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ABSTRACT

Large Language Models (LLMs) have become an indispensable part of natural
language processing tasks. However, autoregressive sampling has become an ef-
ficiency bottleneck. Multi-Draft Speculative Decoding (MDSD) is a recent ap-
proach where, when generating each token, a small draft model generates mul-
tiple drafts, and the target LLM verifies them in parallel, ensuring that the final
output conforms to the target model distribution. The two main design choices
in MDSD are the draft sampling method and the verification algorithm. For a
fixed draft sampling method, the optimal acceptance rate is a solution to an op-
timal transport problem, but the complexity of this problem makes it difficult to
solve for the optimal acceptance rate and measure the gap between existing veri-
fication algorithms and the theoretical upper bound. This paper discusses the dual
of the optimal transport problem, providing a way to efficiently compute the op-
timal acceptance rate. For the first time, we measure the theoretical upper bound
of MDSD efficiency for vocabulary sizes in the thousands and quantify the gap
between existing verification algorithms and this bound. We also compare differ-
ent draft sampling methods based on their optimal acceptance rates. Our results
show that the draft sampling method strongly influences the optimal acceptance
rate, with sampling without replacement outperforming sampling with replace-
ment. Additionally, existing verification algorithms do not reach the theoretical
upper bound for both without replacement and with replacement sampling. Our
findings suggest that carefully designed draft sampling methods can potentially
improve the optimal acceptance rate and enable the development of verification
algorithms that closely match the theoretical upper bound.

1 INTRODUCTION

Autoregressive language models have achieved state-of-the-art results in various language tasks
(Brown et al., 2020; Touvron et al., 2023), including chatbots (Luo et al., 2022) and code gener-
ation (Chen et al., 2021). These models generate outputs by predicting the next token sequentially.
However, this autoregressive decoding process leads to significant computational resource require-
ments and high latency, posing challenges for user experience and limiting potential applications.

Speculative decoding (Leviathan et al., 2023; Chen et al., 2023a) has been proposed to address
the high inference cost issue. The method uses a small, fast draft model to generate candidate
results, which are then verified and corrected by a large, accurate target model to maintain the model
output distribution. Compared to other acceleration methods, such as knowledge distillation, model
quantization, and model pruning, speculative decoding has the advantage of significantly reducing
inference latency without sacrificing quality of the generated content.

Multi-Draft Speculative Decoding (MDSD) (Miao et al., 2024; Cai et al., 2024; Li et al., 2024;
Spector & Re, 2023) is a recent advancement in speculative decoding. When generating each token,
the small draft model generates multiple draft tokens instead of a single one, as in vanilla speculative
decoding. The target LLM verifies these tokens in parallel, ensuring that the final output aligns
with the target model’s distribution while achieving a higher overall acceptance rate than vanilla
speculative decoding, as the multiple drafts provide better coverage of the target model’s possible
outputs.
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MDSD algorithms have two main design choices: (1) The draft sampling method. Common ap-
proaches include sampling with replacement, where each token is independently sampled from the
draft model output distribution, and sampling without replacement, where the probability of select-
ing a token is updated after each draw to exclude previously selected tokens. (2) The verification
algorithm design. Examples include Recursive Rejection Sampling (RRS) (Yang et al., 2024b; Jeon
et al., 2024), which sequentially verifies the draft tokens, and K-SEQ (Sun et al., 2024d), which is
designed to improve acceptance rate for sampling with replacement.

The acceptance rate, a measure of MDSD algorithm performance, also depends on these two design
choices. Any verification algorithm that guarantees the final output aligns with the target model
distribution can be viewed as a transport from the draft tokens’ distribution to the target model’s
distribution. For a fixed draft sampling method, the optimal verification algorithm is a solution to an
optimal transport problem (Sun et al., 2024d), corresponding to an optimal acceptance rate.

However, the complexity of this optimal transport problem, with the number of variables and con-
straints growing exponentially with the number of draft tokens, makes it difficult to find efficient
solutions. This difficulty has led to two open questions:

(1) For modern LLMs, where the vocabulary size is typically in the thousands, the optimal accep-
tance rate has never been computed, to the best of our knowledge. Simple linear program (LP)
solvers can only compute the optimal transport for small toy models, making it challenging to mea-
sure the optimal acceptance rate in practical scenarios.

(2) Although it is widely known that existing verification algorithms are only approximate solu-
tions to the optimal transport problem, the gap between their performance and the theoretical upper
bound has never been quantified with respect to real text distribution. Without knowing the optimal
acceptance rate, it is difficult to assess how suboptimal these algorithms are.

This paper addresses these two open questions. Our contributions include:

• We transform the problem of solving the optimal acceptance rate corresponding to the optimal
transport into a subset selection problem by considering the dual of the problem and then applying
total unimodularity. This provides a novel perspective for understanding the efficiency of MDSD.

• For certain special cases, we propose efficient methods to solve the subset selection problem by
noticing convexity-like structures in the set function. This includes sampling with replacement
and sampling without replacement. For the first time, we provide a practical method to compute
the theoretical acceptance rate upper bound of MDSD for a draft distribution.

• For the first time, we measure the theoretical upper bound of MDSD efficiency on real text, and
the gap of existing verification algorithms. We compare different draft sampling methods through
their optimal acceptance rates and observe that sampling without replacement outperforms sam-
pling with replacement. We evaluate existing verification algorithms, including K-SEQ for with
replacement and RRS for without replacement and with replacement sampling, and find that they
still have significant gaps from the theoretical upper bound.

• We propose a novel draft sampling method that greedily selects high-probability drafts, with only
the last draft being random. In some cases, it achieves an even higher optimal acceptance rate
than without replacement. We also propose a corresponding verification algorithm that perfectly
reaches the theoretical acceptance rate upper bound.

2 PRELIMINARIES

2.1 SPECULATIVE DECODING FOR ACCELERATING LLM INFERENCE

Let Σ denote the vocabulary set. We have a target model Ptarget(·|x1, x2, ..., xm), which is a prob-
abilistic model that predicts the probability of the next word. Our goal is to sample from this model
as the output.

The process of single step Multi-Draft Speculative Decoding is as follows:

1. For a draft model Pdraft(·|x1, x2, ..., xm), sample n draft tokens x̂(1), . . . x̂(n).
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2. Compute the probabilities of the target model in parallel: Ptarget(·|x1, x2, ..., xm),
Ptarget(·|x1, x2, ..., xm, x̂(1)), ..., Ptarget(·|x1, x2, ..., xm, x̂(n)). Due to parallel computation,
this step is not much slower than computing Ptarget(·|x1, x2, ..., xm) alone.

3. Run the verification algorithm xm+1 ∼ Pverify(·|x̂(1), . . . x̂(n)).
4. If accepted, for some draft x̂(i), we have xm+1 = x̂(i). In this case, we can perform another

sampling step xm+2 ∼ Ptarget(·|x1, x2, ..., xm, x̂(i)), generating two tokens in one step and
achieving acceleration.

Speculative Decoding can generate multiple steps, with multiple drafts at each step and all drafts
forming a tree. However, we only consider the single-step case in this paper. For following analysis,
we use p(·) = Ptarget(·|x1, x2, ..., xm) to denote the target distribution and pdraft for distribution of
draft tokens.
2.2 SPECULATIVE DECODING WITH A SINGLE DRAFT TOKEN

Informally, the verification algorithm depends on two distributions p and pdraft, and one draft token
j ∼ pdraft. The goal is to output i ∼ p such that the objective maxP (i = j) is achieved, that is to
maximize the probability of random variable i to be the same as random variable j.

More formally, given p ∈ ∆Σ and pdraft ∈ ∆Σ representing two probability distributions over the
space Σ, we seek a joint distribution π ∈ Π(p, pdraft) such that the marginal distributions are p
and pdraft, respectively, and the objective max

∑
i∈Σ π(i, i) is maximized. This forms a optimal

transport problem. The optimal transport is denoted as π∗
p,pdraft

∈ Π(p, pdraft), and the optimal
objective function value is α∗(p, pdraft) =

∑
i∈Σ π∗

p,pdraft
(i, i).

The problem can be formulated as an LP by representing the joint distribution as a matrix:

max
C∈RΣ×Σ

∑
i∈Σ

Ci,i s.t.
∑
j∈Σ

Ci,j = p(i),
∑
i∈Σ

Ci,j = pdraft(j), Ci,j ≥ 0 ∀i, j ∈ Σ. (1)

The optimal transport has the following closed-form expression

π∗
p,pdraft

(i, j) = C∗
i,j =

{
min(p(i), pdraft(i)) i = j
(p(i)−pdraft(i))+(pdraft(j)−p(j))+∑

z∈Σ(pdraft(z)−p(z))+
i ̸= j

, (2)

and the optimal objective function value is

α∗(p, pdraft) =
∑
i∈Σ

min(p(i), pdraft(i)) . (3)

The conditional distribution of i given j when (i, j) ∼ π is denoted as π(·|j) ∈ G(Σ), where

π(i|j) = πi,j∑
i∈Σ πi,j

=
πi,j

pdraft(j)
. (4)

For the optimal transport, this leads to

π∗
p,pdraft

(i|j) =

{
min( p(i)

pdraft(j)
, 1) i = j

(1− p(j)
pdraft(j)

)+
(p(i)−pdraft(i))+∑

z∈Σ(pdraft(z)−p(z))+
i ̸= j

. (5)

The basic single-step, single-draft speculative decoding can be improved in two directions. Multi-
step methods generate a draft sequence. Some improvements (Sun et al., 2024c; Hu & Huang,
2024; Sun et al., 2024b) in this scenario are discussed in Appendix B.3. Our paper focuses on the
multi-draft direction, where multiple draft tokens are generated at each step.

2.3 MULTI-DRAFT SPECULATIVE DECODING

For i ∈ Σ, define the incidence set Ai := {̄i ∈ Σn|∃j ∈ [n], ij = i}.

Informally, the verification algorithm depends on two distributions p and pdraft, where pdraft is now
a joint distribution of n tokens. Common constructions of pdraft include:
• Sampling with replacement: Given a draft model with output distribution q(·), independently

sample n times. For ī = (̄i1, . . . , īn) ∈ Σn, we have pdraft(̄i) =
∏n

j=1 q(̄ij).
• Sampling without replacement: pdraft(̄i) =

∏n
j=1 q

¬ī1,...,̄ij−1 (̄ij), where

q¬ī1,...,̄ij−1(x) =

{
q(x)

1−
∑

z∈{ī1,...,̄ij−1} q(z) x /∈ {̄i1, . . . , īj−1}

0 x ∈ {̄i1, . . . , īj−1}
. (6)
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• Product of different draft distributions: pdraft(̄i) =
∏n

j=1 qj (̄ij).
Given multiple draft tokens ī = (̄i1, . . . , īn) ∼ pdraft, the goal is to output i ∼ p such that the
objective maxP (∃j ∈ [n], i = īj) or equivalently maxP (̄i ∈ Ai) is achieved, that is to maximize
the probability of random variable i to be the same as one of random variable in (̄i1, . . . , īn).

More formally, given p ∈ ∆Σ and pdraft ∈ ∆Σn representing a probability distribution over the
space Σ and a probability distribution over the space Σn, respectively, we seek a joint distribution
π ∈ Π(p, pdraft) such that the marginal distributions are p and pdraft, respectively, and the objective
max

∑
i∈Σ

∑
ī∈Ai

π(i, ī) is maximized. The optimal transport is denoted as π∗
p,pdraft

∈ Π(p, pdraft),
and the optimal objective function value is α∗(p, pdraft) =

∑
i∈Σ

∑
ī∈Ai

π∗
p,pdraft

(i, ī).

The problem can be formulated as an LP by representing the joint distribution as a tensor:

max
C∈RΣ×Σn

∑
i∈Σ

∑
ī∈Ai

Ci,̄i

s.t.
∑
ī∈Σn

Ci,̄i = p(i) ∀i ∈ Σ,
∑
i∈Σ

Ci,̄i = pdraft(̄i) ∀ī ∈ Σn,

Ci,̄i ≥ 0 ∀i ∈ Σ, ī ∈ Σn.

(7)

The difficulty lies in the exponential number of variables and constraints.

Several approximation have been proposed for the multi-draft speculative decoding problem, includ-
ing Recursive Rejection Sampling (RRS) (Yang et al., 2024b; Jeon et al., 2024) and K-SEQ (Sun
et al., 2024d). RRS recursively verifies the draft tokens, while K-SEQ improves the acceptance rate
for sampling with replacement. Due to space constraints, we move the details of these methods
(Appendix A), other related work (Appendix B) and all proofs (Appendix C) to the appendix.

3 OPTIMAL ACCEPTANCE RATE AS SUBSET SELECTION PROBLEM

We show that the optimal acceptance rate can be expressed as a subset selection problem:

α∗(p, pdraft) = 1 + min
H⊂Σ

(∑
i∈H

p(i)−
∑
ī∈Hn

pdraft(̄i)

)
. (8)

The rest of this section is main idea of proof, with full details moved to the appendix.

3.1 DUAL PROBLEM

We start from the linear programming formulation (7) and derive an equivalent formulation:

max
S∈RΣ×Σn

∑
i∈Σ

∑
ī∈Σn

Si,̄i

s.t.
∑
ī∈Σn

Si,̄i ≤ p(i) ∀i ∈ Σ,
∑
i∈Σ

Si,̄i ≤ pdraft(̄i) ∀ī ∈ Σn,

Si,̄i ≥ 0 ∀i ∈ Σ, ī ∈ Σn, Si,̄i = 0 ∀i ∈ Σ, ī /∈ Ai.

(9)

Lemma 1. The two formulations (7) and (9) are equivalent.
This equivalent formulation transforms the transportation problem (Hitchcock, 1941) into a b-
matching problem, whose dual is a w-vertex cover problem (Schrijver et al., 2003) (with a detailed
derivation in Appendix C.1):

min
y∈RΣ,z∈RΣn

∑
i∈Σ

yip(i) +
∑
ī∈Σn

zīpdraft(̄i)

s.t. yi + zī ≥ 1 ∀i ∈ Σ, ī ∈ Ai,

yi ≥ 0 ∀i ∈ Σ, zī ≥ 0 ∀ī ∈ Σn.

(10)

3.2 TOTAL UNIMODULARITY

The coefficient matrix of the constraints in (10) is totally unimodular (TUM). The first set of con-
straints forms an incidence matrix of a bipartite graph, where one side of the nodes corresponds to Σ
and the other side corresponds to Σn. There is an edge between i and ī if and only if ī ∈ Ai. There-
fore, it is a totally unimodular matrix (Biggs, 1993). The second and third sets of constraints have
coefficient matrices that are identity matrices, with |Σ|+ |Σ|n variables and |Σ|+ |Σ|n constraints.
The concatenation of a TUM matrix and an identity matrix is also TUM (Commoner, 1973).

Since the right-hand side of the constraints are integers, the dual problem (10) always has an integer
optimal solution (Hoffman & Kruskal, 2010).
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3.3 SUBSET SELECTION FORMULATION

By restricting the variables in (10) to integers, we obtain:
min

y∈ZΣ,z∈ZΣn

∑
i∈Σ

yip(i) +
∑
ī∈Σn

zīpdraft(̄i)

s.t. yi + zī ≥ 1 ∀i ∈ Σ, ī ∈ Ai,

yi ≥ 0 ∀i ∈ Σ, zī ≥ 0 ∀ī ∈ Σn.

(11)

In the optimal solution, yi and zī will not exceed 1, so they can only take values 0 or 1. Therefore,
the problem can be further simplified as:

min
y∈{0,1}Σ

min
z∈{0,1}Σn

∑
i∈Σ

yip(i) +
∑
ī∈Σn

zīpdraft(̄i)

s.t. yi + zī ≥ 1 ∀i ∈ Σ, ī ∈ Ai .

(12)

Define H = {i ∈ Σ|yi = 1}. The problem becomes:
min
H⊂Σ

min
z∈{0,1}Σn

∑
i∈H

p(i) +
∑
ī∈Σn

zīpdraft(̄i)

s.t. zī ≥ 1 ∀i ∈ Σ \H, ī ∈ Ai .

(13)

The optimal solution for z is

z∗(H)ī =

{
1 ī ∈

⋃
x∈Σ\H Ax

0 ī /∈
⋃

x∈Σ\H Ax
. (14)

Substituting this solution, we obtain the subset selection formulation:
min
H⊂Σ

∑
i∈H

p(i) +
∑

ī∈
⋃

x∈Σ\H Ax

pdraft(̄i) . (15)

Finally, note that ∑
ī∈

⋃
x∈Σ\H Ax

pdraft(̄i) +
∑
ī∈Hn

pdraft(̄i) = 1 . (16)

This completes the derivation of the subset selection formulation (8).

4 COMPUTING OPTIMAL ACCEPTANCE RATE IN SPECIAL CASES

In this section, we discuss how to efficiently compute the optimal acceptance rate for certain special
cases of the draft distribution pdraft. For any set function f , we define the marginal value of an
element x with respect to a set H as f(x|H) = f(H ∪ {x})− f(H). We also define the following
shorthand notations: P (H) =

∑
i∈H p(i), Q(H) =

∑
ī∈Hn pdraft(̄i), f(H) = P (H)−Q(H).

The optimal acceptance rate can be expressed as α∗(p, pdraft) = 1 +minH⊂Σ f(H).

4.1 q-CONVEX FUNCTIONS

Definition 2 (q-Convex Function). A set function Q : 2Σ → R is called a q-convex function if there
exists a function q : Σ → R≥0 such that for all H ⊂ Σ and x, y ∈ Σ \H with x ̸= y, we have

Q(x|H)

q(x)
≤ Q(y|H ∪ {x})

q(y)
. (17)

Intuitively, if we order the elements of Σ arbitrarily and construct a sequence of sets Hi by adding
elements one by one, then the curve of Q(Hi) against the sum of q values is always convex.
Theorem 3. For sampling with replacement, the function Q (defined above and Section 2.3) is a
q-convex function(, where q is output distribution of the draft model).
Theorem 4. For sampling without replacement, the function Q (defined above and Section 2.3) is a
q-convex function(, where q is output distribution of the draft model).
Theorem 5. All q-convex functions are supermodular functions.

For both sampling with replacement and without replacement, computing α∗(p, pdraft) can be for-
mulated as an unconstrained submodular minimization problem, which has polynomial-time algo-
rithms (Iwata, 2008). However, by fully exploiting the properties of q-convex functions, we can
solve the problem even faster, as shown in the next section.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.2 EFFICIENT COMPUTATION

Theorem 6. Suppose that Q is a q-convex function, Q is monotone increasing, and p(x) > 0 for
all x ∈ Σ. For all H ⊂ Σ and x, y ∈ Σ \ H with x ̸= y, if q(x)

p(x) ≤ q(y)
p(y) and f(x|H) ≤ 0, then

f(y|H ∪ {x}) ≤ 0.

The above theorem requires p(x) > 0. When p(x) = 0, there exists an optimal set H∗ for (8) that
contains x because Q is monotone increasing.

4.2.1 ALGORITHM

Inspired by Theorem 6, we can compute the optimal acceptance rate efficiently as follows:

1. Find an ordering σ of Σ such that q(σ1)
p(σ1)

≥ · · · ≥ q(σ|Σ|)

p(σ|Σ|)
.

2. Construct a sequence of sets Hi = {σ1, . . . , σi}.
3. Compute α∗(p, pdraft) = 1 +mini f(Hi).
Intuitively, we sort the elements by the ratio of q and p in non-increasing order and then perform a
linear search.

4.2.2 COMPLEXITY OF COMPUTING Q AND α∗

For sampling with replacement, Q has a simple expression Q(H) = (
∑

x∈H q(x))n. The time
complexity for computing α∗(p, pdraft) is O(|Σ| log |Σ|) for the sorting step, plus O(|Σ|) for the
linear scan.

For sampling without replacement, we can compute Q(H) =
Wn,H

Wn,Σ
based on the coefficient of

generating function Wn,H = Coefftn GH(t) = Coefftn
∏

i∈H(1 + q(i)t) and apply dynamic pro-
gramming with recurrence relation Wn,H∪{x} = Wn,H + q(x)Wn−1,H . The time complexity is
O(|Σ| log |Σ|) for the sorting step, plus O(n|Σ|) for computing coefficient of generating function
with dynamic programming.

5 A GREEDY APPROACH FOR SELECTING DRAFT TOKENS

In this section, we propose a novel method for constructing the draft distribution pdraft and a corre-
sponding verification algorithm that achieves the optimal acceptance rate for this distribution.

5.1 DRAFT CONSTRUCTION

Given a draft model output distribution q ∈ ∆Σ, we construct the draft tokens ī = (̄i1, . . . , īn) as
follows:
• The first n − 1 tokens are deterministically set to be the top n − 1 tokens according to the

probability in q, i.e., ī1, . . . , īn−1 = Topn−1(q), such that q(̄i1) ≥ · · · ≥ q(̄in−1) and
maxi∈Σ\{ī1,...,̄in−1} q(i) ≤ q(̄in−1).

• Only the last token īn is randomly sampled from q without replacement (i.e., it is different from
the previous n− 1 tokens): īn ∼ q¬Topn−1(q)(·) = q(·)

1−
∑n−1

j=1 q(̄ij)
.

The resulting draft distribution is

pdraft(̄i) =

{
q¬Topn−1(q)(̄in) ī1, . . . , īn−1 = Topn−1(q)

0 ī1, . . . , īn−1 ̸= Topn−1(q)
. (18)

5.2 VERIFICATION ALGORITHM

The corresponding optimal transport problem for this draft distribution is simple because only one
draft token is random. We can design a verification algorithm that strictly achieves the optimal
acceptance rate for this draft distribution:

πGreedy
p,pdraft

(i|̄i) = π∗
p,q¬Topn−1(q)(i|̄in) . (19)

6
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We unfold the definition above in Appendix D.

Theorem 7. The optimal acceptance rate for the greedy draft distribution is

α∗(p, pdraft) = αGreedy(p, pdraft) =
∑

i∈Topn−1(q)

p(i) +
∑
i∈Σ

min(p(i), q¬Topn−1(q)(i)) . (20)

Our subset selection formulation (8) provides a convenient way to prove the above theorem.

5.3 CONNECTION TO SPECHUB

SpecHub (Anonymous, 2024) is a recently proposed MDSD method that is only applicable to the
case of n = 2. The draft construction in SpecHub is as follows:
• First, sample the first draft token ī1.
• If ī1 = Top1(q) is the token with the highest probability in q, then sample the second draft token
ī2 without replacement to ensure it is different from ī1.

• If ī1 ̸= Top1(q) is not the token with the highest probability in q, then deterministically set the
second draft token to be the token with the highest probability, i.e., ī2 = Top1(q).

The resulting draft distribution is:

pdraft(̄i) =


q(̄i1) ī2 = Top1(q)
q(̄i1)

1−q(̄i1)
q(̄i2) ī1 = Top1(q)

0 otherwise
. (21)

We note that the greedy method for n = 2 is essentially equivalent to SpecHub because both methods
ensure that at least one draft token is the token with the highest probability in q. However, the specific
draft distributions are different, leading to a simpler verification algorithm for the greedy method.

6 EXPERIMENTS

The goal of our experiments is to measure the acceptance rates of various MDSD methods on real
text distributions and compare them with the theoretical upper bounds. In the previous sections,
we analyzed the theoretical acceptance rate α∗(p, pdraft) for three different draft distributions: sam-
pling with replacement, sampling without replacement, and greedy approach (Section 5). We also
discussed some existing verification methods (Appendix A), such as RRS and K-SEQ, whose ac-
ceptance rates are expected to be lower than the theoretical upper bound. For K-SEQ, its average
acceptance rate αK-SEQ can be derived theoretically (see Appendix A.2 for details). Our efficient
computation methods (Section 4) make it possible, for the first time, to obtain the theoretical upper
bound of MDSD for vocabulary sizes of thousands.

To obtain realistic distributions p and pdraft, we select real-world datasets for various tasks, includ-
ing Alpaca (Taori et al., 2023) for instruction-following, WMT’14 De-En (Bojar et al., 2014) for
translation, and CNN-DailyMail (Hermann et al., 2015) for summarization. For each task, we use
an LLM to generate responses on 1024 data samples, with a maximum length of 128 tokens. We
then measure the logits of the target model and the draft model on these generated responses to
construct p and pdraft.

We evaluated different approaches based on four publicly available large language models, including
1) LLaMA (Touvron et al., 2023), 2) Vicuna (Chiang et al., 2023), the instruction fine-tuned version
of LLaMA models, 3) OPT (Zhang et al., 2022), and 4) Qwen2 (Yang et al., 2024a). Specifically,
for the LLaMA family, we select LLaMA-7B as the target model and LLaMA-68M as the draft
model, which is consistent with previous work (Miao et al., 2024). For the OPT family, we select
OPT-6.7B as the target model and OPT-125M as the draft model. Moreover, for the Vicuna family
and the Qwen family, we select Vicuna-7B-v1.3 and Qwen2-7B-Instruct as target models, and we
use paired draft models provided by EAGEL (Li et al., 2024), with 0.24B parameters and 0.26B
parameters, respectively.

Unless otherwise specified, we use a default generation temperature of 0.7 and a draft token number
of 3. The total computational cost is less than 50 GPU hours on RTXA6000.
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Table 1: Acceptance rates of different MDSD methods across various models and tasks. ∆α means
the gap between a verification method and the theoretical upper bound, with statistically significant
differences indicated by directional arrows.

Model Pairs Draft Sampling Method Alpaca CNN-DailyMail WMT’14

α ∆α α ∆α α ∆α

OPT-125M
OPT-6.7B

With
Replacement

RRS 85.4± 0.1 −1.5 ↓ 77.3± 0.1 −3.3 ↓ 70.6± 0.1 −1.5 ↓
K-SEQ 85.8± 0.1 −1.1 ↓ 78.4± 0.1 −2.2 ↓ 71.1± 0.1 −0.9 ↓
αK-SEQ 85.9± 0.1 −0.9 ↓ 78.5± 0.1 −2.2 ↓ 71.0± 0.1 −1.0 ↓
α∗ 86.9± 0.1 - 80.7± 0.1 - 72.0± 0.1 -

Without
Replacement

RRS 88.9± 0.1 −0.9 ↓ 81.5± 0.1 −2.8 ↓ 75.1± 0.1 −1.0 ↓
α∗ 89.9± 0.1 - 84.3± 0.1 - 76.0± 0.1 -

Greedy Verify 90.7± 0.1 0.0 84.2± 0.1 −0.1 77.0± 0.1 −0.0
α∗ 90.7± 0.1 - 84.3± 0.1 - 77.1± 0.1 -

LLaMA-68M
LLaMA-7B

With
Replacement

RRS 71.6± 0.1 −1.5 ↓ 65.3± 0.1 −2.2 ↓ 59.8± 0.1 −1.0 ↓
K-SEQ 71.9± 0.1 −1.1 ↓ 66.0± 0.1 −1.5 ↓ 60.0± 0.1 −0.8 ↓
αK-SEQ 72.0± 0.1 −1.0 ↓ 66.2± 0.1 −1.3 ↓ 60.2± 0.1 −0.6 ↓
α∗ 73.0± 0.1 - 67.5± 0.1 - 60.8± 0.1 -

Without
Replacement

RRS 75.7± 0.1 −0.8 ↓ 70.5± 0.1 −1.3 ↓ 63.3± 0.1 −0.1
α∗ 76.5± 0.1 - 71.8± 0.1 - 63.4± 0.1 -

Greedy Verify 78.4± 0.1 −0.1 73.2± 0.1 0.1 66.1± 0.1 0.0
α∗ 78.4± 0.1 - 73.1± 0.1 - 66.1± 0.1 -

Eagle-0.24B
Vicuna-7B

With
Replacement

RRS 63.4± 0.2 −1.0 ↓ 56.7± 0.1 −1.1 ↓ 32.9± 0.2 −0.2
K-SEQ 63.9± 0.2 −0.5 ↓ 57.0± 0.1 −0.8 ↓ 33.0± 0.2 −0.1
αK-SEQ 63.7± 0.1 −0.7 ↓ 57.1± 0.1 −0.7 ↓ 32.9± 0.2 −0.1
α∗ 64.4± 0.1 - 57.8± 0.1 - 33.1± 0.2 -

Without
Replacement

RRS 70.9± 0.2 −0.6 ↓ 63.4± 0.1 −0.8 ↓ 36.9± 0.2 0.4
α∗ 71.5± 0.1 - 64.2± 0.1 - 36.4± 0.2 -

Greedy Verify 72.6± 0.2 −0.2 65.7± 0.1 −0.1 39.5± 0.2 0.1
α∗ 72.8± 0.1 - 65.8± 0.1 - 39.5± 0.2 -

Eagle-0.26B
Qwen2-7B

With
Replacement

RRS 59.6± 0.2 −1.0 ↓ 46.7± 0.1 −1.6 ↓ 38.3± 0.1 −0.4 ↓
K-SEQ 59.9± 0.2 −0.8 ↓ 47.2± 0.1 −1.1 ↓ 38.3± 0.1 −0.4
αK-SEQ 59.9± 0.1 −0.7 ↓ 47.3± 0.1 −1.0 ↓ 38.3± 0.1 −0.3
α∗ 60.7± 0.1 - 48.3± 0.1 - 38.7± 0.1 -

Without
Replacement

RRS 68.3± 0.2 −1.1 ↓ 52.4± 0.1 −1.7 ↓ 43.9± 0.1 −0.1
α∗ 69.4± 0.1 - 54.1± 0.1 - 44.0± 0.1 -

Greedy Verify 69.9± 0.2 −0.0 54.0± 0.1 0.0 45.5± 0.1 0.1
α∗ 70.0± 0.1 - 53.9± 0.1 - 45.4± 0.1 -

6.1 MAIN EXPERIMENT

In the main experiment, we compare the acceptance rates of different MDSD methods across various
LLMs and tasks. The results are shown in Table 1. We observe that the existing verify methods,
RRS and K-SEQ, still have gaps compared to the theoretical acceptance rate upper bound. Sampling
without replacement achieves higher acceptance rates than sampling with replacement, both in terms
of the theoretical upper bound and the existing verification algorithms. We can attribute this to the
fact that sampling with replacement may lead to duplicate draft tokens, which are less helpful for
acceleration. The greedy method obtains the highest acceptance rate, but this is not always the
case, as we will see in the ablation study below that the greedy method performs worse when the
temperature is 1.

6.2 ABLATION STUDY I: IMPACT OF TEMPERATURE

We study the impact of different temperatures on the acceptance rates. The temperature affects the
distributions of the target model and the draft model, even if the logits remain unchanged. It also
affects the output text during the sampling process, resulting in different responses. Figure 1 shows
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Figure 1: Comparison of acceptance rate α for different temperatures across datasets.
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Figure 2: Comparison of acceptance rate α for different number of drafts across datasets.

the results. We use LLaMA-7B as the target model and LLaMA-68M as the draft model for our
ablation studies. We can have the following observations:
• The impact of temperature is non-monotonic. Moreover, different methods respond differently to

temperature changes.
• At low temperatures, all methods fall into two categories. The first includes methods that allow

duplicate tokens. When T = 0, these methods essentially have only one effective draft token, the
one with the largest logits on the draft model. The second includes methods that prevent duplicate
tokens. When T = 0, these methods always select the top n tokens on the draft model.

• The gap between the optimal acceptance rate and acceptance rates for previously existing verifi-
cation methods, RRS and K-SEQ, gradually increases as the temperature rises.

• As temperature increases, the gap between methods with replacement sampling and methods with-
out replacement sampling decreases. We can attribute this to the fact that, at high temperatures,
the probability distribution is less concentrated, making with replacement sampling strategies have
less probability to generate duplicate tokens.

6.3 ABLATION STUDY II: IMPACT OF NUMBER OF DRAFTS

We investigate the impact of different numbers of drafts on the acceptance rates. The results are
shown in Figure 2. We have the following observations:
• As the number of drafts increases, the coverage of the target model’s possible outputs improves,

therefore leading to better acceptance rate. This trend holds for all methods.
• The draft sampling strategy significantly impacts the benefits derived from an increase in the

number of drafts. Sampling without replacement generally benefit more from an increase in drafts
compared to sampling with replacement. This is because sampling with replacement can lead to
redundant drafts, which do not fully leverage the advantages of increasing the number of drafts.

• The gap between the optimal acceptance rate and acceptance rates for previously existing verifi-
cation methods, RRS and K-SEQ, gradually increases as the number of drafts rises.
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Table 2: Acceptance rates of different MDSD methods on MT-Bench based on Eagle framework.

Method # Drafts = 2, # Steps = 4 # Drafts = 4, # Steps = 3 EAGLE default sparse tree

α Speed α Speed α Speed

T = 0.1

RRS w/ replacement 75.3 ± 0.3 - 78.4 ± 0.3 - 74.7 ± 0.3 -
RRS w/o replacement 79.4 ± 0.3 1.04 (± 0.02) × 80.4 ± 0.3 1.03 (± 0.01) × 76.8 ± 0.3 1.04 (± 0.02) ×
SpecHub 84.0 ± 0.3 1.11 (± 0.02) × - - - -
Greedy 84.7 ± 0.3 1.13 (± 0.02) × 88.8 ± 0.2 1.17 (± 0.01) × 79.1 ± 0.3 1.08 (± 0.02) ×

T = 0.6

RRS w/ replacement 78.8 ± 0.3 - 84.7 ± 0.3 - 76.2 ± 0.3 -
RRS w/o replacement 82.4 ± 0.3 1.07 (± 0.02) × 88.6 ± 0.2 1.07 (± 0.01) × 77.6 ± 0.3 1.05 (± 0.02) ×
SpecHub 82.3 ± 0.3 1.02 (± 0.02) × - - - -
Greedy 82.8 ± 0.3 1.04 (± 0.02) × 90.0 ± 0.2 1.09 (± 0.01) × 78.3 ± 0.3 1.01 (± 0.02) ×

T = 1.0

RRS w/ replacement 76.7 ± 0.3 - 83.5 ± 0.3 - 72.1 ± 0.3 -
RRS w/o replacement 76.4 ± 0.3 1.00 (± 0.02) × 85.3 ± 0.3 1.05 (± 0.01) × 74.1 ± 0.3 1.03 (± 0.02) ×
SpecHub 79.5 ± 0.3 1.01 (± 0.02) × - - - -
Greedy 79.2 ± 0.3 1.02 (± 0.02) × 87.8 ± 0.2 1.08 (± 0.01) × 72.9 ± 0.3 0.97 (± 0.02) ×

6.4 EVALUATING THE GREEDY SAMPLING METHOD ON GENERATION TASKS

In this section, we evaluate the effectiveness and generation efficiency of the proposed Greedy draft
sampling method (Section 5) on real-world generation tasks and compare it with other MDSD meth-
ods.

We implement the Greedy method within the EAGLE Framework (Li et al., 2024), which supports
multi-step MDSD with a draft tree structure. We experiment with three types of tree structures: (1)
drafts = 2, depths = 4; (2) drafts = 4, depths = 3; and (3) a sparse tree with up to 4 drafts and 5 steps,
which is the default setting in EAGLE. We conduct experiments on the MT-Bench dataset (Zheng
et al., 2023) using Vicuna-7B-v1.3 (Chiang et al., 2023) as the target model and its corresponding
Eagle model with 0.24B parameters as the draft model.

Table 3 presents the results. As discussed in Section 5.3, the Greedy method and SpecHub have equal
acceptance rates when the number of draft tokens is 2. Our experiments confirm this theoretical
insight, showing no statistically significant difference between the two methods for any temperature.

The Greedy method demonstrates improved performance at low temperatures. For example, at
T=0.1, it achieves a higher acceptance rate compared to RRS without replacement, leading to faster
generation. However, as the temperature increases, the performance gain of the Greedy method
diminishes. This observation is consistent with the ablation study in Figure 1.

7 CONCLUSION

In this paper, we studied the acceptance rate of Multi-Draft Speculative Decoding (MDSD).

On the theoretical side, we discovered an equivalence between the optimal acceptance rate and a
subset selection problem. We also provided efficient methods to compute the optimal acceptance
rate for common draft distributions.

On the practical side, for the first time, we measured the optimal acceptance rate under real text
distributions and quantified the gap between existing algorithms and the optimal acceptance rate.

Furthermore, we proposed a practical greedy draft construction method that, in some cases, achieves
an even higher acceptance rate than sampling without replacement.

We hope that our work will stimulate further research on improving the efficiency of large language
model inference and make these powerful models more accessible and applicable in real-world
scenarios.
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A APPROXIMATE SOLUTIONS

A.1 RECURSIVE REJECTION SAMPLING (RRS)

Yang et al. (2024b) and Jeon et al. (2024) use the Recursive Rejection Sampling method. Define the
residual distribution Resp−q ∈ ∆Σ for p, q ∈ ∆Σ as:

Resp−q(i) =
(p(i)− q(i))+∑

z∈Σ(p(z)− q(z))+
(22)

When p = q, Resp−q can be defined as an arbitrary distribution.

For pdraft from sampling with replacement, the RRS algorithm is recursively defined as:

πRRS,w
p,pdraft

(i|̄i) = π̃RRS,w
p,q (i|̄i) (23)

where

π̃RRS,w
p,q (i|̄i) =

{
min(p(̄i1)

q(̄i1)
, 1) i = ī1

(1− p(̄i1)
q(̄i1)

)+π̃
RRS,w
Resp−q,q

(i|̄i2:) i ̸= ī1
(24)

and
π̃RRS,w
p,q (i|()) = p(i) (25)

Here ī2: denotes the sequence ī with the first element removed.

For pdraft from sampling without replacement, the RRS algorithm is defined as:

πRRS,w
p,pdraft

(i|̄i) = π̃RRS,wo
p,q (i|̄i) (26)

where

π̃RRS,wo
p,q (i|̄i) =

{
min(p(̄i1)

q(̄i1)
, 1) i = ī1

(1− p(̄i1)
q(̄i1)

)+π̃
RRS,wo

Resp−q,q¬ī1
(i|̄i2:) i ̸= ī1

(27)

and
π̃RRS,wo
p,q (i|()) = p(i) (28)

The acceptance rates are denoted as αRRS,w(p, pdraft) and αRRS,wo(p, pdraft), respectively.

A.2 K-SEQ

Sun et al. (2024d) proposed the K-SEQ method to verify drafts sampled with replacement. Define

βp,q(ρ) =
∑
i∈Σ

min(
p(i)

ρ
, q(i)) (29)

and let ρ be the solution to the equation

1− (1− βp,q(ρ))
n = ρβp,q(ρ) (30)

The K-SEQ algorithm is defined as:

πK-SEQ
p,pdraft

(i|̄i) = π̃K-SEQ
p,q,ρ (i|̄i) (31)

where

π̃K-SEQ
p,q,ρ (i|̄i) = (1− p(̄i1)

ρq(̄i1)
)+π̃

K-SEQ
p,q,ρ (i|̄i2:) +

{
min( p(̄i1)

ρq(̄i1)
, 1) i = ī1

0 i ̸= ī1
(32)

and

π̃K-SEQ
p,q,ρ (i|()) =

p(i)−min
{
q(i), p(i)

ρ

}
1−(1−βp,q(ρ))

n

βp,q(ρ)

(1− βp,q(ρ))n
(33)

The acceptance rate is denoted as αK-SEQ(p, pdraft) = 1 − (1 − βp,q(ρ))
n, which is theoretically

guaranteed to achieve a (1− e−1)-approximation of the optimal acceptance rate.
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B RELATED WORKS

B.1 DRAFT MODEL DESIGN

Numerous studies have explored the design of better draft models for speculative decoding. In prin-
ciple, any autoregressive probabilistic model can serve as a draft model. The simplest approaches in-
clude using n-gram models (Ou et al., 2024) or document retrieval as draft models (Yang et al., 2023;
He et al., 2023). Small transformer-based language models have also been employed (Leviathan
et al., 2023; Chen et al., 2023a), often with distillation techniques to further increase the overlap
between the draft and target models (Zhou et al., 2023).

The design of a good draft model involves a trade-off between its similarity to the target model
and its computational complexity. More complex draft models lead to higher acceptance rates due
to their closer resemblance to the target model, but they also incur higher computational overhead.
To achieve a better trade-off, some works have proposed reusing the target model’s computational
results. For example, Monea et al. (2023) use the original model with “look ahead” tokens, while
Cai et al. (2024) add new heads to the last hidden layer of the original model to predict tokens further
ahead. Li et al. (2024) reuse the last layer hidden state computation of the large model and introduce
a new attention layer to predict the next token. Sun et al. (2024a) employ the target model with a
partial key-value cache as the draft model.

B.2 MULTI-DRAFT SPECULATIVE DECODING

Many related works on Multi-Draft Speculative Decoding (MDSD) have been introduced in other
sections. This paper focuses on the single-step Multi-Draft scenario. When MDSD generates mul-
tiple steps, with each step involving multiple drafts, it forms a tree structure. Sequoia (Chen et al.,
2024) propose a dynamic programming algorithm to search for the optimal tree topology.

As the tree grows deeper, the acceptance probability of certain branches decreases. Cascade Spec-
ulative Drafting (Chen et al., 2023b) addresses this issue by assigning the largest draft model to
generate draft tokens at shallower levels, which are more likely to be accepted, and gradually using
smaller models to generate drafts for less relevant branches.

Khisti et al. (2024) studied the optimal acceptance rate for special case of sampling with replacement
for n = 2 drafts, and obtained the following result:

α∗(p, pdraft) = min
H⊂Σ


∑
i∈H

p(i) +

 ∑
i∈Σ\H

q(s)

2

+ 2

(∑
i∈H

q(s)

) ∑
i∈Σ\H

q(s)


 . (34)

This is essentially the same as our result (8) under this special case. However, our theory is more
general, without any assumption on the draft sampling methods or the number of draft tokens.

B.3 MULTI-STEP SPECULATIVE DECODING

The basic single-step, single-draft speculative decoding, as introduced in Section 2.1, can be ap-
plied to multiple steps, with each step having only one draft and an independent verification process
(Leviathan et al., 2023; Chen et al., 2023a). However, such an approach of repeatedly applying
single-step verification is not optimal for the multi-step scenario. Some works, such as Sun et al.
(2024c); Hu & Huang (2024); Sun et al. (2024b), have designed better verification algorithms specif-
ically for the multi-step setting. These algorithms are tailored for the multi-step scenario while re-
maining compatible with the single-step case, reducing to the basic speculative sampling algorithm
when applied to a draft sequence of length 1.

Multi-step speculative decoding and multi-draft speculative decoding represent different directions
for improvement.

As shown in Figure 3, Sun et al. (2024d); Khisti et al. (2024) and our work improve speculative
decoding from the multi-draft perspective. When there is only a single draft, it reduces to the case
in Leviathan et al. (2023); Chen et al. (2023a). On the other hand, Sun et al. (2024c); Hu & Huang
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Speculative Decoding
Leviathan et al. (2023)

Chen et al. (2023a)

Sun et al. (2024c)
Hu & Huang (2024)
Sun et al. (2024b)

Sun et al. (2024d)
Khisti et al. (2024)

This paper

multi-step

multi-draft

Figure 3: Different directions for improving speculative decoding.

(2024); Sun et al. (2024b) enhance speculative decoding from the multi-step perspective. When
there is only a single step, it reduces to the case in Leviathan et al. (2023); Chen et al. (2023a).

Combining both improvements in the multi-draft and multi-step scenario would be ideal, and could
be a direction for future research.

C PROOFS

Proof of Lemma 1. Let f1(C) and f2(S) denote the objective function values of (7) and (9), respec-
tively. Let v1 = f1(C

∗) and v2 = f2(S
∗) be the optimal objective function values.

First, we show that the optimal solution of (7) is feasible for (9). Define Si,̄i = C∗
i,̄i

for ī ∈ Ai and
Si,̄i = 0 for ī /∈ Ai. This solution maintains the objective function value, i.e., f2(S) = f1(C

∗).
Therefore, v2 = f2(S

∗) ≥ f2(S) = f1(C
∗) = v1.

Next, we show that the optimal solution of (9) is feasible for (7). Define pres(i) = p(i) −∑
ī∈Σn S∗

i,̄i
≥ 0 for i ∈ Σ and presdraft(̄i) = pdraft(̄i) −

∑
i∈Σ S∗

i,̄i
≥ 0 for ī ∈ Σn. We have∑

ī∈Σn presdraft(̄i) =
∑

i∈Σ pres(i). Define Ci,̄i = S∗
i,̄i

+
pres(i)pres

draft (̄i)∑
i∈Σ pres(i) ≥ S∗

i,̄i
. This solution has

a larger objective function value, i.e., f1(C) ≥ f1(S
∗). Therefore, v1 = f1(C

∗) ≥ f1(C) ≥
f2(S

∗) = v2.

Combining the two parts, we have v1 = v2, which proves the equivalence of the two formulations.

Proof of Theorem 3. For ī = (̄i1, . . . , īn) ∈ Σn, we have pdraft(̄i) =
∏n

j=1 q(̄ij). The function
Q(H) =

∑
ī∈Hn pdraft(̄i) represents the probability that all n samples drawn with replacement are

in the set H . Therefore, Q(H) = (
∑

x∈H q(x))n.

Consider the convex function g(x) = xn. To prove the q-convexity of Q, it suffices to show that for
all H ⊂ Σ and x, y ∈ Σ \H with x ̸= y, we have:

(Q(H) + q(x))n −Q(x)n

q(x)
≤ (Q(H) + q(x) + q(y))n − (Q(H) + q(x))n

q(y)
(35)

This can be rewritten as:
g(Q(H) + q(x))− g(Q(x))

q(x)
≤ g(Q(H) + q(x) + q(y))− g(Q(H) + q(x))

q(y)
(36)

Note that both sides are finite differences of the convex function g. Define a = Q(x), b = Q(x) +
q(x), and c = Q(x) + q(x) + q(y). It suffices to show that:

g(b)− g(a)

b− a
≤ g(c)− g(b)

c− b
(37)

This follows directly from the convexity of g.
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Proof of Theorem 4. The function Q(H) =
∑

ī∈Hn pdraft(̄i) represents the probability that all n
samples drawn without replacement are in the set H . To handle the more complex case of sampling
without replacement, we use generating functions.

Define the generating function GH(t) =
∏

i∈H(1 + q(i)t) and the coefficient Wn,H =

Coefftn GH(t). Note that Q(H) =
Wn,H

Wn,Σ
.

The coefficients satisfy the following recurrence relation:

Wn,H∪{x} = Coefftn GH∪{x}(t) (38)

= Coefftn GH(t) + q(x)tGH(t) (39)
= Wn,H + q(x)Wn−1,H (40)

To prove the q-convexity of Q, it suffices to show that for all H ⊂ Σ and x, y ∈ Σ \H with x ̸= y,
we have:

Wn,H∪{x} −Wn,H

q(x)Wn,Σ
≤

Wn,H∪{x,y} −Wn,H∪{x}

q(y)Wn,Σ
(41)

Applying the recurrence relation, it suffices to show that:

Wn−1,H ≤ Wn−1,H∪{x} (42)

Applying the recurrence relation again, it suffices to show that:

0 ≤ q(x)Wn−2,H (43)

This holds because the coefficients of G are always non-negative, i.e., Wn−2,H ≥ 0.

Proof of Theorem 5. It suffices to show that for all H ⊂ Σ and x, y ∈ Σ \H with x ̸= y, we have:

Q(x|H) ≤ Q(x|H ∪ {y}) (44)

By the q-convexity of Q, we have:

Q(x|H)

q(x)
≤ Q(y|H ∪ {x})

q(y)
(45)

Therefore,

Q(x|H)

q(x)
≤ Q(x|H) +Q(y|H ∪ {x})

q(x) + q(y)
=

Q(H ∪ {x, y})−Q(H)

q(x) + q(y)
≤ Q(y|H ∪ {x})

q(y)
(46)

Similarly, by symmetry, we can reverse x and y to obtain:

Q(y|H)

q(y)
≤ Q(H ∪ {x, y})−Q(H)

q(x) + q(y)
≤ Q(x|H ∪ {y})

q(x)
(47)

Therefore,
Q(x|H)

q(x)
≤ Q(H ∪ {x, y})−Q(H)

q(x) + q(y)
≤ Q(x|H ∪ {y})

q(x)
(48)

This implies that:
Q(x|H) ≤ Q(x|H ∪ {y}) (49)

Proof of Theorem 6. We have:

f(x|H) = p(x)−Q(x|H) (50)

= p(x)(1− q(x)

p(x)

Q(x|H)

q(x)
) ≤ 0 (51)
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Therefore,
f(x|H)

p(x)
= 1− q(x)

p(x)

Q(x|H)

q(x)
≤ 0 (52)

By assumption, q(x)
p(x) ≤

q(y)
p(y) . By the q-convexity of Q, we have Q(x|H)

q(x) ≤ Q(y|H∪{x})
q(y) . Therefore,

q(y)

p(y)

Q(y|H ∪ {x})
q(y)

≥ q(x)

p(x)

Q(x|H)

q(x)
(53)

It follows that:
f(y|H ∪ {x})

p(y)
= 1− q(y)

p(y)

Q(y|H ∪ {x})
q(y)

(54)

≤ f(x|H)

p(x)
≤ 0 (55)

Proof of Theorem 7. We first prove that the acceptance rate of the greedy method is:

αGreedy(p, pdraft) (56)

=
∑
i∈Σ

∑
ī∈Ai

πGreedy
p,pdraft

(i, ī) (57)

=
∑
i∈Σ

∑
ī∈Ai

πGreedy
p,pdraft

(i|̄i)pdraft(̄i) (58)

=
∑

i∈Topn−1(q)

∑
ī∈Ai

πGreedy
p,pdraft

(i|̄i)pdraft(̄i) (59)

+
∑

i∈Σ\Topn−1(q)

∑
ī∈Ai

πGreedy
p,pdraft

(i|̄i)pdraft(̄i) (60)

=
∑

i∈Topn−1(q)

∑
īn∈Σ

π∗
p,q¬Topn−1(q)(i|̄in)q¬Topn−1(q)(̄in) (61)

+
∑

i∈Σ\Topn−1(q)

πGreedy
p,pdraft

(i|(Topn−1(q), i))q
¬Topn−1(q)(i) (62)

=
∑

i∈Topn−1(q)

p(i) (63)

+
∑

i∈Σ\Topn−1(q)

π∗
p,q¬Topn−1(q)(i|i)q¬Topn−1(q)(i) (64)

=
∑

i∈Topn−1(q)

p(i) +
∑

i∈Σ\Topn−1(q)

min(p(i), q¬Topn−1(q)(i)) (65)

Note that
∑

i∈Topn−1(q)
min(p(i), q¬Topn−1(q)(i)) =

∑
i∈Topn−1(q)

min(p(i), 0) = 0.

Next, we compute the optimal acceptance rate. Note that when Topn−1(q) ⊈ H , we must have
Q(H) = 0. When Topn−1(q) ⊆ H , we have Q(H) =

∑
i∈H q¬Topn−1(q)(i). Therefore,

α∗(p, pdraft) (66)
=1 + min

H⊂Σ
P (H)−Q(H) (67)

=1 + min
H⊂Σ,s.t. Topn−1(q)⊆H

∑
i∈H

p(i)− q¬Topn−1(q)(i) (68)

The optimal set is H∗ = {i ∈ Σ|q¬Topn−1(q)(i) ≥ p(i)} ∪ Topn−1(q). In this case,

α∗(p, pdraft) (69)
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=1−
∑
i∈Σ

(q¬Topn−1(q)(i)− p(i))+ +
∑

i∈Topn−1(q)

p(i) (70)

=
∑
i∈Σ

min(p(i), q¬Topn−1(q)(i))+ +
∑

i∈Topn−1(q)

p(i) (71)

C.1 DERIVATION OF THE DUAL PROBLEM

We start from the primal problem (9):

max
S∈RΣ×Σn

∑
i∈Σ

∑
ī∈Σn

Si,̄i

s.t.
∑
ī∈Σn

Si,̄i ≤ p(i) ∀i ∈ Σ

∑
i∈Σ

Si,̄i ≤ pdraft(̄i) ∀ī ∈ Σn

Si,̄i ≥ 0 ∀i ∈ Σ, ī ∈ Σn

Si,̄i = 0 ∀i ∈ Σ, ī /∈ Ai

(72)

We introduce dual variables yi for each constraint
∑

ī∈Σn Si,̄i ≤ p(i) and zī for each constraint∑
i∈Σ Si,̄i ≤ pdraft(̄i). The Lagrangian function is:

L(S, y, z) =
∑
i∈Σ

∑
ī∈Σn

Si,̄i (73)

+
∑
i∈Σ

yi(p(i)−
∑
ī∈Σn

Si,̄i) (74)

+
∑
ī∈Σn

zī(pdraft(̄i)−
∑
i∈Σ

Si,̄i) (75)

The dual function is:
g(y, z) = max

S∈RΣ×Σn
L(S, y, z)

s.t. Si,̄i ≥ 0 ∀i ∈ Σ, ī ∈ Σn

Si,̄i = 0 ∀i ∈ Σ, ī /∈ Ai

(76)

Rearranging the Lagrangian function:

L(S, y, z) =
∑
i∈Σ

∑
ī∈Σn

(1− yi − zī)Si,̄i (77)

+
∑
i∈Σ

yip(i) +
∑
ī∈Σn

zīpdraft(̄i) (78)

For the dual function to be bounded, we must have:
1− yi − zī ≤ 0,∀i ∈ Σ, ī ∈ Ai (79)

Therefore, the dual problem is:

min
y∈RΣ,z∈RΣn

∑
i∈Σ

yip(i) +
∑
ī∈Σn

zīpdraft(̄i)

s.t.yi + zī ≥ 1 ∀i ∈ Σ, ī ∈ Ai

yi ≥ 0 ∀i ∈ Σ

zī ≥ 0 ∀ī ∈ Σn

(80)

This completes the derivation of the dual problem.

Followings are for revision:
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D ADDITIONAL ILLUSTRATION

Illustration of single-step draft tokens generation and verification:

Input
(Context)

Draft Model
Pdraft

Generate n Draft Tokens
x̂(1), . . . , x̂(n)

Verification Algorithm
Pverify

Output Token

Compute Probabilities
Ptarget(·)

Target Model
Ptarget

Generate Drafts

Draft Tokens
Probabilities

Probabilities

Parallel Computation

Pseudo code for apply multi-draft speculative sampling for multiple steps, with arbitrary tree topol-
ogy.

def m u l t i d r a f t s p e c u l a t i v e d e c o d i n g ( prompt ,
t r e e t o p o l o g y ,
d r a f t m o d e l ,
t a r g e t m o d e l ) :

”””
Mul t i −D r a f t S p e c u l a t i v e Decoding a l g o r i t h m f o r a c c e l e r a t i n g
language model i n f e r e n c e .

Example t r e e t o p o l o g y :
t r e e t o p o l o g y = [

[ 0 ] , [ 1 ] , [ 2 ] , [ 3 ] , # F i r s t l e v e l : 4 b r a n c h e s
[ 0 , 0 ] , [ 0 , 1 ] , [ 0 , 2 ] , [ 1 , 0 ] , [ 1 , 1 ] ,
[ 2 , 0 ] , [ 2 , 1 ] , [ 3 , 0 ] , # Second l e v e l
[ 0 , 0 , 0 ] , [ 0 , 0 , 1 ] , [ 0 , 0 , 2 ] , [ 0 , 1 , 0 ] ,
[ 0 , 1 , 1 ] , [ 0 , 2 , 0 ] , [ 0 , 2 , 1 ] , [ 1 , 0 , 0 ] , # T h i r d l e v e l
[ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 1 ] , [ 0 , 0 , 0 , 2 ] , # Four th l e v e l
[ 0 , 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , 1 ] # F i f t h l e v e l

]
T h i s i s t h e d e f a u l t EAGLE t r e e s t r u c t u r e where each number
r e p r e s e n t s which d r a f t t o k e n t o use a t each l e v e l .

”””
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# I n i t i a l i z e d i c t i o n a r i e s t o s t o r e d r a f t s and d i s t r i b u t i o n s
d r a f t s = {}
d r a f t d i s t r i b u t i o n s = {}
t a r g e t d i s t r i b u t i o n s = {}

# Genera te d r a f t s f o r each p r e f i x i n t h e t r e e t o p o l o g y
f o r p r e f i x in [ [ ] ] + t r e e t o p o l o g y :

c h i l d r e n = g e t c h i l d r e n ( t r e e t o p o l o g y , p r e f i x )
i f not c h i l d r e n :

c o n t in u e # S k i p i f no e x p a n d a b l e c h i l d r e n p a t h s
# Genera te d r a f t s and c o r r e s p o n d i n g d i s t r i b u t i o n s
# e . g . s a m p l i n g w i t h / w i t h o u t r e p l a c e m e n t or S e c t i o n 5 . 1
(

d r a f t s [ t u p l e ( p r e f i x ) ] ,
d r a f t d i s t r i b u t i o n s [ t u p l e ( p r e f i x ) ]

) = g e n e r a t e d r a f t t o k e n s ( d r a f t m o d e l , p r e f i x )

# Compute p r o b a b i l i t y d i s t r i b u t i o n s from t a r g e t model f o r a l l d r a f t s
t a r g e t d i s t r i b u t i o n s = c o m p u t e t a r g e t d i s t r i b u t i o n s ( t a r g e t m o d e l , d r a f t s )

# S t a r t v e r i f i c a t i o n and g e n e r a t i o n p r o c e s s
p r e f i x = [ ]
whi le True :

i f t u p l e ( p r e f i x ) not in d r a f t s :
break # End i f no a v a i l a b l e d r a f t s

# e . g . RRS or K−Seq or S e c t i o n 5 . 2
o u t p u t t o k e n = v e r i f i c a t i o n (

d r a f t s [ t u p l e ( p r e f i x ) ] ,
d r a f t d i s t r i b u t i o n s [ t u p l e ( p r e f i x ) ] ,
t a r g e t d i s t r i b u t i o n s [ t u p l e ( p r e f i x ) ]

)
p r e f i x . append ( o u t p u t t o k e n )

# R e t ur n t h e g e n e r a t e d s e q u e n c e
re turn p r e f i x

def g e t c h i l d r e n ( t r e e t o p o l o g y , p r e f i x ) :
”””
Get a l l c h i l d p a t h s i n t r e e t o p o l o g y t h a t e x t e n d t h e g i v e n
p r e f i x by one t o k e n .

Examples :
t r e e t o p o l o g y = [ [ 0 ] , [ 1 ] , [ 0 , 0 ] , [ 0 , 1 ] , [ 1 , 0 ] ]
g e t c h i l d r e n ( [ ] , t r e e t o p o l o g y ) −> [ [ 0 ] , [ 1 ] ]
g e t c h i l d r e n ( [ 0 ] , t r e e t o p o l o g y ) −> [ [ 0 , 0 ] , [ 0 , 1 ] ]
g e t c h i l d r e n ( [ 1 ] , t r e e t o p o l o g y ) −> [ [ 1 , 0 ] ]
g e t c h i l d r e n ( [ 0 , 0 ] , t r e e t o p o l o g y ) −> [ ]

”””
re turn [

p a t h f o r p a t h in t r e e t o p o l o g y
i f l e n ( p a t h ) == l e n ( p r e f i x ) + 1 and p a t h [ : l e n ( p r e f i x ) ] == p r e f i x

]
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Unfolded definition of verify algorithm for greedy draft construction.

πGreedy
p,pdraft

(i|̄i)
=π∗

p,q¬Topn−1(q)(i|̄in)

=


min(

p(i)(1−
∑

j∈Topn−1(q) q(j))

q(i) , 1) i = īn

(1−
p(̄in)(1−

∑
j∈Topn−1(q) q(j))

q(̄in)
)+

p(i)(1−
∑

j∈Topn−1(q) q(j))∑
z∈Σ(p(z)(1−

∑
j∈Topn−1(q) q(j))−I(z/∈Topn−1(q))q(z))+

i ∈ Topn−1(q)

(1−
p(̄in)(1−

∑
j∈Topn−1(q) q(j))

q(̄in)
)+

(p(i)(1−
∑

j∈Topn−1(q) q(j))−q(i))+∑
z∈Σ(p(z)(1−

∑
j∈Topn−1(q) q(j))−I(z/∈Topn−1(q))q(z))+

i ̸= īn, i /∈ Topn−1(q)

(81)

E SUMMARY OF NOTATIONS

• Σ: The vocabulary set

• ∆Σ: The probability simplex over vocabulary Σ

• [n]: The set 1,...,n

• Ptarget(·|x1, x2, ..., xm): The target model, a probabilistic model that predicts the proba-
bility of the next word given the context

• Pdraft(·|x1, x2, ..., xm): The draft model used to generate candidate tokens

• Pverify(·|x̂(1), . . . x̂(n)): The verification algorithm that selects the final output token from
the draft tokens

• p(·) = Ptarget(·|x1, x2, ..., xm): Shorthand for the target distribution

• pdraft: The distribution of draft tokens

• π ∈ Π(p, pdraft): A joint distribution with marginal distributions p and pdraft

• π∗
p,pdraft

∈ Π(p, pdraft): The optimal transport joint distribution

• α∗(p, pdraft): The optimal acceptance rate

• Ai := {̄i ∈ Σn|∃j ∈ [n], ij = i}: The incidence set for token i

• q(·): The shorthand notation of the output distribution of the draft model

• q¬ī1,...,̄ij−1(x): The probability of token x when sampling without replacement, excluding
previously selected tokens

• Resp−q ∈ ∆Σ: The residual distribution

• πRRS,w
p,pdraft

, πRRS,wo
p,pdraft

: The RRS verification algorithms for with/without replacement sampling

• αRRS,w(p, pdraft), αRRS,wo(p, pdraft): Acceptance rates for RRS with/without replacement

• βp,q(ρ): A function used in the K-SEQ algorithm

• πK-SEQ
p,pdraft

: The K-SEQ verification algorithm

• αK-SEQ(p, pdraft): Acceptance rate for the K-SEQ algorithm

• P (H) =
∑

i∈H p(i): Sum of target probabilities over set H

• Q(H) =
∑

ī∈Hn pdraft(̄i): Sum of draft probabilities over set Hn

• f(H) = P (H)−Q(H): Difference between target and draft probabilities over set H

• πGreedy
p,pdraft

: The greedy verification algorithm

• αGreedy(p, pdraft): Acceptance rate for the greedy draft sampling method

• Ci,j : Matrix representation of joint distribution

• (p(i)− pdraft(i))+: The positive part of the difference

• GH(t): Generating function defined as
∏

i∈H(1 + q(i)t)

• Wn,H : Coefficient of tn in GH(t)
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• f(x|H): The marginal value of element x with respect to set H
• Topn−1(q): The top n-1 tokens according to probability in q

• S ∈ RΣ×Σn

: Variables in the equivalent LP formulation
• y ∈ RΣ, z ∈ RΣn

: Dual variables
• π(·|j): The conditional distribution given j

• πi,j : Individual elements of the joint distribution matrix
• ī2:: The sequence ī with the first element removed
• Hi: Sets constructed by adding elements one by one
• σ: An ordering of Σ used in the efficient computation algorithm
• Coefftn : Coefficient of tn in a generating function

F ADDITIONAL EXPERIMENTS

Table 3: Average generation length τ of different MDSD methods and their ratio ∆ on MT-Bench
based on Eagle framework.

Method # Drafts = 2, # Steps = 4 # Drafts = 4, # Steps = 3 EAGLE default sparse tree

τ ∆ τ ∆ τ ∆

T = 0.1

RRS w/ replacement 3.04 ± 0.02 - 2.83 ± 0.02 - 3.19 ± 0.03 -
RRS w/o replacement 3.27 ± 0.02 1.07 (± 0.02) × 2.96 ± 0.02 1.05 (± 0.01) × 3.42 ± 0.03 1.07 (± 0.02) ×
SpecHub 3.63 ± 0.02 1.19 (± 0.02) × - - - -
Greedy 3.62 ± 0.02 1.19 (± 0.02) × 3.39 ± 0.01 1.20 (± 0.02) × 3.70 ± 0.03 1.16 (± 0.02) ×

T = 0.6

RRS w/ replacement 3.22 ± 0.02 - 3.11 ± 0.01 - 3.41 ± 0.02 -
RRS w/o replacement 3.52 ± 0.02 1.09 (± 0.02) × 3.39 ± 0.01 1.09 (± 0.01) × 3.71 ± 0.02 1.09 (± 0.02) ×
SpecHub 3.52 ± 0.02 1.09 (± 0.02) × - - - -
Greedy 3.52 ± 0.02 1.09 (± 0.02) × 3.45 ± 0.01 1.11 (± 0.01) × 3.66 ± 0.02 1.07 (± 0.02) ×

T = 1.0

RRS w/ replacement 3.14 ± 0.02 - 3.09 ± 0.01 - 3.22 ± 0.02 -
RRS w/o replacement 3.22 ± 0.02 1.02 (± 0.02) × 3.25 ± 0.01 1.05 (± 0.01) × 3.43 ± 0.02 1.06 (± 0.02) ×
SpecHub 3.35 ± 0.02 1.07 (± 0.02) × - - - -
Greedy 3.33 ± 0.02 1.06 (± 0.02) × 3.34 ± 0.01 1.08 (± 0.01) × 3.33 ± 0.02 1.03 (± 0.02) ×

Remark 8. For # Drafts = 2, # Steps = 4, and T = 0.6, three methods - RRS without replacement,
SpecHub, and Greedy - show similar average generation lengths. After truncating to two decimal
places, they appear to be the same. However, they are actually different numbers: 3.51781, 3.51944,
3.51975.
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