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ABSTRACT

Conformal prediction is a model-agnostic tool for constructing prediction sets that
are valid under the common i.i.d. assumption, which has been applied to quan-
tify the prediction uncertainty of deep net classifiers. In this paper, we generalize
this framework to the case where adversaries exist during inference time, under
which the i.i.d. assumption is grossly violated. By combining conformal pre-
diction with randomized smoothing, our proposed method forms a prediction set
with finite-sample coverage guarantee that holds for any data distribution with `2-
norm bounded adversarial noise, generated by any adversarial attack algorithm.
The core idea is to bound the Lipschitz constant of the non-conformity score by
smoothing it with Gaussian noise and leverage this knowledge to account for the
effect of the unknown adversarial perturbation. We demonstrate the necessity of
our method in the adversarial setting and the validity of our theoretical guarantee
on three widely used benchmark data sets: CIFAR10, CIFAR100, and ImageNet.

1 INTRODUCTION

Deep neural net classifiers have achieved tremendous accomplishments over the last several years.
Nevertheless, the increased deployment of these algorithms in real-world applications, especially
ones that can be life-threatening like autonomous driving, raises major concerns about their reli-
ability (Heaven, 2019). To alleviate these issues, it is important to develop techniques that allow
the users to assess the uncertainty in predictions obtained by complex classifiers, revealing their
limitations.

Conformal prediction (Vovk et al., 2005) is a simple yet powerful tool for generating prediction sets
whose size reflects the prediction uncertainty. Specifically, suppose we are given n training examples
{(Xi, Yi)}ni=1 with feature vector Xi ∈ Rd, discrete and unordered class label Yi∈{1, 2, . . . , L} =
Y , and any learning algorithm that aims at predicting the unknown Yn+1 of a given test point Xn+1.
Under the assumption that the training and test examples are sampled exchangeably—e.g., they may
be drawn i.i.d.—from an unknown distribution PXY , conformal prediction algorithms construct a
distribution-free prediction set C (Xn+1) ⊆ Y guaranteed to contain the test label Yn+1 at any
desired coverage probability 1− α ∈ (0, 1):

P [Yn+1 ∈ C (Xn+1)] ≥ 1− α. (1)

For example, it is common to set the desired coverage level 1 − α to be 90% or 95%. Note that
the coverage probability P [Yn+1 ∈ C (Xn+1)] is marginal because it is taken over all the training
examples {(Xi, Yi)}ni=1 and the test point Xn+1. The key idea of conformal prediction is to fit a
classifier on the training set and use this model to assign non-conformity scores for held-out data
points. These scores reflect the prediction error of the underlying classifier, where, loosely speaking,
a smaller prediction error would lead to the construction of smaller and more informative sets.

However, the sets constructed by the vanilla conformal method may not have the right coverage
when the training and test points violate the exchangeability assumption (Cauchois et al., 2020;
Gibbs & Candès, 2021; Tibshirani et al., 2019; Podkopaev & Ramdas, 2021; Guan & Tibshirani,
2019), which is hardly satisfied by real data in practice as distribution shift happens frequently (Koh
et al., 2021). In particular, we consider the potential threat of adversarial attacks (Goodfellow et al.,
2015; Szegedy et al., 2014; Carlini & Wagner, 2017)—carefully crafted human-imperceptible noise
perturbations that drives the fitted model to err at test (inference) time. Such noise perturbations can
introduce a large and arbitrary distribution shift that is extremely hard to estimate. In this setting, the
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Figure 1: Marginal coverage (i.e., the percent of test labels that are included in the prediction
sets) and average set-size obtained by vanilla conformal prediction (Vanilla CP) and our RSCP
method, evaluated on the test set of CIFAR10. We use a VGG-19 classifier and set the nominal
coverage level to be (1− α) = 0.9. See Section 5 and Supplementary Section S8 for more details.

prediction sets constructed by the vanilla conformal approach are often invalid, i.e., do not satisfy
(1), as illustrated in Figure 1. Following that figure, while this method achieves the desired 90%
coverage when applied to clean test data, the empirical coverage obtained when applying the same
method on adversarial test examples falls dramatically below 90%, to about 30%.

Therefore, it is the main motivation of this work to construct prediction sets that are robust to adver-
sarial attacks. We formalize this requirement as follows:

P
[
Yn+1 ∈ Cδ(X̃n+1)

]
≥ 1− α, (2)

where X̃n+1 = Xn+1 + ε is the test adversarial example, and ‖ε‖2 ≤ δ is a norm-bounded adver-
sarial perturbation. Note that we use the notation Cδ to distinguish between the new setting from
the exchangeability case for which δ = 0. Crucially, we require (2) to hold in finite samples, for
any PXY , any adversarial perturbation of magnitude bounded by δ, and regardless of the choice or
accuracy of the underlying classifier. At the same time, we wish Cδ to be as small as possible.

To realize (2) with the desired coverage, we propose to combine randomized smoothing (Duchi et al.,
2012; Cohen et al., 2019; Salman et al., 2019) with the vanilla conformal prediction procedure, and
hence we name our technique Randomly Smoothed Conformal Prediction (RSCP). Randomized
smoothing allows us to bound the Lipschitz constant of any non-conformity score function by con-
volving it with the Gaussian distribution function. Leveraging this bound, we show how to modify
conformal prediction and rigorously construct prediction sets that account for the adversarial per-
turbation. Figure 1 illustrates that our proposed RSCP approach successfully attains the desired
coverage level whereas the vanilla conformal method fails. Observe that RSCP constructs slightly
larger prediction sets, reflecting the increased uncertainty induced by the adversarial noise.

The contributions of this paper are two-fold: (i) We propose, for the first time, a new conformal
prediction method that can account for the potential adversarial threats during inference time. Our
RSCP method, described in Section 3, is model-agnostic in that it can work with any classifier and
non-conformity score, scalable since the smoothing can be done by Monte Carlo integration with
many i.i.d. Gaussian noise realizations, and robust against any `2-norm bounded adversarial attack.
(ii) We prove that the prediction sets constructed by RSCP are valid in the sense of (2), and, in
Section 5, support this theoretical result with numerical experiments on CIFAR10, CIFAR100, and
ImageNet data sets.

2 CONFORMAL PREDICTION

Since the focus of this paper is on how to adapt the vanilla conformal prediction method to the adver-
sarial setting, in this section, we give background on conformal prediction. While we focus here on
classification problems, the method of conformal prediction can also be applied to regression tasks.
The vanilla conformal prediction can be divided into two categories: the split conformal prediction
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and the full conformal prediction. The first one involves data splitting while the second one con-
structs valid sets without splitting the data but at the cost of a significant increase in computational
complexity at test time (Papadopoulos et al., 2002; Papadopoulos, 2008; Vovk et al., 2005). To avoid
prohibitive computation complexity, in this paper we focus only on split conformal prediction.

This method starts by splitting the training data into two disjoint subsets: a proper training set
Itr ⊆ {1, . . . , n} and a calibration set Ical = {1, . . . , n} \ Itr. Then, a classifier f̂(x) ∈ [0, 1]

L

is fit to the proper training set, estimating the conditional class probabilities P[Y = y | X = x] for
all y ∈ Y . In the case of deep net classifiers, which is the focus of this work, this may be the
output of the softmax layer. Next, we compute a non-conformity score Si = S (Xi, Yi) ∈ R for
each calibration point {(Xi, Yi)}i∈Ical

. This score expresses how well the model prediction f̂(X) is
aligned with the true label Y , where a lower score implies better alignment. For example, the score
from Vovk et al. (2005); Lei et al. (2013) is given by

S (x, y) = 1− f̂ (x)y , (3)

where f̂ (x)y ∈ [0, 1] is the yth entry in the vector f̂ (x). Another example is the score proposed
by Romano et al. (2020b), which can be expressed as

S (x, y) =
∑
y′∈Y

f̂ (x)y′ I
{
f̂ (x)y′ > f̂ (x)y

}
+ f̂ (x)y · u, (4)

where I is the indicator function and u is a random variable distributed uniformly over the segment
[0, 1]. We refer to the score from (3) as HPS as it was shown to construct homogeneous prediction
sets. Analogously, we refer to (4) as APS since it tends to yield adaptive prediction sets that reflect
better the underlying uncertainty across sub-populations; see Romano et al. (2020b) for more details.
Given the desired coverage level 1−α, the prediction set for a new test point Xn+1 is formulated as

C (Xn+1) =
{
y ∈ Y : S (Xn+1, y) ≤ Q1−α

(
{Si}i∈Ical

)}
, (5)

where

Q1−α
(
{Si}i∈Ical

)
:= the (1− α)

(
1 +

1

1 + |Ical|

)
th empirical quantile of {Si}i∈Ical

(6)

is the score positioned d(n+ 1) (1− α)e in the sorted array of calibration scores Si, i ∈ Ical. In
plain words, in (5) we sweep over all possible labels y ∈ Y and include in C (Xn+1) the ‘guessed’ la-
bels y whose scores S (Xn+1, y) are smaller than most of the calibration scores S (Xi, Yi). Since the
calibration and test points are drawn exchangeably from PXY and f̂ is fixed, the score S (Xn+1, y)
for the guess y = Yn+1 can fall anywhere in the sorted array of calibration scores with equal proba-
bility. This property guarantees that the prediction set (5) satisfies (1); see Vovk et al. (2005).

3 RANDOMLY SMOOTHED CONFORMAL PREDICTION

In this section, we introduce our proposed RSCP framework for constructing prediction sets that are
valid in the adversarial regime. Recall that an adversarial attack can lead to a significant distribu-
tional shift between the clean calibration points and the corrupted test example X̃n+1 = Xn+1 + ε,
thus violating the fundamental exchangeability assumption of the split conformal procedure. Focus-
ing on the guess y = Yn+1, an effective attack would result in a larger non-conformity score for the
corrupted test point S(X̃n+1, y) compared to that of the clean input S(Xn+1, y). Therefore, a naive
comparison of S(X̃n+1, y) to the same threshold Q1−α from (6), which neglects the increased un-
certainty caused by the adversarial perturbation, will result in a prediction set that may not achieve
the desired coverage, as already illustrated in Figure 1. To address this, we should compare the
test score to an inflated threshold, larger than Q1−α, which rigorously accounts for the effect of the
adversarial noise. This is the core idea behind our proposal described in detail below; see Figure 2.

3.1 ADVERSARIALLY ROBUST CALIBRATION

Suppose we are given a non-conformity score function S̃ for which we can bound by how much its
value could be increased due to the adversarial noise ‖ε‖2 ≤ δ added toXn+1. Formally, we require
the score S̃ to satisfy the following relation:

S̃
(
X̃n+1, y

)
≤ S̃ (Xn+1, y) +Mδ, ∀y ∈ Y, (7)
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Figure 2: Schematic demonstration of the effect of an adversarial noise on vanilla split conformal
prediction, along with our proposed solution. The vanilla conformal set C(X) and our RSCP set
Cδ(X) are generated as described in (5) and (8), respectively. The black arrows point to the values
of the non-conformity scores that correspond to the clean (left) and adversarial (right) test points,
which are further marked by the vertical purple lines.

where Mδ ≥ 0 is a constant that is a function of δ, such that Mδ1 ≥ Mδ2 for δ1 ≥ δ2 and Mδ = 0
for δ = 0. In essence, we would like (7) to hold for the smallest possible Mδ . We denote this score
function by S̃ to emphasize that it must satisfy (7), distinguishing it from existing non-conformity
scores S, e.g., (3)–(4); see Section 3.2 for a concrete and very general framework for designing S̃
for which the constant Mδ can be easily derived. Importantly, Mδ serves as a bridge between the
observed score S̃(X̃n+1, y) and the unobserved one S̃(Xn+1, y) for a fixed y ∈ Y . Leveraging this
property, we propose to construct a prediction set robust to a norm-bounded adversarial attack by
applying the following decision rule:

Cδ(X̃n+1) = {y ∈ Y : S̃(X̃n+1, y) ≤ Q1−α({S̃i}i∈Ical) +Mδ}, (8)

where S̃i = S̃(Xi, Yi). In contrast to the vanilla split conformal approach (5), the prediction set
defined above is generated by comparing the test score to an inflated threshold Q1−α + Mδ , as
illustrated in Figure 2. Notice that the level of inflation is affected by the magnitude of the adversarial
perturbation as well as the robustness of S̃, i.e., the value of Mδ . A larger perturbation implies
larger inflation, and a more robust score S̃ implies smaller inflation. The theorem below states
that the constructed prediction set (8) is guaranteed to contain the unknown target label Yn+1 with
a probability of at least 1 − α, for any distribution PXY , sample size n, score function S̃ that
satisfies (7), and adversarial perturbation of magnitude δ generated by any attack algorithm. The
proof of this and all other results can be found in Section S1 of the Supplementary Material.

Theorem 1. Assume that the samples {(Xi, Yi)}n+1
i=1 are drawn exchangeably from some unknown

distribution PXY . Let X̃n+1 = Xn+1 + ε be a clean test example Xn+1 with an additive corruption
of an `2-norm bounded adversarial noise ‖ε‖2 ≤ δ. Then, the prediction set Cδ(X̃n+1) defined in
(8) satisfies

P
[
Yn+1 ∈ Cδ(X̃n+1)

]
≥ 1− α.

Before presenting our framework to construct scores that rigorously satisfy (7), we pause to prove a
lower bound on the coverage that the vanilla split conformal could attain in the adversarial setting.

Theorem 2. Under the assumptions of Theorem 1, the prediction set C(X̃n+1) defined in (5), applied
with S̃ in place of S, satisfies

P
[
Yn+1 ∈ C(X̃n+1)

]
≥ τ,

where
τ = max

{
τ ′ : Qτ ′

({
S̃i
}
i∈Ical

)
≤ Q1−α

({
S̃i
}
i∈Ical

)
−Mδ

}
. (9)

Note that τ can be simply computed by running a grid search on the sorted array of calibration scores.
It is important to observe that in contrast to Theorem 1, which guarantees at least 1−α coverage for
any user-specified level α, the worst coverage level τ of the vanilla split conformal is not controlled
explicitly, i.e., τ is known only after looking at the training and calibration data. Observe also that,
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by construction, τ ≤ 1 − α (see Supplementary Section S1) and equality is met in a special case
where δ = 0, i.e., no attack is performed. In this special case, Mδ = 0 by definition, and both
Theorem 1 and 2 converge to the classic coverage guarantee of the vanilla conformal algorithm.

3.2 THE RANDOMLY SMOOTHED SCORE

To apply the robust calibration procedure presented above, we need to have access to a constant Mδ

that satisfies (7) for a given non-conformity score function. In general, this constant is unknown
for modern deep neural net classifiers as well as for complex non-conformity scores, such as the
one defined in (4). In what follows, we present a novel framework that takes inspiration from the
literature on randomized smoothing (Duchi et al., 2012; Cohen et al., 2019; Salman et al., 2019),
offering a theoretically grounded mechanism to bound the Lipschitz constant of any scoring function
derived from any black-box classifier. Concretely, we suggest constructing a new score S̃ from the
base score S as follows:

S̃ (x, y) = Φ−1
(
Ev∼N (0d,σ2Id) [S (x+ v, y)]

)
, (10)

where S̃ is a “smoothed” version of the base score S, obtained by averaging the value of S (x+ v, y)
over many independent samples v ∼ N

(
0d, σ

2Id
)

drawn from the multivariate normal distribution,
and then applying Φ−1, the inverse of the cumulative distribution function (CDF) of the standard
normal distribution. The hyper-parameter σ controls the level of smoothing, where a larger σ implies
stronger smoothing. (In Section 5.1, Figure 3, and Supplementary Section S5.1 we discuss the effect
of this parameter on the statistical efficiency of the overall calibration procedure.) Assuming that
the base score function S(x, y) ∈ [0, 1] for any given (x, y), which holds for most non-conformity
scores in multi-class classification problems, we can invoke a well-known result from the random-
ized smoothing literature (Salman et al., 2019, Lemma 2) and get the following upper-bound for the
smoothed score:

S̃
(
X̃n+1, y

)
≤ S̃ (Xn+1, y) +

‖ε‖2
σ
≤ S̃ (Xn+1, y) +

δ

σ
. (11)

Importantly, (11) holds for every y ∈ Y , hence rigorously satisfying the relation (7) for the choice
of Mδ = δ/σ. Armed with S̃, we can invoke Theorems 1- 2 and construct an adversarially robust
prediction set by following (8) or lower bound the coverage of the vanilla split conformal procedure.

Corollary 1. Let S̃ be the randomly smoothed score function (10) and setMδ = δ/σ. The prediction

set defined in (8) satisfies P
[
Yn+1 ∈ Cδ

(
X̃n+1

)]
≥ 1 − α, and the worst coverage of (5) is given

by P
[
Yn+1 ∈ C

(
X̃n+1

)]
≥ τ, where τ = max

{
τ ′ : Qτ ′

({
S̃i
}
i∈Ical

)
≤ Q1−α

({
S̃i
}
i∈Ical

)
− δ

σ

}
.

The above leads to two possible use-cases of our proposal. In the first, we can implement our ran-
domly smoothed conformal prediction procedure (RSCP) (8) and construct valid prediction sets at
any desired level, bearing in mind that these sets are likely to be larger due to the increased uncer-
tainty induced by the adversarial perturbation. In the second case, we can deploy the vanilla split
conformal algorithm with a smoothed version of the base score, providing important information
about the worst coverage that might be obtained under an adversarial attack.

In practice, the smoothed score cannot be evaluated explicitly as it requires to compute the expec-
tation in (10). However, this smoothed score can be easily estimated by averaging over many i.i.d.
Gaussian noise realizations in a Monte Carlo fashion (Cohen et al., 2019, Section 3.2), as described
in Algorithm 1; see Section 5.1 and Supplementary Section S5.2 for more details about the effect of
this approximation on the coverage and set-size. Here, an interesting future direction is to develop a
high probability bound for the smoothed score approximation error and integrate it with our method.

4 RELATED WORK

4.1 CONFORMAL PREDICTION UNDER DISTRIBUTION SHIFT

Previous work offers several generalizations of the vanilla conformal prediction framework to the
case of distribution shift between the training and the test points, however, none of them addresses
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Algorithm 1 RSCP: Randomly Smoothed Conformal Prediction

Input: Data {(Xi, Yi)}ni=1; a test point X̃n+1 corrupted by adversarial noise of energy δ; learning
algorithmA; a base non-conformity score S; and coverage level 1−α.

1: Split the training data into 2 disjoint subsets Itr and Ical.
2: Train a classifier using A on all samples from Itr, i.e., f̂ (X)← A

(
{(Xi, Yi)}i∈Itr

)
.

3: Draw vij
i.i.d.∼ N

(
0d, σ

2Id
)
, where i ∈ Ical and j = 1, . . . , ns, and compute:

Ŝi = Ŝ (Xi, Yi) = Φ−1
(

1

ns

ns∑
j=1

S (Xi + vij , Yi)

)
, for all i ∈ Ical. (12)

4: Compute Q1−α({Ŝi}i∈Ical) := the (1− α)
(

1 + 1
1+|Ical|

)
th empirical quantile of {Ŝi}i∈Ical .

5: Construct a prediction set for X̃n+1:

Cδ(X̃n+1) =

{
y ∈ Y : Ŝ(X̃n+1, y) ≤ Q1−α({Ŝi}i∈Ical) +

δ

σ

}
.

Output: A prediction set Cδ(X̃n+1) for the unobserved test label Yn+1.

the adversarial setting specifically. Cauchois et al. (2020) suggested a method to construct valid sets
when the test distribution of the non-conformity scores is in an f -divergence ball around their train-
ing distribution. While this approach shares the idea of inflating the value ofQ1−α, the f -divergence
measure is notoriously difficult to estimate in practice (Nguyen et al., 2010; Tsybakov, 2009) and
thus less applicable compared to our approach, which focuses on the addition of bounded `2 ad-
versarial noise (see Supplementary Section S12 for a comparison between the methods). Gibbs &
Candès (2021) generalized the vanilla conformal prediction approach to an online setting where the
data generating distribution varies over time by modifying the threshold adaptively as new labeled
points are being observed, such that the long-term empirical coverage frequency would be at least
1 − α. This is of course different from our approach that works offline and assumes the same data
generating process but with the addition of a malicious small perturbation induced by an attacker.
Tibshirani et al. (2019) studied the case of covariate shift and offered a weighted version of con-
formal prediction to address it. In this setting, the shift is only in PX while PY |X remains intact.
Podkopaev & Ramdas (2021) modified this method to tackle the label-shift case, in which PX|Y re-
mains the same but PY varies between train and test time. Both approaches differ from ours, which
handles a full distributional shift induced by the adversarial perturbation. Lastly, Hechtlinger et al.
(2018) suggested a non-conformity score that empirically tends to be more robust to adversarial
attacks, replacing the classifier’s class probability estimates of Y | X with a density estimator that
approximates the conditional distribution ofX | Y . In contrast to our RSCP approach, this method is
not supported by a theoretical guarantee for attaining the desired coverage in the adversarial setting.

4.2 CERTIFIED ADVERSARIAL ROBUSTNESS

A different but related line of research is known as ‘robustness certification’. Here, the goal is to
provide an `p radius around a test point, in which no adversarial perturbations exist, i.e, the predicted
label provably remains the same inside this radius. Currently, one of the mainstream approaches in
robustness certification is through randomized smoothing, which was proposed in (Lecuyer et al.,
2019; Li et al., 2019; Cohen et al., 2019) to provide an analytic form of robustness certificate. More
formally, given a base classifier f̂(x), one can construct a smoothed classifier according to the
following decision rule:

ŷ = argmaxy P[f̂y(x+ v)], v ∼ N (0d, σ
2Id). (13)

In contrast to the base classifier, the smoothed classifier can be supported by a rigorous `2 certi-
fication radius around the test point Xn+1 = x. It is self-evident that our work is different from
robustness certification, as we are not aiming to deliver a robustness certificate for a given classi-
fier over some test point; instead, we construct a valid prediction set whose size can vary with x.
However, both works make use of the randomized smoothing technique, sharing related set of ideas.
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For example, practical evidence shows that for the smoothed model (13) to correctly classify the
test point Xn+1, the base classifier f̂ needs to consistently label the noisy sample N

(
Xn+1, σ

2I
)

as Yn+1 (Cohen et al., 2019, Section 3.3). Training the base classifier without accounting for the
future smoothing operation would not necessarily satisfy this requirement, and, as a consequence,
would lead to a very small certification radius. We note that this observation is also relevant to our
setting, where we found that using a classifier that is not robust to Gaussian perturbations results in
prediction sets that are often large and thus uninformative. More details are provided in Section S4 of
Supplementary Material. One way to improve the certified radius is by training the base classifier on
the labeled training pairs {(N

(
Xi, σ

2I
)
, Yi)}i, i ∈ Itr as in Lecuyer et al. (2019), where σ is equal

to the one used for smoothing. Later, Salman et al. (2019) further improved the robustness guarantee
through adversarial training, where the adversary generates a bounded perturbation via the method
of SMOOTHADV—an adversarial attack designed specifically against smoothed classifiers. A more
recent work by Salman et al. (2020) suggested adding a denoising pre-processing layer preceding
the classifier, to remove the Gaussian noise used in randomized smoothing. In our experiments, we
find that the training strategy proposed in Lecuyer et al. (2019) works well in practice and results
in relatively small prediction sets, although a better training scheme—such as the one from Salman
et al. (2019) or Salman et al. (2020)—could be easily combined with our method and may further
improve the overall statistical efficiency.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed methods on three bench-
mark image classification data sets: CIFAR10, CIFAR100 (Krizhevsky, 2009), and ImageNet
ILSVRC2012 (Deng et al., 2009), which are described in Supplementary Section S2. We evaluate
our methods as follows. First, we fit a model on the entire training set. Then, we split the remaining
data into two equally sized disjoint subsets, one is used for calibration and the second for testing.
The calibration is done using the two base non-conformity scores mentioned in Section 2, i.e., HPS
(3) and APS (4). Next, we attack each point in the test set by adding to it an adversarial perturbation
whose `2-norm is bounded by δ.1 Lastly, for each adversarial test point, we construct a prediction
set using three different conformal methods (described below), asking for a nominal coverage level
of 1 − α. Given the constructed sets, we test the validity of each method by reporting the marginal
coverage rate, and the statistical efficiency by computing the average size of the prediction sets. We
repeat this process 50 times by randomly assigning data points to form the calibration and test sets.

In our experiments, we compare three different approaches: (i) vanilla split conformal prediction
implemented with the two base-scores (HPS and APS), denoted by Vanilla CP; (ii) vanilla split
conformal prediction with our proposed smoothed version of the base scores, denoted by CP+SS;
and (iii) the proposed randomly smoothed conformal prediction (see Algorithm 1), denoted by
RSCP. Our experiments show that Vanilla CP constructs invalid prediction sets whose marginal
coverage is way below the desired level. The smoothed score improves robustness and coverage
but still does not achieve the nominal coverage rate. The prediction sets constructed by our RSCP
approach achieve the desired coverage level, aligning with our theoretical guarantees.

5.1 IMPLEMENTATION DETAILS

Models For all data sets, we choose ResNet (He et al., 2016) to be the base architecture of the
deep net classifier and fit two different models for each data set: one on clean training points and the
second on points that are augmented with Gaussian noise of standard deviation σ that is equal to the
smoothing parameter from (10). The former is used to explore the effect of adversarial examples on
the validity of Vanilla CP. The latter training strategy improves the robustness of the classifier
and, as a consequence, reduces the size of the prediction sets constructed by CP+SS and RSCP
methods, as discussed in Section 4.2 and Supplementary Section S4. For CIFAR10 and ImageNet
data sets, we use the pre-trained ResNet-110 and ResNet-50 models from Cohen et al. (2019), and
for CIFAR100 we fit our own ResNet-110 model as the latter data set is not studied by Cohen et al.
(2019), please see Supplementary Section S3 for additional details on the training procedure. See
also Supplementary Section S8 for similar experiments in which we choose DenseNet (Iandola et al.,
2014) and VGG (Simonyan & Zisserman, 2014) to be the base architectures.

1See Supplementary Section S9 for additional experiments evaluated on clean data points.
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Figure 4: The effect of the number of noise realizations ns
(used to estimate the smoothed score) on the marginal coverage
(left) and size (right) of prediction sets constructed by RSCP.
The results correspond to the CIFAR10 data set, where we set
δ and σ to be equal to 0.125 and 0.25, respectively.

Attack algorithm For Vanilla CP, we generate adversarial noise using the projected gradient
descent (PGD) attack (Madry et al., 2018), which is one of the strongest white-box attacks known
in the literature to construct `2 bounded adversarial examples. For the other two methods that make
use of randomized smoothing (CP+SS and RSCP), we apply SMOOTHADV (Salman et al., 2019)—a
variation of PGD that is tailored for smoothed classifiers. For CIFAR10 and CIFAR100, we attack
the test points with an adversarial perturbation of energy δ = 0.125, and for ImageNet we use a
larger perturbation of magnitude δ = 0.25. Both choices lead to a significant reduction in the test
accuracy of the base classifier, as summarized in Supplementary Section S6.

Choosing σ for smoothing Recall Corollary 1 and observe that the coverage guarantee holds
for any choice of the smoothing level σ. This parameter is intimately connected to the accu-
racy/robustness trade-off (Cohen et al., 2019, Section 4): a large σ will reduce the Lipschitz con-
stant Mδ = δ/σ, however, may also reduce the accuracy of the base classifier (even if fitted on
noisy samples). Similar to previous work on randomized smoothing (Cohen et al., 2019; Salman
et al., 2019), we treat σ as a hyper-parameter of our method which can be tuned, for example, by
choosing σ that produces the smallest sets by cross-validation.2 In practice, we find that setting
σ = 2δ in (10) yields informative prediction sets, as illustrated in Figure 3. This figure also demon-
strates the accuracy/robustness trade-off discussed above: the size of the prediction sets reduces for
1/8 ≤ Mδ ≤ 1/2, and increases for Mδ > 1/2. See Supplementary Section S5.1 for additional
experiments that study the effect of σ on the marginal coverage and average set-size for all data sets.

Choosing the number of Monte Carlo iterations Following Algorithm 1, the smoothed score is
evaluated by replacing the expectation (10) with the empirical mean (12), averaging over ns i.i.d.
Gaussian noise samples. This is similar to the approach Cohen et al. (2019, Section 3.2) used for
approximating the smoothed classifier defined in (13). In our experiments, we find that our method
is fairly robust to the choice of ns, and using more than ns = 256 realizations barely affects the
marginal coverage and average set-size. This phenomenon is demonstrated in Figure 4 for CIFAR10;
see Supplementary Section S5.2 for additional experiments that illustrate the influence of ns on
CIFAR100 and ImageNet. Therefore, in our experiments we set ns = 256 both for CIFAR10 and
CIFAR100, and ns = 64 for ImageNet due to limited GPU memory footprint; see Supplementary
Section S7 for a discussion about the computational complexity including the running time of RSCP.

5.2 RESULTS

Figure 5 presents the marginal coverage obtained by Vanilla CP, CP+SS, and RSCP for the
three data sets. As can be seen, Vanilla CP fails to construct valid prediction sets in the presence
of adversarial noise. For instance, consider the choice of HPS as the non-conformity score, and
observe that the average coverage for CIFAR10, CIFAR100, and ImageNet is 27.27%, 29.24%, and
38.02%, respectively; all are much smaller than the desired 90% level, emphasizing the necessity of

2Note that our objective is different from that of certified robustness that seeks for σ that leads to a large
radius in which the prediction is certifiably robust.
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Figure 5: Marginal coverage (left) and average set-size (right) obtained by different conformal meth-
ods. The target coverage level is 90%.

our proposal. When using the same vanilla split conformal procedure, however with the smoothed
version of the base non-conformity score (i.e., CP+SS), we get a major improvement in terms of
coverage. Here, for the smoothed version of the HPS score, the average coverage levels obtained
for CIFAR10, CIFAR100, and ImageNet are closer to 90% and are equal to 86.78%, 87.10%, and
88.12%, respectively. This serves as evidence that the new smoothed score is more robust to adver-
sarial attacks. Moreover, since we can derive the Lipschitz constant of the smoothed score, we can
invoke the worst coverage bound from Theorem 2. As illustrated, the (average) worst coverage is
indeed below the empirical coverage level obtained by CP+SS. While this lower bound is close to
the empirical one (for both scores), there exists a gap between the two that can be possibly reduced
by designing a better algorithm tailored to attack the smoothed score. By contrast, our RSCPmethod
generates valid prediction sets whose coverage is slightly above the nominal level, supporting our
theoretical guarantee.

Figure 5 also presents the average set-size constructed by all three methods. Observe that CP+SS
generates larger sets compared to Vanilla CP since it relies on a more robust classifier that leads
to better coverage at cost of lower accuracy; see Supplementary Table S1. Observe also that RSCP
constructs larger sets than those of CP+SS due to the inflated threshold used in the calibration,
accounting for the effect of the adversarial noise. In addition, the sets obtained by the APS score
are larger than those of HPS. This can be explained by (i) the coverage plots: the marginal coverage
obtained when using the smoothed APS score tends to be larger than that of the smoothed HPS;
and (ii) it is known that the APS score tends to construct larger sets even in the noiseless case since
it aims at constructing sets of 1 − α coverage across different sub-populations; see Supplementary
Section S11 for an experiment that illustrates this as well as Romano et al. (2020b).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we generalized the technique of conformal prediction to the adversarial setting and
introduced a model agnostic, scalable, and simple method for constructing valid prediction sets to
multi-class classification problems, accounting for the adversarial noise. Our experiments show that
our RSCP method is most effective when combined with robust classifiers, e.g., ones that are fitted
by augmenting Gaussian noise to the training data. However, this often leads to a degradation in test
accuracy, a limitation that is not unique to our work. In fact, this is a matter of ongoing research in
the robustness certification literature, and note that any new development in that front (e.g., Salman
et al. (2020)) could be easily integrated with our method as demonstrated in Supplementary Sec-
tion S10. An exciting future direction could be to extend the guarantees we provided beyond the
assumption that the adversarial noise is `2-norm bounded and consider different smoothing and cali-
bration techniques that can handle the `0, `1, and `∞ cases (Lee et al., 2019; Teng et al., 2019; Zhang
et al., 2019). Other directions could be to explore the use of our method to improve robustness to
adversarial attacks in regression problems and to provide conditional validity guarantees of the style
suggested by Vovk (2012).

9



Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

A.G. and Y.R. were partially supported by the 2020 Zuckerman Fund, Technion Center for Ma-
chine Learning and Intelligent Systems (MLIS Grant No. 2029967), and the ISRAEL SCIENCE
FOUNDATION (grant No. 729/21). Y.R. thanks the Career Advancement Fellowship, Technion,
for providing research support. Y.R also thank Stephen Bates for his comments on an earlier version
of this manuscript.

ETHICS STATEMENT

The ability to communicate the predictive uncertainty of any classifier by constructing prediction
sets of valid coverage is crucial to assess the performance of machine learning algorithms (Holland,
2020), improve their reliability, and avoid unwanted discrimination (Romano et al., 2020a). Our
proposed method further enriches the existing uncertainty quantification toolbox, by providing a
rigorous form of robustness to adversarial perturbations. For example, one can promote fairness
in high-stakes applications (in addition to robustness) by integrating RSCP within the framework of
equalized coverage (Romano et al., 2020a). Here, we stress that the validity of our methods relies on
the exchangeability assumption between the clean training and test points, and on the knowledge of
the `2-bound of the attack. If one of these assumptions is violated, the sets that RSCP constructs may
not have the right coverage. Therefore, it is recommended to assess whether the above assumptions
are reasonable when using the proposed methods.

REPRODUCIBILITY STATEMENT

A Python package that implements our methods and code to reproduce our experiments are available
at https://github.com/Asafgendler/RSCP. Complete proofs of the theorems presented
in this paper can be found in Supplementary Section S1. A complete description of the data sets
used in our experiments, including pre-processing steps, can be found in Supplementary Section S2.
The details about the models used in our experiments and how they were trained are provided in
Supplementary sections S3 and S8.
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SUPPLEMENTARY MATERIAL:
ADVERSARIALLY ROBUST CONFORMAL PREDICTION

S1 SUPPLEMENTARY PROOFS

In this section, we prove Theorem 1 and Theorem 2 presented in Section 3 of the main manuscript.

Proof of theorem 1. From the definition of the prediction set in (8):

P
[
Yn+1 ∈ Cδ(X̃n+1)

]
= P

[
S̃(X̃n+1, Yn+1) ≤ Q1−α

({
S̃i
}
i∈Ical

)
+Mδ

]
(using (7)) ≥ P

[
S̃ (Xn+1, Yn+1) +Mδ ≤ Q1−α

({
S̃i
}
i∈Ical

)
+Mδ

]
= P

[
S̃ (Xn+1, Yn+1) ≤ Q1−α

({
S̃i
}
i∈Ical

)]
≥ 1− α,

where the last inequality follows from the validity of the prediction set constructed by the vanilla
split conformal procedure since S̃(Xi, Yi), i ∈ {Ical ∪ {n + 1}} are exchangeable (Vovk et al.,
2005); see also (Romano et al., 2019, Lemma 2).

Proof of theorem 2. From the definition of the prediction set in (5):

P
[
Yn+1 ∈ C(X̃n+1)

]
= P

[
S̃(X̃n+1, Yn+1) ≤ Q1−α

({
S̃i
}
i∈Ical

)]
(using (7)) ≥ P

[
S̃ (Xn+1, Yn+1) +Mδ ≤ Q1−α

({
S̃i
}
i∈Ical

)]
= P

[
S̃ (Xn+1, Yn+1) ≤ Q1−α

({
S̃i
}
i∈Ical

)
−Mδ

]
(using the definition of τ , defined in (9)) ≥ P

[
S̃ (Xn+1, Yn+1) ≤ Qτ

({
S̃i
}
i∈Ical

)]
≥ τ,

where, similarly to the proof of Theorem 1, the last inequality follows from (Romano et al., 2019,
Lemma 2).

Lastly, we show that τ ≤ 1− α. From the definition of τ in (9):

τ = max
{
τ ′ : Qτ ′

({
S̃i
}
i∈Ical

)
≤ Q1−α

({
S̃i
}
i∈Ical

)
−Mδ

}
≤ max

{
τ ′ : Qτ ′

({
S̃i
}
i∈Ical

)
≤ Q1−α

({
S̃i
}
i∈Ical

)}
= 1− α.

S2 DATA SETS

Overview We evaluate our methods on three widely used image classification data sets: CIFAR10,
CIFAR100 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009). The CIFAR10 data set consists
of 60,000 RGB color images of size 32× 32× 3, corresponding to 10 different classes, with 6,000
images per class. In this data set, there are 50,000 training images and 10,000 test images. The
CIFAR100 data set is identical in structure to CIFAR10, except it has 100 classes containing 600
images each. Overall, this data consists of 50,000 training images and 10,000 test images. In our
experiments, we use the entire training set for fitting the classifiers and split the rest 10,000 points
into two sets of equal size (calibration and test) 50 times. We use the ILSVRC2012 version of the
ImageNet data set. Here, the training set consists of 1.2 million color RGB images of different sizes,
corresponding to 1,000 class labels. To construct calibration and test sets, we randomly split the
50,000 images of the ILSVRC2012 validation set into calibration and test sets of equal size, for 50
times. We use the entire ILSVRC2012 training set for fitting the predictive models.
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Pre-processing The CIFAR10 and CIFAR100 images are normalized by (i) subtracting the train-
ing images mean value, equals to [0.4914, 0.4822, 0.4465], and (ii ) dividing the result by the images
standard deviation, equals to [0.2023, 0.1994, 0.2010]. The ImageNet images are first re-scaled to
a size of 256 × 256. Then, the central 224 × 224 pixels are taken and normalized by subtracting
the mean value of the training images [0.485, 0.456, 0.406] and dividing the result by their standard
deviation, given by [0.229, 0.224, 0.225].

S3 MODELS

As described in Section 5.1 of the main manuscript, for CIFAR10 and ImageNet data sets, we
use the pre-trained ResNet-110 and ResNet-50 models from Cohen et al. (2019). We use the
models that were trained on clean training points, as well as models that were trained on Gaus-
sian augmented training points. These models are downloaded from https://github.com/
locuslab/smoothing. This link also provides the full details on how the models were trained.

Since the CIFAR100 data set was not studied by Cohen et al. (2019), we fit our own
models by modifying the software package available at https://github.com/bearpaw/
pytorch-classification. Specifically, we fit a residual network of depth 110 (ResNet-
110) by augmenting the training data with random crops of size 32 (after applying a zero padding
of size 4) and random horizontal flips. The images are normalized as explained in Section S2. For
convenience, we added the normalization as a pre-processing layer to the fitted model. As explained
in Section 5.1 of the main manuscript, we fit two models: one on clean training points and another
on points that are augmented with Gaussian noise of standard deviation σ that is equal to the one
used for smoothing. The models are trained using the stochastic gradient descent optimizer with a
momentum term of 0.9 for 164 epochs, using a batch size of 128 points. The learning rate starts at
0.1 and is multiplied by a factor of 0.1 at epochs 81 and 122. A weight decay regularization of 10−4

is added to the loss function. We train the models using Pytorch, on a single Nvidia GEFORCE
GTX 1080 Ti GPU.

S4 WHY DOES TRAINING WITH GAUSSIAN NOISE IMPORTANT?

As stated in Section 4.2 of the main manuscript, while our method can work with any base classifier
f̂ , in practice, we require f̂ to have some degree of robustness in order to construct small prediction
sets. Figure S6 demonstrates that our RSCP procedure constructs valid but very large prediction sets
when deployed with a standard classifier, fitted without augmenting Gaussian noise to the CIFAR10
training points. Here, the average size of the prediction sets is equal to 9, a trivial result for the
CIFAR10 data set that has only 10 classes. In this experiment, we use σ = 0.5 for smoothing, an
attack of magnitude δ = 0.125, and ns = 256 Gaussian noise samples for estimating the smoothed
score.
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Figure S6: The importance of using robust models. Marginal coverage (left) and average set-size
(right) obtained by different conformal methods. The target coverage level is 90%.
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S5 HYPER PARAMETERS

S5.1 INFLUENCE OF THE VALUE OF σ

Herein, we extend the discussion from Section 5.1 of the main manuscript and study the effect of
the choice of the hyper-parameter σ used to compute the smoothed score. Specifically, we repeat the
same experiment described in the context of Figure 3 for all data sets. Figure S7 shows how the ratio
between σ and δ affects the average set-size and the average coverage obtained by our RSCPmethod.
In this experiment, we use an adversarial perturbation of magnitude δ = 0.125 for CIFAR10 and
CIFAR100, and magnitude δ = 0.25 for ImageNet. As can be seen, a ratio of σ/δ = 2 works well
for all data sets and the two non-conformity scores.
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Figure S7: The effect of σ on the marginal coverage (top) and size (bottom) of prediction sets con-
structed by RSCP. Here, δ and ns are fixed and equal to 0.125 and 256 for CIFAR10 and CIFAR100,
and 0.25 and 64 for ImageNet.

S5.2 INFLUENCE OF THE VALUE OF ns

As explained in Section 5.1 of the main manuscript, the smoothed score is evaluated by replacing
the expectation (10) with the empirical mean (12), averaging over ns i.i.d. Gaussian noise samples.
Figure S8 shows the effect of the value of ns on the average set-size and the average coverage
obtained by our RSCP method for all data sets. Following that figure, averaging more than ns = 256
noise samples (or even ns = 64) barely affects the empirical coverage and size of the constructed
sets.
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Figure S8: The effect of the number of noise realizations ns (used to estimate the smoothed score)
on the marginal coverage (top) and size (bottom) of prediction sets constructed by RSCP. Here, δ
and σ are fixed and equal to 0.125 and 0.25 for CIFAR10 and CIFAR100, and to 0.25 and 0.5 for
ImageNet respectively.

S6 EFFECT OF THE ADVERSARIAL ATTACKS

As stated in Section 5.1 of the main manuscript, in all of our experiments, we use an attack of
`2 magnitude δ = 0.125 for CIFAR10 and CIFAR100, and δ = 0.25 for ImageNet. Table S1
illustrates the effect of such adversarial perturbations on the test accuracy of the models used in the
experiments presented in Section 5 of the main manuscript as well as in Supplementary Section S5.1
and Supplementary Section S8 that is presented hereafter. The PGD attack leads to a significant
reduction in the test accuracy of models that are fitted without Gaussian noise augmentation (i.e.,
σ = 0). By contrast, the models that are trained with Gaussian noise are more robust, as the decrease
in test accuracy3 is smaller when attacked by SMOOTHADV. This, however, comes at the expense of
an accuracy reduction on the clean test points.

S7 COMPUTATIONAL COMPLEXITY

Following Algorithm 1, at test time, the computational complexity of RSCP is dominated by the
number of calls to the predictive model, required to compute the smoothed score for each of the L

3When evaluating the test accuracy of the models trained with Gaussian noise, we add Gaussian noise with
the same standard deviation σ to the test point since we find this approach to improve the accuracy.
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Table S1: The influence of the adversarial attacks used in our experiments on the classifiers’ test
accuracy.

Architecture Training σ CIFAR10 CIFAR100 ImageNet

Clean Test Adversarial Test Clean Test Adversarial Test Clean Test Adversarial Test

ResNet 0 89.94% 26.7% 71.03% 12.19% 75.69% 19.59%
0.0625 87.13% 68.96% 64.58% 41.17% - -
0.125 81.69% 67.84% 58.06% 41.95% - -
0.25 75.19% 65.18% 50.73% 40.82% 68.58% 56.32%
0.375 - - 44.23% 37.14% - -
0.5 63.84% 57.34% 39.0% 33.68% 61.04% 53.09%
0.75 - - 31.75% 28.1% - -
1 47.99% 44.41% 25.57% 23.56% 47.73% 42.89%

DenseNet 0 95.42% 23.28% 77.07% 4.29% - -
0.25 80.09% 70.89% 52.69% 42.47% - -

VGG 0 93.1% 54.96% 72.17% 23.12% - -
0.25 78.88% 69.82% 48.57% 39.54% - -

possible labels y ∈ Y . The number of calls to the predictive model for creating a set for a single test
image is ns, and the number of classes L only affects the number of scores that need to be calculated
using the model predictions. The training involves fitting a classifier, and the calibration requires
computing the smoothed non-conformity scores for all calibration points, where both steps can be
performed only once.

Table S2 summarizes the average runtime for constructing a prediction set using Vanilla CP,
CP+SS, and RSCP with the HPS score function (3), for a single image, where the average is taken
over 100 realizations. We present the results obtained by two different implementation strategies of
our methods: ‘single mode’ and ‘batch mode’. The ‘single’ implementation repeats the following
two steps for ns times: (i) augment to the input image one realization of Gaussian noise, and (ii)
feed this noisy image to the neural net model. The ‘batch’ implementation is more efficient since
it parallelizes the inference step as follows: (i) augment ns noise realizations to the same input
image, and (ii) pass all these noisy realizations together (as one batch) to the neural net model. We
follow the exact same setup from the experiments used to create Figure 5 of the main manuscript.
Specifically, ns = 256 for CIFAR10 and CIFAR100, and ns = 64 for ImageNet. The runtimes are
evaluated using Pytorch, on a single Nvidia GEFORCE GTX 1080Ti GPU.

Following Table S2, we can see that when using the batch implementation the inference time of
CP+SS and RSCP is approximately 3-4 times larger than Vanilla CP. Also, the runtimes of
CP+SS and RSCP are almost identical, since the only difference between the two is the threshold
used to construct the prediction sets.

Table S2: Inference time (seconds) for constructing a prediction set for a single image using different
conformal prediction methods.

Dataset Vanilla CP CP+SS RSCP

Single Batch Single Batch

CIFAR10 0.019336 4.820160 0.030831 4.920013 0.030856

CIFAR100 0.017984 5.981254 0.030915 5.937026 0.030892

ImageNet 0.097539 1.288073 0.424692 1.134275 0.435865

S8 RESULTS WITH DENSNET AND VGG MODELS

In this section, we study the performance of our method when applied with DenseNet (Iandola et al.,
2014) and VGG (Simonyan & Zisserman, 2014) models on the CIFAR10 and CIFAR100 data sets,
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as opposed to experiments presented thus far that use only ResNet (He et al., 2016) classifiers. The
experiments here follow the protocol described in Section 5 of the main manuscript. We use the
same attack algorithms and magnitude δ = 0.125 as in the ResNet-110 experiments for CIFAR10
and CIFAR100. As for the hyper-parameters of our methods, we choose σ = 0.25 for smoothing,
and ns = 256 for estimating the smoothed score. Figure S9 compares the coverage and size of
the prediction sets constructed by combining ResNet-110, VGG, or DenseNet with Vanilla CP,
CP+SS, and RSCP. As can be seen, the difference between the three models is minor in terms of
coverage for all calibration methods in both data sets. We can also see that our theoretical guarantees
hold: for CP+SS, the worst coverage bound is below the empirical coverage obtained, and RSCP
yields valid prediction sets in contrast to the two other methods. In terms of size, the difference
between ResNet and DenseNet is minor, while VGG constructs larger sets, especially on CIFAR100.

Figure 1 of the main manuscript presents the results obtained by applying the VGG models to the
CIFAR10 data set, using the HPS score. In that figure, we additionally tested the vanilla conformal
method on the clean test points, to show the validity of this method when applied to clean test data
that satisfy the exchangeability assumption.

Turning to the technical details about the training procedure. For each architecture, we fit two mod-
els: one on clean training points and the second on points that are augmented with Gaussian noise,
as explained in Section 5.1 and Supplementary Section S3. All the models are trained on our local
server. The DenseNet architecture consists of 100 layers with a growth rate of 12 and a compression
rate of 2. We use the same data augmentation and normalization described in Supplementary sec-
tions S2 and S3. The models are trained using stochastic gradient descent with a momentum term
that equals 0.9, a batch size of 64, and a total of 300 epochs. The learning rate starts at 0.1 and
is multiplied by a factor of 0.1 at epochs 150 and 225. We also use a weight decay regularization
that equals 10−4. The VGG architecture consists of 19 layers with batch normalization. We use
the same data augmentation and normalization from Supplementary sections S2 and S3. The VGG
models are trained using stochastic gradient descent: a momentum of 0.9, batch size of 128, for a
total of 164 epochs. We set the initial learning rate to be equal to 0.1 and multiplied by a factor
of 0.1 at epochs 81 and 122. We also use a weight decay regularization, which equals 10−4. The
ResNet models are trained as explained in Supplementary Section S3. We train all the models using
Pytorch, on a single Nvidia GEFORCE GTX 1080 Ti GPU.
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Figure S9: A comparison between ResNet, VGG, and DenseNet models, deployed to the CIFAR10
(bottom) and CIFAR100 (top) data sets. Marginal coverage (left) and average set-size (right) ob-
tained by different conformal methods. The target coverage level is 90%.
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S9 RESULTS ON CLEAN DATA

In this section, we study the performance of our methods in a situation where no adversarial attack
is performed. We follow the setup from Figure 5 of the main manuscript, and compare the three
methods of interest (Vanilla CP, CP+SS, and RSCP) on the three data sets, using the same
models, smoothing parameter σ, and the number of noise realizations ns. Importantly, in contrast to
Figure 5, the results that are presented in Figure S10 are obtained by applying these three methods on
clean test points that are not corrupted by adversarial noise. Following that figure, both Vanilla
CP and CP+SS achieve the desired coverage of 90%, which stands in line with the theoretical
guarantee of split conformal prediction; see also Theorem 2. By contrast, RSCP results in a higher
coverage rate than the desired one, since this method always accounts for the uncertainty induced
by a possible attack even if not applied. Moving to the average set-size, notice that all the methods
perform similarly to the case where the test data is corrupted, as depicted in Figure 5 of the main
manuscript. Specifically, the average size of the sets constructed by CP+SS is larger than that of
Vanilla CP, possibly due to smoothed model that is used to make the predictions. However, it is
important to stress that CP+SS has a significantly smaller drop in coverage in the adversarial setting.
We also note that the average size of the sets constructed by RSCP is larger than those of CP+SS
due to the inflation of threshold Q1−α.

As a concluding remark, we iterate here the discussion from Section 3.2 of the main manuscript,
displaying the two possible use-cases of our proposal. In the first, one can implement RSCP and
construct valid prediction sets at any desired level of coverage, while bearing in mind that these sets
are likely to be larger even if no attack is performed. In the second case, one can deploy CP+SS,
guaranteeing that the sets will have the desired coverage in the case where no attack is performed
while providing important information about the worst coverage that might be obtained under an
adversarial attack. Moreover, we believe that in practice these two use-cases can be combined via
the following two-step procedure to improve statistical efficiency: (i) apply a method for detecting
whether a given test point is corrupted by an adversarial noise (e.g., Metzen et al., 2017; Feinman
et al., 2017; Cohen et al., 2020); and (ii) if an attack is detected, apply the RSCP method to construct
a valid prediction set, otherwise use the vanilla CP or CP+SS since these methods are less
conservative.
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Figure S10: Performance on clean data. Marginal coverage (left) and average set-size (right) ob-
tained by different conformal methods. The target coverage level is 90%.

S10 RESULTS WITH AN ADVERSARIALLY-TRAINED MODEL

In this section, we study the performance of our methods, integrated with the adversarial train-
ing scheme of Salman et al. (2019) that was shown to improve the robustness to the specific
SMOOTHADV attack we applied at test time. This new, more robust, predictive model replaces
the one we used in Section 5 (see also Supplementary Section S3), which is fitted merely by adding
Gaussian noise to the training points. Recall that the SMOOTHADV attack has two parameters: the
magnitude of the noise δ and the smoothing strength σ. Here, we use a training procedure that is
ideal in the sense that it has access to the same δ used for attacking the model, and the same σ used
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to compute the smoothed score. We perform this experiment only on the CIFAR10 data set and fit
a ResNet-110 model using the code provided by Salman et al. (2019). Their software package is
available at https://github.com/Hadisalman/smoothing-adversarial; this link
also provides the full details on how the models are trained.

The results are depicted in Figure S11, which follows the exact same experimental protocol used
to create Figure 5 of the main manuscript. That figure compares two versions of CP+SS: the first
is implemented with a model fitted on Gaussian augmented data, and the second is implemented
with the adversarially trained model of Salman et al. (2019). As can be seen, the latter model
achieves a slightly better coverage, closer to the desired one with the HPS score, while achieving
a slightly worse coverage with the APS score. For both scores, however, this model improves the
statistical efficiency. Interestingly, even in this optimistic case, CP+SS does not attain the desired
coverage perfectly. It is also important to stress that if the new model would be attacked by a
different and more effective attack, the coverage can possibly drop even further. It is worth noting
that this experiment supports our discussion from Section 6, arguing that any new development for
improving adversarial robustness could be easily integrated with our method to improve the overall
performance.
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Figure S11: Results using an adversarially trained model. Marginal coverage (left) and average
set-size (right) obtained by CP+SS on the CIFAR10 dataset with two different models. The target
coverage level is 90%.

S11 HPS VS. APS

In this section, we discuss the difference between the APS and HPS non-conformity scores and
demonstrate the advantages that APS has over HPS. Romano et al. (2020b) carefully argued that
while conformal prediction methods—which use the HPS score—are guaranteed to achieve the
marginal coverage criterion (1), they may fail to achieve the stronger and more informative notion
of conditional coverage, defined as

P [Yn+1 ∈ C (x) |Xn+1 = x] ≥ 1− α. (S14)

In plain words, the above statement requires the coverage to hold for a specific observation Xn+1 =
x, and not merely on average over all test points. While it is known that conditional coverage
cannot be achieved in finite samples without imposing strong regularity conditions and/or modeling
assumptions (Foygel Barber et al., 2021; Vovk, 2012), it was shown by Romano et al. (2020b) that
the APS score performs better in terms of conditional coverage compared to the HPS score. In fact,
Romano et al. (2020b) rigorously showed that by combining the APS score with an oracle classifier
that has access to the true conditional class probabilities PY |X , one can exactly satisfy (S14).

To demonstrate the advantage of APS in the adversarial setting, we repeat the experiment from
Figure 5 of the main manuscript and present the coverage and the average set-size, conditional on
each of the 10 classes of the CIFAR10 data set. Following Figure S12, the APS prediction sets
achieve a steady coverage across all classes, close to the desired level for the CP+SS, while the
coverage rates of HPS vary greatly. Moreover, the latter method tends to undercover the labels of the
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samples that belong to classes 2-5. One can also see that the size of the prediction sets constructed
by APS varies across the different classes, and therefore better reflecting the prediction uncertainty.
This stands in contrast with the sets constructed via the HPS score, whose sizes are more or less
constant for all class labels.
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Figure S12: Comparison between HPS and APS. Marginal coverage (top) and average set-size (bot-
tom) obtained by different conformal methods for each of the classes of CIFAR10 separately. The
target coverage level is 90%.

S12 COMPARISON WITH CAUCHOIS ET AL. (2020)

As discussed in Section 4, the task of reliably handling distribution shifts between the calibration
and the test points has been studied in the literature of conformal prediction. However, none of the
existing methods addresses our special setup, for which a full distributional shift is induced by an
adversarial attack. Perhaps the closest work to ours is that of Cauchois et al. (2020). They present
a calibration framework to construct robust prediction sets, given that the f -divergence between
the test distribution and the calibration distribution of the non-conformity scores is bounded by a
fixed value ρ. Since ρ is unknown in practice, they propose a method to estimate it from the data
and use this approximation to inflate the threshold Q1−α, so that the constructed sets will be robust
to ‘natural’ distributional shifts. This is in contrast to our method that assumes that an unknown
additive adversarial noise is added to the test points, and, as such, it is impossible to estimate ρ in
this case from the training/calibration data.

To demonstrate this, we follow the experimental protocol from Section 5 to compare our methods
with Cauchois et al. (2020). We estimate ρ by applying Cauchois et al. (2020, Algorithm 1), and
then construct prediction sets for the test points that are corrupted by adversarial perturbations of
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magnitude δ = 0.125.4 We use the same attacks detailed in Section 5, and evaluate this method
over 50 random splits of the CIFAR10 dataset. We compare the marginal coverage and average set
sizes achieved by their method to our RSCP approach with σ matching to the one used to augment
the training points, and set ns = 256. We make this comparison with four different ResNet models:
one that is trained on clean data (in this case we perform RSCP with σ = 0.25 for smoothing), and
three that are trained on points augmented with Gaussian noise, each one with a different σ 5.

The results are depicted in Figure S13. As can be seen, while our method achieves the desired cov-
erage, no matter which base model is used (at the expense of larger prediction sets), the method of
Cauchois et al. (2020) fails when using a model trained on clean points: the empirical coverage is
below the desired coverage (Figure S13a). The same happens with the σ = 0.0625 and σ = 0.125
models; see figures S13b and S13c. When using a more robust classifier—trained with σ = 0.25—
Cauchois et al. (2020) achieves the desired coverage in practice, although it is not supported by a
theoretical guarantee; see Figure S13d. Interestingly, for this model, while the two methods con-
struct prediction sets that achieve the desired coverage, our RSCP method—which uses smoothed
scores—constructs smaller sets with the choice of HPS as the base score, and the same size of sets
with the APS score.

4We thank the authors of (Cauchois et al., 2020) for sharing their code with us.
5As stated in Section S6, we add Gaussian noise to the test points when applying these models to calculate

the non-conformity scores.
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Figure S13: Comparison with Cauchois et al. (2020). Marginal coverage (left) and average set-
size (right) obtained by different conformal methods on the CIFAR10 dataset with three different
ResNet-110 models. The target coverage level is 90%. (a) model trained on clean training points,
(b) model trained on points augmented by Gaussian noise with σ = 0.0625, (c) model trained on
points augmented by Gaussian noise with σ = 0.125, (d) model trained on points augmented by
Gaussian noise with σ = 0.25.
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