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Abstract

We study in this work the problem of multi-class
logistic regression with one major class and mul-
tiple rare classes, which is motivated by a real
application in TikTok live stream data. The model
is inspired by the two-class logistic regression
model of Wang (2020) but with surprising theo-
retical findings, which in turn motivate new es-
timation methods with excellent statistical and
computational efficiency. Specifically, since rigor-
ous theoretical analysis suggests that the resulting
maximum likelihood estimators of different rare
classes should be asymptotically independent, we
consider to solve multiple pairwise two-class lo-
gistic regression problems instead of optimizing
the joint log-likelihood function with computa-
tional challenge in multi-class problem, which
are computationally much easier and can be con-
ducted in a fully parallel way. To further reduce
the computation cost, a subsample-based pair-
wise likelihood estimator is developed by down-
sampling the major class. We show rigorously
that the resulting estimators could be as asymptot-
ically efficient as the global maximum likelihood
estimator under appropriate regularity conditions.
Extensive simulation studies are presented to sup-
port our theoretical findings and a TikTok live
stream dataset is analyzed for illustration purpose.

1. Introduction
We study in this work the problem of multi-class logistic
regression with one major class and multiple rare classes.
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Figure 1. Examples of Audi TikTok live streams. Each red bound-
ing box annotates a local region containing a car plate, which
contains valuable model identity information.

This problem is well motivated by many real-world clas-
sification tasks, such as recognizing rare animal species
(George et al., 2023; Mou et al., 2023) and detecting un-
common objects in traffic scenes (Mullapudi et al., 2021a;
Zhang et al., 2024). In these real-world settings, the cate-
gories of interest are often extremely rare. As pointed out
by Mullapudi et al. (2021a;b), it is typically easy to collect
a large number of negative instances in this case, which
can be obtained through weak- or semi-supervised methods
(Ratner et al., 2017; Chen et al., 2020), or as a by-product of
multi-label annotation (Deng et al., 2014), or with random
sampling. This leads to an imbalanced image classification
problem, where the “background” category overwhelmingly
dominates, and rare classes (e.g., target objects) represent
the minority.

To fix the idea, consider for example a car plate recognition
problem in TikTok live streams. Figure 1 shows screenshots
from TikTok live streams sponsored by different Audi car
dealers. Through the live stream, the car dealers wish to
entice as many potential buyers as possible from the TikTok
users to make purchasing decisions (Su et al., 2023). To this
end, it is important to understand TikTok users’ possible
purchase intention, which can be partially reflected in their
viewing behaviors (Ma, 2021; Sun et al., 2024). Interest-
ingly, this important information is accurately shown on the
car plate; see the red bounding boxes in Figure 1. Then, how
to statistically analyze the graphical information provided
by the car plate so that the car model can be accurately and
automatically recognized becomes the key problem. Un-
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fortunately, the position of the car plate in the image is
not known in advance and its position is quite random. To
capture the car plate, a large number of bounding boxes
are randomly generated over the entire screenshot image.
This leads to a large number of sub-image samples; see
Figure 4(c). Specifically, since these screenshot images are
high-resolution images with small car plates, one can expect
that most sub-images would reflect the background content.
They can be labeled as k = 0 (“background”), which is the
major class and accounts for more than 95% of all samples.
The remaining sub-images (less than 5%) are about the car
plates and are classified into K = 8 classes indexed by
1 ≤ k ≤ K; see Figure 5 for an intuitive understanding.
We formulate this problem as a classical multi-class logistic
regression problem with a total of (K + 1) = 9 classes. To
accomplish this task, a multi-class logistic regression model
or its sophisticated variants can be used.

Most existing literature focuses on the multi-class logistic
regression model (Nelder & Wedderburn, 1972) under a
classical situation with broad applications (Maalouf, 2011;
Tanha et al., 2020). By a classical situation, we mean that
the number of classes is not very big, the class distribution
is fairly balanced and the feature dimension is relatively low.
Unfortunately, this is not the case for many real applica-
tions (e.g., the TikTok live streams problem as discussed
before) (Nelder & Wedderburn, 1972). Instead, practitioners
often face challenging problems with a number of classes
(Abramovich et al., 2021), multiple rare classes (Mullapudi
et al., 2021a), and high dimensional features (Wang et al.,
2023). This makes the associated parameter estimation,
e.g., the maximum likelihood estimator (MLE), extremely
difficult. For example, if the traditional Newton-Raphson
(NR) algorithm is to be used for computing the MLE, a
Hessian matrix (i.e., the second–order derivative of the log-
likelihood function) with dimension (p+ 1)K × (p+ 1)K
needs to be inverted (McCullagh & Nelder, 2019). This
makes the computation cost extremely high. As a useful
alternative, various gradient based methods have been de-
veloped and popularly used with better computational feasi-
bility. However, they suffer from the tuning parameter (i.e.,
the learning rate) selection problem and slow convergence
rate issue (Zhu et al., 2021). All those challenges inspire us
to search for a new method, which can compute the MLE in
a more efficient way.

To solve the problem, we first consider the standard MLE,
of which the asymptotic theory has been well understood in
the past literature, but for the situation with fairly balanced
class distribution (Fox, 2015; McCullagh & Nelder, 2019).
We are then motivated to fill this important theoretical gap.
Our asymptotic theory suggests that, for a multi-class logis-
tic regression model with one major class and multiple rare
classes, the asymptotic covariance matrix of the resulting
MLE is block-diagonal. This suggests that the regression

coefficients of each rare class might be estimated separately
instead of jointly, without sacrificing the asymptotic effi-
ciency. This interesting finding inspires the idea of the
pairwise likelihood estimation. Specifically, we first decom-
pose the original (K + 1)–class classification problem into
a total of K major–and–rare class pairs. Next, the MLE of
the major–and–rare class pair can be easily computed by a
standard Newton-Raphson (NR) algorithm. Theoretically,
we find that the resulting pairwise maximum likelihood
estimator (PMLE) is statistically efficient asymptotically.
Practically, the PMLE enjoys nice computational properties.
First, the Hessian matrix associated with each major–and–
rare class pair is only of (p+1)×(p+1)–dimension, which
is much smaller than (p+ 1)K × (p+ 1)K–dimension of
the full-class maximum likelihood problem. Second, the
PMLE for different class pairs can be computed in a fully
parallel or distributed manner.

Although the PMLE method is suitable for parallel or dis-
tributed estimation, we find that the computation cost re-
mains significant. The main reason is that the major class
is fully involved for each major–and–rare class pair. Addi-
tionally, we theoretically verify that the convergence rate
of the PMLE is mainly determined by the sample size of
rare classes, instead of the major class. This further implies
that the sample size of the major class might be too large
to be necessary for PMLE. Therefore, we are inspired to
consider a much reduced sample size for the major class,
so that the computation cost can be further reduced. The
subsample-based pairwise likelihood estimator (SPMLE) is
then constructed. Theoretically, we find that the SPMLE is
also asymptotically efficient. However, compared with the
global maximum likelihood estimator (GMLE) and PMLE,
the SPMLE is easier to compute with much less computa-
tional cost. Extensive simulation studies are presented in
this paper to demonstrate the finite sample performance of
these estimators. The aforementioned TikTok Screenshots
dataset is also used for illustration purpose.

The rest of this paper is organized as follows. In Section 2,
we first introduce the model setting and the rare class phe-
nomenon. We then present three estimation methods (i.e.,
GMLE, PMLE and SPMLE) and study their asymptotic
properties. Simulation studies are given in Section 3. A Tik-
Tok live stream dataset is analyzed for illustration purpose
in Section 4. The article concludes with a brief discussion
and concluding remarks in Section 5. All technical details
are delegated to the appendix in the supplementary material.

2. The Asymptotic Theory
2.1. Model Setup and Rare Class Phenomenon

Let (Yi, Xi) be the observation collected from the i–th sub-
ject with 1 ≤ i ≤ N . Here Yi ∈ {0, 1, · · · ,K} is the i–th
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class label and Xi = (Xi1, · · · , Xip)
⊤ ∈ Rp is the associ-

ated p–dimensional feature. Assume that the random vector
Xi is sub-gaussian in the sense that the one-dimensional
marginals a⊤Xi are sub-gaussian random variables for all
a ∈ Rp (Vershynin, 2018). To model their regression rela-
tionship, a standard multi-class logistic model is assumed
as follows (McCullagh & Nelder, 2019)

P (Yi = k | Xi) =
exp

(
X⊤

i βk + αk

)
1 +

∑K
k=1 exp

(
X⊤

i βk + αk

) . (1)

Here βk = (βk1, · · · , βkp) ∈ Rp is the regression coef-
ficient associated with the k–th rare class, and αk ∈ R
is the intercept parameter accordingly. We know imme-
diately that P (Yi = 0 | Xi) = 1 −

∑K
k=1 P (Yi =

k | Xi) = 1/
{
1 +

∑K
k=1 exp(X

⊤
i βk + αk)

}
. Accord-

ingly, a log-likelihood function is constructed as L(Θ) =∑N
i=1

∑K
k=0 aik logwik, where θk = (αk, β

⊤
k )⊤ ∈ Rp+1

and Θ = (θ⊤1 , · · · , θ⊤K)⊤ ∈ Rq with q = (p + 1)K.
Here aik = I (Yi = k) ∈ {0, 1} is a binary indicator
and wik = P (Yi = k|Xi) = exp(X⊤

i βk + αk)/{1 +∑K
k=1 exp(X

⊤
i βk + αk)} is the response probability of

the k–th rare class (i.e., 1 ≤ k ≤ K). Consequently,
the MLE can be obtained as Θ̂ = argmaxΘL(Θ), where
Θ̂ = (θ̂⊤1 , · · · , θ̂⊤K)⊤ ∈ Rq and θ̂k = (α̂k, β̂

⊤
k )⊤ ∈ Rp+1.

Recall there are a total of (K + 1) classes where the 0–
th class is the major class and the other K classes are
rare classes. To reflect this rare class phenomenon, two
conditions need to be imposed. First, we require that
P (Yi = k) → 0 as N → ∞ for every k with 1 ≤ k ≤ K
(Wang, 2020; Li et al., 2024). Following Wang (2020), we
assume that βk (1 ≤ k ≤ K) is a fixed parameter and
does not change by the sample size N . Otherwise, we can
hardly model the regression relationship between Yi and Xi

in a relative stable way. Accordingly, we have to assume
αk → −∞ as N → ∞. To reflect the fact that αk diverges
with sample size N , we rewrite αk as αNk. Second, we ex-
pect that the number of instances belonging to different rare
classes should diverge to infinity. Otherwise, the sample
sizes for the rare classes might be too small to support a valid
asymptotic study. Define Nk =

∑N
i=1 I(Yi = k) to be the

size of the k–th class, where I(·) is the indicator function.
We shall have E(Nk) ≈ NP (Yi = k) → ∞ as N → ∞
for 1 ≤ k ≤ K. This implies that αNk + logN → ∞
when N → ∞. To summarize, to appropriately reflect the
rare class phenomenon, two conditions must be imposed
for αNk. They are, respectively, (1) αNk → −∞ and (2)
αNk + logN → ∞ as N → ∞ for every 1 ≤ k ≤ K.

2.2. Re-Parameterized Likelihood Function

We next study the theoretical implications of those two con-
ditions in more depth. We start with the first condition
P (Yi = k) → 0 as N → ∞. Note that the rare class

probability can be approximated as P (Yi = k | Xi) ≈
exp(X⊤

i βk + αNk). We require the sizes of different rare
classes to be comparable. This means that the class sizes
should not be dramatically different. Otherwise, there must
exist an even rarer class among rare classes. The size of this
even rarer class would be too tiny to be of any practical rele-
vance and can hardly be studied theoretically. Accordingly,
we are inspired to assume P (Yi = k1 | Xi)/P (Yi = k2 |
Xi) ≈ exp{X⊤

i (βk1 − βk2)} exp(αNk1 −αNk2) = Op(1)
for any 1 ≤ k1, k2 ≤ K. This condition can be eas-
ily satisfied if αNk1

− αNk2
= ck1k2

for some fixed
constant ck1k2

. Equivalently, we can also assume that
αNk = αN + βk0 for some αN and βk0. Accordingly,
we require that βk0 is a fixed constant, but (1) αN → −∞
and (2) αN+logN → ∞ as N → ∞. These conditions are
fairly standard in the literature. See, for example, equation
(2) in Wang (2020), Section 2 in Wang et al. (2021) and
Song & Zou (2024).

Unfortunately, the above nicely defined parameters αN and
βk0 are not immediately identifiable. To see this, let c ∈ R
be an arbitrary scalar. We can then redefine αN := αN + c
and βk0 := βk0 − c. One can verify that the above model
setup remains valid. It would be desirable to find a practi-
cally convenient way to make both αN and βk0 identifiable.
To this end, note that P (Yi ̸= 0) ≈

∑
k>0 E{exp(X⊤

i βk +

αN + βk0)} = eαN
∑

k>0 E{exp(X⊤
i βk + βk0)}. De-

fine c = log
[∑

k ̸=0 E{exp(X⊤
i βk + βk0)}

]
. Redefine

αN := αN + c and βk0 := βk0 − c. We then have
P (Yi ̸= 0) ≈ eαN . This suggests that we might define
αN = logP (Yi ̸= 0). This might be a convenient way to
specify αN . Once αN is fixed, other parameters (i.e., βk0

and βks) can be uniquely identified. Accordingly, we should
have βk0 = αNk − αN = αNk − logP (Yi ̸= 0).

Next, define an expanded feature vector Zi = (1, X⊤
i )⊤ ∈

Rp+1 with the intercept term included. Define θ∗k =
(βk0, β

⊤
k )⊤ ∈ Rp+1 to be the associated regression coef-

ficient parameter. Note that θ∗k should be carefully differ-
entiated from θk. Recall θk = (αNk, β

⊤
k )⊤ ∈ Rp+1. Thus,

the only difference between θ∗k and θk is the intercept term.
Next, the model (1) can be re-parameterized as

P
(
Yi = k | Xi

)
=

exp
(
Z⊤
i θ∗k + αN )

1 +
∑K

k=1 exp
(
Z⊤
i θ∗k + αN )

(2)

for 1 ≤ k ≤ K. Note that the model (2) is a special
case of the model (1), which is a more general model.
Compared with (1), the key feature of (2) lies in its assur-
ance that different rare classes maintain comparable sizes.
Next, recall that αN = logP (Yi ̸= 0). Therefore, the
re-parameterized log-likelihood function can be defined as
L(Θ∗) =

∑N
i=1

∑K
k=0 aik logw

∗
ik according to (2), where

Θ∗ = (θ∗⊤1 , · · · , θ∗⊤K )⊤ ∈ Rq with q = (p + 1)K. Re-
call that aik = I (Yi = k) ∈ {0, 1} is a binary indica-
tor. However, w∗

ik = P (Yi = k|Xi) = exp(Z⊤
i θ∗k +
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αN )/{1 +
∑K

k=1 exp(Z
⊤
i θ∗k + αN )} is the response prob-

ability of the k–th rare class under the re-parameterized
model (2). Accordingly, another MLE can be defined as
Θ̃ = argmaxΘ∗L(Θ∗), where Θ̃ = (θ̃⊤1 , · · · , θ̃⊤K)⊤ ∈ Rq

with θ̃⊤k = (β̃k0, β̃
⊤
k )⊤.

2.3. The Global Maximum Likelihood Estimation

Note that there are two GMLEs defined. The first one is
Θ̂, which is obtained under the model (1). The other one is
Θ̃, which is derived with the help of the re-parameterized
model (2). Then it is of interest to study their relationships.
One can verify that the model (2) is essentially the same as
the model (1). The only difference is that αNk in the model
(1) is re-parameterized in the model (2) as αNk = αN+βk0.
Consequently, the following relationship holds: (1) βk is the
same for Θ̃ and Θ̂; and (2) αNk = logP (Yi ̸= 0)+ βk0 for
every 1 ≤ k ≤ K. Therefore, Θ̂ − Θ and Θ̃ − Θ∗ should
share the same asymptotic distribution. We then have the
following theorem.

Theorem 2.1. Assume that αN → −∞ and αN + logN
→ ∞ as N → ∞. We then have

√
NeαN (Θ̂ − Θ)

=
√
NeαN

(
Θ̃ − Θ∗) →d N(0,Σ∗−1) with Σ∗ =

diag
{
E{exp(Z⊤

i θ∗k)ZiZ
⊤
i } : 1 ≤ k ≤ K

}
as N → ∞.

The technical proof of Theorem 2.1 is given in the sup-
plementary material Appendix A.1. By Theorem 2.1, we
know that Θ̂ (or equivalently Θ̃) is

√
NeαN –consistent and

asymptotically normal. The asymptotic covariance matrix
is given by Σ∗−1 = diag{Σ∗−1

k : 1 ≤ k ≤ K} and
Σ∗

k = E{exp(Z⊤
i θ∗k)ZiZ

⊤
i }. This implies two interesting

findings. First, the convergence rate of Θ̃ is
√
NeαN instead

of
√
N . This indicates that, with multiple rare classes, the

convergence rate is mainly determined by the sample size
of the rare classes instead of the total sample size. Simi-
lar theoretical findings were also obtained by Wang (2020)
but for an imbalanced two-class problem. Second, we sur-
prisingly find that Σ∗−1 ∈ Rq×q is a matrix of a block
diagonal structure. It contains a total of K blocks with
the k–th block given by Σ∗−1

k ∈ R(p+1)×(p+1). By this
asymptotic covariance matrix, we know that different θ̃ks
are asymptotically independent with each other. Further-
more, one can verify that the computational cost of the
GMLE is O(Np2K2 + p3K3) if a standard NR algorithm
is used. This implies that the standard NR algorithm can
hardly be used for the case with both high feature dimension
p and multiple rare classes K.

2.4. The Pairwise Maximum Likelihood Estimation

The surprising findings about asymptotic independence in
Theorem 2.1 suggest that the regression coefficients associ-
ated with different rare classes might be estimated separately
instead of jointly. Accordingly, we need to convert the orig-

inal (K + 1)–class problem into a total of K two-class
problems. Each two-class problem corresponds to the major
class and one rare class. This leads to a major–and–rare
class pair; see Figure 2. In other words, we take the major
class as the benchmark class and one other rare class (i.e.,
k) as the matching class.

Major-and-Rare Class Pairs 

Major Class

Rare Classes

Figure 2. Illustration of the parallel or distributed computation for
the PMLE. The whole dataset contains four classes with the circle
class as the major class. This leads to three major–and–rare class
pairs. By solving three two-class logistic regression problems, the
PMLE can be obtained.

By the model (2) and condition on this major–and–rare class
pair, we obtain a two-class logistic regression model as

P
(
Yi = k

∣∣ Zi, Yi ∈ {0, k}
)
=

exp(Z⊤
i θ∗k + αN )

1 + exp(Z⊤
i θ∗k + αN )

for every rare class 1 ≤ k ≤ K. This suggests a pairwise
log-likelihood function as L0k(θ

∗
k) =

∑N
i=1 aik(Z

⊤
i θ∗k +

αN )− (aik + ai0) log{1+exp(Z⊤
i θ∗k +αN )}. The PMLE

can be easily obtained as θ̂pairk = argmaxθ∗
k
L0k(θ

∗
k), whose

theoretical properties are given by Theorem 2.2 as follows.

Theorem 2.2. Assume that αN → −∞ and αN +
logN → ∞ as N → ∞. Then for 1 ≤ k ≤ K, we
have

√
NeαN (θ̂pairk − θ∗k) →d N(0,Σ∗−1

k ) with Σ∗
k =

E{exp(Z⊤
i θ∗k)ZiZ

⊤
i } as N → ∞.

The proof of Theorem 2.2 is given in the supplementary
material Appendix A.2. By Theorem 2.2, we know that the
PMLE θ̂pairk is also

√
NeαN –consistent and asymptotically

normal. We surprisingly find that the asymptotic covariance
matrix is given by Σ∗−1

k =
[
E{exp(Z⊤

i θ∗k)ZiZ
⊤
i }
]−1

,
which is the same as that of θ̂mle

k . However, the difference
is that the PMLE θ̂pairk is computationally much easier since
θ̂pairk can be computed in a fully parallel way for different
ks; see Figure 2. If a standard NR algorithm is used, it
could be verified that the computational cost for the PMLE
is O(N0p

2K + p3K), which is much less than that of the
GMLE. This makes it computationally efficient and feasible
even with a large number of classes (i.e., K).
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2.5. Subsample-Based Pairwise Maximum Likelihood
Estimation

Compared with the GMLE, the PMLE is considerably easier
to compute for two reasons. First, the dimension of Hessian
matrix used in NR algorithm greatly reduces from (p +
1)K × (p+ 1)K to (p+ 1)× (p+ 1). Second, the PMLEs
for different class pairs can be computed in a fully parallel
way. This makes the pairwise maximum likelihood method
particularly suitable for parallel or distributed estimation.
However, we find that the computation cost of this new
method remains significant. This is mainly because the
major class is fully involved for each major–and–rare class
pair, whose sample size is about O(N) order. This leads to
a significant amount of unnecessary computation cost. To
see this, note that the sample size of this major class is about
O(N) order. However by Theorem 2.2, we find that the
convergence rate of θ̂pairk is only of the order 1/

√
NeαN ,

instead of 1/N . Recall that the convergence rate of θ̂pairk is
mainly determined by the sample size of rare classes, instead
of the major class. This further implies that the sample size
of the major class might be too large to be necessary for
pairwise maximum likelihood estimation. Thus, we are
motivated to consider a much reduced sample size for the
major class so that the computation cost can be further
reduced.

To fix this idea, consider a fixed k with 1 ≤ k ≤ K.
Next, for each observation i, define an independently and
identically distributed binary random variable bi indicating
whether this observation is sampled. Write P (bi = 1) =
πN for some sampling probability 0 < πN < 1. We next
consider the following interesting conditional probability
P (Yi = k|Zi, Yi = k or Yi = 0 & bi = 1). Note that the
conditional probability P (Yi = k|Zi, Yi ∈ {0, k}) should
be evaluated whenever the i–th observation is generated by
the rare class (i.e., Yi = k) or the major class (i.e., Yi = 0).
However, the conditional probability P (Yi = k|Zi, Yi =
k or Yi = 0 & bi = 1) might not be computed for an ob-
servation i from the major class (i.e., Yi = 0), unless it is
also sampled (i.e., bi = 1). Simple algebra shows that for
1 ≤ k ≤ K, we have

P
(
Yi = k

∣∣ Zi, Yi = k or Yi = 0 & bi = 1
)

=
exp(Z⊤

i θ∗k + αsub
N )

1 + exp(Z⊤
i θ∗k + αsub

N )
,

where αsub
N = αN − log πN . This leads to the fol-

lowing subsample-based pairwise likelihood function as
Lsub
0k (θ∗k) =

∑N
i=1 aik(Z

⊤
i θ∗k + αsub

N ) − (aik + ai0bi) log
{1 + exp(Z⊤

i θ∗k + αsub
N )} for every rare class 1 ≤ k ≤

K. Then the SPMLE can be easily obtained as θ̂subk =
argmaxθ∗

k
Lsub
0k (θ∗k), whose theoretical properties are given

by the following Theorem 2.3.

Theorem 2.3. Assume that αN → −∞ and αN +logN →
∞ as N → ∞. Further assume πN/eαN → ∞ as N → ∞.
Then for 1 ≤ k ≤ K, we have

√
NeαN (θ̂subk − θ∗k) →d

N(0,Σ∗−1
k ) with Σ∗

k = E{exp(Z⊤
i θ∗k)ZiZ

⊤
i } as N → ∞.

The proof of Theorem 2.3 is given in the supplementary
material Appendix A.3. By Theorem 2.3, we know that
the SPMLE θ̂subk is also

√
NeαN –consistent and asymptoti-

cally normal. We find that the asymptotic covariance matrix
is given by Σ∗−1

k =
[
E{exp(Z⊤

i θ∗k)ZiZ
⊤
i }
]−1

, which is
the same as that of θ̂mle

k and θ̂pairk . This suggests that θ̂subk

shares the same asymptotic efficiency with θ̂mle
k and θ̂pairk

as long as πN/eαN → ∞ as N → ∞, recalling that πN

is the sampling probability. In this case, the sample size
of the subsampled major class remains substantially larger
than that of the rare class. However, it is much smaller
than that of the whole major class. In this regard, the com-
putational cost for SPMLE is O(N0πNp2K + p3K) if a
standard NR algorithm is used. Since N0πN is of the order
o(N), this leads to a significant reduction in computation
cost as compared with PMLE.

2.6. Some Extensions

CASE 1. In the previous subsection, the number of classes
K is treated as fixed. We next study the case with a diverg-
ing K. Specifically, the expected percentage of rare classes
in this case should be even smaller. To ensure a diverging
sample size for each rare class, the technical assumption
αN → −∞ should be replaced by αN + logK → −∞.
The resulting theoretical behavior of our proposed methods
remains fairly the same. More specifically, the convergence
rate of the PMLE remains

√
NeαN . The PMLEs associ-

ated with different rare classes remain mutually indepen-
dent asymptotically. More importantly, the resulting PMLE
remains asymptotically as efficient as GMLE.

CASE 2. In the previous subsection, there exists only one
major class (corresponding to k = 0). In fact, our method
can be readily extended to a more general setting with mul-
tiple major classes. To fix the idea, consider, for example,
the case with two major classes. Denote the two major
classes by k = 0 and k = 1, respectively. Then, the logistic
regression model becomes

w∗
i0 =

1

1 + exp
(
Z⊤
i θ∗1) +

∑K
k=2 exp

(
Z⊤
i θ∗k + αN )

,

w∗
i1 =

exp
(
Z⊤
i θ∗1)

1 + exp
(
Z⊤
i θ∗1) +

∑K
k=2 exp

(
Z⊤
i θ∗k + αN )

, (3)

w∗
ik =

exp
(
Z⊤
i θ∗k + αN )

1 + exp
(
Z⊤
i θ∗1) +

∑K
k=2 exp

(
Z⊤
i θ∗k + αN )

(4)

for 2 ≤ k ≤ K. The key difference is that there are two
major classes involved in (3). In contrast, there is only one
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major class involved in (2). To estimate the model param-
eters, the pairwise log-likelihood in Section 2.4 remains
valid. The only difference is that the convergence rate of β̂1

becomes
√
N . However, the convergence rate of the parame-

ters associated with the rare classes (i.e., β̂k for 2 ≤ k ≤ K)
remains

√
NeαN .

3. Simulation Study
3.1. Comparing GMLE and PMLE

To demonstrate the finite sample performance of the pro-
posed methods, a number of simulation studies are con-
ducted. A multi-class logistic regression model (1) with
multiple rare classes is used to generate the data. The co-
variate Xi ∈ Rp is independently generated from N(0,Σ)
with Σ = (σij) ∈ Rp×p and σij = 0.5|i−j|. The total
sample sizes are set as N = 1× 105, 2× 105 and 5× 105.
For a fixed N , we set αN = γ logN with γ = −0.5. Addi-
tionally, θ∗k ∈ Rp+1 is generated from a (p+ 1)–dimension
standard normal distribution for 1 ≤ k ≤ K. To gain some
intuitive understanding, we report in Table 1 the estimated
values for E(Nk) and E(Nk)/N . We find that E(Nk)/N
steadily decreases towards 0 as N → ∞. Meanwhile, we
find E(Nk) → ∞ as N → ∞.

Table 1. Rare class phenomenon with different p and K. Recall
N is the total sample size. Define E(Nk) as the expected average
sample size of K rare classes, and E(Nk)/N as the rare class
percentage.

p = 10,K = 10 p = 50,K = 20 p = 500,K = 50

N E(Nk) E(Nk)/N(%) E(Nk) E(Nk)/N(%) E(Nk) E(Nk)/N(%)

105 507 0.507 472 0.472 412 0.412

2× 105 730 0.365 688 0.344 622 0.311

5× 105 1,172 0.234 1,120 0.224 1,045 0.209

To evaluate the performance of the GMLE and PMLE, dif-
ferent numbers of rare classes (i.e., K) and different feature
dimensions (i.e., p) are studied in three cases. For GMLE,
the NR method and the gradient descent (GD) method are
studied. We start with a relatively simple case with a small
number of rare classes K = 10 and a low feature dimension
p = 10. Let Θ̂(m) = (θ̂

(m)
k,j : 1 ≤ j ≤ p+ 1, 1 ≤ k ≤ K)⊤

be one particular estimator obtained in the m–th replication
(e.g., Θ̂pair). To evaluate the estimation accuracy, we calcu-
late the Root Mean Square Error (RMSE) as RMSE(m) =

{K−1(p+1)−1
∑K

k=1

∑p+1
j=1(θ̂

(m)
k,j −θk,j)

2}1/2 for the m–
th replication. This leads to a total of M = 100 RMSE
values. Those RMSE values are then log-transformed and
box-plotted in Figure 3(a) and (b). To evaluate the computa-
tion efficiency, the average CPU time values (multiplied by
10 and log-transformed) for each method are reported.

By Figure 3(a), we find that log(RMSE) values of the PMLE

are almost the same as those of the GMLE. Moreover, a
larger sample size N makes these three estimators more
accurate with smaller log(RMSE) values. The nearly iden-
tical results of both the NR and GD methods for GMLE
suggest that both algorithms can be used to compute the
GMLE. The nearly identical results between PMLE and
GMLE (both NR and GD) suggest that the PMLE should be
asymptotically as efficient as the GMLE. All these findings
are consistent with our theoretical claims. By Figure 3(b),
the average CPU time values required for these three meth-
ods increase as the sample size N increases. Compared to
the NR algorithm, the GD algorithm requires more time for
GMLE computation. Among all these three methods, we
find that the PMLE costs the least amount of computation
time.

(a)                                                                              (b)

(c)                                                                              (d)

(e)                                                                              (f)

Figure 3. The left panel shows the boxplots of RMSE values in log-
scale for the three estimation methods. The right panel presents
the bar charts of the average CPU time values in log-scale for
each method. The left white box shows the results for the GMLE
computed by the NR algorithm. The middle light box illustrates
the results for the GMLE computed by the GD algorithm. The right
dark box presents the results for the PMLE by the NR algorithm.
Each box is summarized based on M = 100 replications.

3.2. Larger p and K

We next consider cases with a larger number of rare classes
(i.e., K = 20) and a higher feature dimension (i.e., p = 50).
In this case, the global Hessian matrix dimension becomes
(p + 1)K × (p + 1)K = 1,020 × 1,020 (including the in-
tercept term). Thus, it is a more challenging case for the
NR algorithm, even though it remains implementable. The
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resulting log(RMSE) values and average CPU time values
in log-scale are computed as before and are plotted in Figure
3(c) and (d). By Figure 3(c), we find that log(RMSE) values
of these three methods are almost the same. A larger N
makes these three estimators more accurate with steadily
decreasing log(RMSE) values. These findings are consistent
with our theoretical finding. As shown in Figure 3(d), the
computational CPU time values of these three methods es-
calates with the growth of the sample size N . However, the
story changes for the NR algorithm and the GD algorithm
for the GMLE. With the global Hessian matrix dimension
expanding to 1,020 × 1,020, the NR algorithm becomes
more expensive in the CPU time cost as compared with the
GD algorithm. Moreover, it is observed that the computa-
tional efficiency of the PMLE remains the best.

We next study an even more challenging case with a much
larger number of rare classes (K = 50) and a much higher
feature dimension (p = 500). In this case, the global Hes-
sian matrix dimension becomes (p + 1)K × (p + 1)K =
25,050 × 25,050. The standard NR algorithm can hardly
be used to compute the GMLE in this case. Therefore, a
standard GD method is used to compute the GMLE. How-
ever, the PMLE can still be easily computed on a parallel
or distributed system. The resulting log(RMSE) values and
average CPU time values in log-scale are computed as be-
fore and are then plotted in Figure 3(e) and (f). By Figure
3(e), we find that log(RMSE) values of PMLE are slightly
larger than GMLE. The difference of log(RMSE) values
between these two methods vanishes as N becomes larger.
These findings are consistent with our theoretical finding
that both the GMLE and PMLE are consistent estimators
with the same asymptotic efficiency. As shown in Figure
3(f), the PMLE remains computationally more efficient than
the GMLE computed by the GD algorithm in the term of
the CPU time cost.

Table 2. Simulation results with p = 50 and K = 20. Define
E(N0) as the expected sample size of the major class used for
PMLE, E(N0bi) as the expected sample size of the major class
used for SPMLE, and E(Nk) as the expected average sample size
of K rare classes.

N E(N0) E(N0bi) E(Nk) RMSEPMLE RMSESPMLE TPMLE TSPMLE

105 90,558 28,603 472 0.061 0.062 0.875 0.281

2× 105 186,241 54,930 688 0.050 0.050 1.698 0.489

5× 105 477,607 128,541 1,120 0.039 0.039 3.959 0.895

3.3. PMLE with Subsampling

As mentioned before, the SPMLE method adopts a much
reduced sample size for the major class, so that the com-
putation cost can be further reduced. We then study the
performance of the SPMLE. For illustration, we fix p = 50
and K = 20. The total sample sizes are set to be N =

1× 105, 2× 105 and 5× 105. For a fixed N , we set differ-
ent sampling probabilities as πN = N−0.1. This satisfies
the condition in Theorem 2.3 that πN/eαN = N0.4 → ∞
as N → ∞. We report E(N0bi) values as the estimated
sample sizes of the major class used for SPMLE, which are
much smaller than the estimated sample sizes of the major
class used for PMLE E(N0). The average RMSE values are
computed as before and reported as RMSESPMLE in Table
2. The average CPU time values are computed as before
and reported as TSPMLE in Table 2. For comparison, the av-
erage RMSE values and average CPU time values of PMLE
are also provided as RMSEPMLE and TPMLE. By Table 2,
we find that the average RMSE values of SPMLE decrease
as N becomes larger. Meanwhile, we find that the average
RMSE values of the SPMLE are slightly larger than those of
the PMLE but with much reduced computation cost. These
findings are consistent with our theoretical finding that the
SPMLE is a consistent estimator with the same asymptotic
efficiency as the PMLE.

4. TikTok Screenshots Dataset
4.1. TikTok Screenshots Dataset

We present in this section an interesting real data exam-
ple. The dataset contains a total of 2,559 screenshots of
size 720 × 1,280 randomly taken from TikTok live streams
sponsored by different Audi dealers in China. For conve-
nience, we refer to this dataset as the TikTok Screenshots
(TTS) dataset. For a reliable evaluation, we randomly split
the entire TTS dataset into two parts. The first part con-
tains a total of 2,047 high-resolution images (about 80%
of the whole data) for training, while the remaining 512
high-resolution images (about 20% of the whole data) are
reserved for testing. For an intuitive understanding, ran-
domly selected screenshot images are given in Figure 4(a).
As can be seen, the screenshot images usually take an Audi
car in the center place with detailed car model information
displayed in the car plate; see the red box in Figure 4(b). A
total of eight car models (i.e., classes) are included in the
TTS dataset. They are, respectively, A3 Sportback, A4L,
A5 Sportback, A6L, A7 Sportback, Q5L Sportback, Q7,
and RS5. Then the objective of this study is to analyze the
graphical information provided by the car plate so that the
car model can be automatically and accurately recognized.

To prepare the data for subsequent analysis, we annotate
each screenshot image manually with a tight bounding box
for each car plate; see the red box shown in Figure 4(b).
Next, a large number of 100 × 40 boxes are randomly
generated within the image; see the blue boxes in Figure
4(c). Then the sub-images bordered by these blue boxes
are extracted and saved on a hard drive. We treat each sub-
image as one sample. For each sample (i.e., sub-image),
we need to calculate its intersection-over-union (IoU) score
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Figure 4. Left panel presents an example of the original image
with size 720 × 1,280; middle panel presents the annotated image
with the car plate tightly bounded by a red bounding box; right
panel presents a total of 200 randomly generated blue boxes with
size 100 × 40.

with the bounding box (Everingham et al., 2010). Here the
IoU is defined as the area of R ∩ B over the area of R ∪ B,
where R refers to the sub-image contained in the red box
and B refers to the sub-image contained in the blue box.
Following Redmon et al. (2016) and Liu et al. (2016), we
label the extracted sub-image as 0 if the corresponding IoU
< 0.2. In contrast, we label it as a class k with 1 ≤ k ≤ K
according to the model type indicated by the car plate if
the IoU > 0.8. The sub-images with 0.2 ≤ IoU ≤ 0.8 are
discarded. See Figure 5 for an intuitive understanding of the
extracted sub-images and their corresponding class labels.
This leads to a total of N = 56, 016 sub-images belonging
to nine classes, where the first class (i.e., k = 0) represents
the background class; the remainder are car model classes.
The major class (i.e., k = 0) accounts for more than 95%
of the total sample. The percentages of other classes are
bar-plotted in Figure 6 of Appendix A.4. As shown, this
dataset aligns well with our theoretical framework.

k = 0                            k = 0 k = 0 k = 0

k = 1 k = 2 k = 3 k = 4

k = 5                            k = 6                            k = 7                           k = 8

Figure 5. Examples of sub-images extracted from the TTS dataset.
The class label is given above each sub-image. Here k = 0 (back-
ground) is the major class. All other classes represent different car
models. Specifically, k = 1 (A3 Sportback), k = 2 (A4L), k = 3
(A5 Sportback), k = 4 (A6L), k = 5 (A7 Sportback), k = 6 (Q5L
Sportback), k = 7 (Q7) and k = 8 (RS5).

We next consider how to represent each extracted sub-image
by a feature vector. In this regard, we follow the trans-
fer learning idea of Tan et al. (2018) and Zhuang et al.
(2020). Specifically, we directly transfer a classical deep

learning model (i.e., the Visual Geometry Group’s VGG16
(Simonyan & Zisserman, 2014)), which is a classic con-
volutional neural network with 20 layers and 14,714,688
parameters. Given the limited sample size, we cannot es-
timate those parameters accurately by using our dataset.
Instead, we directly adopt the pre-trained estimates from the
ImageNet dataset, which has 1,341,167 images (Deng et al.,
2009). With the pre-trained parameter estimates, we could
use the VGG16 model to convert each image into a feature
vector of 512 dimensions. We finally arrive at a complete
dataset with a sample size of N = 56, 016, p = 512 feature
dimension and (K + 1) = 9 classes.

4.2. Performance Evaluation

We first consider how to compute the GMLE. As mentioned
before, the current dataset has high dimensional features
with p = 512 and a total of (K + 1) = 9 classes. Conse-
quently, the standard NR algorithm can hardly be used to
compute the GMLE. To solve this problem, we consider
the GD method (Dekel et al., 2012). Various learning rates
are considered and the best learning rate is used. We next
consider how to compute the PMLE. The PMLE is compu-
tationally convenient for two reasons. First, for each class
pair, the Hessian matrix of the pairwise loss function is
only of dimensions 513 × 513, which can be easily inverted.
Subsequently, the NR algorithm can be readily implemented
without any tuning parameter (e.g., the learning rate) selec-
tion issues. The algorithm converges extremely fast with a
quadratic convergence rate, which is much larger than the
linear convergence rate of a standard GD method (Curry,
1944). Second, by the pairwise likelihood, the original multi-
class learning problem is divided into multiple two-class
learning problems. This problem can be trained in a fully
parallel or distributed manner. That makes distributed esti-
mation feasible and then leads to a significant reduction in
time cost. Lastly, the SPMLE method is also implemented
with the sampling probability given as πN = 0.25. By do-
ing so, a much reduced sample size for the major class can
be used and the computation cost can be further reduced.

Additionally, we have included the following competitive
methods for comparison on the TTS dataset: the focal loss
(FL) of Lin et al. (2017), the class-balanced loss (CBL) of
Cui et al. (2019), the cost sensitive loss (CSL) and random
downsampling (RDS) of Fernández et al. (2018). Specifi-
cally, FL introduces a modulating term to the cross-entropy
loss, focusing on hard samples and downweighting easy
negatives. CBL is proposed to reweight the loss inversely
proportional to the effective sample count per class. CSL
addresses the imbalanced distribution by adjusting misclas-
sification costs. RDS is a technique that randomly sam-
ple the instances in the major class to balance the class
distribution. All methods are optimized according to the
suggestions of the original papers. Code is available at

8



Pairwise Maximum Likelihood for Multi-Class Logistic Regression Model with Multiple Rare Classes

https://github.com/Tongyaya/pairwise-mle.

Table 3. Prediction results for the TTS dataset.

GMLE PMLE SPMLE FL CBL CSL RDS

ACC 0.836 0.835 0.824 0.794 0.789 0.747 0.763

AUC 0.997 0.999 0.999 0.998 0.998 0.991 0.996

Once an estimator (e.g., the GMLE) is computed, it is then
applied to the testing dataset for the prediction evaluation.
In this case, let Θ̂ = {θ̂k : 1 ≤ k ≤ K} be the estima-
tor computed from the training data and {(X∗

i , Y
∗
i ) : 1 ≤

i ≤ N∗} be the testing data. Then we can compute the
prediction probability ŵi0 = 1/{1 +

∑K
k=1 exp(X

∗⊤
i θ̂k)}

and ŵik = exp(X∗⊤
i θ̂k)/{1 +

∑K
k=1 exp(X

∗⊤
i θ̂k)} for

1 ≤ k ≤ K. We next follow the idea of Qiao & Liu (2009)
and predict the response by Ŷi = argmax0≤k≤Kŵik/π̃k,
where π̃k is the k–th class percentage of the training
dataset. Then the prediction accuracy can be computed
as ACCk = N∗−1

k

∑N∗

i=1 I(Y
∗
i = k) × I(Ŷi = k)

with the k–th sample size N∗
k =

∑N∗

i=1 I(Y
∗
i = k) for

0 ≤ k ≤ K. The overall accuracy is then calculated as
ACC = (K + 1)−1

∑K
k=0 ACCk. Next, for the k–th class,

we pair each binary response Ỹi = I(Y ∗
i = k) with its

estimated class probability ŵik and the AUCk value (Ling
et al., 2003) can be computed. The overall AUC value is
then calculated as AUC = (K + 1)−1

∑K
k=0 AUCk. Both

the values for ACC and AUC are reported in Table 3.

By Table 3, we find that our methods outperform all com-
petitors. Among our methods, we observe that the overall
ACC value of the GMLE method is 0.836, which is slightly
higher than 0.835 of the PMLE method and 0.824 of the
SPMLE method. In terms of AUC values, all the three meth-
ods are extremely similar with very tiny difference, which
might be due to random error. The key difference is the
computational time. More specifically, the CPU time cost of
GMLE is about 145.85 seconds. In contrast, those of PMLE
and SPMLE are given as 42.12 seconds and 12.12 seconds,
respectively. The outstanding computational efficiency of
PMLE and SPMLE is mainly because they can be computed
by the NR algorithm in a parallel way. The computation
cost of the SPMLE method is lower due to a much reduced
sample size for the major class.

5. Concluding Remarks
We study the problem of multi-class logistic regression with
one major class and multiple rare classes, which is moti-
vated by a real application about TTS data analysis. To
motivate our method, we make a natural extension from the
two-class logistic model in Wang (2020) and construct a

multi-class logistic regression model with one major class
and multiple rare classes. Next, we conduct a rigorous
asymptotic study of the standard MLE. Based on the special
structure of the MLE’s asymptotic covariance matrix, we
propose the PMLE. To further reduce the computational
cost, we propose the SPMLE by down-sampling the major
class. Theoretically, the PMLE and SPMLE are statisti-
cally efficient asymptotically. Both of them are suitable
for distributed computation with lower computational cost.
Moreover, the SPMLE is easier to compute with much less
computation cost compared with the other two estimators.
Extensive simulation studies and TikTok live stream data
analysis are presented to demonstrate their finite sample
performance. To conclude this work, we discuss some in-
teresting directions for future research. First, we focus on
the logistic regression model in this paper. It is interest-
ing to investigate more complicated and general models for
the multi-class data with one major class and multiple rare
classes. Second, the performance of our method in a situa-
tion that the sample sizes of the different rare classes are of
different orders remains unknown and requires exploration.
Therefore, how to extend these methods to more flexible
settings is an interesting direction for future work.
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A. Supplementary Material
A.1. Proof of Theorem 2.1

To study the asymptotic property of MLE, we first derive the log-likelihood function L(Θ∗) =
∑N

i=1

∑K
k=0 aik logw

∗
ik

based on (2), where Θ∗ = (θ∗⊤1 , · · · , θ∗⊤K )⊤ ∈ Rq is the stacked coefficient vector with dimension q = (p + 1)Kand
θk = (βk0, β

⊤
k )⊤ ∈ Rp+1 be the associated regression coefficient parameter. Here aik = I (Yi = k) ∈ {0, 1} is the binary

vector and w∗
ik = P (Yi = k|Zi) is the rare class response probability vector. Next, we can estimate the maximum likelihood

estimator Θ̃ = argmaxΘ∗L(Θ∗). Specifically, to show that Θ̃ is
√
NeαN –consistent, it suffices to verify there exists some

constant C > 0 such that

sup
ξ∈Rq,∥ξ∥=C

L
(
Θ∗ + ξ/

√
NeαN

)
< L(Θ∗) (5)

with probability tending to 1 as N goes to infinity (Fan & Li, 2001). By Taylor’s expansion, we have

L
(
Θ∗ + ξ/

√
NeαN

)
− L(Θ∗) =

{
ξ⊤L̇(Θ∗)/

√
NeαN + ξ⊤L̈(Θ∗)ξ/(2NeαN )

}{
1 + op(1)

}
.

We can demonstrate that L̇(Θ∗)/
√
NeαN = Op(1) in Step 1, and L̈(Θ∗)/(NeαN ) converges to a negative definite constant

matrix in probability in Step 2. Then we could verify (5) holds for a sufficiently large C. Due to the strict convexity of
L(Θ∗), we obtain that sup∥ξ∥>C L

(
Θ∗ + ξ/

√
NeαN

)
< L(Θ∗). As L(Θ∗) is maximized at Θ̃, we know Θ̃ lies in the ball{

Θ∗ + ξ/
√
NeαN : ∥ξ∥ ≤ C

}
. In other words, we have Θ̃ = Op

(
1/
√
NeαN

)
.

Given Θ̃ is
√
NeαN –consistent, we can apply the Taylor expansion and have

√
NeαN

(
Θ̃−Θ∗

)
=
{
L̈−1

(
Θ̃∗)/(NeαN

)}−1{
L̇
(
Θ∗)/√NeαN

}
,

where Θ̃∗ lies between Θ̃ and Θ∗. In the following two steps, we would further prove when N → ∞, we have(
NeαN

)−1/2L̇
(
Θ∗)→d N(0,Σ∗), (6)(

NeαN
)−1L̈

(
Θ∗)→p −Σ∗, (7)

where Σ∗ = diag
{
Σ∗

k : 1 ≤ k ≤ K
}

and Σ∗
k = E

{
exp(Z⊤

i θ∗k)ZiZ
⊤
i

}
. This completes the proof of Theorem 2.1.

STEP 1. To verify (6), we compute the mean and covariance of (NeαN )−1/2L̇
(
Θ∗) respectively. For simplicity, we

denote L̇k

(
Θ∗) = ∂L

(
Θ∗)/∂θ∗k. Then, we can rewrite L̇

(
Θ∗) =

(
L̇1(Θ

∗)⊤, · · · , L̇K(Θ∗)⊤
)⊤ ∈ Rq. Since we have

L̇k

(
Θ∗) =∑N

i=1 (aik − w∗
ik)Zi, it suffices to compute the mean and covariance of (NeαN )−1/2L̇k

(
Θ∗) respectively.

First, we compute E
{
(NeαN )−1/2L̇k

(
Θ∗)}. It can be verified that E

{
L̇k

(
Θ∗)} = NE

[{
E(aik|Zi) − w∗

ik

}
Zi

]
= 0.

Hence, we prove E
{
L̇
(
Θ∗)} = 0. Next, we calculate cov

{
L̇
(
Θ∗)}. Then, it suffices to work on the diagonal matrix

cov
{
(NeαN )−1/2L̇k

(
Θ∗)} and the off-diagonal matrix cov

{
(NeαN )−1/2L̇k1

(
Θ∗), (NeαN )−1/2L̇k2

(
Θ∗)}, respectively.

One can verify that

cov
{
(NeαN )−1/2L̇k

(
Θ∗)} = e−αN cov

{
(aik − w∗

ik)Zi

}
= E

{
exp

(
Z⊤
i θ∗k

)
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

)ZiZ
⊤
i

}

= −eαNE

{
exp

(
2Z⊤

i θ∗k
){

1 +
∑K

k=1 exp
(
Z⊤
i θ∗k + αN

)}2ZiZ
⊤
i

}
= E

{
exp

(
Z⊤
i θ∗k

)
ZiZ

⊤
i

}{
1 + o(1)

}
. (8)

To obtain the first equality of (8), we use the fact that cov
{
(aik − w∗

ik)Zi

}
= E

[
E{(aik − w∗

ik)
2|Zi}ZiZ

⊤
i

]
=

E
(
w∗

ikZiZ
⊤
i

)
− E

(
w∗2

ikZiZ
⊤
i

)
. Consequently, we find that the second term E

(
w∗2

ikZiZ
⊤
i

)
is the higher order term.

Thus, we focus on the first term E
(
w∗

ikZiZ
⊤
i

)
and prove the second equality of (8). To this end, we need to verify the fol-

lowing three conditions. First, it is obvious that exp
(
Z⊤
i θ∗k)

{
1+
∑K

k=1 exp
(
Z⊤
i θ∗k+αN )

}−1∥Zi∥2 ≤ exp
(
Z⊤
i θ∗k

)
∥Zi∥2.

Second, it is noteworthy that exp
(
Z⊤
i θ∗k)

{
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN )

}−1
ZiZ

⊤
i converges to exp

(
Z⊤
i θ∗k

)
ZiZ

⊤
i almost
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surely as N → ∞. Lastly, we know that E
(
eZ

⊤
i θ∗

k∥Zi∥2
)
< ∞ by the condition that E

(
et∥Zi∥

)
< ∞ for any t > 0 (Wang,

2020). Combining the above results, the second equality of (8) can be verified by the dominated convergence theorem. Then,
by the similar technique, we calculate

cov
{
(NeαN )−1/2L̇k1

(
Θ∗), (NeαN )−1/2L̇k2

(
Θ∗)}

= e−αNE
[
E
{(

aik1
− w∗

ik1

)(
aik2

− w∗
ik2

)
| Zi

}
ZiZ

⊤
i

]
= −eαNE

[
exp

(
Z⊤
i θ∗k1

+ Z⊤
i θ∗k2

){
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

)}2ZiZ
⊤
i

]
= −eαNE

{
exp

(
Z⊤
i θ∗k1

+ Z⊤
i θ∗k2

)
ZiZ

⊤
i

}{
1 + o(1)

}
= O(eαN ),

where the first equality is due to E(aik − w∗
ik|Zi) = 0, and the second equality is because E

{
(aik1 − w∗

ik1
)(aik2 −

w∗
ik2

)|Zi

}
= E

(
aik1

w∗
ik2

− w∗
ik1

aik2
+ w∗

ik1
w∗

ik2
|Zi

)
= −w∗

ik1
w∗

ik2
. It refers that the off-diagonal matrix of

cov
{√

NeαN L̇
(
Θ∗)} is of the order O(eαN ) and converges to 0 when N → ∞.

We then verify the Lindeberg–Feller condition. Define ηi = ((ai1 − w∗
i1)Z

⊤
i , · · · , (aiK − w∗

iK)Z⊤
i )⊤ ∈ Rq . We then have

N∑
i=1

E
{∥∥ηi∥∥2I(∥∥ηi∥∥ >

√
NeαN ϵ

)}
= NE

[ K∑
k=1

w∗
ik

{∥∥(1− w∗
ik)Zi

∥∥2 + ∑
k′ ̸=k

∥∥w∗
ik′Zi

∥∥2}I(∥∥(1− w∗
ik)Zi

∥∥2 + ∑
k′ ̸=k

∥∥w∗
ik′Zi

∥∥2 > NeαN ϵ2
)]

+NE
{
w∗

i0

K∑
k=1

∥∥w∗
ikZi

∥∥2I( K∑
k=1

∥∥w∗
ikZi

∥∥2 > NeαN ϵ2
)}

.

We first compute that

NE

[ K∑
k=1

w∗
ik

{∥∥(1− w∗
ik)Zi

∥∥2 + ∑
k′ ̸=k

∥∥w∗
ik′Zi

∥∥2}I(∥∥(1− w∗
ik)Zi

∥∥2 + ∑
k′ ̸=k

∥∥w∗
ik′Zi

∥∥2 > NeαN ϵ2
)]

≤ NE

{ K∑
k=1

w∗
ik

( K∑
k=1

w∗2
ik + 1

)∥∥Zi

∥∥2I( K∑
k=1

∥∥w∗
ikZi

∥∥2 > NeαN ϵ2
)}

≤ NeαNE
{ K∑

k=1

eZ
⊤
i θ∗

k(

K∑
k=1

w∗2
ik + 1)∥Zi∥2I

( K∑
k=1

∥w∗
ikZi∥2 > NeαN ϵ2

)}
= o
(
NeαN

)
.

Moreover, it is can be verified that

NE

{
w∗

i0

K∑
k=1

∥∥w∗
ikZi

∥∥2I( K∑
k=1

∥∥w∗
ikZi

∥∥2 > NeαN ϵ2
)}

≤ NE
{ K∑

k=1

∥∥w∗
ikZi

∥∥2I( K∑
k=1

∥∥w∗
ikZi

∥∥2 > NeαN ϵ2
)}

= o
(
NeαN

)
.

Thus, for any ϵ > 0, we have
∑N

i=1 E
{∥∥ηi∥∥2I(∥∥ηi∥∥ >

√
NeαN ϵ

)}
= o
(
NeαN

)
. Combining the above results, we finish

the proof of (6) by applying the Lindeberg–Feller central limit theorem (Van der Vaart, 2000).

STEP 2. To verify (7), we compute the mean and covariance of (NeαN )−1L̈
(
Θ∗) respectively. For simplicity, we denote

the k–th diagonal block matrix L̈k

(
Θ∗) = ∂2L

(
Θ∗)/∂θ∗k∂θ∗⊤k ∈ R(p+1)×(p+1) for 1 ≤ k ≤ K, and denote the (k1, k2)–th

off-diagonal block matrix L̈k1,k2

(
Θ∗) = ∂2L

(
Θ∗)/∂θ∗k1

∂θ∗⊤k2
∈ R(p+1)×(p+1) for 1 ≤ k1 ̸= k2 ≤ K.

13



Pairwise Maximum Likelihood for Multi-Class Logistic Regression Model with Multiple Rare Classes

First, we compute the mean and covariance of (NeαN )−1L̈k

(
Θ∗) respectively for 1 ≤ k ≤ K. We can derive L̈k

(
Θ∗) =

−
∑N

i=1 w
∗
ik

(
1− w∗

ik

)
ZiZ

⊤
i . Then, we have

E
{
(NeαN )−1L̈k

(
Θ∗)} = −e−αNE

{
w∗

ik

(
1− w∗

ik

)
ZiZ

⊤
i

}
= −E

{
exp

(
Z⊤
i θ∗k

)
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

) (1− exp
(
Z⊤
i θ∗k + αN

)
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

))ZiZ
⊤
i

}
= −E

{
exp

(
Z⊤
i θ∗k

)
ZiZ

⊤
i

}{
1 + o(1)

}
,

where the last step holds by applying the dominated convergence theorem. Then, we compute the covariance of
(NeαN )−1L̈

(
Θ∗). Consider the (j1, j2)–th component of L̈k

(
Θ∗) with 1 ≤ j1, j2 ≤ p+ 1, we could verify

var
{
(NeαN )−1L̈k,j1j2

(
Θ∗)} = N−1e−2αN var

{
w∗

ik

(
1− w∗

ik

)
Zi,j1Zi,j2

}
= N−1E

 exp
(
2Z⊤

i θ∗k
){

1 +
∑K

k=1 exp
(
Z⊤
i θ∗k + αN

)}2
(
1−

exp
(
Z⊤
i θ∗k + αN )

1 +
∑K

k=1 exp
(
Z⊤
i θ∗k + αN )

)2

Z2
i,j1Z

2
i,j2


−N−1E2

{
exp

(
Z⊤
i θ∗k

)
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

) (1− exp
(
Z⊤
i θ∗k + αN

)
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

))Zi,j1Zi,j2

}
= N−1var

{
exp

(
Z⊤
i θ∗k

)
Zi,j1Zi,j2

}{
1 + o(1)

}
,

where the last step is because of the dominated convergence theorem. Consequently, we know that var
{
(NeαN )−1

L̈k,j1j2

(
Θ∗)} → 0 when N → ∞. Together with E

{
(NeαN )−1L̈k

(
Θ∗)}, we have (NeαN )−1L̈k

(
Θ∗) →p

E
{
exp

(
Z⊤
i θ∗k

)
ZiZ

⊤
i

}
as N → ∞ for the k–th diagonal block matrix.

Next, we compute the mean and covariance of (NeαN )−1L̈k1k2

(
Θ∗) respectively for 1 ≤ k1 ̸= k2 ≤ K. We can derive

L̈k1k2

(
Θ∗) =∑N

i=1 w
∗
ik1

w∗
ik2

ZiZ
⊤
i . Then, we have

E
{
(NeαN )−1L̈k1k2

(
Θ∗)} = e−αNE

{
w∗

ik1
w∗

ik2
ZiZ

⊤
i

}
= e−αNE

[
exp

(
Z⊤
i θ∗k1

+ Z⊤
i θ∗k2

+ 2αN

){
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

)}2ZiZ
⊤
i

]
= eαNE

{
exp

(
Z⊤
i θ∗k1

+ Z⊤
i θ∗k2

)
ZiZ

⊤
i

}{
1 + o(1)

}
,

where the last step is due to the dominated convergence theorem. This refers that when N → ∞,
E
{
(NeαN )−1L̈k1k2

(
Θ∗)} → 0. We then compute the covariance matrix of (NeαN )−1L̈k1k2

(
Θ∗). Here we focus

on the (j1, j2)–th component of off-diagonal matrix (NeαN )−1L̈k1k2

(
Θ∗) with 1 ≤ j1, j2 ≤ p+ 1, we have

var
{
(NeαN )−1L̈k1k2,j1j2

(
Θ∗)} = N−1e−2αN var

(
w∗

ik1
w∗

ik2
Zi,j1Zi,j2

)
= N−1e−2αNE

[
exp

(
2Z⊤

i θ∗k1
+ 2Z⊤

i θ∗k2
+ 4αN

){
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

)}4Z2
i,j1Z

2
i,j2

]

−N−1e−2αNE2

[
exp

(
Z⊤
i θ∗k1

+ Z⊤
i θ∗k2

+ 2αN

){
1 +

∑K
k=1 exp

(
Z⊤
i θ∗k + αN

)}2Zi,j1Zi,j2

]
= N−1e2αN var

{
exp

(
Z⊤
i θ∗k1

+ Z⊤
i θ∗k2

)
Zi,j1Zi,j2

}{
1 + o(1)

}
,

where the last step is obtained by the dominated convergence theorem. Then we immediately know var
{
(NeαN )−1

L̈k1k2,j1j2

(
Θ∗)}→ 0 when N → ∞. Further, this implies the maximum likelihood estimator converges asymptotically to

a matrix with block-diagonal structure. Combining the above results, we have (NeαN )−1L̈k1k2

(
Θ∗)→p 0 as N → ∞ for

the off-diagonal block matrix. Thus, we accomplish the proof of (7).
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A.2. Proof of Theorem 2.2

In this appendix, we study the properties of the pairwise maximum likelihood estimator θ̂pairk for 1 ≤ k ≤ K. Specifically,
we need to investigate a set of major–and–rare class pair logistic regression models as follows

P
(
Yi = k

∣∣ Zi, Yi ∈ {0, k}
)
=

exp(Z⊤
i θ∗k + αN )

1 + exp(Z⊤
i θ∗k + αN )

for every rare class 1 ≤ k ≤ K. Define wi,0k = P
(
Yi = k | Zi, Yi ∈ {0, k}

)
. Consequently, the conditional log-likelihood

function for the two-class logistic regression problem can be written as L0k(θ
∗
k) =

∑N
i=1 aik logwi,0k + ai0 log(1 −

wi,0k) =
∑N

i=1 aik(Z
⊤
i θ∗k + αN ) − (aik + ai0) log

{
1 + exp(Z⊤

i θ∗k + αN )
}

. Then a two-class MLE can be obtained
as θ̂pairk = argmaxθ∗

k
L0k(θ

∗
k). Similarly with the proof of Theorem 2.1, to show that θ̂pairk is

√
NeαN –consistent and

asymptotically normal, We would further prove in the following two steps

(
NeαN

)−1/2L̇0k

(
θ∗k
)
→d N(0,Σ∗

k), (9)(
NeαN

)−1L̈0k

(
θ∗k
)
→p −Σ∗

k, (10)

as N → ∞ in the following two steps, where Σ∗
k = E

{
exp(Z⊤

i θ∗k)ZiZ
⊤
i

}
. This completes the proof of Theorem 2.2.

PROOF OF (9). We compute the mean and covariance of L̇0k

(
θ∗k
)
, respectively. Note that L̇0k

(
θ∗k
)
=
∑N

i=1

{
aik − (aik +

ai0)wi,0k

}
Zi. Consequently, the mean of L̇0k

(
θ∗k
)

can be calculate as E
{
L̇0k

(
θ∗k
)}

= NE
[{
aik−(aik+ai0)wi,0k

}
Zi

]
=

NE
[{
w∗

ik − (w∗
ik +w∗

i0)wi,0k

}
Zi

]
= 0 because of the fact that (w∗

ik +w∗
i0)wi,0k = w∗

ik. In the meanwhile, the covariance
of L̇0k

(
θ∗k
)

can be calculated as

cov
{(

NeαN
)−1/2L̇0k

(
θ∗k
)}

= e−αNE
[{

aik −
(
aik + ai0

)
wi,0k

}2

ZiZ
⊤
i

]
= e−αNE

[{
aik +

(
aik + ai0

)
w2

i,0k − 2aikwi,0k

}
ZiZ

⊤
i

]
= e−αNE

[{
w∗

ik + (w∗
ik + w∗

i0)w
2
i,0k − 2w∗

ikwi,0k

}
ZiZ

⊤
i

]
= e−αNE

{
w∗

ik(1− wi,0k)ZiZ
⊤
i

}
= Σ∗

k{1 + o(1)},

where the first equality is due to the fact that E
[{
aik − (aik + ai0)wi,0k

}
Zi

]
= 0, the third equality holds because

(w∗
ik + w∗

i0)wi,0k = w∗
ik and the last equality is by the dominated convergence theorem.

We then verify the Lindeberg–Feller condition. For any ϵ > 0,

N∑
i=1

E
[∥∥{aik − (aik + ai0)wi,0k}Zi

∥∥2I(∥∥{aik − (aik + ai0)wi,0k}Zi

∥∥ >
√
NeαN ϵ

)]
= NE

{
w∗

ik(1− wi,0k)
2∥Zi∥2I

(∥∥(1− wi,0k)Zi

∥∥ >
√
NeαN ϵ

)}
+NE

{
(1− w∗

ik)w
2
i,0k∥Zi∥2I

(∥∥wi,0kZi

∥∥ >
√
NeαN ϵ

)}
≤ NE

{
w∗

ik∥Zi∥2I
(
∥Zi∥ >

√
NeαN ϵ

)}
+NE

{
w2

i,0k∥Zi∥2I
(∥∥wi,0kZi

∥∥ >
√
NeαN ϵ

)}
≤ 2NeαNE

{
e∥Z

⊤
i θ∗

k∥∥Zi∥2I
(
∥Zi∥ >

√
NeαN ϵ

)}
= o
(
NeαN

)
.

Combining the above results, we finish the proof of (9) by applying the Lindeberg–Feller central limit theorem (Van der
Vaart, 2000).

PROOF OF (9). We compute the mean and covariance of L̈0k

(
θ∗k
)

respectively. Note that L̈0k

(
θ∗k
)
= −

∑N
i=1(aik +

ai0)wi,0k(1 − wi,0k)ZiZ
⊤
i . Hence, we obtain the mean of L̈0k

(
θ∗k
)

as E
{
(NeαN )−1L̈0k

(
θ∗k
)}

= −e−αNE
{
(aik +

ai0)wi,0k(1 − wi,0k)ZiZ
⊤
i

}
= −e−αNE

{
(w∗

ik + w∗
i0)wi,0k(1 − wi,0k)ZiZ

⊤
i

}
= −e−αNE

{
w∗

ik(1 − wi,0k)ZiZ
⊤
i

}
=
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−Σ∗
k{1 + o(1)}. We then compute the variance of the (j1, j2)–th element of (NeαN )−1L̈0k

(
θ∗k
)

and have

var
{(

NeαN
)−1L̈0k,j1j2

(
θ∗k
)}

= N−1e−2αNE
{(

aik + ai0
)
w2

i,0k

(
1− wi,0k

)2
Z2
ij1Z

2
ij2

}
−N−1e−2αNE2

{(
aik + ai0

)
wi,0k

(
1− wi,0k

)
Zij1Zij2

}
= N−1e−2αN

[
E
{
w∗

ikwi,0k

(
1− wi,0k

)2
Z2
ij1Z

2
ij2

}
− E2

{
w∗

ik

(
1− wi,0k

)
Zij1Zij2

}]
= N−1var

{
exp

(
Z⊤
i θ∗k

)
Zij1Zij2

}{
1 + o(1)

}
= O(1/N),

where the last equality is because of the dominated convergence theorem. Consequently, we know that var
{(

NeαN
)−1

L̈0k,j1j2

(
θ∗k
)}

→ 0 when N → ∞. Together with the result of E
{(

NeαN
)−1L̈0k

(
θ∗k
)}

, we have proved that(
NeαN

)−1L̈0k

(
θ∗k
)
→p Σ∗

k as N → ∞. This accomplishes the proof of (9).

A.3. Proof of Theorem 2.3

In this appendix, we study the properties of the subsample-based pairwise maximum likelihood estimator θ̂subk for 1 ≤ k ≤ K.
Specifically, we need to investigate a set of major–and–rare class pair logistic regression models as follows

P
(
Yi = k

∣∣ Zi, Yi = k or Yi = 0 & bi = 1
)
=

exp(Z⊤
i θ∗k + αsub

N )

1 + exp(Z⊤
i θ∗k + αsub

N )
,

where αsub
N = αN − log πN . Define wsub

i,0k = P (Yi = k|Zi, Yi = k or Yi = 0 & bi = 1). By the condition that
πN/eαN → ∞ as N → ∞, we have αsub

N → −∞, which makes wsub
i,0k → 0 as N → ∞. Consequently, the conditional

log-likelihood function for the k–th two-class logistic regression problem can be written as Lsub
0k (θ∗k) =

∑N
i=1 aik logw

sub
i,0k+

ai0bi logw
sub
i,00 =

∑N
i=1 aik

(
Z⊤
i θ∗k+αsub

N

)
−
(
aik+ai0bi

)
log
{
1+exp

(
Z⊤
i θ∗k+αsub

N

)}
, where αsub

N = αN − log πN and
P (bi = 1) = πN for some sampling probability 0 < πN < 1. Then a SPMLE can be obtained as θ̂subk = argmaxθ∗

k
Lsub
0k (θ∗k).

Similarly with the proof of Theorem 2.1, to show that θ̂subk is
√
NeαN –consistent and asymptotically normal, We would

further prove in the following two steps that(
NeαN

)−1/2L̇sub
0k

(
θ∗k
)
→d N(0,Σ∗

k), (11)(
NeαN

)−1L̈sub
0k

(
θ∗k
)
→p −Σ∗

k, (12)

as N → ∞, where recall Σ∗
k = E

{
exp(Z⊤

i θ∗k)ZiZ
⊤
i

}
. This finishes the proof of Theorem 2.3.

PROOF OF (11). We compute the mean and covariance of L̇sub
0k

(
θ∗k
)

respectively. Note that L̇sub
0k (θ∗k) =

∑N
i=1

{
aik −(

aik + ai0bi
)
wsub

i,0k

}
Zi. Consequently, the mean of L̇sub

0k

(
θ∗k
)

can be calculate as E
{
L̇sub
0k

(
θ∗k
)}

= NE
[{

aik − (aik +

ai0bi)w
sub
i,0k

}
Zi

]
= NE

[{
w∗

ik − (w∗
ik + w∗

i0πN )wsub
i,0k

}
Zi

]
= 0 because of the fact that (w∗

ik + w∗
i0πN )wsub

i,0k = w∗
ik.

Meanwhile, the covariance of L̇sub
0k

(
θ∗k
)

can be calculated as

cov
{(

NeαN
)−1/2L̇sub

0k

(
θ∗k
)}

= e−αNE
[{

aik −
(
aik + ai0bi

)
wsub

i,0k

}2

ZiZ
⊤
i

]
= e−αNE

[{
aik +

(
aik + ai0bi

)
wsub2

i,0k − 2aikw
sub
i,0k

}
ZiZ

⊤
i

]
= e−αNE

[{
w∗

ik + (w∗
ik + w∗

i0πN )wsub2
i,0k − 2w∗

ikw
sub
i,0k

}
ZiZ

⊤
i

]
= e−αNE

{
w∗

ik(1− wsub
i,0k)ZiZ

⊤
i

}
= Σ∗

k

{
1 + o(1)

}
,

where the first equality is due to the fact that E
[{
aik − (aik + ai0bi)w

sub
i,0k

}
Zi

]
= 0 and the third equality holds because

(w∗
ik + w∗

i0πN )wsub
i,0k = w∗

ik.
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We then verify the Lindeberg–Feller condition. For any ϵ > 0,

N∑
i=1

E
[∥∥{aik −

(
aik + ai0bi

)
wsub

i,0k

}
Zi

∥∥2I(∥∥{aik −
(
aik + ai0bi

)
wsub

i,0k

}
Zi

∥∥ >
√
NeαN ϵ

)]
= NE

{
w∗

ik(1− wsub
i,0k)

2∥Zi∥2I
(∥∥(1− wsub

i,0k)Zi

∥∥ >
√
NeαN ϵ

)}
+NπNE

{
(1− w∗

ik)w
sub2
i,0k ∥Zi∥2I

(∥∥wsub
i,0kZi

∥∥ >
√
NeαN ϵ

)}
≤ NE

{
w∗

ik∥Zi∥2I
(
∥Zi∥ >

√
NeαN ϵ

)}
+NπNE

{
wsub2

i,0k ∥Zi∥2I
(∥∥wsub

i,0kZi

∥∥ >
√
NeαN ϵ

)}
≤ 2NeαNE

{
e∥Z

⊤
i θ∗

k∥∥Zi∥2I
(
∥Zi∥ >

√
NeαN ϵ

)}
= o
(
NeαN

)
.

Combining the above results, we finish the proof of (11) by applying the Lindeberg–Feller central limit theorem (Van der
Vaart, 2000).

PROOF OF (12). We compute the mean and covariance of L̈sub
0k

(
θ∗k
)

respectively. Note that L̈sub
0k (θ∗k) = −

∑N
i=1

(
aik +

ai0bi
)
wsub

i,0k(1 − wsub
i,0k)ZiZ

⊤
i . Hence, we obtain the mean of L̈sub

0k

(
θ∗k
)

as E
{
(NeαN )−1L̈sub

0k

(
θ∗k
)}

= −e−αNE
{
(aik +

ai0bi)w
sub
i,0k(1−wsub

i,0k)ZiZ
⊤
i

}
= −e−αNE

{
(w∗

ik+w∗
i0πN )wsub

i,0k(1−wsub
i,0k)ZiZ

⊤
i

}
= −e−αNE

{
w∗

ik(1−wsub
i,0k)ZiZ

⊤
i

}
=

−Σ∗
k{1 + o(1)}. We then compute the variance of the (j1, j2)–th element of (NeαN )−1L̈sub

0k

(
θ∗k
)

and have

var
{(

NeαN
)−1L̈sub

0k,j1j2

(
θ∗k
)}

= N−1e−2αNE
{(

aik + ai0bi
)
wsub2

i,0k

(
1− wsub

i,0k

)2
Z2
ij1Z

2
ij2

}
−N−1e−2αNE2

{(
aik + ai0bi

)
wsub

i,0k

(
1− wsub

i,0k

)
Zij1Zij2

}
= N−1e−2αN

[
E
{
w∗

ikw
sub
i,0k

(
1− wsub

i,0k

)2
Z2
ij1Z

2
ij2

}
− E2

{
w∗

ik

(
1− wsub

i,0k

)
Zij1Zij2

}]
= N−1var

{
exp

(
Z⊤
i θ∗k

)
Zij1Zij2

}{
1 + o(1)

}
= O(1/N),

where the last equality is because of the condition that wsub
i,0k → 0 as N → ∞ and the dominated convergence theorem.

Hence, we know that var
{(

NeαN
)−1L̈sub

0k,j1j2

(
θ∗k
)}

→ 0 as N → ∞. Together with the result of E
{(

NeαN
)−1L̈sub

0k

(
θ∗k
)}

,

we have proved that
(
NeαN

)−1L̈sub
0k

(
θ∗k
)
→p Σ∗

k as N → ∞. This finishes the proof of (12).

A.4. Illustration Details

In our TTS dataset analysis, there are total of N=56,016 sub-images belonging to nine classes, where the first class (i.e.,
k = 0) represents the background class; the remainder are car model classes. The major class (i.e., k = 0) accounts for
more than 95% of the total sample. The percentages of other classes are bar-plotted in Figure 6. As shown, this dataset
aligns well with our theoretical framework.

Figure 6. Sample percentages of different Audi car models.
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