

t , xτ = y
(i)
τ ∈ Enoisy}

3 repeat
4 Update ϕ with m graident steps on Eq (4) with p0 =

pE . // M-Proj
5 E ← {Replace ratio γ of denoised samples in E with

the new ones by solving Eq (3) from t = τ to 0

with st(xt) =
Dϕ(xt,t)−xt

t , xτ = y
(i)
τ randomly

picked from Enoisy} // γ-D-Proj
6 until reach the maximum number of iterations

Output: Final denoiser Dϕ

mk
0 a reasonable proxy of pk,γ when γ is not too small.

In Sec 6, we show that avoiding this approximation enables
Online SFBD to consistently outperform CC-based methods.
Remarkably, it also achieves significantly lower computa-
tional cost. This is because Online SFBD reuses cached
denoised samples throughout training, whereas CC-based
methods generate them on demand – requiring more samples
per step for stability and making asynchronous denoising
impractical. Moreover, CC-based methods typically enforce
consistency between arbitrary time pairs, requiring multiple
neural network forward passes per update. In contrast, On-
line SFBD matches the compute cost of a standard diffusion
model, apart from denoised sample updates – which can be
performed asynchronously on separate GPUs.

6. Empirical study

In this section, we show the effectiveness of the Online
SFBD algorithm. We begin by exploring its behaviour un-
der various configurations to identify optimal settings. Our
ablation studies support the theoretical analysis and provide
practical guidance for applying Online SFBD. Leveraging
these findings, we benchmark Online SFBD and show that
it consistently outperforms models trained on noisy data.
Compared to standard SFBD, the online variant typically
yields better or comparable results while avoiding the costly
iterative finetuning and denoising steps – except in cases
with very limited clean samples and severely corrupted sen-
sitive data.

Datasets and evaluation metrics. We conduct experi-
ments on CIFAR-10 (Krizhevsky and Hinton, 2009) and
CelebA (Liu et al., 2022), using image resolutions of 32×32
and 64× 64, respectively. CIFAR-10 contains 50,000 train-
ing and 10,000 test images across 10 classes. CelebA in-
cludes 162,770 training, 19,867 validation, and 19,962 test

5

Training Diffusion Models with Noisy Data via SFBD Flow

Table 1: Comparison. For σ > 0, models are trained
on images corrupted with Gaussian noise N (0, σ2I).

Method CIFAR-10 (32×32) CelebA (64×64)

σ
Pretrain

(50 imgs) FID σ
Pretrain

(50 imgs) FID

DDPM (Ho et al., 2020) 0.0 No 4.04 0.0 No 3.26
DDIM (Song et al., 2021a) 0.0 No 4.16 0.0 No 6.53
EDM (Karras et al., 2022) 0.0 No 1.97 – – –

EMDiff (Bai et al., 2024) 0.2 Yes 86.47 – – –
TweedieDiff (Daras et al., 2024) 0.2 Yes 65.21 0.2 Yes 58.52
TweedieDiff+ (Daras et al., 2025) 0.2 Yes 8.05 0.2 Yes 6.81
SFBD (Lu et al., 2025) 0.2 Yes 13.53 0.2 Yes 6.49
OSFBD (ours) 0.2 Yes 3.22 0.2 Yes 3.23

Table 2: Additional results for competitive models
under various settings. (All models are pretrained.)

Method CIFAR-10 (32×32) CelebA (64×64)

σ clean samples FID σ clean samples FID

TweedieDiff+ (Daras et al., 2025) 0.2 10% 2.81 1.38 50 35.65
SFBD (Lu et al., 2025) 0.2 10% 2.58 1.38 50 23.63
OSFBD (ours) 0.2 10% 2.73 1.38 50 27.09

TweedieDiff+ (Daras et al., 2025) 0.59 4% 6.75 1.38 1,500 6.81
SFBD (Lu et al., 2025) 0.59 4% 6.31 1.38 1,500 5.91
OSFBD (ours) 0.59 4% 6.56 1.38 1,500 5.72

images; we use the preprocessed version from the official
DDIM repository (Song et al., 2021a). Corrupted images
are generated by adding independent Gaussian noise with
standard deviation σ to each pixel after rescaling to [−1, 1].
Only one noisy counterpart is generated per clean image.

Image quality is evaluated using Fréchet Inception Distance
(FID), computed between the reference dataset and 50,000
model-generated samples. Generated image samples are
shown in Appx B.

Models and configurations. Online SFBD (OSFBD)
adopts the backbone and hyperparameters from EDM (Kar-
ras et al., 2022) in the unconditional setting, with non-leaky
augmentation to mitigate overfitting. Backward sampling is
performed using the 2nd-order Heun method (Karras et al.,
2022). See Appx C for details. We pretrain models on clean
samples using the standard denoising score matching loss,
combined with the ASM loss on corrupted data to guide
score estimation for t > τ . All experiments set m = 20.

6.1. Performance comparison

We compare OSFBD with representative models for training
on noisy images, as summarized in Table 1. EMDiff (Bai
et al., 2024) uses a diffusion-based EM algorithm for inverse
problems. TweedieDiff (Daras et al., 2024) applies the
original consistency loss from Eq (6) and is pretrained on
clean data. TweedieDiff+ (Daras et al., 2025) adopts the
same pretraining as OSFBD, followed by joint training with
a simplified consistency objective. SFBD (Lu et al., 2025)
is the original algorithm requring iteratively finetuning.

Benchmark. Following the setup of Bai et al. (2024); Lu
et al. (2025), we use 50 clean samples along with data cor-
rupted Gaussian noise (σ = 0.2), with the same clean set
across all experiments. For reference, we also report results

for models trained on fully clean data (σ = 0). As shown in
Table 1, OSFBD consistently outperforms all baselines, pro-
ducing significantly higher-quality iOSFBDmages. Notably,
it even surpasses DDPM and DDIM trained exclusively on
clean samples on both datasets.

To further assess the capacity of OSFBD, we evalu-
ate it under additional dataset configurations in Table 2,
alongside the two strongest baselines: TweedieDiff+ and
SFBD. OSFBD consistently outperforms TweedieDiff+ and
matches SFBD in most settings, except for one challenging
CelebA case with very limited clean data and high noise (σ).
We discuss this further below.

OSFBD vs SFBD. The results in Table 1 and Table 2 sug-
gest that SFBD performs better in settings with very limited
clean data and high noise. Specifically, both methods per-
form comparably when a moderate amount of clean data is
available. Under low noise and limited clean data, OSFBD
outperforms SFBD – likely due to ASM loss during pre-
training and smoother updates of the target distribution pk,γ ,
which help mitigate overfitting, a known issue in SFBD on
small datasets (Lu et al., 2025). However, at high noise
levels, denoising requires more backward SDE steps, ampli-
fying errors from imperfect training. In such cases, more
accurate score estimation is needed and would require a
prohibitively large number of gradient steps m, making
SFBD a more stable and effective choice. Notably, even
SFBD yields high FID in these settings, indicating that the
task remains difficult and potentially unsuitable for practical
deployment.

OSFBD vs TweedieDiff+. We observe that OSFBD con-
sistently outperforms TweedieDiff+ across all settings in
Table 1 and Table 2, consistent with our discussion on their
relationship in Sec 5. Both methods share the same pretrain-
ing procedure and differ only in how they learn the score
function for t < τ . By updating the denoised sample set
in an EMA-like manner, OSFBD presents a significantly
more accurate target distribution pk,γ , leading to improved
performance. Notably, this improvement also reduces com-
putational cost – though at the expense of additional memory
to cache denoised samples.

7. Discussion
This paper extends the original SFBD algorithm to a family
of variants, γ-SFBD. When γ = 1, it recovers SFBD; as
γ → 0, it yields SFBD flow and its practical counterpart –
Online SFBD – which eliminates the need for alternating
between denoising and fine-tuning. We also highlight its
close connection to CC-based methods, another class of
leading diffusion-based deconvolution techniques. Empir-
ical results corroborate our analysis, showing that Online
SFBD consistently outperforms strong baselines across most
benchmarks.

6

Training Diffusion Models with Noisy Data via SFBD Flow

Acknowledgement

We gratefully acknowledge funding support from NSERC,
the Canada CIFAR AI Chairs program and the Ontario Early
Researcher program. Resources used in preparing this re-
search were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, and companies
sponsoring the Vector Institute.

Impact Statement

Online SFBD enables training diffusion models on noisy
data, supporting privacy-preserving data sharing without di-
rect access to the originals. While it offers a mathematically
grounded solution to address privacy and copyright con-
cerns, responsible implementation is essential to mitigate
risks of information leakage and overstated security.

References
B D O Anderson. Reverse-time diffusion equation mod-

els. Stochastic Processes and their Applications, 12
(3):313–326, 1982. URL https://doi.org/10.
1016/0304-4149(82)90051-5.

Weimin Bai, Yifei Wang, Wenzheng Chen, and He Sun.
An expectation-maximization algorithm for training
clean diffusion models from corrupted observations. In
The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024. URL https://
openreview.net/forum?id=jURBh4V9N4.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce
Lee, Yufei Guo, et al. Improving image generation with
better captions. OpenAI, 2023. URL https://cdn.
openai.com/papers/dall-e-3.pdf.

Ashish Bora, Eric Price, and Alexandros G. Dimakis. Am-
bientGAN: Generative models from lossy measurements.
In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=Hy7fDog0b.

Valentin De Bortoli, Iryna Korshunova, Andriy Mnih,
and Arnaud Doucet. Schrodinger bridge flow for un-
paired data translation. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=1F32iCJFfa.

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew
Jagielski, Vikash Sehwag, Florian Tramer, Borja
Balle, Daphne Ippolito, and Eric Wallace. Ex-
tracting training data from diffusion models. In
32nd USENIX Security Symposium, pages 5253–5270,

2023. URL https://www.usenix.org/system/
files/usenixsecurity23-carlini.pdf.

R. Courant and D. Hilbert. Methods of Mathematical
Physics. WILEY-VCH Verlag GmbH & Co. KGaA, 1989.
ISBN 9783527414475. doi: 10.1002/9783527617210.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,
and Mubarak Shah. Diffusion models in vision: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(9):10850–10869, 2023. URL https:
//doi.org/10.1109/TPAMI.2023.3261988.

Giannis Daras and Alex Dimakis. Solving inverse
problems with ambient diffusion. In NeurIPS 2023
Workshop on Deep Learning and Inverse Problems,
2023. URL https://openreview.net/forum?
id=mGwg10bgHk.

Giannis Daras, Yuval Dagan, Alex Dimakis, and Constanti-
nos Daskalakis. Consistent diffusion models: Mitigating
sampling drift by learning to be consistent. In Advances
in Neural Information Processing Systems, pages 42038–
42063, 2023a. URL https://openreview.net/
forum?id=GfZGdJHj27.

Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gol-
lakota, Alex Dimakis, and Adam Klivans. Ambient
diffusion: Learning clean distributions from corrupted
data. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023b. URL https://
openreview.net/forum?id=wBJBLy9kBY.

Giannis Daras, Alex Dimakis, and Constantinos Costis
Daskalakis. Consistent diffusion meets tweedie: Training
exact ambient diffusion models with noisy data. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=PlVjIGaFdH.

Giannis Daras, Yeshwanth Cherapanamjeri, and Constanti-
nos Costis Daskalakis. How much is a noisy image worth?
data scaling laws for ambient diffusion. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=qZwtPEw2qN.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems,
2014. URL https://proceedings.neurips.
cc/paper_files/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.
pdf.

7

https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.1016/0304-4149(82)90051-5
https://openreview.net/forum?id=jURBh4V9N4
https://openreview.net/forum?id=jURBh4V9N4
https://cdn. openai. com/papers/dall-e-3.pdf
https://cdn. openai. com/papers/dall-e-3.pdf
https://openreview.net/forum?id=Hy7fDog0b
https://openreview.net/forum?id=Hy7fDog0b
https://openreview.net/forum?id=1F32iCJFfa
https://openreview.net/forum?id=1F32iCJFfa
https://www.usenix.org/system/files/usenixsecurity23-carlini.pdf
https://www.usenix.org/system/files/usenixsecurity23-carlini.pdf
https://doi.org/10.1109/TPAMI.2023.3261988
https://doi.org/10.1109/TPAMI.2023.3261988
https://openreview.net/forum?id=mGwg10bgHk
https://openreview.net/forum?id=mGwg10bgHk
https://openreview.net/forum?id=GfZGdJHj27
https://openreview.net/forum?id=GfZGdJHj27
https://openreview.net/forum?id=wBJBLy9kBY
https://openreview.net/forum?id=wBJBLy9kBY
https://openreview.net/forum?id=PlVjIGaFdH
https://openreview.net/forum?id=PlVjIGaFdH
https://openreview.net/forum?id=qZwtPEw2qN
https://openreview.net/forum?id=qZwtPEw2qN
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Training Diffusion Models with Noisy Data via SFBD Flow

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.
URL https://doi.org/10.1145/3422622.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. In Advances in Neural
Information Processing Systems, pages 6840–6851,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.
pdf.

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William
Chan, Mohammad Norouzi, and David J. Fleet. Video
diffusion models. In Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.
net/forum?id=f3zNgKga_ep.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based gener-
ative models. In Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.
net/forum?id=k7FuTOWMOc7.

Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference
for Learning Representations, 2015. URL https://
arxiv.org/abs/1412.6980.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=a-xFK8Ymz5J.

Alex Krizhevsky and Geoffrey Hinton. Learning
multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009. URL
https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the
variance of the adaptive learning rate and beyond. In
Proceedings of the Eighth International Conference on
Learning Representations (ICLR 2020), April 2020.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=XVjTT1nw5z.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. Proceedings of

International Conference on Computer Vision (ICCV),
2015. URL http://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html.

Haoye Lu, Qifan Wu, and Yaoliang Yu. Stochastic forward-
backward deconvolution: Training diffusion models with
finite noisy datasets, 2025. arXiv:2502.05446.

Alexander Meister. Deconvolution Problems in Nonpara-
metric Statistics. Springer, 2009. URL https://doi.
org/10.1007/978-3-540-87557-4.

Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=-NEXDKk8gZ.

Michele Pavon and Anton Wakolbinger. On free energy,
stochastic control, and Schrödinger processes. In Mod-
eling, Estimation and Control of Systems with Uncer-
tainty: Proceedings of a Conference held in Sopron,
Hungary, September 1990, pages 334–348. Birkhäuser
Boston, 1991. URL https://doi.org/10.1007/
978-1-4612-0443-5_22.

Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: Improving latent diffusion mod-
els for high-resolution image synthesis. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=di52zR8xgf.

Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas
Krause. Sinkhorn flow as mirror flow: A continuous-
time framework for generalizing the Sinkhorn algo-
rithm. In Sanjoy Dasgupta, Stephan Mandt, and
Yingzhen Li, editors, Proceedings of The 27th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 238 of Proceedings of Machine Learn-
ing Research, pages 4186–4194. PMLR, 02–04 May
2024. URL https://proceedings.mlr.press/
v238/reza-karimi24a.html.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10684–10695, 2022.
URL https://doi.org/10.1109/CVPR52688.
2022.01042.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In
Proceedings of the 32nd International Conference

8

https://doi.org/10.1145/3422622
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=f3zNgKga_ep
https://openreview.net/forum?id=f3zNgKga_ep
https://openreview.net/forum?id=k7FuTOWMOc7
https://openreview.net/forum?id=k7FuTOWMOc7
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=a-xFK8Ymz5J
https://openreview.net/forum?id=a-xFK8Ymz5J
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=XVjTT1nw5z
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://doi.org/10.1007/978-3-540-87557-4
https://doi.org/10.1007/978-3-540-87557-4
https://openreview.net/forum?id=-NEXDKk8gZ
https://openreview.net/forum?id=-NEXDKk8gZ
https://doi.org/10.1007/978-1-4612-0443-5_22
https://doi.org/10.1007/978-1-4612-0443-5_22
https://openreview.net/forum?id=di52zR8xgf
https://openreview.net/forum?id=di52zR8xgf
https://proceedings.mlr.press/v238/reza-karimi24a.html
https://proceedings.mlr.press/v238/reza-karimi24a.html
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042

Training Diffusion Models with Noisy Data via SFBD Flow

on Machine Learning, pages 2256–2265, 2015.
URL https://proceedings.mlr.press/v37/
sohl-dickstein15.html.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas
Geiping, and Tom Goldstein. Diffusion art or digi-
tal forgery? investigating data replication in diffusion
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 6048–6058, 2023. URL https://doi.org/
10.1109/CVPR52729.2023.00586.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Confer-
ence on Learning Representations, 2021a. URL https:
//openreview.net/forum?id=St1giarCHLP.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. In International Conference on Learning Rep-
resentations, 2021b. URL https://openreview.
net/forum?id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. In Proceedings
of the 40th International Conference on Ma-
chine Learning, pages 32211–32252, 2023. URL
https://proceedings.mlr.press/v202/
song23a.html.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and
Neil Lawrence. Solving schrodinger bridges via maxi-
mum likelihood. Entropy, 23(9), 2021. URL https:
//www.mdpi.com/1099-4300/23/9/1134.

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang,
Chao Weng, Yuexian Zou, and Dong Yu. Diffsound:
Discrete diffusion model for text-to-sound generation.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 31:1720–1733, 2023. URL https:
//doi.org/10.1109/TASLP.2023.3268730.

9

https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://doi.org/10.1109/CVPR52729.2023.00586
https://doi.org/10.1109/CVPR52729.2023.00586
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.mlr.press/v202/song23a.html
https://proceedings.mlr.press/v202/song23a.html
https://www.mdpi.com/1099-4300/23/9/1134
https://www.mdpi.com/1099-4300/23/9/1134
https://doi.org/10.1109/TASLP.2023.3268730
https://doi.org/10.1109/TASLP.2023.3268730

Training Diffusion Models with Noisy Data via SFBD Flow

A. Theoretical results

A.1. Minimizing KL divergence is equivalent to conditional drift matching

In Sec 3, we claimed that minimizing L̃ defined in Eq (10) is equivalent to minimizing

L(s,Mk) =

∫ τ

0

Lt dt =

∫ τ

0

ED(mk
0)

1
2

∥∥∥∥x0 − xt

t
− st(xt)

∥∥∥∥2 dt. (16)

To see this, note that according to Eq (9), D-Proj sets P k+1 = projD Mk = D(mk
0). As a result,

L̃(s,Mk) = DKL(projD Mk ∥M(s)) = DKL(D(mk
0)∥M(s)).

By Lem 1, the KL divergence

DKL(D(mk
0)∥M(s)) = DKL(m

k
0 ∗N (0, τI)∥p∗τ)︸ ︷︷ ︸

const.

+ E
D(mk

0)

∫ τ

0

1

2
∥b(xt, t)− st(xt)∥2 dt,

where bk(xt, t) is the drift of the backward SDE starting from τ with the initial distribution mk
0 ∗N (0, τI). Anderson

(1982) showed that bk(xt, t) = ∇ logmk
t (xt), where mk

t (xt) denotes the density of the marginal distribution of Mk. It
can be shown that (e.g., see (Song et al., 2023, Lemma 1)):

∇ logmk
t (xt) = Emk

0|t
[∇xt

logmk
t (xt|x0)|xt] = Emk

0|t

[
1

t
(x0 − xt)

∣∣∣xt

]
. (17)

As a result,

E
D(mk

0)

∫ τ

0

1

2
∥b(xt, t)− st(xt)∥2 dt = E

D(mk
0)

∫ τ

0

1

2

∥∥∥∥Emk
0|t

[
1

t
(x0 − xt)

∣∣∣xt

]
− st(xt)

∥∥∥∥2 dt.

Therefore,

argminsL̃(s,Mk) = argmins E
D(mk

0)

∫ τ

0

1

2
∥b(xt, t)− st(xt)∥2 dt

= argmins E
D(mk

0)

∫ τ

0

∥∥∥∥Emk
0|t

[
1

t
(x0 − xt)

∣∣∣xt

]
− st(xt)

∥∥∥∥2 dt.

In addition, for any t ∈ [0, τ],

E
D(mk

0)

∥∥ 1
t (x0 − xt)− st(xt)

∥∥2
= E

D(mk
0)

∥∥∥ 1
t (x0 − xt)− Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]
+ Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]
− st(xt)

∥∥∥2
= E

D(mk
0)

∥∥∥ 1
t (x0 − xt)− Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]∥∥∥2 + E
D(mk

0)

∥∥∥Emk
0|t

[
1
t (x0 − xt)

∣∣∣xt

]
− st(xt)

∥∥∥2
+ E

D(mk
0)

〈
1
t (x0 − xt)− Emk

0|t

[
1
t (x0 − xt)

∣∣xt

]
,Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]
− st(xt)

〉
.

For the last term,

E
D(mk

0)

〈
1
t (x0 − xt)− Emk

0|t

[
1
t (x0 − xt)

∣∣xt

]
,Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]
− st(xt)

〉
= E

mk
t

〈
Emk

0|t

[
1
t (x0 − xt)

∣∣xt

]
− Emk

0|t

[
1
t (x0 − xt)

∣∣xt

]
,Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]
− st(xt)

〉
= E

mk
t

〈
0,Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]
− st(xt)

〉
= 0.

10

Training Diffusion Models with Noisy Data via SFBD Flow

As a result,

E
D(mk

0)

∥∥ 1
t (x0 − xt)− st(xt)

∥∥2
= E

D(mk
0)

∥∥∥ 1
t (x0 − xt)− Emk

0|t

[
1
t (x0 − xt)

∣∣∣xt

]∥∥∥2︸ ︷︷ ︸
Independent of s⇒ Const.

+ E
D(mk

0)

∥∥∥Emk
0|t

[
1
t (x0 − xt)

∣∣∣xt

]
− st(xt)

∥∥∥2 .
Thus,

argminsL̃(s,Mk) = argmins E
D(mk

0)

∫ τ

0

∥∥∥∥Emk
0|t

[
1

t
(x0 − xt)

∣∣∣xt

]
− st(xt)

∥∥∥∥2 dt

= argmins

∫ τ

0

E
D(mk

0)

∥∥ 1
t (x0 − xt)− st(xt)

∥∥2 dt+ Const.

= argmins

∫ τ

0

E
D(mk

0)

∥∥ 1
t (x0 − xt)− st(xt)

∥∥2 dt.

A.2. Optimal Solution to Eq (13)

Note that, by the disintegration theorem (e.g., see Vargas et al. 2021, Appx B),

argmin
P∈D

(1− γ)DKL(P
k,γ ∥P) + γDKL(M

k ∥P)

= argmin
P∈D

(1− γ)

DKL(p
k,γ
0 ∥p0) + E

Pk,γ

[
log

dP k,γ(·|x0)

dP (·|x0)

]
︸ ︷︷ ︸

Const.



+ γ

DKL(m
k
0 ∥p0) + E

Mk

[
log

dMk(·|x0)

dP (·|x0)

]
︸ ︷︷ ︸

Const.


= argmin

P∈D
(1− γ)DKL(p

k,γ
0 ∥p0) + γDKL(m

k
0 ∥p0)

= argmin
P∈D

−
∫
Rd

[
(1− γ) pk,γ0 (x0) + γ mk

0(x0)
]
log p0(x0) dx0 + Const.

= argmin
P∈D

DKL((1− γ)pk,γ0 + γmk
0 ∥p0).

As a result,

pk+1,γ
0 = (1− γ) pk,γ0 + γ mk

0 . (18)

A.3. Results related to SFBD flow

Proposition 1. For k ≥ 0, DKL(pdata∥pk+1,γ
0)−DKL(pdata∥pk,γ0)≤−γDKL(p

∗
τ ∥pk,γτ). In addition,

min
k=1,...,K

∣∣∣Φpdata
(u)− Φpk,γ

0
(u)

∣∣∣ ≤ exp
(

τ
2∥u∥

2
)(

2M
γK

)1/2

for K ≥ 1, u ∈ Rd, and M = DKL(pdata∥pEclean
).

Proof. Let P ∗ denote the path measure induced by the forward process Eq (1) with p0 = pdata. In addition, let F(q) =
DKL(pdata ∥q). For brevity, we drop the γ in P k,γ and its marginal distributions pk,γ0 and pk,γτ .

11

Training Diffusion Models with Noisy Data via SFBD Flow

Note that,

DKL(P
∗ ∥Mk) = F(mk

0) + EP∗

[
1

2

∫ τ

0

∥bk(xt, t)∥2 dt
]

︸ ︷︷ ︸
:=Bk

, (19)

where bk(xt, t) is the drift of the forward process inducing Mk with x0 ∼ mk
0 .

In addition, through the convexity of the KL divergence,

F
(
pk+1
0

)
= F

(
(1− γ)pk0 + γmk

0

)
≤ (1− γ)F(pk0) + γF(mk

0),

which implies,

F(mk
0) ≥ F(pk0) + 1

γ

(
F(pk+1

0)−F(pk0)
)
. (20)

As a result,

F(pk0) = DKL(P
∗∥P k) = DKL(p

∗
τ ∥pkτ) + Ep∗

[∫ τ

0

1

2

∥∥∇ log pt(xt)− skt (xt)
∥∥]

= DKL(p
∗
τ ∥pkτ) +DKL(P

∗∥Mk)
(19)
= DKL(p

∗
τ ∥pkτ) + F(mk

0) + Bk
(20)
≥ DKL(p

∗
τ ∥pkτ) + Bk + 1

γ

(
F(pk+1

0)−F(pk0)
)
+ F(pk0)

≥ DKL(p
∗
τ ∥pkτ) + 1

γ

(
F(pk+1

0)−F(pk0)
)
+ F(pk0).

Rearrangement yields

DKL(pdata∥pk+1,γ
0)−DKL(pdata∥pk,γ0) ≤ −γDKL(p

∗
τ ∥pk,γτ), (21)

the monotonicity of pk,γ0 in k in the proposition. Equivalently,

F(pk+1,γ
0)−F(pk,γ0) ≤ −γDKL(p

∗
τ ∥pk,γτ). (22)

Telescoping it yields:

F(p0,γ0) =

K∑
k=0

F(pk,γ0)−F(pk+1,γ
0) ≥ γ

K∑
k=1

DKL(p
∗
τ ∥pk,γτ). (23)

Thus,

min
k∈{1,2,...,K}

DKL(p
∗
τ ∥pk,γτ) ≤ F(p

0,γ
0)

γK
=
F(pEclean)

γK
. (24)

Applying Prop 3, we get

min
k∈{1,2,...,K}

∣∣∣Φpdata(u)− Φpk,γ
0

(u)
∣∣∣ ≤ exp

(τ
2
∥u∥2

)(2DKL(pdata∥pEclean)

γK

)1/2

. (25)

Proposition 2. Let γ ∈ (0, 1] and k ∈ N. Let P k,γ and Mk denote the stochastic process sequences generated by γ-SFBD
via the update rules in Eq (7) and Eq (13). Then the update of M(sk) = Mk satisfies

sk+1
t (x) = skt (x)− γ∇Pk+1,γ

t
Lt(s

k
t ,m0(s

k))(x) (15)

for all x ∈ Rd and t ∈ [0, τ].

12

Training Diffusion Models with Noisy Data via SFBD Flow

Proof. For t ∈ [0, τ], let ϕ be a function of the same function space as skt and p0 the density of a distribution defined on Rd.
Then for ϵ ∈ (0, 1], we have

Lt(st + ϵϕ, p0) = E
D(p0)

[
1

2

∥∥∥x0 − xt

t
− (st + ϵϕ)(xt)

∥∥∥2]
=Lt(xt, p0) + ϵ E

D(p0)

[〈
st(xt)−

x0 − xt

t
,ϕ(xt)

〉]
+ o(ϵ)

=Lt(xt, p0) + ϵ

〈
ϕ(xt),

(
st(xt)−

x0 − xt

t

)
dP0t(x0,xt)

〉
=Lt(xt, p0) + ϵ

〈
ϕ(xt),

(
st(xt)−

x0 − xt

t

)
dP0t(x0,xt)

〉
=Lt(xt, p0) + ϵ

〈
ϕ(xt),

(
st(xt)−

EP0|t [x0|xt]− xt

t

)
dPt(xt)

〉
.

As a result,

∇µL(st, p0)(xt) =
(
st(xt)−

EP0|t [x0|xt]− xt

t

) dPt

dµ
(xt). (26)

We note that when k = 0, s0t (xt) is pretrained on PEclean . As a result, by e.g., (Song et al., 2023, Lemma 1),

s0t (xt) =
E(PEclean)0|t

(x0|xt)− xt

t
=

EP 0,γ
0|t

(x0|xt)− xt

t
(27)

for any t ∈ [0, τ] and xt ∈ Rd, which is the negative backward drift of M0 in γ-SFBD.

Then assume that for k ∈ N, for any t ∈ [0, τ] and xt ∈ Rd, we have

skt (xt) =
EPk,γ

0|t
(x0|xt)− xt

t
, (28)

correpsonding to the negative backward drift of Mk in γ-SFBD.

Then for k + 1, Eq (15) gives

sk+1
t (xt) = skt (xt)− γ∇Pk+1,γ

t
Lt(s

k
t ,m0(s

k))(xt)

(26)
= skt (xt)− γ

(
skt (xt)−

ED(mk
0)0|t

[x0|xt]− xt

t

) dD(mk
0)t

dP k+1,γ
t

(xt)

=
(
1− δ(xt)

)
skt (xt) + δ(xt)

ED(mk
0)0|t

[x0|xt]− xt

t
, (29)

where δ(xt) = γ
dD(mk

0)t

dPk+1,γ
t

(xt). We note that, by Eq (14),

pk+1,γ
0 = (1− γ) pk,γ0 + γ mk

0 . (30)

As a result,

P k+1,γ
t = (1− γ)P k,γ

t + γ D(mk
0)t (31)

and

δ(xt) =
γ dD(mk

0)t

d(1− γ)P k,γ
t + γ D(mk

0)t
(xt), 1− δ(xt) =

(1− γ) dP k,γ
t

d(1− γ)P k,γ
t + γ D(mk

0)t
(xt). (32)

13

Training Diffusion Models with Noisy Data via SFBD Flow

Thus,

sk+1
t (xt)

(29)
= skt (xt)

(1− γ) dP k,γ
t

d(1− γ)P k,γ
t + γ D(mk

0)t
(xt)

+
ED(mk

0)0|t
[x0|xt]− xt

t

γ dD(mk
0)t

d(1− γ)P k,γ
t + γ D(mk

0)t
(xt)

(28)
=

EPk,γ
0|t

(x0|xt)− xt

t

(1− γ) dP k,γ
t

d(1− γ)P k,γ
t + γ D(mk

0)t
(xt)

+
ED(mk

0)0|t
[x0|xt]− xt

t

γ dD(mk
0)t

d(1− γ)P k,γ
t + γ D(mk

0)t
(xt)

= −1

t
xt +

1

t

∫
x′
0∈Rd

x′
0

d (1− γ)P k,γ
0t + γD(mk

0)0t

d (1− γ)P k,γ
t + γ D(mk

0)t
(x′

0,xt)

= −1

t
xt +

1

t

∫
x′
0∈Rd

x′
0

dP k+1,γ
0t

dP k+1,γ
t

(x′
0,xt)

=
EPk+1,γ

0|t
(x0|xt)− xt

t
,

which is the negative backward drift of Mk+1.

Corollary 1. For κ > 0, we have d
dκDKL(pdata∥pκ0) ≤ −DKL(p

∗
τ ∥pκτ). Additionally,

infκ∈[0,K]

∣∣Φpdata(u)− Φpκ
0
(u)

∣∣ ≤ exp
(

τ
2∥u∥

2
) (

2M
K

)1/2

for K > 0, u ∈ Rd and M = DKL(pdata∥pEclean
).

Proof. According to Eq (21), we have

1

γ

(
DKL(pdata∥pk+1,γ

0)−DKL(pdata∥pk,γ0)
)
≤ −DKL(p

∗
τ ∥pk,γτ), (33)

for all γ > 0 and k ∈ N.

Fix κ > 0 and let {γi} → 0 with ki = κ/γi ∈ N. Then pki,γi

0 → pκ0 via Euler approximation. Taking the limit yields:

d

dκ
DKL(pdata∥pκ0) = lim

i→∞

1

γi

(
DKL(pdata∥pki+1,γi

0)−DKL(pdata∥pki,γi

0)
)

(33)
≤ lim

i→∞
−DKL(p

∗
τ ∥pki,γi

τ) = −DKL(p
∗
τ ∥pκτ), (34)

establishing the monotonicity claim.

In addition, integrating both sides of Eq (34) over [0,K] gives:

DKL(pdata ∥pK0)−DKL(pdata ∥p00) ≤ −
∫ K

0

DKL(p
∗
τ ∥pκτ) dκ. (35)

As a result,

inf
κ∈[0,K]

DKL(p
∗
τ ∥pκτ) ≤

1

K
DKL(pdata∥p00) =

1

K
DKL(pdata∥pEclean).

Applying Prop 3 concludes the convergence argument in the corollary.

14

Training Diffusion Models with Noisy Data via SFBD Flow

A.4. A variant of γ-SFBD

Since the copyright-free clean samples are drawn from the true data distribution, it is practical to mix them with the denoised
samples during denoiser updates to enhance overall sample quality. In particular, we generally believe that

Lvis(αpclean + (1− α) pdenoise) ≤ Lvis(pdenoise), (36)

where Lvis(p) denotes an aggregate loss that measures the visual quality of samples drawn from distribution p, and pclean
and pdenoise represent the distributions of clean and denoised samples, respectively. α depends on the ratios between the
numbers of clean samples and the denoised samples. In practice, we have observed that this is always true when Lvis is
instantiated as the FID.

We note that this heuristic technique can be naturally covered in our framework with little work. In particular, we can replace
the original γ-Diff Proj with

(γ-Diff Proj-v2) P k+1,γ = argminP∈D αDKL(Pclean∥P) + (1− α)
[
(1− γ)DKL(P

k,γ ∥P) + γ DKL(M
k ∥P)

]
where Pclean = D(pclean) is a fixed diffusion process in D with the initial distribution having density pclean.

Applying a derivation similar to the one in Appx A.2, again through the disintegration theorem, we have

argmin
P∈D

αDKL(Pclean∥P) + (1− α)
[
(1− γ)DKL(P

k,γ ∥P) + γ DKL(M
k ∥P)

]
=argmin

P∈D
αDKL(pclean∥p0) + (1− α)

[
(1− γ)DKL(p

k,γ
0 ∥p0) + γ DKL(m

k
0 ∥p0)

]
+ Const.

= argmin
P∈D

−
∫
Rd

αpclean(x0) + (1− α)
[
(1− γ) pk,γ0 (x0) + γ mk

0(x0)
]
log p0(x0) dx0 + Const.

=argmin
P∈D

DKL(αpclean + (1− α)
[
(1− γ) pk,γ0 + γ mk

0

]
∥p0).

As a result,

p̃k+1,γ
0 = αpclean + (1− α)

[
(1− γ) pk,γ0 + γ mk

0

]
= αpclean + (1− α) pk+1,γ

0 ,

where pk+1,γ
0 is obtained via the standard γ-D-Proj defined in Eq (13), and corresponds to pdenoise in Eq (36).

This variant of γ-D-Proj therefore recovers the exact update rule underlying the heuristic practice of mixing clean and
denoised samples prior to fine-tuning the diffusion model.

Notably, when γ = 1, this variant reduces to a form of the original SFBD algorithm, which was heuristically employed in
the initial SFBD paper (Lu et al., 2025) to boost model performance—despite lacking theoretical justification at the time.

A.5. Relationship to consistency constraint-based methods

In Sec 5, we argued that consistency-constraint-based (CC-based) methods enforcing consistency only between r = 0 and a
positive time s can be viewed as a special case of Online SFBD with m = 1 with pk,γ approximated by mk

0 . In this section,
we elaborate on this connection and extend the discussion to more general CC-based methods that enforce consistency
between arbitrary time steps r < s.

Enforcing consistency between r = 0 and s > 0. We assume the denoiser network satisfies Dϕ(·, 0) = Id(·), a condition
explicitly enforced in EDM-based implementations. This design is both natural and intuitive, as Dϕ(x0, 0) approximates
Ep0|t [x0 | x0] at t = 0, which is x0 for any p0t induced by some distribution p0 argumented by the forward transition kernel
pt|0 in Eq (2). It has been adopted in all CC-based methods (Daras et al., 2024; 2025), the SFBD framework (Lu et al.,
2025), and our work.

Lu et al. (2025) showed that, under this assumption, the denoising loss in Eq (4) is equivalent to the consistency loss Eq (6).

15

Training Diffusion Models with Noisy Data via SFBD Flow

For completeness, we include their derivation as follows:

E
p0

E
ps|0

[
∥Dϕ(xs, s)− x0∥2

]
= Eps

Ep0|s

[
∥Dϕ(xs, s)− x0∥2

]
=Eps

Ep0|s

[
∥Dϕ(xs, s)− Ep0|s [x0|xs] + Ep0|s [x0|xs]− x0∥2

]
=Eps

Ep0|s

[
∥Dϕ(xs, s)− Ep0|s [x0|xs]∥2

]
+ Eps

Ep0|s

[
∥Ep0|s [x0|xs]− x0∥2

]︸ ︷︷ ︸
Const.

+ 2Eps
Ep0|s

[〈
Dϕ(xs, s)− Ep0|s [x0|xs],Ep0|s [x0|xs]− x0

〉]︸ ︷︷ ︸
=0

=Eps

[
∥Dϕ(xs, s)− Ep0|s [x0|xs]∥2

]
+ Const. (37)

(arch ass)
= Eps

[
∥Dϕ(xs, s)− Ep0|s [Dϕ(x0, 0)]∥2

]
+ Const.,

which is the consistency loss in Eq (6) when r = 0. Therefore,

E
p0

E
ps|0

[
∥Dϕ(xs, s)− x0∥2

]
≡ Eps

[
∥Dϕ(xs, s)− Ep0|s [Dϕ(x0, 0)]∥2

]
(38)

up to a constant, establishing the equivalence between the denoising loss used in Alg 1 (M-proj) and the consistency loss in
CC-based methods.

For Online SFBD, at the k-th iteration, we have

p0 = pk+1,γ
0 = (1− γ) pk,γ0 + γ mk

0 , (39)

as presented in Eq (14), and ps is

ps = p0 ∗N (0, sI) = pk,γ0 ∗N (0, sI). (40)

Instead, in CC-based methods,

p0 ≈ mk
0 . (41)

To see this, note that practical implementations of CC-based methods typically rely on two approximations:

(a) ps is approximated using samples generated by adding Gaussian noise to corrupted data, where s is chosen no less than
the corruption level τ (Daras et al., 2025);

(b) p0|s is estimated via the backward SDE Eq (3), with the drift term approximated by the current network (i.e., sk).

For simplicity, we restrict the discussion to the case s = τ . For the cases s > τ , they reduce to the case s = τ under the
assumption that the score function above τ is accurately estimated, which can be achieved by training the model through
the ASM loss combined with the noisy samples (Daras et al., 2024; 2025). These approximations essentially define the
backward SDE process Mk, whose marginal at t = 0 is mk

0 , serving as the effective p0 in CC-based training.

Note that CC-based methods form (x0,xs) pairs using the backward SDE, whereas Online SFBD uses the forward process.
As CC-based methods assume that corrupted samples can be approximated as drawn from ps, the two pairing schemes are
equivalent: both the forward and backward SDE yield the same joint distribution p0s(x0,xs), as discussed following Eq (3).

This approximation is reasonable when mk
0 evolves slowly and γ is not too small, as discussed in the main text. This

condition typically holds in practice, as CC-based methods only take one gradient step per iteration. Moreover, CC-based
methods often adopt the same pretraining strategy as OSFBD, allowing the network to learn global structure early on. As a
result, drift updates during subsequent training are small, and mk

0 changes slightly across iterations.

Enforcing consistency between r < s. For any pair r < s, we note that

Eps

[
∥Dϕ(xs, s)− Ep0|s [Dϕ(x0, 0)]∥2

]
(arch ass)

= Eps

[
∥Dϕ(xs, s)− Ep0|s [x0|xs]∥2

]
=Eps

[∥∥Dϕ(xs, s)− Epr|s

[
Ep0|r [x0|xr]

∣∣xs

]∥∥2] , (42)

16

Training Diffusion Models with Noisy Data via SFBD Flow

where the final equality uses the fact that the backward process is Markovian. In more detail, since the forward process is
Brownian and thus Markovian, its time reversal (the backward process described by Eq (3)) is also Markovian. Consequently,
we can justify:

Epr|s

[
Ep0|r [x0|xr]

∣∣xs

]
=

∫
x0

(∫
p0|r(x0|xr) pr|s(xr|xs) dxr

)
dx0

=

∫
x0

(∫
p0r|s(x0,xr|xs) dxr

)
dx0

=

∫
x0 p0|s(x0|xs) dx0

= Ep0|s [x0|xs].

As a result, by Eq (42), we have

Lcon(ϕ, 0, s) = Eps

[
∥Dϕ(xs, s)− Ep0|s [Dϕ(x0, 0)]∥2

]
= Eps

[∥∥Dϕ(xs, s)− Epr|s

[
Ep0|r [x0|xr]

∣∣xs

]∥∥2]
≈ Eps

[∥∥Dϕ(xs, s)− Epr|s

[
Dstopgrad(ϕ)(xr, r)

∣∣xs

]∥∥2]
= Lcon(ϕ, r, s)

where Ep0|r [x0|xr] is approximated using the current network, and stopgrad indicates a stop-gradient operation.

This suggests that enforcing consistency between arbitrary time pairs r < s is effectively equivalent to enforcing it between
0 and s, so the same argument for r = 0 applies.

A.6. Auxiliary results for references

Proposition 3 (Lu et al. 2025, Prop 1). Let p and q be two distributions defined on Rd. For all u ∈ Rd,

|Φp(u)− Φq(u)| ≤ exp
(τ
2
∥u∥2

)√
2DKL(p∗h∥q ∗h),

where h ∼ N (0, τI).

Lemma 1 (Pavon and Wakolbinger 1991, Vargas et al. 2021). Given two SDEs:

dxt = fi(xt, t) dt+ δ dwt, x0 ∼ p
(i)
0 (x) t ∈ [0, T] (43)

for i = 1, 2. Let P (i)
0:T , for i = 1, 2, be the path measure induced by them, respectively. Then we have,

DKL(P
(1)
0:T ∥P

(2)
0:T) = DKL(p

(1)
0 ∥p

(2)
0) + E

P
(1)
0:T

[∫ T

0

1

2
∥f1(xt, t)− f2(xt, t)∥2 dt

]
. (44)

A similar result also applies to a pair of backward SDEs as well, where p
(i)
0 is replaced with p

(i)
T .

17

Training Diffusion Models with Noisy Data via SFBD Flow

B. Sampling results

In this section, we present model-generated samples used to compute FID scores in Sec 6, corresponding to the benchmark
results in Table 1 and Table 2. We also include denoised samples at the final training step.

B.1. CIFAR-10

(a) Generated (FID: 3.22) (b) Denoised (FID: 1.11)

Figure 1: 50 clean samples, noise level σ = 0.2

(a) Generated (FID: 2.73) (b) Denoised (FID: 1.02)

Figure 2: 5,000 clean samples (10%), noise level σ = 0.2.

(a) Generated (FID: 6.56) (b) Denoised (FID: 4.84)

Figure 3: 2,000 clean samples (4%), noise level σ = 0.59.

18

Training Diffusion Models with Noisy Data via SFBD Flow

B.2. CelebA

(a) Generated (FID: 3.23) (b) Denoised (FID: 1.07)

Figure 4: 50 clean samples, noise level σ = 0.2.

(a) Generated (FID: 27.09) (b) Denoised (FID: 24.31)

Figure 5: 50 clean samples, noise level σ = 1.38.

(a) Generated (FID: 5.72) (b) Denoised (FID: 4.28)

Figure 6: 1,500 clean samples, noise level σ = 0.2.

C. Experiment configurations

C.1. Hardware configurations

All diffusion models were trained on the main process using four NVIDIA A40 or RTX 6000 GPUs, managed by a SLURM
scheduling system. The asynchronous denoising process ran concurrently in the background on a separate RTX 6000 GPU,

19

Training Diffusion Models with Noisy Data via SFBD Flow

taking less than 2.5 minutes to update 640 images on CIFAR-10 and under 5 minutes on CelebA.

Training on CIFAR-10 completes in under 5 days, and CelebA experiments in under 8 days.

C.2. Model architectures

We implement the proposed Online SFBD algorithm using the EDM backbone (Karras et al., 2022), following the
configuration described below throughout our empirical studies.

Table 3: Experimental Configuration for CIFAR-10 and CelebA

Parameter CIFAR-10 CelebA

General
Batch Size 512 256
Loss Function EDMLoss (Karras et al., 2022) EDMLoss (Karras et al., 2022)
Denoising Method 2nd order Heun method (EDM) (Kar-

ras et al., 2022)
2nd order Heun method (EDM) (Kar-
ras et al., 2022)

Sampling Method 2nd order Heun method (EDM) (Kar-
ras et al., 2022)

2nd order Heun method (EDM) (Kar-
ras et al., 2022)

Sampling steps 18 40

Network Configuration
Dropout 0.13 0.05
Channel Multipliers {2, 2, 2} {1, 2, 2, 2}
Model Channels 128 128
Resample Filter {1, 1} {1, 3, 3, 1}
Channel Mult Noise 1 2

Optimizer Configuration
Optimizer Class RAdam (Kingma and Ba, 2015; Liu

et al., 2020)
RAdam (Kingma and Ba, 2015; Liu
et al., 2020)

Learning Rate 0.001 0.0002
Epsilon 1× 10−8 1× 10−8

Betas (0.9, 0.999) (0.9, 0.999)

C.3. Datasets

All experiments on CIFAR-10 (Krizhevsky and Hinton, 2009) and CelebA (Liu et al., 2015) are conducted using only the
training set. For FID evaluation, the model generates 50,000 samples, and FID is computed against the full training set,
which includes both copyright-free and sensitive samples.

20

